
DePaul University DePaul University

Via Sapientiae Via Sapientiae

Technical Reports College of Computing and Digital Media

3-2012

Metonymy and Student Programming Errors Metonymy and Student Programming Errors

Craig Miller
DePaul University, cmiller@cs.depaul.edu

Follow this and additional works at: https://via.library.depaul.edu/tr

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Miller, Craig. (2012) Metonymy and Student Programming Errors.
https://via.library.depaul.edu/tr/20

This Article is brought to you for free and open access by the College of Computing and Digital Media at Via
Sapientiae. It has been accepted for inclusion in Technical Reports by an authorized administrator of Via
Sapientiae. For more information, please contact digitalservices@depaul.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Via Sapientiae: The Institutional Repository at DePaul University

https://core.ac.uk/display/232965785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://via.library.depaul.edu/
https://via.library.depaul.edu/tr
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/tr?utm_source=via.library.depaul.edu%2Ftr%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=via.library.depaul.edu%2Ftr%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/tr/20?utm_source=via.library.depaul.edu%2Ftr%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

Metonymy and Student Programming Errors

Craig S. Miller
School of Computing

DePaul University
243 S. Wabash Avenue

Chicago, IL
cmiller@cs.depaul.com

ABSTRACT
The common occurrence of metonymy in everyday language
is considered as a negative bias towards successfully learn-
ing to state the correct referent when learning to program.
Reported errors from previous studies are surveyed and the
analysis reveals a pattern consistent with the use of meton-
ymy, a rhetorical device where the speaker states a referent
that is structurally related to the intended referent. This
analysis suggests an underlying cause for a class of program-
ming errors and provides directions for further research and
instructional interventions.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Human Factors, Languages

Keywords
Metonymy, Misconceptions, Novice programming

1. INTRODUCTION
Consider this sentence: The tourist asked the travel bu-

reau for directions to the museum. Few people would have
difficulty understanding that the tourist did not talk to a
building, nor to an abstract government agency, but to an
actual person who works at the travel bureau. Moreover, the
process of identifying the actual referent (person) through
its relationship to the place of employment (travel bureau)
comes so effortlessly to most people that they may not even
be aware that the sentence uses a rhetorical device for ex-
pressing how the tourist acquired directions.

Here the rhetorical device is metonymy. When using me-
tonymy, the speaker does not state the actual referent. In its
place, the speaker states something that has a relationship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

with the referent, often with the goal of emphasizing that
aspect of the relationship. Below are additional examples:

• The White House condemned the latest terrorist ac-
tion. The action was not condemned by the White
House building but by a person who represents the
president who lives at the White House.

• The pitcher threw the ball to first base. In the game
of baseball, the pitcher throws the ball to the person
standing at first base.

• I thought the first dish we ate was excellent. The word
dish does not refer to the physical plate but the food
that was on the plate.

• Open the bread and take out two slices. The request
is to open the wrapper containing the bread, not the
bread itself.

In some cases, use of metonymy has become so common
with some words, that their dictionary definitions include
the extended meaning. For example, the definition of a dish
includes the food served on it. However, note that in the
right context, any food-containing vessel (e.g. bowl, plate,
pot) could carry a similar meaning. Offering additional ex-
amples, Lakoff and Johnson [10] make the case that meton-
ymy is not just a rhetorical device but language usage that
reflects everyday activity and thinking.

Given the pervasive use of metonymy, it would be a sur-
prise if its influence did not extend to how students learn
computing concepts and, in particular, programming. In
fact, the last listed example using the word bread was in-
spired by an account of student errors from a class exer-
cise. Originally described by Lewandowski and Morehead
[11], this exercise asks students to issue precise commands
so that the instructor, acting as a robot, assembles a peanut
butter and jelly sandwich. A major pedagogical goal of the
exercise is to introduce algorithms to students by having
them develop a clear set of operational instructions. Among
accounts of student errors for this exercise, Davis and Rebel-
sky [4] present the phrase, “Open the Bread,” as an example
of student error. While none of the accounts of this exercise
have cited the role of metonymy, it ostensibly underlies some
of the difficulty students face when forming a precise, literal
command.

While metonymy has been used for developing design pat-
terns [12], the goal of this paper is to explore its role as a
source of student mistakes when learning to program. The

Bread

Wrapper

Sandwich

Contains

Used-for

Jelly

Jar
Contains

Used-for

Intended
Referent

Stated
Referent

Figure 1: Semantic network demonstrating meton-
ymy

working thesis is that students’ prior experience with lan-
guage leads to their difficulty in expressing the exact refer-
ent to a command or operation. To support this thesis, this
paper reviews a broad range of student errors and shows how
metonymy underlies them. In so doing, this analysis offers
a useful means for classifying student errors to track devel-
opment of student ability. Also this diagnosis of student
misunderstanding provides some direction for developing ef-
fective instructional strategies. Finally, to the extent that
this analysis using metonymy yields helpful diagnoses and
strategies, it may offer a useful heuristic for identifying other
categories of misconceptions based on prior student experi-
ences, whether they come from language or otherwise.

2. EXAMPLES
Metonymy-based errors involve incorrectly referring to an

element that has a structural relationship with the intended
element. As we will see, the structural relationship is of-
ten, but not always, based on data structures represented
in computer memory in the form of arrays, linked lists or
objects.

The examples in this paper will make use of the terms
intended referent and stated referent. Figure 1 provides a
concrete example using the sandwich exercise. When the
speaker says, “Open the bread,” the stated referent is the
bread, but the intended referent is the wrapper, which is
really the item that is to be opened. A listener can infer the
intended referent through its structural relationship (con-
tains) to the bread. Of course, students need to learn that
most programming environments require that the intended
referent is explicitly referenced, otherwise an error will re-
sult.

2.1 Object instances and attributes
Holland et al. [8] note that students often conflate an ob-

ject with one of its attributes. For example, they may refer

to the whole object when it is the value of a particular at-
tribute that is needed. Consider the following code, which
uses statements that are not unlike many programming lan-
guages and environments for constructing a graphical user
interface:

tempField = TextField.new

tempField.id = "temp"

tempField.size = 5

tempField.value = 32

This code constructs an object that represents a text field.
The code shows three attributes for the text field object.
The id uniquely identifies the component in the interface.
The size, specifies the width of the text field. The value
specifies the contents of the text field. In everyday (non-
computer) language, both the id and the value may usefully
identify the text field when speaking to a human listener.
However, this use of metonymy are considered errors as pro-
gramming statements:

mistakenly refer to the object to specify

the contents

givenTemperature = tempField

mistakenly refer to the id to specify

the contents

givenTemperature = temp

mistakenly refer to the id when changing

the width

temp.size = 10

These examples illustrate that metonymic errors are not
simply characterized as mistaking one referent for another
structurally-related referent. In addition, the mistakenly
stated referent tends to be an element that usually distin-
guishes the intended referent from other items. This analysis
suggests that students would not mistakenly refer to the size
element in place of the other elements since size generally
does not uniquely identify a component in an interface.

While all of these errors involve referents with structural
relationships in computer memory, it is also possible that
metonymic usage may lead a student to mistakenly refer to
other elements when the intended referent is the text field.
For example, text fields typically have an adjacent text label.
While there is no relationship between the label and the text
field with respect to computer memory, there is a meaningful
structural relationship between the two components as the
application developer and user understand them. In this
sense, a novice programmer may mistakenly state the label
object (or perhaps an attribute belonging to it) when the
intention is to refer to some aspect of the corresponding
text field.

2.2 Array elements and indices
While previous reports have noted the commonality of ar-

ray errors [3, 6], detailed descriptions of student errors with
arrays are less common and rarely discuss the underlying
cause of the errors. One potential difficulty involves the dis-
tinction between the index and the actual value located at
the position denoted by the index. For example, let us con-
sider the selection sort, which requires finding the minimal
value in order to swap it into the correct position. It is easy

to conflate the minimal value with its position, especially
when descriptions of the selection sort refer to the value in-
stead of its location (e.g. Wikipedia presents the first step
of the selection sort with “Find the minimum value in the
list” [1]). As a consequence students may store the value
instead of its position, which is ultimately needed to swap
the array element into its correct position. More generally,
communication to a human listener may refer to the value
even if the intended referent is its location. However, in the
context of a computer program, referencing the value (stated
referent) when the intended referent is the location results
in a programming error.

Also related to arrays is the conflation between the array
itself and its contents. This error is most likely when the
array has only one element. Instead of indexing the first
element in the array in order to refer to it, a student may
mistakenly refer to the whole array (without using the in-
dex).

2.3 References and contents
Hristova et al. [9] note that students often mistake ref-

erence comparisons with contents comparisons. For exam-
ple, in Java, if the intention is to check whether two strings
(actually two references to string objects) have the same
string contents, students often incorrectly use the == op-
erator, which only checks if the variables refer to the same
references, instead of the equals method, which actually
compares the string contents. The mistake is understand-
able since reference variables to strings are often just called
strings. Following the practice of metonymy, a student may
justifiably expect the == operator to do the “reasonable”
comparison even if the stated referents are just references.
For Java and any language that represents strings as ob-
jects, this error is a special case of referencing an object
(string object) when the intended referent is an attribute
(string content of the object). However, similar mistakes
could generalize to any data structure where there is a dis-
tinction between a memory reference and the value located
at that reference.

2.4 Other structural relationships
As already discussed, the parallel to metonymy may not

necessarily involve a structural relationship that is repre-
sented in computer memory. An earlier account using Pas-
cal [2] presents a common student mistake when finding the
mode (value with the largest number of occurrences) in an
array of integers. Instead of returning the value with the
highest frequency, the incorrect code returns the frequency
itself. Like the use of metonymy, the intended referent (the
mode) is related to (defined by) the stated referent, although
the two are not directly linked in a computer data structure.
Also, like metonymy, the stated referent plays a role in iden-
tifying the intended referent.

3. IMPLICATIONS
Computer science instructors have long known that stu-

dents will confuse one element for another related element.
At times, it may be tempting to simply dismiss such mis-
takes as sloppy thinking, conceptual ignorance or even a
general inability to think computationally. Of course, these
vague causes offer little direction for understanding and cor-
recting these mistakes. More helpful are efforts that try
to identify areas where students are missing important dis-

tinctions. Indeed, some of the previous reports of student
errors have taken this approach. However, to the extent
that experience with metonymy also contributes to these er-
rors, an analysis based on metonymy provides a systematic
approach to a range of logical errors spanning multiple pro-
gramming paradigms. In particular, understanding these
errors as metonymic errors adds the following insights:

• Use of metonymy explains the source of these errors or
at least suggests a contributing factor for why students
are likely to make the errors.

• Use of metonymy explains that the stated referent has
a structural relationship with the intended referent.

• Use of metonymy explains that the stated referent is
useful for uniquely identifying the intended referent.

As explanations, they make predictions about what to
expect for when students mistakenly refer to an element. For
example, the last insight predicts that students are not likely
to state any referent that has a relationship to the intended
referent if the stated referent is not useful for identifying the
intended referent. As we saw, the size attribute is not useful
for identifying a particular text field and we thus predict
that a student would not refer to the size for this purpose
in a statement.

3.1 Status as a misconception
While prior use of metonymy is arguably a contributing

factor to the student errors reviewed here, its status as a mis-
conception is open to debate. It is doubtful that students
have a coherent theory of metonymy and explicitly apply it
when writing a programming statement. A more plausible
interpretation is that students have a false expectation of a
computer’s ability to successfully infer the intended referent,
without realizing that such an inference would require do-
main knowledge and a representation of the programmer’s
goal. In this case, students at least have some awareness of
the difference between the intended referent and the stated
item, just as they know the difference between a loaf of bread
and its wrapper. This interpretation thereby supposes that
the students have a concrete expectation that the computer
will successfully interpret their statement, an expectation
that is based on their previous experience with language.

This interpretation is akin to theory on how students ac-
quire physics knowledge. diSessa [5] asserts that novice stu-
dents possess “pieces of knowledge” based on their previous
experience with the world. Each piece of knowledge, called
a phenomenological primitive (p-prim), does not act as a
coherent theory of understanding and is not necessarily con-
sistent with other p-prims. For example, a student may
predict that a cannonball falling from a mast of a moving
ship would land behind the ship, rather than have the cor-
rect understanding that the ball would land at the base of
the mast. This naive prediction is based on the student’s
experience that objects falling from a moving vehicle tend
to fall behind the vehicle (assuming air resistance is a sig-
nificant factor). In this sense, the student’s incorrect pre-
diction based on previous experience is similar to that of a
metonymy-based reference error in programming, although
physics p-prims are probably cued by the physical proper-
ties of the situation. In contrast, any effort to establish the
p-prim equivalent for computational learning would involve
identifying cues relating to language or communication.

A final possibility is that students do not even possess
a concrete expectation that their intended referent will be
successfully resolved by the compiler or interpreter. Perhaps
they do not distinguish between the stated referent and the
intended referent. In this case, prior use of metonymy may
have nevertheless induced a habit of communication, which
is effective for inter-personal conversation but incorrect for
human-to-computer commands.

Whether prior usage of metonymy has given a student a
false expectation for how a computer resolves referents or has
merely encouraged a habit of the mind where making dis-
tinctions are not important, the metonymy-based analysis
demonstrates the utility of examining how prior experiences
may negatively influence how students learn computational
concepts. This case runs counter to some discussions com-
paring physics to computing, where the conventional wisdom
is that learning physics involves overcoming prior expecta-
tions whereas computing students approach programming
with a relatively clean slate (see Mark Guzdial’s blog [7] for
a discussion on the topic).

4. RECOMMENDATIONS
The role of metonymy in student errors suggests several

directions for education research and instructional strate-
gies. For assessing student achievement, metonymy-based
analysis may be useful for constructing diagnostic questions
that generalize across multiple languages and even multiple
programming paradigms. As we have seen, student errors
that parallel metonymy-based language usage occur in a va-
riety of contexts. To the extent that the metonymy-based
analysis unifies student errors across various contexts, we
would expect this class of errors to predict similar errors
but in other contexts.

For developing effective instructional strategies, the role
of metonymy may offer guidance for teaching students how
to successfully refer to the correct referent in programming
statements. One possible intervention is to explicitly teach
students the concept of metonymy in everyday language but
then discuss how its practice does not work for computer
statements. For topics where it is common to misstate the
referent in a statement, the instructor can show examples
and refer back to the lesson on metonymy. Explicit aware-
ness of metonymy can support students in two ways. First,
it illustrates a programming pitfall that generalizes to many
circumstances. Second, its examples can make use of situa-
tions that students know well (e.g. making sandwiches). Use
of familiar situations effectively reduces the cognitive load
of the example and allows students to focus on the underly-
ing relationship between the stated referent and the implied
referent.

Finally, the role of metonymy for student errors suggests
that there might be other habits and practices in students’
everyday lives that affect how they learn programming and
computational concepts. In this way, the analysis presented
in this paper suggests a methodology for diagnosing other
classes of errors and developing strategies for addressing
them.

5. REFERENCES
[1] Selection sort.

http://en.wikipedia.org/wiki/Selection_sort

accessed from the web July 29, 2010.

[2] K. S. R. Anjaneyulu. Bug analysis of pascal programs.
SIGPLAN Not., 29(4):15–22, 1994.

[3] C. Daly. Roboprof and an introductory computer
programming course. SIGCSE Bull., 31(3):155–158,
1999.

[4] J. Davis and S. A. Rebelsky. Food-first computer
science: starting the first course right with pb&j. In
SIGCSE ’07: Proceedings of the 38th SIGCSE
technical symposium on Computer science education,
pages 372–376, New York, NY, USA, 2007. ACM.

[5] A. A. diSessa. Toward an epistemology of physics.
Cognition and Instruction, 10:105–225, 1993.

[6] S. Garner, P. Haden, and A. Robins. My program is
correct but it doesn’t run: a preliminary investigation
of novice programmers’ problems. In ACE ’05:
Proceedings of the 7th Australasian conference on
Computing education, pages 173–180, Darlinghurst,
Australia, Australia, 2005. Australian Computer
Society, Inc.

[7] M. J. Guzdial. How computing and physics learning
differ.
http://computinged.wordpress.com/2010/04/01/

how-computing-and-physics-l%earning-differ/,
2010.

[8] S. Holland, R. Griffiths, and M. Woodman. Avoiding
object misconceptions. SIGCSE Bull., 29(1):131–134,
1997.

[9] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting java programming errors for
introductory computer science students. In SIGCSE
’03: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages
153–156, New York, NY, USA, 2003. ACM.

[10] G. Lakoff and M. Johnson. Metaphors We Live By.
The University of Chicago Press, Chicago, IL, 1980.

[11] G. Lewandowski and A. Morehead. Computer science
through the eyes of dead monkeys: learning styles and
interaction in cs i. SIGCSE Bull., 30(1):312–316, 1998.

[12] J. Noble, R. Biddle, and E. Tempero. Metaphor and
metonymy in object-oriented design patterns. Aust.
Comput. Sci. Commun., 24(1):187–195, 2002.

	Metonymy and Student Programming Errors
	Recommended Citation

	tmp.1332979198.pdf.Febzf

