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DEPAUL DISCOVERIES (2O13) 

INTRODUCTION

Permutations as combinatorial objects will be the basis 
for this paper. Two of their most basic attributes are 
ascents and descents. We will examine in this paper 
a statistic for alternating permutations. Alternating 
permutations have been studied by Stanley[2] and 
Dulucq and Simion[1]. This statistic is based on the 
concept of a descent, called alternating descents. We will 
focus our attention, however, solely on the alternating 
permutations containing one alternating descent.

In the first section we define this statistic and its 
notation. In Section 2, we introduce the decomposition 
of these permutations into four subsets that will then be 
enumerated in Sections 3 through 6.

1.  ALTERNATING DESCENTS

DEFINITION 1 .1 . 

A permutation is a specific ordering of a set of elements. 
Since we consider finite sets this definition coincides 
with the definition of a permutation as a one-to-one 
and onto map. 

A permutation w may be expressed as a word where  
w  w(1) w(2) ... w(n).

DEFINITION 1 .2.

An ascent in a permutation is a position i such that w(i) 
 w(i1). A descent in a permutation is a position i 
such that w(i)  w(i1). 

DEFINITION 1 .3. 
An alternating permutation is a permutation with 
ascents in all odd positions and descents in all even 
positions. 

EXAMPLE 1 .4. 

The alternating permutation of S1 is {1}.
The alternating permutation of S2 is {12}.
The alternating permutations of S3 are {132, 231}.
The alternating permutations of S4 are {1324, 1423, 
2314, 2413, 3412}. 

Permutations can also be displayed visually. In these 
graphs, one can see the relative differences between 
consecutive values. For alternating permutations, what 
is immediately apparent is that they zig-zag. These 
graphs can be formed by plotting for each i (i, w(i)), then 
connecting each plotted point.

A B S T R A C T This paper introduces a new statistic for alternating permutations, called an alternating descent. 
Specifically this paper focuses on alternating permutations with one alternating descent. We then enumerate these 
permutations by decomposing them into four sets.
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EXAMPLE 1 .5. 

Consider w362415; w can be expressed visually with 
each point representing a term in w:

If we care only about ascents and descents, and not 
the relative differences between consecutive values, we 
can also capture this zig-zag property without using a 
graph. We will use this form in later analysis.

EXAMPLE 1 .6. 

If w is the alternating permutation w24153867 then w 
may be written as w 7

6
8

3
5

1
4

2=w . 

Counting the number of descents in an alternating 
permutation is uninteresting because we will always 
know exactly how many there are: if the alternating 
permutation w  Sn, then there are 



 −

2
1n  ascents and 





 −

2
1n  descents. So we will examine a different statistic.

DEFINITION 1 .7. 

Given the alternating permutation w, read the odd 
positions of w from right to left and then the even 
positions from left to right. This mapping of w of size 
n will be called w, where its size is also n. Equivalently, 
if the alternating permutation is in the zig-zag form, 
read the letters starting from the bottom right corner 
and continuing clockwise all the way around to the top 
right. The number of alternating descents of w, denoted 
altdes(w), is defined as altdes(w)des(w), the number 
of descents of w. 

We can also find w and altdes(w) for non-alternating 
permutations w, but here will focus only on the 
alternating permutations.

EXAMPLE 1 .8. 

For w24153867 from Example 1.6, we have  
w63124587. There are three descents in w, so 
altdes(w)2. 

EXAMPLE 1 .9. 

There are no alternating permutations with 1 alternating 
descent in either S1 or S2 because there are no descents 
in either (1) 1 or (12)12. 

EXAMPLE 1 .10. 

The alternating permutation of S3 with one alternating 
descent is 132 where (132)213. 

EXAMPLE 1 .11 . 

The alternating permutations of S4 with one alternating 
descent are 1324, 2413, and 3412 where (1324)2134, 
(2413)1243, and (1342)1342. 

2. DECOMPOSING EN,1 
Let n,1 be the set of alternating permutations of size 
n with 1 alternating descent. We will show that the 
set of alternating permutations of n letters with one 
alternating descent, n,1, can be decomposed as a union 
of the following pairwise disjoint sets: 

	

Example 1.8. For w = 24153867 from Example 1.6, we have w′ = 63124587. There are

three descents in w′, so altdes(w) = 3.

Example 1.9. There are no alternating permutations with 1 alternating descent in either S1

or S2 because there are no descents in either (1)′ = 1 or (12)′ = 12.

Example 1.10. The alternating permutation of S3 with one alternating descent is 132 where

(132)′ = 213.

Example 1.11. The alternating permutations of S4 with one alternating descent are 1324,

2413, and 3412 where (1324)′ = 2134, (2413)′ = 1243, and (3412)′ = 1342.

2. Decomposing En,1

Let En,1 be the set of alternating permutations of size n with 1 alternating descent. We

will show that the set of alternating permutations of n letters with one alternating descent,

En,1, can be decomposed as a union of the following pairwise disjoint sets:

En,1 = An �Bn � Cn �Dn

Given that |S| is the the number of elements of S, we have:

|An| = |En−1,1|

|Bn| = |Bn−1|+ |Cn−1|+ |Dn−1|

|Cn| = |Bn−2|+ |Cn−2|+ |Dn−2|

|Dn| = 1 for n > 3.

.

Given that | S | is the the number of elements of S, we 
have:
	
	

Example 1.8. For w = 24153867 from Example 1.6, we have w′ = 63124587. There are

three descents in w′, so altdes(w) = 3.

Example 1.9. There are no alternating permutations with 1 alternating descent in either S1

or S2 because there are no descents in either (1)′ = 1 or (12)′ = 12.

Example 1.10. The alternating permutation of S3 with one alternating descent is 132 where

(132)′ = 213.

Example 1.11. The alternating permutations of S4 with one alternating descent are 1324,

2413, and 3412 where (1324)′ = 2134, (2413)′ = 1243, and (3412)′ = 1342.

2. Decomposing En,1

Let En,1 be the set of alternating permutations of size n with 1 alternating descent. We

will show that the set of alternating permutations of n letters with one alternating descent,

En,1, can be decomposed as a union of the following pairwise disjoint sets:

En,1 = An � Bn � Cn �Dn

Given that |S| is the the number of elements of S, we have:

|An| = |En−1,1|

|Bn| = |Bn−1|+ |Cn−1|+ |Dn−1|

|Cn| = |Bn−2|+ |Cn−2|+ |Dn−2|

|Dn| = 1 for n > 3.

ENUMERATING ALTERNATING PERMUTATIONS WITH ONE ALTERNATING DESCENT
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3. SET An 

The set An is the set of all alternating permutations 
with one alternating descent ending in n if n is even 
and ending in 1 if n is odd. The set An will be acquired 
directly from the permutations w in n-1,1 via the map  
 (w), defined as follows:  

•	 If n is even, then obtain  (w) by inserting n as the 
last letter of each permutation in n-1,1 . 

•	 If n  is odd, then obtain  (w) by inserting 1 as 
the last letter of each permutation in n-1,1 , shifting 
every other letter’s value up by one. 

EXAMPLE 3.1 . 

For w  24351, we have n  6, and so  (w)243516. 

EXAMPLE 3.2. 

For w  143526, we have n  7, and so  (w)2546371.
 
PROPOSITION 3.3. 

For any w  n-1,1, we have  (w)  n,1. 

Proof. When n is even, there is a descent in the final 
position of w, that is w(n2)  w(n1) . Adding n 
after the final position of w, we must surely have  
w (n1)  n. This also guarantees that w(n1)  

n, which means there is no new alternating descent. 
Since we begin with an alternating permutation with 
one alternating descent and only insert n in the final 
position, we preserve its alternating structure and its 
alternating descent. Therefore  (w) is in n,1.

When n is odd, there is an ascent in the final position 
of w, that is w(n2)  w(n1). So when 1 is inserted 
after the final position of w and every other letter in w 
is shifted up by one, it is certain that w(n1)  1. Since 
we begin with an alternating permutation with one 
alternating descent and only add 1 to the final position 
and shift every other letter up by one, we preserve 
its alternating structure and its alternating descent. 
Therefore  (w) is in n,1.     

It is easy to check that the map  (w) is one-to-one 

and onto, therefore the cardinality of An is equal to the 
cardinality of n-1,1. If we assume that w does not lie in 
An, then w has the alternating descent in the top row if n 
is even and in the bottom row if n is odd.

4. SET Bn

The set B will be acquired from the permutations in  
n-1,1 An-1. This means that the permutations in B will 
come from those in n-1,1 that do not end in n if n1 is 
even or 1 if n1 is odd.

EXAMPLE 4.1 

3,1 contains only the permutation 132. 4,1 contains the 
permutations 1324, 3412, and 2413. Because  (132) 

1324, the permutations of 4,1 A4 are 2413 and 3412. 

Before we can show how set B is generated, we must 
first understand the process of complementing a 
permutation.

DEFINITION 4.2. 

Consider the permutation ww(1)w(1)w(2) …. w(n). To 
complement a permutation, w, replace each w(i) with 
n1 w(i). This operation will be expressed as . 

EXAMPLE 4.3. 

For w  1365247, we have   7523641.  

EXAMPLE 4.4. 

For the alternating permutation w  5
7

3
6

1
4

2=w , we 
have   3

1
5

2
7

4
6=w . 

Note in the second example how complementing an 
alternating permutation preserves its zig-zag quality.

The set B will be generated from the permutations w  
n–1,1 An–1, acquired by the map, (w), defined as follows:

•	 Consider the permutation, w, in its zig-zag form. 
If n is even, then to obtain (w), first find . Then 
shift each letter in the top row of  that is to the left 
of the alternating descent, including the position 
of alternating descent, to the left by one position. 

3
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This includes moving the top leftmost letter of  
to the bottom leftmost position. Then insert in the 
remaining slot of , which will be immediately to 
the right of the descent, the letter n. 

•	  Consider the permutation, w, in its zig-zag from. 
If n is odd, then to obtain (w), first find . Then 
shift each letter in the top row of  to the left by 
one entry. This includes moving the top leftmost 
letter of  to the bottom leftmost position. Finally, 
insert in the remaining slot of , which will be the 
top rightmost position, the letter n. 

EXAMPLE 4.5 

For w 4
7

5
6

1
3

2=w , we have n8. First find  
, which is 4

1
3

2
7

5
6 . Then move the top leftmost 

letter to the bottom leftmost position and shift each letter 
in the top row of   that is left of the alternating descent 
to the left by one position, so  becomes 4

1
3

25
7

6
. Finally, insert n in the empty remaining top position,  
so we have 4

1
3

2
8

5
7

6 . So (w)  67582314.

EXAMPLE 4.6 

For w 6
1

8
2

7
3

5
4=w , we have n9. First we find 

, which is 
3

8
1

7
2

6
4

5 . Then we move the letter 
in the top leftmost position of  to the bottom leftmost 
position and shift each letter of the top row of  to the 
left by one position, which gives 

31
8

2
7

4
6

5
. 

Finally, we insert n in the empty remaining top position, 
yielding 3

9
1

8
2

7
4

6
5 . So (w)  564728193. 

PROPOSITION 4.7. 

For any w  n-1,1 An-1, we have (w)  n,1. 

Proof. Consider w in its zig-zag form. When n is 
even, w has an alternating descent in its bottom row. 
By complementing the permutation, this alternating 
descent now comes in the top row. Therefore when we 
shift every letter to the left of the alternating descent 
to the left by one, including moving the top leftmost 
letter to the bottom leftmost position, we add no new 
alternating descent. Inserting the letter n into this 
permutation does not add a descent, but increases the 

value of the descent. The alternating structure of the 
permutation is preserved because we know the value of 
n must be greater than every other letter. Thus we have 
 (w)  n,1.

Consider w in its zig-zag form. When n is odd, w has an 
alternating descent in its top row. By complementing the 
permutation, this alternating descent now comes in the 
bottom row. Therefore when we shift each letter of the 
top row over by one position and shift the top leftmost 
letter to the bottom row, no new alternating descent is 
added. The alternating structure is preserved because 
the alternating descent occurs in the bottom row of  

, the top row must be in ascending order, which means 
that there will be an ascent in the first position of (w). 
Additionally, when we insert n into the top rightmost 
position, n   (n3) and n   (n1) must be true. 
Thus we have  (w)  n,1.

5. SET Cn

Similar to set B, the permutations of set C will be 
generated from the permutations in n-2,1 An-2 . 
The set C will generated from the permutations  
w  n-2,1 An-2, acquired by the map, (w), defined as 
follows:

•	 Consider the permutation, w, in its zig-zag form. 
If n is odd, then to obtain (w), examine the 
bottom row of w. Insert ni1 in the position 
immediately right of the descent, where i is 
the number of letters that are to the right of the 
descent on the bottom row. Preserving the value of 
the letters in the bottom row, increase the values of 
the letters of the top row by at least one, making 
sure not to acquire a new letter in the top row that 
has the same value as one in the bottom row, and 
also inserting ascending letters in the remaining 
top position.

•	 Consider the permutation, w, in its zig-zag form. 
If n is even, then to obtain (w), first insert the 
letter 1 to the right of the bottom rightmost letter 
of w. Then insert n1 to the right of the top 
rightmost letter. Next, increase each letter in the 

4
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permutation by one except the letter n2 which 
we increase by two, not including the two letters 
we have just inserted.

EXAMPLE 5.1 . 

For w 2
5

3
4

1=w , we have n7. First we find that 
i2, and ni14 because there are two letters right 
of the descent. Next we insert this letter, yielding 

23
5

4
4

1 . We then increase the letters in the top 
row and insert the letter n, or in this case 7, to find (w) 
 2

7
3

6
4

5
1=)(ws . 

EXAMPLE 5.2. 

For w 2
1

4
3=w , we have n6. First we insert the letter 

1 to the right of the bottom rightmost letter, which 
yields 

1
2

1
4

3
. We then insert the letter n1, or in 

this case 5, to the right of the top rightmost letter, which 
yields 5

1
2

1
4

3
. Next we increase all the letters by 

one, except the letter n2, which we increase by two, 
and those that we have just inserted, to find (w) 

5
1

3
2

6
4=)(ws . 

PROPOSITION 5.3. 

For any w  n-2,1 An-2, we have (w)  n,1. 

The proof is omitted here as it is too technical to 
include, but it uses the same methods as the proof of 
Propositions 3.3 and 4.7. 

6. SET Dn

DEFINITION 6.1 . 

The alternating permutation of size n with no 
alternating descents has w(i) i. We will call this 
permutation dn, with n   equal to its size.

EXAMPLE 6.2. 

For n7, we have d7  4536271 where d7  1234567. 

The permutation in set Dn will be generated from dn. 
This permutation will be generated by the map (dn) 
defined as follows: 

•	 For all permutations of size n, to obtain (dn), 

increase the letter n1 by one and decrease the 
letter n by one. 

EXAMPLE 6.3. 

For n6, we have d6 6
1

5
2

4
36 =d , so (d6) 

5
1

6
2

4
36 =)(dd . 

PROPOSITION 6.4. 

For any dn with n  3, we have (dn)  n,1 . 

This proposition can be easily verified, so the proof here 
is omitted.

7. CONCLUSION

Given that the sets An, Bn, Cn, and Dn are defined as 
in Sections 2 through 5, we arrive at the following 
conclusion.

THEOREM 7.1 . 

The set n,1 can be decomposed as the union of four 
pairwise disjoint sets: 

	

Example 1.8. For w = 24153867 from Example 1.6, we have w′ = 63124587. There are

three descents in w′, so altdes(w) = 3.

Example 1.9. There are no alternating permutations with 1 alternating descent in either S1

or S2 because there are no descents in either (1)′ = 1 or (12)′ = 12.

Example 1.10. The alternating permutation of S3 with one alternating descent is 132 where

(132)′ = 213.

Example 1.11. The alternating permutations of S4 with one alternating descent are 1324,

2413, and 3412 where (1324)′ = 2134, (2413)′ = 1243, and (3412)′ = 1342.

2. Decomposing En,1

Let En,1 be the set of alternating permutations of size n with 1 alternating descent. We

will show that the set of alternating permutations of n letters with one alternating descent,

En,1, can be decomposed as a union of the following pairwise disjoint sets:

En,1 = An �Bn � Cn �Dn

Given that |S| is the the number of elements of S, we have:

|An| = |En−1,1|

|Bn| = |Bn−1|+ |Cn−1|+ |Dn−1|

|Cn| = |Bn−2|+ |Cn−2|+ |Dn−2|

|Dn| = 1 for n > 3.

.

The proof of this theorem is omitted here due its length 
and technicality.

If we let |n,1|  en,1, the number of alternating 
permutations with one alternating descent can be found 
by the recurrence relation defined as follows [3]: 

	

7. Conclusion

Given that the sets An, Bn, Cn, and Dn are defined as in Sections 2 through 5, we arrive

at the following conclusion.

Theorem 7.1. The set En,1 can be decomposed as the union of four pairwise disjoint sets:

En,1 = An � Bn � Cn �Dn.

The proof of this theorem is omitted here due its length and technicality.

If we let |En,1| = en,1, the number of alternating permutations with one alternating descent

can be found by the recurrence relation defined as follows [3]:

en,1 = en−1,1 + F (n)− 1

where F (n) is the function giving the Fibonacci numbers.

Further, if we let F (n)− 1 = fn, we can express this recursively as [4]:

fn = fn−1 + fn−2 + 1

From Examples 1.9, 1.10 and 1.11, we know that |E1,1| = |E2,1| = 0, |E3,1| = 1 and |E4,1| = 3,

therefore we will begin this sequence by enumerating |E3,1|. If we let e3,1 = 1, e4,1 = 3, f1 = 0,

and f2 = 0, we acquire the sequence:

1 3 7 14 26 46 79 · · ·
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where F(n)  is the function giving the Fibonacci numbers.

Further, if we let F(n)1n, we can express this 
recursively as [4]: 

nn1n21

From Examples 1.9, 1.10 and 1.11, we know that | 1,1 | 
 | 2,1 |  0, | 3,1 | 1 and | 4,1 |  3, therefore we will 
begin this sequence by enumerating| 3,1 |. If we let e3,1 

1, e4,1  3, 1  0, and 2  0, we acquire the sequence:

1 3 7 14 26 46 79 ….
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