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Cosmic Sound in the Lyman Alpha Forest

Spencer Everett, Matt Kwicien, and Cordell Newmiller
Department of Physics

ABSTRACT Using the Baryon Oscillation Spectroscopic Survey (BOSS) from the Sloan Digital Sky
Survey (SDSS), the authors attempt to detect the baryonic acoustic oscillations (BAOs) using the
discrete wavelet transform. The wavelet transform is used to construct the power spectrum of
intergalactic clouds of matter at large (Mpc) distance scales. It was found that the wavelet transform
used here does not have high enough resolution to detect the BAOs. However, the techniques used in
this study allow for future improvements in the transform that could potentially resolve the expected
peak in the power spectrum and indicate the existence of BAOs.

1. Introduction

380,000 years after the big bang, the universe
was not completely homogeneous [1]. This can be
seen as small anisotropic variations in the cosmic
microwave background (CMB), or the imprint
left when photons decoupled from matter at that
time [2]. This decoupling event, known as recom-
bination, left a distribution imprint on the pho-
tons comprising the CMB that traced the matter
it decoupled from. Standard cosmological models
hold that these anisotropies were initially present
in dark matter shortly after the Big Bang [3].
Dark matter is different from the normal mat-
ter of everyday experience in that it only inter-
acts with normal matter, called baryonic matter,
through the gravitational force. While elusive to
detect, the existence of dark matter is inferred
from how baryonic matter moves through space
as if there is an unseen source of gravity. Recent
evidence suggests that 85% of all matter in the
universe is dark rather than baryonic [4].
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These models also predict that the anisotropies
gave rise to certain pressure oscillations between
light and matter in the early universe; waves that
were frozen in place when recombination occurred.
Because these are pressure waves, the waves are
analogous to sound. Thus the imprints they left
on the distribution of matter in the universe are
called baryonic acoustic oscillations (BAOs). The
exact form, amplitude, and scale of these oscilla-
tions provide key clues to the fundamental makeup
of the universe. Eisenstein et al. first conclu-
sively observed baryonic acoustic oscillations a
decade ago [5]. The oscillations were detected at
a scale of about 100 mega-parsecs (Mpc), which
is thousands of times the size scale of the Milky
Way. The research goal was to corroborate Eisen-
stein’s findings using publicly available data, sim-
ple discrete algorithms, and affordable computa-
tional resources.

2. The Baryon Oscillation Spectroscopic Survey

Much of the baryonic matter in the universe is
in the form of massive intergalactic clouds of hy-
drogen. Most of these clouds are remnants of the
first neutral hydrogen atoms that formed once
the universe had cooled enough for neutral atoms
to form. This can be assumed as the clouds have
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very few traces of the heavier elements that are
formed after stars are born and die. These clouds
are believed to be held in place by the underlying
dark matter, and thus serve to trace the matter
distribution in the universe. These clouds of hy-
drogen are observable because very bright and
distant galaxies, called quasars, illuminate them
in a measurable way [6].

As shown in figures 1 and 2, the mechanism by
which this works is that high-energy light from an
active quasar excites the electron in a hydrogen
atom. A specific wavelength is now missing, or
absorbed, from the observed light of the quasar.
As only light of a specific wavelength is absorbed
by different kinds of molecular species, these ob-
jects can be directly identified as neutral hydro-
gen [7].

While absorption spectra allow the identifica-
tion of the hydrogen clouds, their distance away
also needs to be determined. Similar to how
the pitch of a siren is distorted as an ambulance
moves towards and away from an observer, the
wavelength of light is red shifted when its source
is moving away from the earth. The magnitude of
the shift is related to the distance of the source
from the observer. Therefore, the cosmological
redshift can be used to determine the position
of these clouds along the one-dimensional line of
sight between the distant quasar and the earth.
More practically, only the most prominent hydro-
gen absorption line, Lyman-alpha, is used. The
term Lyman-alpha forest refers to this collection
of individual Lyman-alpha lines with various red-
shifts seen in a quasar spectrum [8].

The data used were from the Sloan Digital Sky
Survey (SDSS). SDSS uses a 2.5m telescope lo-
cated at Apache Point Observatory in New Mex-
ico to observe astronomical phenomenon in the
northern sky. SDSS records the position in the
sky of an object along with its spectrum. The
spectrum is used to both identify what the ob-
ject is and, using the red shift, to determine the
distance of the object. The ninth data release
of the Sloan Digital Sky Survey (SDSS) included
a component called the Baryon Oscillation Spec-
troscopic Survey (BOSS). BOSS is a compilation
of the spectra of over 50,000 distant quasars. The
quasars are grouped together in about 800 plates,
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FIGURE 1. A representation of
photon absorption in a hydro-
gen atom [9]. Part (a) of the fig-
ure shows a photon in blue inter-
cepting an electron in its lowest
energy state, called its ground
state. The energy of the pho-
ton is absorbed by the electron
and it moves to a higher energy
state. These different energy
states occur at specific discrete
values, and so only photons with
the same energy as the differ-
ence between two energy states
will be absorbed. Photons of a
particular energy have a corre-
sponding wavelength, and these
wavelengths will be missing in
the absorption spectrum shown
in part (b) of the figure.

where one plate covers a sector of sky approxi-
mately 3 astronomical degrees in diameter. The
publicly available data supplied by BOSS is raw
and only marginally processed, but the release
does include flags on questionably reliable data
points, as well as a paper describing how to nor-
malize and clean the data of background noise
[6].
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FIGURE 2. A simple representa-
tion of the Lyman-alpha forest
[10]. The large object at the top
right is a quasar, which is emit-
ting light towards an observer
on the far left. Light passing
through hydrogen clouds causes
a decrease in flux at the Lyman-
alpha wavelength due to photon
absorption, which is shown on
the juxtaposed graph. The dips
in flux occur at different wave-
lengths as the light is redshifted
by different factors at different
distances.

3. Technique

The MATLAB computing environment was
used to analyze the data. The first steps were
to import the data from BOSS and then to re-
move flagged data. Parts of the spectrum not
near the Lyman-alpha forest are discarded as it
does not pertain to the intended analysis, and the
rest is cleaned and normalized using the function
described in the BOSS paper [6]. Figure 3 shows
an example of the raw spectrum of quasar 4498-
55615-0410. The horizontal axis is the redshift
while the vertical axis is the photon flux. Note
that some flux is negative due to the flux of the
quasar being subtracted away from the flux of
the absorption clouds.

Each spectrum needed to be converted from
redshift to distance. To do this, the distance-
redshift relation was used. This is a general re-
lationship between commoving distance and red-
shift, where commoving distance is defined such
that it does not increase as the universe expands.

At the large red shifts of quasars, it is safe to as-
sume that the red shift is entirely cosmological in
origin. The relationship is given by

Rodr =—[(1 — Q)(1+ 2)® + Qa
(1) Ho
+ Q14 2) +Q,(1 + 2)47V2dz

where Hy is Hubble’s constant, ¢ is the speed of
light, z is the redshift, Q2 is the total density pa-
rameter, 2, is the density parameter of vacuum
energy (dark energy), €2, is the density parame-
ter of pressureless mass (baryonic and dark mat-
ter), €. is the density parameter of relativistic
particles, and Ry is radial distance from the ob-
servation point, which in this case is Earth [11].
The values used during analysis were Hy = 70
Ems 'Mpc~', Q =1.02, Qp = 0.73, Q,,, = 0.27,
and Q, = 8.24 x 10~°, which are well accepted
values by the concordance model of cosmology
[12].

Raw Spectrum of Quasar 4498-55615-0410

(=]

(=2}

Flux (ergs/s/cm?/A)
’I\? o N £

1
»

D

v
2

3.6 3.7 3.8 3.9 4 4.1
Redshift (z2)

FIGURE 3. The raw spectrum
of quasar 4498-55615-0410, one
of over 50,000 quasar spectra
supplied by the Sloan Digital
Sky Survey (SDSS). This spec-
trum measures flux as a func-
tion of redshift and contains the
Lyman-alpha Forest described
in figure 1. These data were
cleaned according to the proce-
dures outlined in [6].
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To reduce computational requirements, the in-
dividual Lyman-alpha forests were grouped to-
gether by plate number to form one long forest
for each plate, recalling that each plate covers
about 3 degrees of the sky. The data for each
plate were binned into 512 bins, or, equivalently,
a distance scale of 2.92 Mpc. If there were not
enough quasars in a particular plate, there was a
chance that a small gap of zeroed bins would be
created in the combined spectra. Data with gaps
that were too big, where many of the bins were
empty, would distort correlation statistics of the
whole data set and needed to be replaced in a way
that would keep the correct statistics unaltered.
For the case of a small number of empty bins
an algorithm was derived to fill the gaps using
a weighted average of data mirrored from both
sides of the gap. The algorithm is

_ (Qb -2z — 1)F(2a—a:+1)
* 2b—a—-1)
(2.’1? —2a — 1)F(2b71371)
2b—a-1)

where I is the flux of a given unknown bin z, and
a and b are the positions of the nearest known
bins on the left and right respectively. This algo-
rithm weights the mirrored data so that any lin-
ear progression is conserved: applied to a straight
line with a gap, the line will be reconstructed per-
fectly. Figure 4 shows the results of the algorithm
on a generated data set, where the green line is
the original data and the blue line shows the re-
construction made by the algorithm. An inter-
val of data was purposely zeroed in this known
set and the gap filler algorithm approximated the
missing data. Comparing the results with known
data sets, it was found that, for small gaps, the
algorithm performed well with typically less than
a 20% error.

After the pre-processing, the two-point cor-
relation function of the data needed to be cal-
culated. The correlation function is a measure
of the excess probability of encountering another
object at some distance compared to what would
be expected from a random probability. This is
useful in detecting BAOs because their effects on
the early universe can be seen in the matter dis-
tribution in the universe today. Thus if the level

(2)

Gapfiller Demonstration

Generated Data

180 200 220 240 260 280
Data Bin Number

FIGURE 4. This graph shows a
reconstruction of a data set us-
ing the gap filler algorithm to fill
zeroed bins of data. A generated
data set with known power spec-
trum is graphed in green. An in-
terval of data was removed from
the data set, and the algorithm
used data on either side of the
gap to approximate the missing
data which is graphed in blue.
While the reconstruction is only
an approximation, it retains the
statistics of the entire data set
far better than leaving the bins
zeroed.

of structure in the universe can be correlated as
a function of distance, a bump of high correla-
tion would indicate the existence of BAOs [5].
However, this function is computationally inten-
sive to compute directly. The power spectrum,
the Fourier transform of the correlation function,
can be computed much more quickly. Because
of this ease of computation, the power spectrum
is the quantity predicted directly by theories of
structure formation and it is the quantity mea-
sured in this work.

To calculate the power spectrum a mathemat-
ical technique known as a discrete wavelet trans-
form was used [13]. The transform breaks a signal
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down into localized averages and localized fluctu-
ations about those averages. After the transfor-
mation, two signals emerge. The first is a sig-
nal that is representative of the original signal
with the high frequency noise smoothed away,
while the other is a signal that captures the lo-
cal fluctuations. The latter signal is effectively a
measure of the variance. The coarse grained sig-
nal can then be passed again to the transform,
which again results in to two new signals. In this
way, the original distribution can be analyzed on
a scale-by-scale basis and the variance as a func-
tion of scale is obtained. This variance is the
power spectrum.

The wavelet transform also effectively com-
presses the data into more manageable data sets
without loss of information. BAOs are a localized
phenomenon, so using a transform that preserves
localized information is advantageous. However
one drawback of the wavelet transform used in
this research is that it decomposes the data in
powers of two, which reduces the resolution at
large separation distances. Even with this opti-
mized transform and a computation of the power
spectrum instead of the correlation directly, the
computational analysis took many days to com-
plete.

4. Results

The first result was two histograms of the max-
imum and minimum redshift values among the
entire data set, which are given in figures 5 and 6
respectively. By bounding the data with a mini-
mum and maximum redshift value that was com-
mon to most spectra, fewer zeroed bins were cre-
ated and less use of the gap-filler was required.

After data cleaning and applying the discrete
wavelet transform to the BOSS data, the average
power spectrum of the 800 plates was found at
eight separation distances: 12, 23, 47, 94, 188,
375, 750, and 1,500 Mpc. These data are shown
in figure 7. The error bars are one standard devi-
ation from the mean of the variance computed at
each scale. Overall, the power spectrum that was
computed, as shown in figure 7, has the gener-
ally accepted features as predicted by theory [5].

500,

Occurence vs Minimum Redshift

Occurence

22 2.25
Minimum Redshift (z)

F1cURE 5. A histogram of the
minimum redshift of each com-
bined spectra plate. Finding
a common minimum redshift
value confined the analysis to
distances where the most data
were present and required less
use of the gap filler algorithm.

Occurence vs Maximum Redshift
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FIGURE 6. A histogram of the
maximum redshift of each com-
bined spectra plate. Finding
a common maximum redshift
value confined the analysis to
distances where the most data
were present and required less
use of the gap filler algorithm.
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However, this trial only had a tenth of the reso-
lution that Eisenstein et al. had and is not suf-
ficient to capture the BAO feature in the power
spectrum. The resolution used by Eisenstein et
al. was close to the minimum required to re-
solve the BAOs, and they would have manifested
as a slight bump in correlation at slightly over
100 Mpc of separation with a width of about 20
Mpc. The correlation points in figure 7, near-
est of which are at 47, 94, and 188 Mpc, do not
preclude the existence of the bump, but clearly
cannot indicate it. While the measured scales do
not capture the effects of BAOs, the results are
still promising as they closely match the expected
theoretical power spectrum for the same scales.
This makes the authors optimistic that the tech-
niques used here can be adapted to use a modified
transform with higher resolution to observe the
existence of BAOs on the required scale.

5. Conclusion

The techniques described in this research did
yield the power spectrum of the Lyman-alpha for-
est from the SDSS BOSS survey. However, the
resolution was inadequate to confirm the exis-
tence of BAOs at the expected separation dis-
tance. If a different wavelet transform is used
that can refine the resolution at which the distri-
bution is decomposed, this technique may be ca-
pable of detecting signatures of the BAOs. The
wavelet has several advantages over traditional
techniques that calculate the power spectrum, so
refining the technique is well worth the effort.
As it stands, the conclusion is that the power-of-
two discrete transform used in this work does not
have the required resolution to detect the BAOs.
While no evidence of BAOs was detected, a com-
putational foundation for future research to build
upon was created. The gap-filling algorithm is a
particularly versatile accomplishment and should
be applicable to any almost-complete data set
that needs statistical parameters to be preserved.

Future research will include applying other
wavelet transforms to this data that have bet-
ter resolution. In particular, the use of wavelet
packets that have much higher scale resolution
will be tried. As the foundation has been laid

Two Point Correlation Power Spectrum

Relative Correlation
|
&
T
L

| | | | | L
0 12 23 47 9% 188 375 750 1500 3000
Seperation Distance (Mpc)

FiGure 7. The power spec-
trum of all combined spectra
plates. The power spectrum was
graphed as a function of sepa-
ration distance, with error bars
of one standard deviation from
the mean of the variance at each
scale. A high relative ampli-
tude at a particular separation
distance signifies that the hy-
drogen clouds are more likely to
be found at this separation than
at a separation of lower rela-
tive amplitude. Previous results
from Eisenstein et al. suggested
that there should be a noticeable
increase in amplitude at slightly
over 100 Mpc due to BAOs [5].
The BAO peak is not evident
in the processed data due to
the low resolution of the discrete
wavelet transform.

with this work, the extension to wavelet pack-
ets is greatly simplified. The authors also hope
to use the data to generate a three-dimensional
model of the locations of the hydrogen clouds in
the regions examined by the SDSS.
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