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ABSTRACT 

 

 The purpose of this study is to determine how the length of the beta-amyloid 

peptide, the specific region of the peptide, and a single point mutation affect the behavior 

of Alzheimer’s beta-amyloid. The beta-amyloid peptide, which is a 40 residue peptide 

that has been implicated as a potential cause of Alzheimer’s disease, has been shown to 

undergo a fibrillization process that involves numerous intermediate stages.  One of the 

intermediate stages has revealed a high neurotoxicity and is believed to be the cause of 

neurodegeneration associated with Alzheimer’s disease.  Various point mutations of the 

beta-amyloid peptide are responsible for the many familial forms of Alzheimer’s.  

Although familial diseases account for only a small percentage of Alzheimer’s cases, the 

study of their behavior can elucidate the mechanism through which fibrillization occurs 

by determining how each mutation, and its location, affect fibrillization.  For the Iowa 

mutation, residue 23 in the amyloid beta peptide is changed from aspartic acid to 

asparagine. Residue 23 bonds with residue 28, enabling the peptide to misfold.  Although 

the Iowa mutant undergoes the same general fibrillization process as the wild type, it has 

a different kinetic profile.   This study focuses on a smaller fragment of the beta-

amyloid peptide, Aβ22-35, which encompasses the hair-pin turn and the beta-sheet region 

of the peptide after the hair-pin turn.  The point mutation can affect the fibrillization, 

structure, kinetics, and solubility of the peptide relative to that of the wild type. 
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CHAPTER 1 - INTRODUCTION 

 

 Alzheimer’s disease, AD, is the sixth leading cause of death in the United States 

of America29.  It is neurodegenerative and the most common form of dementia.  It is an 

incurable, progressive, and terminal disease.  AD’s advanced stages are characterized by 

the loss of most/all cognitive and reasoning abilities.  Patients no longer recognize people 

they know or have had lifelong experiences with.  They cannot talk, walk, sit, eat, or 

make sense of the world around them.  They must be looked after and cared for twenty-

four hours a day, seven days a week1. 

 In the early stages, the general symptoms of the disease are short-term memory 

loss, forgetfulness, and mood swings.  As the disease progresses, the symptoms gradually 

worsen.  A person might recognize a loved one one day, not recognize them the next, and 

recognize them again the day after that.  The disease understandably takes an exhaustive 

toll on those who take care of people with Alzheimer’s, as the caregivers are generally 

those with an emotional attachment to the sufferer1.  In one particular case study, a 59 

year old man had difficulty with reading and driving.  He also had problems with locating 

and identifying items by sight, but his intellect and memory remained intact.  As the 

disease progressed, his memory and language skills eventually deteriorated.  An autopsy 

showed that there was cortical atrophy and a high presence of neurofibrillary tangles and 

senile plaques16. 

 The human brain contains over 100 billion nerve cells, or neurons (Figure 1).  

These neurons are connected by branches and form an extended network that is 

responsible for transmitting thoughts, feelings, and memories.  It is these neurons that 



Page | 11  
 

Alzheimer’s disease specifically targets and destroys.  As the disease progresses, the size 

of an Alzheimer’s brain continually deteriorates (Figure 2). 

 

 

 

Figure 1. An extended network of branched neurons.  Image taken from 
http://www.alz.org/brain/images/05a.jpg. 
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Figure 2. Image of a healthy brain (a) and a diseased brain (b).  Both are also juxtaposed 
for comparison (c).  Image taken from http://www.alz.org/brain/images/08_2c.jpg. 

 

The two physical hallmarks of Alzheimer’s disease are the presence of tangles and 

plaques (Figure 3).  These are observed whenever autopsies are performed on the brains 

of those who have died from Alzheimer’s.  Tangles are made up of twisted strands of tau 

protein and are found inside dead or dying neurons.  Plaques are aggregations of fibril-

like structures.  Fibrils are long, string-like structures primarily composed of what are 

commonly referred to as beta-amyloid peptides, or Aβ.  And it is the investigation of the 

beta-amyloid peptide that is the focus of this thesis. 
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Figure 3. Image of Alzheimer cells with plaques compared to healthy cells.  Image taken 
from http://www.alz.org/brain/images/10d.jpg. 

 

The beta-amyloid attributed to Alzheimer's disease is a peptide that commonly 

exists as a specific chain of amino acids either 40 or 42 residues in length, and commonly 

abbreviated as Aβ1-40 or Aβ1-42.  The beta-amyloid itself is created by the cleavage of 

an even larger chain of amino acids known as amyloid precursor protein, or APP.  

Amyloid precursor protein is found concentrated in the synapses of neurons and its 

primary function is unknown.  Granted, if one were to perform an autopsy and find 

nothing but fibrils, it would be logical to conclude that it is the fibrils that are responsible 

for Alzheimer’s disease and that it is the fibrils which kill neurons.  However, previous 

studies have shown that a spherical intermediate forms before the fibrillar stage, which is 

far more toxic than the fibrils themselves, implicating that the intermediate is likely the 

toxic pathogen for Alzheimer's disease4,8. 

The fibrillization process involves four distinct stages as shown in Figure 4. The 

first stage is a monomeric random coil with no ordered structure.  The second stage is 
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designated as an intermediate with alpha-helical structure.  The third stage is a spherical 

intermediate with beta-sheet structure.  The last stage is the formation of fibrils which 

also contain said beta-sheets.  The change from the second stage intermediate to the third 

stage intermediate involves a significant morphological transition, namely the formation 

of well-ordered beta-sheets.  There do appear to be other minor stages as well.  There is a 

proto-fibrillar stage that exists between the beta-sheet intermediate and the fibrillar stage.  

The proposed structure of the beta-sheet intermediate is spherical in nature, with the 

residues that make up the hair-pin turn being in the center of the structure.  Again, it is the 

spherical beta-sheet intermediate that has experimentally shown itself to be far more toxic 

than the fibrils4,8. 

 

 

Figure 4. The four main stages of fibrillization4. 

 

Peptides and proteins are long chains of amino acids; the difference between the 

two is that proteins are considerably longer.  An amino acid consists of an amine, a 

carboxylic acid, and a substituent group that can vary depending on the structure of the 

amino acid.  Two amino acids can undergo a condensation reaction and form a peptide 

bond, which releases a molecule of water in the process (Figure 5).  From there, it’s not 
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difficult to imagine an entire sequence of amino acids that link up and form peptide 

chains or even entire proteins. 
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Figure 5. Glutamic acid and asparagine form a peptide bond.  Stereochemistry not 
indicated. 
 

 Peptides have four main types of structures.  Primary structure is merely the 

sequence of the acids; the order in which they are bonded together.  In the Aβ1-40 

peptide, the first amino acid is aspartic acid, the second is alanine, the third is glutamic 

acid, etc.  Secondary structure indicates whether certain sections of the peptide contain 

one or both structural motifs that are common to biomolecules, namely the alpha-helix 

and the beta-sheet.  Tertiary structure is the three-dimensional shape of the entire peptide, 

the exact position of each atom relative to other atoms as well as the bond angles between 

the atoms.  Quaternary structure refers to the arrangement of multiple peptides. 

 An alpha-helix is a chain of amino acids that arrange in a type of spiral 

configuration (Figure 6).  There are both right-handed and left-handed versions and they 

contain 3.7 residues per turn of the helix.  There is also a larger helix that contains 5.1 

residues per turn.  The twisting peptide chain is held together by hydrogen-bonding.  In 

the helix with 3.7 residues per turn, each amide group is hydrogen bonded to the third 
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amide group after it along the peptide chain.  In the helix with 5.1 residues per turn, each 

amide group is hydrogen-bonded to the fifth amide group after it20. 

 

 

Figure 6. Alpha helices with 3.7 residues per turn and 5.1 residues per turn20. 
 

 Beta-sheets are the other type of secondary structure in biomolecules.  The chain 

of amino acids forms a zig-zagging backbone with alternating carbonyl and amide groups 

that are also capable of hydrogen-bonding (Figure 7).  There are two types of sheets and 

the main difference between them depends on how the chains are staggered19.  In a 
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parallel beta-sheet, the backbone of a peptide chain is lined up with the backbone of 

another chain.  The amine groups, the carbonyls, and the residues are all lined up in such 

a way that the bends of the backbone of one chain matches up with the bends of another 

chain.  In an antiparallel beta-sheet, the bends are staggered. 

 

 

Figure 7. Antiparallel and parallel beta-sheets19. 

 

Most studies of beta-amyloid focus on Aβ1-40 or Aβ1-42, as these are the 

fragments that fibrils are primarily composed of.  However, studies of smaller fragments 

are not uncommon and the chemistry of the regions of beta-amyloid have been fairly well 

mapped out in Figure 824. 
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Figure 8. The different regions of beta-amyloid peptide24. 

 

There are also various strains of Alzheimer's disease that are differentiated based 

on the type of mutation that the beta-amyloid peptide has.  The beta-amyloid wild type, or 

Aβ WT, is the most frequently expressed form of the peptide that occurs in nature.  The 

Flemish mutation increases the secretion of Aβ peptide, while the Dutch and Iowa 

mutations enhance fibrillogenesis and the pathogenicity of Aβ28.  The different strains 

were named after the geographical region where they were first discovered (Table I). 

 

Mutant strain Affected peptide Exists in the wild type as Mutated to Abbreviation 

Arctic 22 glutamic acid glycine E22G 

Dutch 22 glutamic acid glutamine E22Q 

Flemish 21 alanine glycine A21G 

Iowa 23 aspartic acid asparagine D23N 

Italian 22 glutamic acid lysine E22K 

 
Table I. Mutant strains of Alzheimer's disease18. 
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 The peptides used for this study are Aβ22-35 WT and Aβ22-35 D23N, a shorter 

14 residue fragment with the Iowa mutation.  In comparison to the wild type, the Iowa 

mutation simply expresses asparagine instead of aspartic acid at the 23rd residue and has 

the following sequence of amino acids: 

 

             22    23   24  25   26   27    28   29   30  31 32   33   34    35   
H2N-Glu-Asn-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-COOH 

 

Residues 22-27 make up the hair-pin turn, 28-35 have a high probability for beta-sheet 

formation, and residues 32-35 being highly hydrophobic24.  Different point mutations, 

like the Iowa mutation, could possibly affect fibrillization and solubility.  As this study 

involved a much shorter residue length (Figure 9), residues 22-35 which is 14 residues in 

length, its behavior in terms of kinetics and structure were initially an uncertainty. 
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Figure 9. Sequence structure of Aβ22-35 D23N. 

 

In order for all the results to be interpreted properly, comparisons to other studies 

are necessary.  The appropriate peptides for comparison are Aβ1-40 WT, Aβ1-40 D23N, 

and Aβ22-35 WT.  Aβ22-35 D23N is different from the wild type of Aβ1-40 in two 
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respects, it is shorter and contains a mutation.  The full chain, Aβ1-40, is capable of 

forming intramolecular beta-sheets, whereas this shorter peptide cannot.  Any beta-sheets 

that form from this peptide are likely intermolecular.  Any differences between the two 

peptides could be attributed to either the mutation or the peptide’s length.  Aβ22-35 

D23N is different from Aβ1-40 D23N in only one respect, the length of the peptide.  Thus 

any differences in kinetics or structure could be attributed solely to the peptide’s length.  

Like the full chain of the wild type, the full 1-40 chain of the Iowa mutant is capable of 

forming both intramolecular beta-sheets and intermolecular beta-sheets.  Aβ22-35 D23N 

is different from Aβ22-35 WT in only one respect, the mutation.  Thus any differences in 

kinetics or structure could be attributed solely to the mutation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 21  
 

CHAPTER 2 - INSTRUMENTATION 

 

 In order to fully characterize the Aβ22-35 D23N peptide, the use of a wide range 

of bio-analytical instrumentation was necessary.  By their nature, peptides can be very 

difficult to work with for they are non-crystalline.  Isolating one stage of the peptide’s 

fibrillization process from the other stages can be arduous as there is always a degree of 

overlap between the stages.  The various techniques used in this study were fluorescence 

spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), and attenuated total reflectance 

fourier transform infrared spectroscopy (ATR-FTIR). 

 

2.1 - FLUORESCENCE SPECTROSCOPY 

 

 When a molecule absorbs light energy it becomes excited and exists with more 

energy than it would when it’s in its normal ground state; an electron becomes promoted 

to a higher electronic state. Since the ground state of a molecule is its most stable state, 

the molecule will attempt to dissipate the extra energy.  One of the ways a molecule can 

do this is to release a photon of light.  This is known as fluorescence.  Within this higher 

electronic state there are numerous vibrational states.  What is typical of fluorescence in 

solution is that the excited electron will remain in the higher electronic state, but will 

relax until it gets down to the lowest vibrational state in the given higher electronic state.  

This relaxation is possible due to the transfer of energy to surrounding solvent molecules.  

When the electron gets to the lowest vibrational state in the higher electronic state, it will 

then release a photon to return to the ground electronic state.  Because of relaxation 
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processes, the photon emission wavelength of fluorescence will be longer than the photon 

absorption wavelength.  And a longer photon wavelength has less energy than a shorter 

photon wavelength.  This is the reason that the emission wavelength of fluorescence is 

always longer than the absorption wavelength, the molecule absorbs a photon of higher 

energy but releases a photon of lower energy7. 

 The dye molecule Thioflavine T, also known as ThT, is capable of fluorescence 

and has been shown to quantitatively bind to aggregated beta-sheets.  The free dye 

normally has an absorption wavelength at 385 nm and an emission wavelength at 445 

nm.  Upon binding to beta-sheet aggregates, the absorption wavelength rises to 450 nm 

and the emission wavelength rises to 482 nm.  This is a unique characteristic of ThT and 

can be used to correlate the amount of beta-sheet formation with respect to time16. 

 

 

Figure 10. The structure of Thioflavine T16. 

 

 The exact mechanism of ThT binding to fibrils is not known to certainty.  

However, theoretical models do exist and one such model suggests that ThT binds to the 

residues of peptides that are in beta-sheet conformation (Figure 11). 
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Figure 11. Theoretical model of ThT binding to amyloid fibrils2. 

  

2.2 - ULTRAVIOLET-VISIBLE SPECTROSCOPY 

 

UV-Vis, ultraviolet-visible spectroscopy, was used to monitor the concentration of 

Aβ22-35 D23N fibrils. The molecular dye Congo Red was used to quantify beta-sheet 

formation.  A theoretical model of Congo Red binding suggests a ratio of 1 equivalent of 

Congo Red to 5 equivalents of peptide that have formed an anti-parallel beta-sheet as 

shown in Figure 1211. 
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Figure 12. Theoretical binding model of Congo Red to a pentamer of beta-amyloid11. 
 
 

The assay itself is a UV-Vis absorbance reading at wavelengths of 403 nm and 

541 nm.  These wavelengths are unique characteristics of Congo Red when it binds to 

beta-sheets.  An isosbestic point is the specific wavelength at which two chemical species 

have the same molar absorptivity.  The isosbestic point of solutions of varying 

concentrations of Congo Red is 403 nm.  The wavelength of maximum spectral 

difference between solutions of varying concentrations of Congo Red is 541 nm.  Congo 

Red does not quench and can be used to continually monitor the quantity of beta-sheet 

formation as it increases over time.  The amount of beta-sheet formation due strictly to 

fibrils can be directly quantified using a modified version of the Klunk equation, an 

equation that takes the absorbance values at 403 nm and 541 nm and directly correlates 

them to the amount of amyloid β-peptide aggregation12. 

 

Aβfib = |(403At/6830) – (541At/4780) + (403ACR/8620)| 
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Aβfib  is the concentration of fibrils in units of molarity.  403At is the absorbance value at a 

particular time at 403 nm.  541At is the absorbance value at a particular time at 541 nm.  

403ACR is the absorbance value at 403 nm of Congo Red solution prior to the addition of 

the peptide and is only read once.   

 

2.3 - INFRARED SPECTROSCOPY 

 

When a molecule is exposed to infrared energy, IR, the energy causes the bonds 

of the molecule to both vibrate and rotate.  The wavelengths of light that a substance 

absorbs in order to vibrate and rotate are unique for each substance, thus every substance 

has its own unique IR spectrum.  The IR spectrum functions as a molecular fingerprint 

that is just as telling as a human fingerprint.  IR can also be used to detect the presence of 

functional groups as well as provide some indication of structural conformation.  A 

peptide is essentially a chain of amino acids linked by amide bonds.  The carbonyl 

stretching of the amide group, known as the amide I band, generally absorbs itself 

between 1600 to 1700 cm-1.  The shift, or location, of the amide I band gives an 

indication of secondary structure.  If the amide I band is located at 1652-1654 cm-1, this is 

indicative of an α-helical or unordered structure in solution.  If the amide I band is 

located at 1632-1634 cm-1, this is indicative of β-sheet conformation in solution.  

Previous studies of synthetic amyloids have demonstrated the amide I band can appear 

around 1620-1628 cm-1 as well5. 
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2.4 - ATTENUATED TOTAL REFLECTANCE INFRARED SPECTROSCOPY 
 

Infrared spectroscopy is a standard spectrophotometric technique and sample 

preparation generally involves the use of salt plates.  While the peptide is incubated in a 

buffer solution with a low concentration of salt, excess salt might cause faster 

aggregation of the peptide.  Any interactions with excess salt could give spectra that is 

not indicative of the molecule’s true structure relative to time.  An alternative was 

necessary, which came in the form of ATR-FTIR.  Instead of salt plates, the sample is 

placed directly on an unreactivde ZnSe crystal.  This is very convenient for aqueous 

solutions as sample preparation is eliminated entirely. 
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CHAPTER 3 - MATERIALS AND METHODS 

 

3.1 - PHOSPHATE BUFFER SOLUTION 

 

A phosphate buffer solution was made to incubate the peptide.  0.0476 g of 

Na2HPO4 was weighed out and dissolved in 5 mL of Milli-Q water.  0.0456 g of KH2PO4 

was weighed out and dissolved in another 5 mL of Milli-Q water as well.  Milli-Q water 

is water that has been highly purified and de-ionized by purification systems that are 

manufactured by Millipore Corporation.  The two 5 mL portions were combined and 

mixed for a total of 10 mL.  A quick check with litmus paper showed that the solution 

was slightly basic and pH adjustment was not necessary.  Out of the 10 mL solution, 

6.268 mL was measured out.  To the 6.268 mL of solution just measured out, 43.732 mL 

of Milli-Q water was added for a total of 50 mL.  A litmus paper check showed this 

solution was also slightly basic.  To the 50 mL solution, 0.00775 g of NaCl and 0.0105 g 

of NaN3 were added.  The 50 mL solution was the final solution, any remaining or left 

over solutions were discarded.  The last step was simply to filter the 50 mL solution with 

a 0.22 µm filter.  The phosphate buffer solution was 10 mM phosphate buffer, 5 mM 

NaCl, 0.02% NaN3. 

 

3.2 BETA-AMYLOID SOLUTION 

 

The target concentration of beta-amyloid peptide in solution was 100 µM.  The 

necessary amount of peptide to attain a 100 µM concentration was dissolved with 0.5 mL 
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of Milli-Q water then split into a 0.2 mL aliquot and a 0.3 mL aliquot.  The 0.2 mL 

aliquot was diluted to 3 mL with Congo Red solution for beta-sheet formation monitoring 

via UV-VIS.  The 0.3 mL aliquot was diluted to 5 mL with Phosphate Buffer solution for 

ATR FT-IR.  All incubations of the peptide were done at room temperature. 

 

3.3 THIOFLAVIN T SOLUTION 

 

3.7535 g of glycine and 0.16 g of NaOH were weighed out.  The two reagents 

were dissolved together in 900 mL of Milli-Q water.  0.0016 g ThT was weighed out.  

ThT is reactive to light, therefore precautions were taken to minimize any incident light 

during the weighing process.  The ThT was dissolved with 100 mL of Milli-Q water and 

transferred to the previously made 900 mL solution of glycine and NaOH.  The 

dissolution and transfer were done with four 25 mL portions of Milli-Q water due to the 

miniscule amount of ThT. 

 

3.4 - CONGO RED SOLUTION AND UV-VIS 

 

 Congo Red solution has the same composition as phosphate buffer solution; 10 

mM PBS, 5 mM NaCl, and 0.02% NaN3; except it also has Congo Red at a concentration 

of 0.4 µM.  The instrument used was a Cary 50 Bio UV-Visible spectrophotometer.  The 

software was package was Varian UV Scan Application, Software Version: 3.00(339).  

The scan range of the experiment was from 559.0 nm to 397.0 nm and performed at a 
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temperature of 24oC.  Absorbance values at both 541 nm and 403 nm were recorded and 

substituted into the Klunk equation. 

 

3.5 - ATR-FTIR 

 

The spectrophotometer model used to perform scans was an Avatar 360 FT-IR 

manufactured by Nicolet.  The spectrophotometer was bundled with its own IR software 

titled Omnic version 5.2.  The technique used to perform the scans was ATR-IR.  This 

required an additional accessory manufactured by Pike Technologies that housed a ZnSe 

crystal plate used for ATR-IR.  The accessory fit into the scan chamber of the IR in place 

of standard salt plate holders used for more conventional IR scans.  The 

spectrophotometer was configured under its default settings with the following 

exceptions: no. of scans set to 32, resolution set to 8, final format set to “% reflectance”, 

correction set to “ATR”, gain:8 set to “autogain”, accessory set to “avatar multi-bounce”, 

and window material set to “ZnSe”.  Background scans were performed with the 

accessory in place.  A separate scan of the phosphate buffer solution by itself was taken.  

The final peptide spectra were the result of subtracting the spectra of the phosphate buffer 

solution from the spectra of the incubating peptide. 
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CHAPTER 4 - INITIAL RUNS AND ALTERATIONS 

 

4.1 - THIOFLAVIN T READINGS 

 

Fluorescence readings were performed with a Cary Eclipse fluorescence 

spectrophotometer manufactured by Varian, Inc.  The spectrophotometer was bundled 

with its own scan application software which was version 1.1(132).  The 

spectrophotometer was configured with the following settings: data mode set to 

fluorescence, scan setup set to emission, excitation set to 446 nm, start set to 475 nm, 

stop set to 490 nm, excitation slit set to 5 nm, emission slit set to 5 nm, scan control set to 

slow, moving average smoothing set to a factor of 5, and PMT detector voltage set to 

high. 

Actual fluorescence readings required establishing an independent blank for each 

sample, rather than one blank for multiple samples.  This was necessary due to quenching 

by ThT.  980 µL of ThT solution were transferred to a quartz cuvette.  The fluorescence 

value at 482 nm was taken to be the blank value.  Samples of incubating peptide for 

fluorescence readings were prepared by transferring 980 µL of ThT solution into a quartz 

cuvette, then 20 µL of incubating peptide were transferred to the same cuvette containing 

the ThT solution.  The difference of the fluorescence values of incubating peptide and the 

blank was taken to be the relative fluorescence. 
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4.2 - THIOFLAVIN T RESULTS 

 

 ThT data revealed no correlation of beta-sheet concentration with regards to time 

as shown in Figure 13.  Absorbance values appear entirely random, and statistical 

analysis showed no discernable pattern.  Previous studies done with Aβ1-404, showed a 

direct and quantifiable rise in β-sheet formation with regards to time. 

 

 

Figure 13. ThT data. 
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4.3 - MODIFICATIONS MADE AS A RESULT 

 Due to inconclusive findings, as can be seen from Figure 13, and after extensive 

research, the decision was made to try new techniques not commonly used for the 22-35 

sequence; which led to the thesis project as described in the next chapter. 
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CHAPTER 5 - SECONDARY STRUCTURE AND FIBRILLIZATION OF THE 
IOWA MUTANT OF ALZHEIMER’S BETA-AMYLOID 22-35 
 

5.1 - INTRODUCTION 

 

 Alzheimer's disease is an irreversible, neurodegenerative disease marked by 

dementia.  The symptoms range from short-term memory loss to mood swings during the 

early stages; and long-term memory loss, confusion, and withdrawal during the advanced 

stages10.  One of its primary physical characteristics is the presence of plaques found in 

the brains of an affected patient. The plaques are an aggregation of fibril-like structures 

that are formed by the beta-amyloid peptide23.   Beta-amyloid, Aβ, is a peptide that can 

range anywhere from 39 to 43 residues in length.  This peptide undergoes a fibrillization 

process that starts from a monomeric random coil and eventually forms aggregations of 

fibril-like structures.  While the monomer is on its pathway to fibril formation, the 

peptide forms many intermediates.  Though the size of the intermediates vary, they start 

relatively small and gradually increase in size that are generally spherical in shape4,8.  

One of the intermediates has been shown to have a beta-sheet secondary structural 

conformation and exhibit toxicity.  It is this toxic spherical intermediate, which occurs 

prior to fibril formation, that is the likely pathogen which causes the neurodegeneration 

of Alzheimer’s disease4. 

The exact mechanisms for fibrillization are not known to certainty, but enough 

information has been determined to break down the process into a few stages.  Based on 

previous studies performed with the 1-40 residue, the fibrillization process involves four 

distinct stages.  The first stage is a monomeric random coil with no ordered 
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structure.  The second stage is designated as an intermediate which is spherical in shape.    

The third stage, resembling the  second stage in that it is spherical in shape but much 

larger, exhibits a secondary structure of beta-sheets.  The last stage is the formation of 

fibrils which is also comprised of beta-sheets.  There are minor stages in addition tothe 

four main stages.  For instance, there is a proto-fibrillar stage that exists between the β-

sheet intermediate and the fibrillar stage.  Again, all research up to this point indicates 

that it is the third stage beta-sheet intermediate that is the most toxic and likely to be the 

species that is responsible for the actual neurodegeneration of Alzheimer’s4. 

The 1-40 peptide itself can be divided into four main regions, with each region 

having a specific chemistry.  Residues 1-8 are random coil, residues 9-21 can form beta-

sheets, residues 22-27 make up the hair-pin turn, and residues 28-40 can also form beta-

sheets24.  The rate-determining step for the fibrillization process has been determined to 

be the folding of the peptide into itself.  Residues 23 and 28 form a bond which enables 

the two beta-sheet regions of the peptide to form an intramolecular beta-sheet, making the 

chemistry of the hair-pin turn vital to fibrillization22. 
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Figure 14. Representations of Aβ1-40 and Aβ22-3522. 

 

 The wild type of beta-amyloid, Aβ WT, is the specific sequence of residues that 

occurs with the greatest frequency in nature.  Point mutations are designated by the wild 

type residue, the residue where the mutation occurs, and the mutation itself.  Thus D23N, 

the Iowa mutant, indicates that the amino acid has changed from aspartic acid, D, to 

asparagine, N, on residue 23 (Figure 15).  Aβ22-35 D23N means that the 22-35 fragment 

of beta-amyloid contains the Iowa mutation27.  This study focuses on two peptides, Aβ22-

35 WT and Aβ22-35 D23N.  The full chain is 40 residues in length while these smaller 

fragments are 14 residues in length (Figure 14).  Not only are the fragments smaller than 

the full chain, they also deal with a specific region.  Residues 1-14, though the same 

length as residues 22-35, will behave differently since residues 1-14 are at the beginning 

of the peptide while residues 22-35 are part of the hair-pin turn.  Both regions have 
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entirely different chemistry24.  Since smaller fragments are also capable of forming fibrils, 

they must also form intermediates.  The study of smaller fragments is crucial to 

understanding the minimum peptide length required for fibrillization, as well as 

determining which regions of the peptide itself are required for fibrillization.  So not only 

is length a consideration, but the specific region of beta-amyloid must be taken into 

account as well. 

Figure 15. The amino acids on residue 23 of the WT and the Iowa mutant. 

 

 The fibrillization process was monitored using two experimental techniques, 

ATR-IR and UV-Vis via the molecular dye Congo Red.  Conventional IR involves the 

use of salt plates which the peptide, incubated in aqueous solution, can interact with and 

possibly altering its conformational structure.  ATR-IR, attenuated total reflectance, 

utilizes an unreactive crystal to produce spectra that would be more representative of the 

peptide’s true conformation3.  The molecular dye Congo Red has characteristic 

wavelengths when it binds to amyloid beta-sheets.  The amount of fibril formation was 
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monitored with a UV-Vis assay and quantified using a form of the Klunk equation, an 

equation that takes the absorbance values at 541 nm and 403 nm and directly correlates 

them to the amount of amyloid β-peptide aggregation: 

 

Aβfib = |(541At/4780) – (403At/6830) – (403ACR/8620)| 

 

Aβfib is the molar concentration of beta-amyloid fibrils, 541At is the absorbance value at 

541 nm at time t, 403At is the absorbance value at 403 nm at time t, and 403ACR is the 

absorbance value at 403 nm of Congo Red solution prior to the addition of the peptide.  

541 nm is the wavelength of maximal difference between varying concentrations of 

standard Congo Red solutions.  403 nm is the isosbestic point, which is the wavelength 

where the absorbances of all the standard Congo Red solutions converge12. 

 In order for all the results to be interpreted properly, comparisons to other studies 

are necessary.  The appropriate peptides for comparison are Aβ1-40 WT and Aβ1-40 

D23N, both of which have had studies performed on them that are considered to be the 

standard of reference4,27.  Aβ22-35 WT is different from Aβ1-40 WT in one respect, it is 

just a shorter fragment of the larger whole.  Any differences in behavior can be attributed 

solely to the length of the peptide.  Aβ22-35 D23N is different from Aβ1-40 WT in two 

respects, it is shorter and contains a mutation.  Differences could either be attributed to 

the peptide’s length or to the mutation.  Aβ22-35 D23N is different from Aβ1-40 D23N in 

only one respect, it is a shorter fragment.  Thus any differences could be attributed to the 

peptide’s length.  Lastly, Aβ22-35 WT and Aβ22-35 D23N can be compared to each other 

with any differences being attributed solely to the mutation.   
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 Another significant factor to consider in the fibrillization process is that the full 

chain, Aβ1-40, is capable of forming intramolecular beta-sheets, whereas these shorter 

peptides cannot.  Any beta-sheets that form from these shorter peptides are likely 

intermolecular.  In the full chain, residues 22-27 make up the hair-pin turn. Residues 

before the hair-pin and residues after the hair-pin turn can fold into each other and form a 

beta-sheet self-contained within the same molecule.  In addition to intramolecular beta-

sheets, Aβ1-40 can also form beta-sheets with other peptides.  Aβ22-35, whether WT or 

D23N, is incapable of forming beta-sheets by folding into itself.  Aβ22-35 can only form 

beta-sheets with other peptides.  This fact alone could significantly change the kinetics or 

the morphology of the fibrillization process of these smaller fragments. 

 

5.2 - RESULTS AND DISCUSSION 

 

5.2.1 - ATR-FTIR ANALYSIS 

 

The current model for fibrillization is a multi-step process that involves 

significant conformational changes as the peptide progresses from random coil to fibrils.  

While there are numerous sub-stages, the main stages are random coil, small spherical 

intermediate, large spherical intermediate with beta-sheet conformation, then lastly, 

fibrils.  The conformation of a single peptide of Aβ1-40 at the fibril stage is a folded, 

intra-molecular beta-sheet involving the residues preceding the hair-pin turn and the 

residues after the hair-pin turn, with a bond between residues 23 and 28 enabling the fold.  

How this conformation itself forms intermolecular beta-sheets with other conformations 
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in order to nucleate fibrillization is not known.  But there are theoretical models, most 

noteably put forth by the Tycko research group22.  What is known to certainty is that the 

basic structure of amyloid fibrils is the continuous stacking of beta-sheets.  In this regard, 

the behavior is quite similar to polymerization. 

Another study done by the Tycko group has shown that the folding of the peptide, 

and its subsequent formation of an intra-molecular beta-sheet, is in fact the rate 

determining step to fibrillization22.  The folding is mediated by a bond between residues 

23 and 28.  The two residues must therefore come into close proximity with each other.  

This could be facilitated by the peptide adapting an alpha-helical structure prior to 

forming a beta-sheet.  In one type of alpha-helix, the N-H group of one residue forms a 

hydrogen bond with the C=O group of another residue that is four amino acid units 

further along the chain.  Since residues 23 and 28 are five amino acid units apart, they 

would come into reasonable proximity if the peptide initially adapted an alpha-helical 

conformation. 

The Aβ22-35 peptide, because of its shortened and truncated nature, is incapable 

of forming intra-molecular beta-sheets.  It lacks the beta-sheet region prior to the hair-pin 

turn.  For shorter peptides that lack beta-sheet regions before or after the hair-pin turn, it 

would seem that the folding mediated by residues 23 and 28 would not play as crucial a 

role.  However, a bond formed between residues 23 and 28 would in essence create a 

cyclic “loop” at one end of the peptide chain.  This loop could aid, hinder, or affect the 

fibrillization of a shortened peptide in ways that are very different from Aβ1-40.  Because 

of the steric effect of a loop at one end, the peptide might be forced to fibrillize in one 

particular way; namely a second peptide forming a beta-sheet with its loop end opposite 
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to that of the first peptide.  The loop end of the shortened peptide of this study is 

essentially the hair-pin turn of the full peptide, and the hair-pin turn has been shown to be 

hydrophobic.  Since the most economical shape is a sphere, the formation of any 

spherical species in aqueous solution requires two things, a hydrophobic region and a 

non-hydrophobic region.  Less hindered by mass when compared to the full chain, 

shortened peptides could form a type of micelle more readily which might lead to the 

formation of spherical intermediates. 

ATR-IR was used to investigate these various conformational changes.  The 

characteristic frequencies at which peptides display intense absorbance peaks have been 

well documented.  The frequencies of the absorbance peaks indicate the secondary 

structure of the peptide whether it be alpha-helix, beta-sheet, anti-parallel beta-sheet, 

unordered, or aggregated strands.  The two most useful peaks with regards to peptides are 

the amide I and the amide II peaks.  The amide I peak is due to the stretching and 

vibration of the C=O double bond, while the amide II peak is due to both the C-N and the 

N-H bond.  In general, peptides that have an alpha-helical conformation display amide I 

and amide II peaks at 1652 to 1657 and 1545 to 1551 cm-1 respectively; while peptides 

that have a beta-sheet conformation display peaks at 1628 to 1635 and 1521 to 1525 cm-1.  

It should be noted that these values are general guidelines and should not necessarily be 

held steadfast as several factors contribute to the frequency at which the peaks occur9. 

The IR results, Figure 16, display a gradually increasing intense amide I peak that 

occurs around 1639 cm-1, which is in reasonable proximity to the amide I peak 

corresponding to beta-sheets.  The intensity of the peak reaches a maximum at 30 hours.  

The IR results do not show the presence of an amide II peak at all.  Due to the peak’s 
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conspicuous absence, no definite conclusion about the peptide’s conformation can be 

reached based on the IR results alone.  However, corroborative evidence from a UV-Vis 

assay does indicate the formation of beta-sheets.  This leads to the conclusion that beta-

sheet conformation is possible without the presence of the amide II peak, and that the 

amide I peak alone can be used as a definitive indication of secondary structure.  A 

possible rationalization for the absence of the amide II peak, based on the supposition 

that the presence of the peak would be due to the vibrations of the bonds, is that the C-N 

and N-H bonds are already hindered from vibrating.  The amide II peak appears for long 

peptide chains5.  Shorter peptides are likely to pack more tightly relative to larger 

peptides.  This implies that the vibrations of C-N and N-H bonds are more hindered than 

the C=O  bond for shorter peptides that form beta-sheets. 
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Figure 16. Relative IR profiles of the amide I peak of Aβ22-35 D23N (blue line 0 hours, 
red line 18 hours, green line 24 hours, purple line 30 hours, turquoise line 36 hours, 
orange line 42 hours, light blue line 54 hours, pink line 102 hours). 
 

Another crucial aspect of the infrared spectroscopy of the amide I band is the 

intensity of the absorbance.  The amide I peak reaches a maximum intensity at around 30 

hours, after 30 hours the intensity gradually decreases.  One theory set forth by this study 

is that this gradual decrease in intensity is an indication of the peptide  transitioning from 

beta-sheet to fibrils.  Since infrared spectroscopy involves the stretching and vibration of 

covalent bonds, the formation of fibrils as beta-sheets continually stack into each other 

will eventually restrict and hinder the vibrations of covalent bonds.  This would result in 

a decrease of intensity of the amide I peak.  With this hypothesis in mind, IR 

spectroscopy can then be used to detect the transition from secondary structure to tertiary 
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structure of peptides that can fibrillize.  The IR spectra gives no real knowledge of what 

this tertiary structure is, but it can give an indication of when it starts to occur.  IR spectra 

gave no indication of any type of alpha-helical structure.  There is no evidence to suggest 

that Aβ22-35 D23N initially conforms to an alpha-helix.  Although it is entirely possible 

the transition has a short lifetime and may have simply been missed. 

 

5.2.2 - UV-VIS ANALYSIS 

 

 Congo Red is a molecular dye that binds to beta-sheet structures and forms a 

complex.  Direct quantitative measurements of beta-amyloid aggregation can be made 

with UV-Vis spectroscopy at the characteristic wavelengths of absorbance for this 

complex.  The Aβ22-35 fragment is capable of fibrillization despite the absence of the 

“KLVFFA” region, which are residues 16-21 of the beta-amyloid peptide.  Two types of 

assays were performed, one with agitation every five hours and one without agitation.  

The agitation amounted to nothing more than very brief stirring.  Both assays show a 

gradual rise until 30 hours.  At 30 hours the rate of fibrillization significantly increases, 

showing a much steeper slope after 30 hours.  30 hours marks the time of maximum 

absorbance of the amide I peak in the IR spectra.  30 hours marks the time of the start of 

fibrillization in the Congo Red assay, further supporting that IR can be used to detect 

secondary to tertiary transitions of peptides that are capable of fibrillization.  The results 

are shown in Figure 17. 
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Figure 17. Aβ22-35 D23N molar concentration with respect to elapsed time at 24oC 
(green line represents brief mixing every 5 hours, blue line represents no mixing). 
 

 The assay done with agitation every five hours, green line, reaches a maximum 

concentration of fibrils at around 53 hours.  The assays done with no agitation, blue and 

red lines, reach a maximum at around 43 hours.  This is an indication of when insoluble 

species start to form, which are likely to be actual fibrils at this stage.  Since the fibrils 

are insoluble, they are affected by gravity and sink to the bottom of the sample system.  

Any complex formed with the Congo Red and fibrils will not be detected by the UV-Vis 

spectrometer, and will show a lower concentration of fibrils relative to the assay done 

with agitation.  The plateau indicates that there is some type of equilibrium at 43 hours 

because its concentration is relatively constant.   
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5.2.3 - KINETICS AND THERMODYNAMICS 

 

 Gibb’s free energy, ∆G‡, is an indication of the spontaneity of a reaction and is 

expressed in terms of enthalpy, ∆H‡, and entropy, ∆S‡.   

 

∆G‡ = ∆H‡ – T∆S‡ (Equation 1) 

 

The fibrillization process decreases entropy.  As more peptides form beta-sheets and start 

to aggregate, there is less randomness which means ∆S‡ is negative.  Since the the 

formation of fibrils requires the formation of hydrogen bonds, ∆H‡ would have to be 

negative as well.  Strictly speaking, the kinetic profiles for the formation of fibrils are not 

purely first order.  However they can be approximated with first order kinetics up until 

the plateau is reached.  Approximating the fibrillization process with first order kinetics 

will give a general indication of kinetic and thermodynamic properties.  If an exponential 

regression is performed on the Congo Red assay done without agitation at 24oC (blue line 

from Figure 17), the kinetic profile, up until the plateau, can be approximated with 

 

y = 1 • 10-7 e0.0589x 

 

Therefore k = 0.0589 at 24oC, 24oC is also 297 K.  If an exponential regression is 

performed on the Congo Red assay done without agitation at 40oC, Figure 18, 
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Figure 18. AB22-35D23N molar concentration with respect to elapsed time at 40oC. 

 

the kinetic profile, up until the plateau, can be approximated with 

 

y = 1 • 10-6 e0.0529x 

 

Therefore k = 0.0529 at 40oC, which is 313 K. 

 Gibb’s free energy can also be expressed in terms of the rate constant of a 

reaction. 

 

∆G‡ = -RT ln k  (Equation 2) 
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If both expressions for ∆G‡ are set equal, Equation 1 and Equation 2, the following is 

obtained. 

 

-RT ln k = ∆H‡ – T∆S‡ 

 

When the equation is solved for ln k, the equation takes on a linear form. 

 

ln k = (-∆H‡/R)(1/T) + (∆S‡/R) 

 

-∆H‡/R would correspond to the slope of a linear equation and ∆S‡/R would correspond 

to the y-intercept.  A plot of ln k vs 1/T is shown in Figure 19. 
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Figure 19. Plot of ln k vs 1/T. 

 

A linear regression performed on a plot of ln k versus 1/T yields the following equation. 

 

y = 624.2x – 4.9 

 

When these numerical values for slope and y-intercept are set equal to their 

corresponding factors, both ∆H and ∆S can be calculated. 

 

∆H‡ = -5.2 kJ/mol 
 
∆S‡ = -41 J/mol 

y = 624.22x - 4.9337
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These values apply only to Aβ22-35 D23N.  The magnitudes and signs are as predicted.  

Using the equation ∆G‡ = ∆H‡ – T∆S‡ and at a room  temperature of roughly 24oC, ∆G‡ 

= +7.0 kJ/mol; indicating a non-spontaneous reaction.  Prior to 30 hours, fibrillization is 

gradual and slow.  At 30 hours, the rate of fibrillization drastically increases.  And since 

the reaction is exothermic, there must be a high activation energy.  But once a critical 

concentration is reached and there is sufficient aggregation, the fibrillization process 

appears to be self-catalyzing.  Sufficient aggregation must therefore lower the activation 

energy. 

 

5.2.4 - EQUILIBRIUM CONSTANT  

 

 Polymerization is the formation of a long chain of a repeating molecular unit via 

covalent bonding.  The fibrillization process is similar to polymerization in that the 

repeating unit is a peptide and falls under the category of supramolecular polymerization. 

Supramolecular polymers are defined as polymeric arrays of monomeric units that are 

brought together by highly directional secondary interactions such as hydrogen bonding, 

π-π interactions, and hydrophobic interactions6. 

 

 

Figure 20. Nucleation-elongation model for supramolecular polymerization30. 
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The model used for the calculation of the equilibrium constant of fibrillization is the 

nucleation-elongation model shown in Figure 2030: 

 

Cp = σ (1 – K[M]) + (1 – σ)(1 – K[M])2 (Equation 3) 

 

Cp is the concentration of fibrillar species, σ is the nucleation factor, [M] is the 

concentration of monomeric peptides, and K is the equilibrium constant.  For 

supramolecular polymerization to favor elongation, then σ<<1.  A nucleation factor of 

0.0001 was used in these calculations.  Cp is the resulting calculation of the Klunk 

equation, whose parameters are measured experimentally using the Congo Red assay.  

The relation between [M] and Cp is defined as 

 

[M] = [M]i – 5Cp (Equation 4) 

 

[M]i is the initial concentration of monomeric peptide.  In all of these experiments, the 

initial monomeric peptide concentration was 100 µM.  The factor of 5 in the second term 

is due to the theoretical stoichiometric ratio of one molecule of Congo Red binding to 

five peptides that have formed an extended beta-sheet.  The substitution of the expression 

for [M], equation 4 into equation 3, results in the equation 

 

Cp = σ{1 – K([M]i – 5Cp)} + (1 – σ){1 – K([M]i – 5Cp)}2 (Equation 5) 
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If this equation (Equation 5) is set to zero, the separate terms of the equation are 

distributed, and the equilibrium constant factored out from its appropriate term, the 

resulting equation takes on a quadratic form with respect to the equilibrium constant K. 

 

K2([M]i – 5Cp)2(1 – σ) + K([M]i – 5Cp)( σ – 2) + (1 - Cp) = 0 

 

The standard parameters of a quadratic would result in the following expressions. 

 

a = ([M]i – 5Cp)2(1 – σ) 
 
b = ([M]i – 5Cp)( σ – 2) 
 
c = (1 - Cp) 

 

The value of the equilibrium constant K can now be determined using the quadratic 

formula and the data from the green line of Figure 17. 

 

K = [-b + (b2 – 4ac)½]/(2a) 

 

The resulting average value of K was calculated to be 1.1 x 104.  This equilibrium 

constant applies only to Aβ22-35 D23N.  The equilibrium constant is not exceedingly 

high and indicates that there are appreciable amounts of both monomers and products. 
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5.2.5 - COMPARISON TO Aβ22-35 WT, Aβ1-40 WT, AND Aβ1-40 D23N 

 

 The overall fibrillization process is faster for the Iowa mutant than it is for the 

wild type21.  Significant fibrillization begins at 30 hours for the Iowa mutant and begins 

at 40 hours for the wild type.  The lag phase occurs at 33 hours for the Iowa mutant and 

at 46 hours for the wild type.  Maximum fibril formation occurs at 53 hours for the Iowa 

mutant and at 85 hours for the wild type.  Despite lacking the ability to form intra-

molecular beta-sheets by folding into itself, the hair-pin turn of the 22-35 fragment still 

somehow plays a significant role in the fibrillization process.  If it did not, the kinetic 

profile of the Iowa mutant and the wild type would be similar.  This would suggest that 

for the fibrillization process to occur, a region of hydrophobicity is required; which the 

hair-pin turn provides.  This would also imply that the folding itself is not as crucial, and 

that the hair-pin turn simply needs to turn in order to properly coordinate its residues in 

space to provide a hydrophobic region.  Since the shapes of all the intermediates are 

spherical, the only way for any type of spherical aggregation to be possible is that the 

species in question has some type of hydrophobic region.  And beta-sheets have already 

been shown to be the predominant conformation of beta-amyloid in fibrils.  The 

minimum requirements for fibrillization would then have to be a hydrophobic region and 

a beta-sheet region. 

 Intermediates and fibrils formed from the wild type are probably a mixture of 

peptides with residue 22 to 28 bonding and residue 23 to 28 bonding.  Residues 24 and 25 

have no acidic protons; all residue protons are attached to carbon atoms and are non-

acidic.  A familial mutation at either residue 22 or 23 tends to favor bonding at that 
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residue.  Computer simulations of various mutations show different fibril  morphologies 

based on where the mutation occurs14, while images of actual fibrils formed from the 

Iowa mutant show structures that are twisted and untwisted27.  The Iowa mutant favors 

the bonding to occur between residues 23 and 28, but there is also likely to be a small 

percentage of residue 22 to 28 bonding despite the presence of the mutation.  

 Residues 23 and 28 are the amino acids that bond together and therefore are the 

most crucial components of the hair-pin turn.  In the wild type, residue 23 is aspartic acid.  

In the Iowa mutant, residue 23 is asparagine.  The basic molecular skeletons of aspartic 

acid and asparagine are the same.  They both have a two carbon chain with a double-

bonded oxygen attached to the end carbon.  The only difference between the two is the 

other functional group that is attached to the end carbon.  In aspartic acid, which is 

expressed in the wild type, it is –OH.  In asparagine, which is expressed in the Iowa 

mutant, it is –NH2.  The Iowa mutation involves the change of a single functional group 

from –OH to –NH2.  This makes the possibility of hydrogen bonding statistically greater 

for the amine functional group and enabling the peptide to fold sooner. 

 Comparisons to Aβ1-40 WT and Aβ1-40 D23N are not as straightforward.  The 

definitive studies of the two peptides were performed under slightly different conditions 

from that of Aβ22-35 D23N4,27.  In the Aβ1-40 WT study4, fibrillization was monitored 

with ThT and the incubation was done at 4oC.  In the Aβ1-40 D23N study27, incubation 

of the peptide was done at 37oC.  Nevertheless, logical comparisons can still be made.  

For the smaller peptide, Aβ22-35, bonding between residues 23 and 28 would logically 

have to occur sooner than the larger peptide, Aβ1-40.  For folding to occur in the larger 

peptide, peptides 1 to 22 must translate through space, hindering the folding process 
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entirely with its mass.  The absence of peptides 1 to 22 in the smaller peptide should 

enable the folding process even sooner.  Because folding occurs sooner, everything else 

should occur sooner as well; nucleation, formation of spherical intermediates, 

fibrillization, etc.  Seeding larger peptides with smaller peptides will likely result in faster 

fibrillization of the larger peptide.  It is in this regard, that the region of the peptide plays 

a crucial role as well.  The formation of any spherical species in aqueous solution 

requires a hydrophobic region and a non-hydrophobic region.  If a peptide has no region 

that is hydrophobic, then spherical intermediates are not likely to form.  This further 

demonstrates just how crucial the hair-pin turn is. 

 While smaller peptides should logically fibrillize sooner, this doesn’t appear to be 

the case based on the Aβ1-40 WT study4.  Even though maximum fibrillization occurs at 

roughly 50 hours for Aβ1-40 WT, this was done at 4oC.  At room temperature, maximum 

fibrillization should occur much sooner.  This implies that the longer peptide, Aβ1-40, 

fibrillizes faster than the shorter peptide, Aβ22-35, at room temperature.  This means the 

formation of an intramolecular beta-sheet lowers the activation energy for the overall 

fibrillization process more than the formation of intermolecular beta-sheets, despite the 

fact that the longer peptide has to translate more mass through space in order to form the 

intramolecular beta-sheet.  A peptide shorter than Aβ1-40, with beta-sheet regions before 

and after the hair-pin turn, would probably fibrillize much faster. 

 One of the goals of this research is to identify the toxic component of beta-

amyloid, to identify which region of the peptide that is responsible for actually killing 

neuron cells.  It is not likely to be the entire peptide, but rather a region of it.  Aβ22-35 

has only two regions, the hair-pin turn and a beta-sheet region.  All research up to this 
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point indicates that the hair-pin turn is the most crucial region for the fibrillization 

process, since various mutations in this region affect the peptide’s fibrillization rate.  

Because of its vital role in the fibrillization process, it would stand to reason that it is the 

hair-pin turn itself that is also likely responsible for neurodegeneration.  Toxicity assays 

done with Aβ22-35 WT have already shown the truncated peptide to be toxic25.  Toxicity 

assays done with fibrils have shown the fibrils to be non-toxic relative to the 

intermediate8.  It is possible that the structural conversion into beta-sheets is the 

mechanism responsible for the intermediate’s neurotoxicity4. 

The hair-pin turn might play a crucial role in neurotoxicity as well.  Both Aβ22-

35 WT and Aβ22-35 D23N, cannot form intramolecular beta-sheets.  Since these peptides 

cannot form intramolecular beta-sheets, the hair-pin turn should be of no consequence.  

And these peptides should have similar if not identical fibrillization rates.  Despite this 

logic, the mutant still fibrillizes faster than the wild type21.  This means the hair-pin turn 

is crucial to fibrillization even when intramolecular beta-sheets cannot be formed.  A 

possible future experiment is to incubate only the hair-pin turn which is seven peptides 

long.  If this even shorter peptide forms aggregates and the aggregates are shown to be 

toxic, then the mechanism of toxicity would be far more complicated than it is believed to 

be now. 

 

5.3 - SUMMARY AND CONCLUSIONS 

 

 While shorter peptides would logically fibrillize faster than longer peptides, this is 

dependant on the chemistry of the available regions for a shorter peptide.  A peptide 
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shorter than Ab1-40 should fibrillize faster as long as it has a beta-sheet region before 

and after the hair-pin turn.  A shorter peptide with only one beta-sheet region, while still 

capable of fibrillization, takes much longer to fibrillize than Aβ1-40.  The region of the 

peptide also plays an important role in fibrillization.  The minimum requirements for 

fibrillization are likely to be a hydrophobic region and a beta-sheet region.  A 

hydrophobic region is necessary to form any type of spherical intermediate.  A beta-sheet 

region is necessary for intermolecular interactions to occur in order to form fibrils.  The 

Iowa mutation involves changing aspartic acid to asparagine on the 23rd residue of 

Alzheimer’s beta-amyloid.  The molecular skeletons of aspartic acid and asparagine are 

identical except that aspartic acid has an –OH functional group while asparagine has an –

NH2.  There is a greater statistical probability for hydrogen bonding to occur in the Iowa 

mutant simply because it has one more proton than the wild type.  This results in a faster 

fibrillization process for the Iowa mutant. 
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