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ABSTRACT	
   Recently, the electronic industry has been shifting towards devices that can be controlled 
by touching the screen with one or more fingers. This technology makes use of transparent conducting 
oxides (TCOs).  Zinc oxide (ZnO) is a potential replacement for the most currently used TCO (indium-tin 
oxide) due to its comparable optical properties. However, the doping mechanisms of zinc oxide need to be 
understood and improved. In this research, the optimum concentration of aluminum dopant in ZnO at 
1400 oC was investigated.  The aluminum doping concentrations studied were 0 %, 1 %, 2 %, 2.5 %, and 
4 % by weight.  The electrical conductivity for all doping levels improved compared to undoped ZnO.  
The highest conductivity was obtained for the 2 % and 2.5 % aluminum concentrations, indicating that 
this is the maximum solubility limit of Al in ZnO at this temperature.  

	
  

INTRODUCTION	
  

Transparent conducting oxides (TCO) 
have become very popular in the past decade, 
and are used in the fields of electronics, 
optoelectronics, and spintronic devices [1]. The 
TCO field is expanding amazingly fast due to 
the potential applications of materials that are 
both conductive and transparent.  ZnO is 
cheaper than many other TCOs and is safer, 
making it a viable candidate to research for 
future applications [2]. 
____________________________________ 
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Some of the applications of ZnO include 
ultraviolet light emitters; spin functional 
devices, gas and other molecular sensors, and 
transparent electronics, among others [1].  
Although ZnO is naturally an insulator, it can be 
doped with substitutional impurities to defect the 
lattice structure. Appropriate dopants of ZnO 
can make it an effective n- or p-type 
semiconductor by incorporating electrons or 
holes that easily flow across the lattice.  The n 
stands for negative charge carriers (electrons) 
while the p means that the majority carriers are 
positive charges (holes). 

 Metals are excellent conductors, but 
they are highly opaque. Intrinsic semiconductors 
are normally pure materials with modest 
conductivities. Extrinsic semiconductors are 
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doped by controlling the impurity concentrations 
to improve the material’s properties [3]. The 
defect mechanism responsible for ZnO’s 
semiconducting properties is still not well 
understood by the scientific community; 
however atomic point defects and impurities are 
believed to be responsible for its electrical 
behavior [1-3].   

	
   Currently, the transparent conductor 
used for flat-panel displays is tin-doped indium 
oxide (ITO). It has a resistivity of ~ 10-4 Ω-cm 
and a transmittance in the visible spectrum 
exceeding 80 % [3]. Indium is not an abundant 
resource on Earth, and its scarcity makes it very 
expensive [4].  More cost-efficient means of 
producing a robust material with the same 
functionality and productivity as ITO are 
currently being investigated by considering 
alternative materials and methods.  

 Aluminum-doped zinc oxide (AZO) is 
an attractive replacement since zinc and 
aluminum are inexpensive materials. In this 
research, micro-sized granules of ZnO powder 
and Al2O3 doping agents were used to study the 
effects of impurities and heat treatment methods 
on the electrical characteristics of AZO.  High 
temperature was used to dope ZnO with 1, 2, 2.5 
and 4 aluminum weight percentages.  The 
electrical conductivity of the samples was 
measured with a four-point electrical probe and 
a current source. With the four-point probe, a 
small current is applied across two points on the 
surface of the sample, and a potential difference 
is measured across the other two probes.  

 The resistance of the sample is 
determined by applying Ohm’s law:  

𝑅 =    ∆!
!
	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  (1)	
  

where R is resistance , ΔV is voltage, and I is the 
current. The conductivity of the sample is 
inversely proportional to the resistivity since 

𝜎 = !
!
= !

!"
= 𝜇𝑛𝑒         (2) 

where σ is the conductivity, ρ is the resistivity, l 
is the length of the sample, A is the cross-

sectional area of the sample, n  is the carrier 
concentration, µ is the mobility, and e is the 
charge of an electron [5].  From Equation (2), 
the conductivity of a material is directly 
proportional to both the carrier mobility and 
carrier concentration.  

A heat source, gold foils, and  
thermocouples connected to a power 
source/digital multimeter were used to record 
the thermopower coefficient. With this 
technique the voltage difference experienced by 
charge carriers due to a temperature gradient 
between the top and the bottom of the sample is 
measured.  The thermopower or Seebeck 
coefficient, Q, is given by  

𝑄 = ∆!
∆!
∝   𝑛!! !         (3) 

where ΔV is the difference in electric potential, 
and ΔT is the difference in temperature between 
the top and bottom of the sample [6].  Negative 
values for Q indicate that the semiconductor is 
n-type with surplus of electrons, while positive 
differences can be explained through the 
presence of electron holes, which are positive 
carriers. The magnitude of the thermopower is 
inversely related to the concentration of carriers, 
therefore a smaller |Q| corresponds to a sample 
with high electron populations. 

 

METHODS	
  

The materials used were high-purity 
ZnO powder (99.9999%, Puratronic from Alfa 
Aesar, and referred to as B1) with micron-sized 
grains and nano-grain sized powders of 
aluminum oxide. The purity of Al2O3 was 
99.995% (also obtained from Alfa Aesar, and 
referred to as A2). The ZnO and Al2O3 powders 
were crushed into very fine powders and mixed 
together with acetone using a mortar and pestle. 
Four different aluminum compositions were 
prepared: 1%, 2%, 2.5%, and 4% by weight. For 
reproducibility purposes, the powders were 
pressed into eight identical pellets for each 
composition. The homogenized powder was 
placed into a 6-mm die, which was then put into 
a hydraulic press under a pressure of 60 MPa to 
obtain pellets. This was a delicate process 
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depending on the amount of Al2O3. Acetone 
helped with the pressing process by preventing 
flaking of the pellets. A hand-held x-ray 
fluorescence (XRF) instrument (Tracer III-SD 
from Bruker) allowed the identification of the 
elements, including impurities, present in the 
samples. This gun excites electrons and 
measures the intensity and energy of the emitted 
photons. Their energy corresponds to the 
electronic configuration of specific elements. 
The purity of the raw powders and the pellets 
after treatments were determined with the XRF 
instrument. 

 Once pressed into compacted disc-
shaped pellets, the samples were placed into a 
box annealing oven to sinter at 1400 °C for a 
period of 24 hours.  This sintering step increases 
the particle to particle contact and allows for the 
incorporation of Al into the ZnO structure. The 
samples were covered with sacrificial powder of 
the same composition to avoid contamination 
from the alumina crucibles.  After the samples 
were heated, their conductivity and 
thermopower were measured. While under the 
C4S four-point electrical probe, automated 
measurements for resistance were taken using a 
connected programmable current source and a 
digital multimeter. The range of amperage 
applied to the samples varied depending on the 
instrument’s capabilities to establish an adequate 
signal through the material.  A typical interval 
ranged from -100 mA to +100 mA with 10 step 
intervals. The conductivity was calculated using 
Equations (1) and (2) and applying geometrical 
corrections [7-8].  

 Thermopower testing was conducted 
using an existing setup and procedure [6]. The 
technique consisted of using a soldering iron to 
achieve a temperature gradient of 230 °C 
between the two thermocouples placed on either 
side of the pellet faces.  The sample was then 
allowed to cool. The thermocouples measured 
how well heat was transferred throughout the 
material by exploiting its thermoelectric 
properties. A digital multimeter measured the 
voltage drops due to the thermal gradient. The 
transference of heat and thus the thermopower 
were determined for each sample using Equation 
(3). The elemental compositions were measured 
again using the XRF instrument.  

 After these tests, the pellets were placed 
into another boat crucible and bedding to 
undergo reduction in a tube furnace (Thermo-
Fischer).  The furnace was attached to a 
pressurized tank of forming gas (4% hydrogen, 
96% nitrogen mixture). The samples were 
heated to 500 °C and simultaneously exposed to 
the forming gas for 10 hours. The samples were 
allowed to interact with forming gas at high 
temperatures in order for reduction to occur. For 
samples like indium-tin oxide, the exposure to 
reducing gases increases the conductivity since 
some of the oxygen ions in the structure are 
removed resulting in a higher population of free 
electrons [6].   The mechanism for zinc oxide is 
not well understood, but it is hypothesized that 
either oxygen is removed resulting in oxygen 
vacancies, zinc interstitials, or complex defects 
that combine both point defects [1].  The 
electrical properties were tested again following 
the same procedure described above.  

 

RESULTS	
  AND	
  DISCUSSION	
  

No impurities were detected in the XRF 
spectra of the B1-ZnO and A2-Al2O3 untreated 
batches or in any of the pellets used in this 
study.  After the high-temperature synthesis, one 
side of the pellets reflected light more than the 
other side that appeared more opaque.  XRF 
measurements showed that the amount of 
aluminum was different on the opaque side and 
the surface with sparkles. The reflective side had 
more Al than the opaque side of the pellet. 
Figures 1, 2, and 3 show a comparison between 
five different batches of B1-A2, with 0%, 1%, 
2%, 2.5%, and 4% Al doping before and after 
reduction of both the surfaces.  Both sides of the 
pellet had similar electrical results, within 
experimental error, even when their surfaces 
appeared different.  This indicates that the 
conductivity measurements were probing the 
bulk of the samples, not just the surface. It is 
clear that aluminum doping had a dramatic 
effect on the materials. The reducing gas 
affected the 4% Al-ZnO samples the most (an 
increase of a factor of ~10), but did not have a 
significant effect on the other samples.  The 
results for the 4 % sample could be attributed to 
the formation of defects in the structure.  
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However, x-ray and neutron structural studies 
are needed to determine which type of defects is 
present in the samples.  The undoped ZnO 
samples were about 3000 times less conductive 
than the AZO doped pellets.   The conductivity 
increased with doping, reached a maximum for 
the 2% and 2.5% samples, and then decreased.  
The highest conductivity was approximately 150 
S/cm (siemens per centimeter). 

 

 

Figure 1: Conductivity of the reflective side 
before and after reduction. 

 

 

Figure 2: Conductivity of the opaque side before 
and after reduction. 

 

Thermopower tests were run after the 
pellets came out of the annealing and reducing 
ovens. These measurements were performed 
using a heat source, gold foils, and S-type 
thermocouples. S-type thermocouples consist of 
two wires that are joined together at one end.  
One wire has a composition of 90 weight % 
Pt/10% Rh while the other wire is pure Pt.  The 
thermocouples allow the measurement of the 

transference of heat, which directly correlates to 
the carrier concentration of each pellet. Figure 4 
presents the thermopower results of the B1-A2 
series, before and after reduction. The 
magnitude of the thermopower decreased as the 
doping concentration increased suggesting that 
larger electron populations are present at lower 
doping levels. The undoped ZnO samples (not 
shown in Figure 4) had a thermopower of ~500 
µV/K. Therefore doping with aluminum 
dramatically increased the number of conduction 
electrons.  The reduction treatment did not have 
an effect on the thermopower, within 
experimental error, except for the 4 % sample 
where there is a decrease of about 20 %. 

 

 

Figure 3: Average of the conductivity of both 
surfaces before and after reduction 

	
  	
  

 

Figure 4: Thermopower before and after 
reduction 

  

Since as shown in Equation (2), the 
conductivity is a product of the carrier 
concentration and the mobility, from the results 
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it can be concluded that aluminum doping 
increased both the population of electrons and 
their mobilities.  For the 1% doping level, the 
mobility was relatively low, but it improved 
substantially for the 2% and 2.5 % samples. 
Even when the carrier concentration decreased 
for these doping levels, the overall conductivity 
reached a maximum.  The 4 % sample can be 
classified as overdoped, since the electrical 
properties worsened as more aluminum was 
introduced. 

The conductivity of thin film samples is 
typically higher than in powders since more 
desirable defects can be incorporated in the 
lattice of metastable samples.  The preparation 
of thin films allows for higher doping levels that 
result in a wide range of electrical properties.  
For Al-doped ZnO films, the conductivity can 
reach up to 6500 S/cm [1].  Those values are 
comparable to the conductivity of indium-tin 
oxide thin films.  For bulk powders, the 
conductivity can be lower since during the high-
temperature synthesis, thermodynamic solubility 
limits are achieved and less defects can be 
incorporated.  ITO powders exhibit a wide range 
of electrical properties depending on the 
synthesis temperature and post-annealing 
treatments.  For example, ITO powders prepared 
at 1350 oC, before reduction, had conductivity of 
600 S/cm; and after CO/CO2 reduction at 800 

oC, the conductivity increased to approximately 
1700 S/cm [9].   These values are one order of 
magnitude higher than the aluminum-doped ZnO 
samples prepared in this study.  From previous 
experiments, the purity and grain size of the 
starting powders, the sintering temperature, the 
gas reduction atmospheres, temperatures, and 
annealing times have major effects on the 
conductivity [10]. Optimization of the synthesis 
conditions is needed to further improve the 
electrical behavior of these samples.  However, 
as mentioned before, the Al-doped samples are 
3000 times more conductive compared to 
undoped ZnO samples. 

 

CONCLUSIONS	
  

The electrical results give conclusive 
evidence that aluminum doping significantly 
increases the electrical conductivity, carrier 
concentration, and mobility of ZnO. The ratios 
between ZnO and Al2O3 also indicate that there 
is a specific range for optimizing the percentage 
of doping in ZnO. As more experiments are 
conducted, a better understanding of ZnO is 
achieved. 
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