
DePaul University DePaul University

Via Sapientiae Via Sapientiae

Technical Reports College of Computing and Digital Media

8-2010

Facial Expression Recognition System Facial Expression Recognition System

Ewa Piatkowska
DePaul University

Follow this and additional works at: https://via.library.depaul.edu/tr

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Piatkowska, Ewa. (2010) Facial Expression Recognition System.
https://via.library.depaul.edu/tr/17

This Article is brought to you for free and open access by the College of Computing and Digital Media at Via
Sapientiae. It has been accepted for inclusion in Technical Reports by an authorized administrator of Via
Sapientiae. For more information, please contact digitalservices@depaul.edu.

https://via.library.depaul.edu/
https://via.library.depaul.edu/tr
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/tr?utm_source=via.library.depaul.edu%2Ftr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=via.library.depaul.edu%2Ftr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/tr/17?utm_source=via.library.depaul.edu%2Ftr%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

DePaul University

College of Computing and Digital Media

Facial Expression Recognition System
Master's Thesis Technical Report

Author: Ewa Piątkowska

Supervisor: Prof. Dr. Jacob Furst

Submission Date: 20th of July, 2010

Acknowledgments

I would like to express my gratitude to my supervisor Prof. Jacob Furst and Prof. Daniela

Raicu for their valuable advice and support.

I would also like to thank Prof. T. Kanade, Prof. J.F. Cohn and Prof. Y. Tian for providing the

Cohn-Kanade database and Dr.-Ing. F. Wallhoff for the access to FG-NET Facial Expressions and

Emotion Database.

2

Abstract

This thesis describes the problem of facial expression recognition in the field of computer

vision. Firstly, the psychological background of a problem is presented. Then, the idea of facial

expression recognition system (FERS) is outlined and the requirements of such system are

specified. The FER system consists of 3 stages: face detection, feature extraction and expression

recognition. Methods proposed in literature are reviewed for each stage of a system. Finally, the

design and implementation of my system are explained. The face detection algorithm used in the

system is based on work by Viola and Jones [13]. The expressions are described by appearance

features obtained from texture encoded with Local Binary Patterns [32]. The Support Vector

Machine with RBF kernel function is used for classification. Databases that were used are: The

Facial Expressions and Emotion Database [34], which contains spontaneous emotions and Cohn-

Kanade Database [35] with posed emotions. The system was trained on two databases separately

and achieves accuracy of 71% for spontaneous emotions recognition and 77% for posed actions

recognition.

3

Table of Contents

Introduction..5

 1 Psychological Background...6

 2 Related work...8

 2.1 System requirements...8

 2.2 Face detection...9

 2.3 Feature extraction...10

 2.4 Expression Recognition..12

 2.5 Recent advances..13

 2.6 Applications..14

 3 Proposed system...16

 3.1 Face detection and tracking ...16

 3.2 Feature Extraction...18

 3.3 Expression Recognition..21

Conclusion..24

References..25

Appendix 1...28

4

Introduction

Face plays significant role in social communication. This is a 'window' to human personality,

emotions and thoughts. According to the psychological research conducted by Mehrabian [1],

nonverbal part is the most informative channel in social communication. Verbal part contributes

about 7% of the message, vocal – 34% and facial expression about 55%. Due to that, face is a

subject of study in many areas of science such as psychology, behavioral science, medicine and

finally computer science.

In the field of computer science much effort is put to explore the ways of automation the

process of face detection and segmentation. Several approaches addressing the problem of facial

feature extraction have been proposed. The main issue is to provide appropriate face representation,

which remains robust with respect to diversity of facial appearances.

The objective of this report is to outline the problem of facial expression recognition, that is

a great challenge in the area of computer vision. Advantages of creating a fully automatic system

for facial action analysis are constant motivation for exploring this field of science and will be

mentioned in this thesis.

First Chapter is devoted to the psychological background of the facial expression

recognition problem. The motivation of such study is outlined from the psychological aspect.

Moreover, the techniques used by psychologists for facial action analysis are presented.

Second chapter shows the idea of facial expression recognition system, the way such system

is composed and its main features and requirements. Furthermore, approaches proposed in the

literature will be described briefly. Finally, the application areas will be mentioned to show that

automatic facial action recognition is widely used.

In the third chapter, I will present the design and implementation of Facial Expression

Recognition System. Techniques used at each stage of my system will be described and explained.

Moreover, the performance of a system will be evaluated by testing the recognition accuracy on two

training sets.

5

 1 Psychological Background

In 1978, Ekman et al. [2] introduced the system for measuring facial expressions called

FACS – Facial Action Coding System. FACS was developed by analysis of the relations between

muscle(s) contraction and changes in the face appearance caused by them. Contractions of muscles

responsible for the same action are marked as an Action Unit (AU).

The task of expression analysis with use of FACS is based on decomposing observed

expression into the set of Action Units. There are 46 AUs that represent changes in facial expression

and 12 AUs connected with eye gaze direction and head orientation. Action Units are highly

descriptive in terms of facial movements, however, they do not provide any information about the

message they represent. AUs are labeled with the description of the action (Fig.1).

6

Fig. 1: Examples of Action Units [3]

Facial expression described by Action Units can be then analyzed on the semantic level in

order to find the meaning of particular actions. According to the Ekman's theory [2], there are six

basic emotion expressions that are universal for people of different nations and cultures. Those

basic emotions are joy, sadness, anger, fear, disgust and surprise (Fig. 2).

The Facial Action Coding System was developed to help psychologists with face behavior

analysis. Facial image was studied to detect the Action Units occurrences and then AU

combinations were translated into emotion categories. This procedure required much effort, not

only because the analysis was done manually, but also because about 100 hours of training were

needed to become a FACS coder. That is why, FACS was quickly automated and replaced by

different types of computer software solutions.

7

Fig. 2: Six universal emotions [4]

 2 Related work

The system that is designed for automatic analysis of facial actions is usually called Facial

Expression Recognition System (FERS). The FER system is composed of 3 main elements: face

detection, feature extraction and expression recognition. Different methods were proposed for each

stage of the system, however, only the major ones will be mentioned in the report. More in-depth

study and comparison of related work can be found in surveys done by Pantic and Rothkrantz [5]

as well as by Zeng et al. [6].

Firstly, I would like to outline the basic idea of the FER system and explain the most

important issues which should be taken under consideration in the process of system design and

development. Then, each FER system stage will be described in details, namely: main task, typical

problems and proposed methods. Furthermore, the recent advances in the area of facial expression

analysis will be listed. Finally, some exemplary applications of FER systems will be mentioned to

show that they are widely used in many fields of science as well as in everyday life.

 2.1 System requirements

The goal of FERS is to imitate the human visual system in the most similar way. This is very

challenging task in the area of computer vision because not only it requires efficient image/video

analysis techniques but also well-suited feature vector used in machine learning process.

The first principle of FER system is that it should be effortless and efficient. That is

connected with full automation, so that no additional manual effort is required. It is also preferred

for such system to be real-time which is especially important in both: human-computer interaction

and human-robot interaction applications.

Furthermore, the subject of study should be allowed to act spontaneously while data is being

captured for analysis. System should be designed to avoid limitations on body and head movements

which could also be an important source of information about displayed emotion. The constraints

about facial hair, glasses or additional make-up should be reduced to minimum. Moreover, handling

the occlusions problem seems to be a challenge for a system and it should be also taken into

account.

8

Another important features that are desired in FER system are user and environment

independence. The former means that, any user should be allowed to work with the system, despite

of skin color, age, gender or nation.

The latter is connected with handling the complex background and variety in lightning conditions.

Additional benefit could be the view independence in FERS, which is possible in systems based on

3D vision.

 2.2 Face detection

As it was mentioned before, FER system consists of 3 stages. In the first stage, system takes

input image and performs some image processing techniques on it in order to find the face region.

System can operate on static images, where this procedure is called face localization or videos

where we are dealing with face tracking.

Major problems which can be encountered at this stage are different scales and orientations

of face. They are usually caused by subject movements or changes in distance from camera.

Significant body movements can also cause drastic changes in position of face in consecutive

frames what makes tracking harder. What is more, complexity of background and variety of

lightning conditions can be also quite confusing in tracking. For instance, when there is more than

one face in the image, system should be able to distinguish which one is being tracked. Last but not

least, occlusions which usually appear in spontaneous reactions need to be handled as well.

Problems mentioned above were a challenge to search for techniques which would solve

them. Among the techniques for face detection, we can distinguish two groups: holistic where face

is treated as a whole unit and analytic where co-occurrence of characteristic facial elements is

studied.

Holistic face models:

• Huang and Huang [7] used Point Distribution Model (PDM) which represents mean

geometry of human face. Firstly, Canny edge detector is applied to find two symmetrical

vertical edges which estimate the face position and then PDM is fitted.

• Pantic and Rothkrantz [8] proposed system which process images of frontal and profile face

view. Vertical and horizontal histogram analysis is used to find face boundaries. Then, face

contour is obtained by thresholding the image with HSV color space values.

9

Analytic face models:

• Kobayashi and Hara [9] used image captured in monochrome mode to find face brightness

distribution. Position of face is estimated by iris localization.

• Kimura and Yachida [10] technique processes input image with an integral projection

algorithm to find position of eye and mouth corners by color and edge information. Face is

represented with Potential Net model which is fitted by the position of eyes and mouth.

All of the above mentioned systems were designed to process facial images, however, they are not

able to detect whether the face is present in the image. Systems which handle arbitrary images are

listed below:

• Essa and Pentland [11] created the “face space” by performing Principal Component

Analysis of eigenfaces from 128 face images. Face is detected in the image if its distance

from the face space is acceptable.

• Rowley et al. [12] proposed neural network based face detection. Input image is scanned

with a window and neural network decides if particular window contains a face or not.

• Viola and Jones [13] introduced very efficient algorithm for object detection with use of

Haar-like features as object representation and Adaboost as machine learning method. This

algorithm is widely used in face detection.

 2.3 Feature extraction

After the face has been located in the image or video frame, it can be analyzed in terms of

facial action occurrence. There are two types of features that are usually used to describe facial

expression: geometric features and appearance features. Geometric features measure the

displacements of certain parts of the face such as brows or mouth corners, while appearance

features describe the change in face texture when particular action is performed. Apart from feature

type, FER systems can be divided by the input which could be static images or image sequences.

The task of geometric feature measurement is usually connected with face region analysis,

especially finding and tracking crucial points in the face region. Possible problems that arise in face

decomposition task could be occlusions and occurrences of facial hair or glasses. Furthermore,

defining the feature set is difficult, because features should be descriptive and possibly not

correlated.

10

Feature extraction methods:

• Pantic and Rothkrantz [8] selected a set of facial points from frontal and profile face images.

The expression is measured by a distance between position of those points in the initial

image (neutral face) and peak image (affected face).

• Essa and Pentland [11] proposed temporal approach to the problem of facial expression

analysis. They used the multiscale coarse-to-fine Kalman filtering.

The facial motion is represented by spatio-temporal energy templates.

• Black and Yacoob [14] introduced local parametric models of image motion based on optical

flow information. Models could describe horizontal and vertical translation, divergence and

curl.

• Edwards et al. [15] used Active Appearance Model which is statistical model of shape and

gray scale information. Relationships between AAM displacement and the image difference

is analyzed for expression detection. Proposed system operates on static images.

• Cohn et al.[16] developed geometric feature based system in which the optical flow

algorithm is performed only in 13x13 pixel regions surrounding facial landmarks.

• Zeng et al. [17] used data extracted by the 3D face tracker called Piecewise Bezier Volume

Deformation Tracker [33]. The system was designed to recognize spontaneous emotions so

three-dimensional tracking was beneficial.

• Littlewort et al. [18] proposed system which uses only appearance features to describe facial

expressions. Facial texture is measured by Gabor waveletes.

• Shan et al. [19] investigated the Local Binary Pattern method for texture encoding in facial

expression description. Two methods of feature extraction were proposed. In the first one,

features are extracted from fixed set of patches and in the second method from most

probable patches found by boosting.

11

 2.4 Expression Recognition

The last part of the FER system is based on machine learning theory, precisely it is the

classification task. The input to the classifier is a set of features which were retrieved from face

region in the previous stage. The set of features is formed to describe the facial expression.

Classification requires supervised training, so the training set should consist of labeled data.

Once the classifier is trained, it can recognize input images by assigning them a particular class

label. The most commonly used facial expressions classification is done both in terms of Action

Units, proposed in Facial Action Coding System and in terms of universal emotions: joy, sadness,

anger, surprise, disgust and fear. There are a lot of different machine learning techniques for

classification task, namely: K-Nearest Neighbors, Artificial Neural Networks, Support Vector

Machines, Hidden Markov Models, Expert Systems with rule based classifier, Bayesian Networks

or Boosting Techniques (Adaboost, Gentleboost).

Three principal issues in classification task are: choosing good feature set, efficient machine

learning technique and diverse database for training. Feature set should be composed of features

that are discriminative and characteristic for particular expression. Machine learning technique is

chosen usually by the sort of a feature set. Finally, database used as a training set should be big

enough and contain various data. Approaches described in the literature are presented by categories

of classification output.

Action Units classification:

• Pantic and Rothkrantz [8] introduced the expert system with rule based classifier, which can

recognize 31 action units with accuracy rate of 89%.

• Cohn et al. [16] performed recognition with use of discriminant functions. Proposed method

can distinguish 8 AUs and 7 AUs combinations. Tests were performed on 504 image

sequences of 100 subjects and the system obtained accuracy rate of 88%.

Emotions classification:

• Huang and Huang [7] detected motion by analysis of difference image between neutral and

expression image. The minimum distance classifier is used for recognition of six basic

emotions. Recognition result is 84.5%

• Kobayasi and Hara [9] used 234x50x6 neural back propagation network for recognition of

6 basic emotions. The achieved recognition accuracy is 85%.

12

• Zeng et al.[17] used Support Vector Data Description (SVDD) with Kernel Whitenning to

avoid influence of nonhomogeneous data distributions in input space. The accuracy of a

system is approximately 83%.

• Littlewort et al. [18] introduced method called AdaSVM where facial expression is

represented by Gabor wavelet coefficients. Firstly, the Adaboost method is applied and the

most probable features are chosen by the highest value of frequencies. Then, reduced

expression representation is the input to SVM classifier. System obtains 97% accuracy of

generalization to novel subjects.

• Pantic and Rothkranz [8] in their Expert System implemented also the rule based

classification of emotions with use of previously recognized action units. For example,

happiness is a combination of AU6, AU12, AU16, AU25. Blended emotions are allowed.

The result can be: 75% of happiness if only AU6,AU12, AU16 occurred. Accuracy achieved

by a system is 91%.

 2.5 Recent advances

Apart from principal methods used in FER systems there were some advances made in the

field of facial expression analysis recently. Facial expressions are recognized at higher semantic

level. Expressions could be classified into categories such as confusion, boredom, agreement,

frustration, pain etc. The example of such approach could be fatigue detection proposed by Ji et al.

[20] or pain detection proposed by Littlewort et al. [21]. Additionally, more pressure is put on

recognition of spontaneous emotions. Some systems are designed to divide emotions into posed or

spontaneous categories to recognize if emotion was genuine or fake. Such functionality was

proposed by Valstar et al. [22] for genuine smile detection. What is more, head motions or body

gestures are also studied in order to describe human affective states, especially with use of three-

dimensional tracking. For instance, Gunes et al. [23] examined the significance of body movements

in affective states analysis. Some efforts were also done in context-dependent interpretation of

facial expressions, among the others by Fasel et al. [24]. Another improvement in the area of feature

extraction could be found in the work by Valstar et al. [25] in which expression is described by

temporal dynamics parameters such as speed, intensity, duration and co - occurrence of facial

muscle activations.

13

 2.6 Applications

Huge amount of different information is encoded in facial movements. Observing someone's face

we can learn about his/her:

• affective state, connected with emotions like fear, anger and joy and moods such as euphoria

or irritation

• cognitive activity (brain activity), which can be perceived as concentration or boredom

• personality features like sociability, shyness or hostility

• truthfulness using analysis of micro-expressions to reveal concealed emotions

• psychological state giving information about some disorders helpful with diagnosis of

depression, mania or schizophrenia.

Due to the variety of information visible on human face, facial expression analysis has

applications in different fields of science and life.

Firstly, teachers uses facial expression analysis to adjust the difficulty of the exercise and

learning pace on a base of feedback visible on students faces. Virtual tutor in e-learning proposed by

Amelsvoort and Krahmer [26] provides student with suitable content and adjusts the complexity of

courses or tasks by the information obtained from student's face.

Another application of FERS is in the field of business where the measurement of people's

satisfaction or dissatisfaction is very important. Usage of this application can be found in many

marketing techniques where information is gathered from customers by surveys. The great

opportunity to conduct the surveys in the automatic way could be able by using customers' facial

expressions as a level of their satisfaction or dissatisfaction [3]. Moreover, prototype of

Computerized Sales Assistant, proposed by Shergill et al. [27] selects the suitable marketing and

sales methods by the response deducted from customers' facial expressions.

Facial behavior is also studied in medicine not only for psychological disorder diagnosis but

also to help people with some disabilities. Example of it could be the system proposed by Pioggial

et al. [28], that helps autistic children to improve their social skills by learning how to recognize

emotions. Facial expressions could be also used for surveillance purposes like in prototype

developed by Hazelhoff et al. [29]. Suggested system automatically detects discomfort of newborn

babies by recognition of 3 behavioral states: sleep, awake and cry.

14

Additionally, facial expression recognition is widely used in human robot and human

computer interaction. Kazi et al. [30] proposed Intelligent Robotic Assistant for people with

disabilities based on multimodal HCI. Another example of human computer interaction systems

could be system developed by Zhan et al. [31] for automatic update of avatar in multiplayer online

games.

15

 3 Proposed system

The goal of this project was to design and implement the facial expression recognition

system. On a basis of the extensive study of different approaches to the problem of face action

representation, appropriate algorithms were selected for each stage of a system.

The proposed system is built in traditional manner and consists of 3 stages: face detection

and tracking, face expression representation and expression recognition (Fig. 3). System operates

on both static images and image sequences. Static images are used in training and testing

procedures but the interaction with a system is designed for video analysis.

This chapter includes the description of all three stages of a system. Algorithms used at each

stage will be explained from theoretical aspect. Next, the implementation details will be mentioned

and the system's behavior will be illustrated.

 3.1 Face detection and tracking

First part of my system is module for face detection and landmark localization in the image.

The algorithm for face detection is based on work by Viola and Jones [13]. In this approach image

is represented by a set of Haar-like features. Possible types of features are two-, three- and four-

rectangular features (Fig. 4).

16

Fig. 3: The structure of FER system

Fig. 4: Examples of
Haar-like features [13]

Fig. 6: Integral image
concept [13] Fig. 5: Haar-like features

detected on a face [13]

Feature value is calculated by subtracting sum of the pixels covered by white rectangle from sum of

pixels under gray rectangle. Two rectangular features detect contrast between two vertically or

horizontally adjacent regions. Three rectangular features detect contrasted region placed between

two similar regions and four rectangular features detect similar regions placed diagonally (Fig. 5).

Input image is transformed into integral image in which each pixel is a sum of all pixels

above and to the left.

This is computed in one pass, thus feature can be computed rapidly because the value of each

rectangle requires only 4 pixel references (Fig. 6).

Having the representation of the image in rectangular features, the classifier needs to be

trained to decide if the image contains searched object (face) or not. The number of features is much

higher than the number of pixels in the original image. However, it was proven that even a small set

of well-chosen features can build a strong classifier. That is why, the Adaboost algorithm was used

for training. Each step selects the most discriminative feature which separates positive and negative

examples in the best way.

The method is widely used in area of face detection. However, it can be trained to detect any

object. What is more, this algorithm is quick and efficient and could be used in real-time

applications. In proposed system, the algorithm is applied for face, eyes and mouth localization with

use of already trained classifiers from OpenCV library.

The face detection procedure includes some steps which are consecutively performed on the

input image. Procedure flow is illustrated by the output of each function called on input image.

Firstly, the classifier trained for face detection searches for a face in the image (Fig. 7). In case

when face is not found in the image, further processing is omitted and system returns appropriate

error message.

17

Fig. 7: Face detection procedure

ii x , y= ∑
x '≤ x , y '≤ y

i x ' , y '  where ,

ii x , y −integral image , i x , y−input image

If the face is located, the classifiers for eye detections are employed only on the upper part of the

face. The left and right eyes are detected separately – in left and right upper face regions (Fig. 8).

Finally, the mouth region is located with the fourth classifier which searches in the lower part of the

face. The search area of facial elements detectors is narrowed in order to improve the time

efficiency of the algorithm.

Having locations of the face and facial landmarks, the face representation can be formed. If there

are more faces detected in the image, the algorithm takes the biggest one for further processing.

 3.2 Feature Extraction

As mentioned in the previous chapter, two main approaches are used to describe the

expression. Geometric or appearance features can be used either separately or in combination.

In geometric feature based systems the face is represented by a set of facial points which are

tracked. Deformations between neutral state and current frame are parameters of facial action.

This approach requires reliable methods for points detection and tracking which are difficult to

obtain. Appearance based methods measure the appearance changes which are mainly based on

texture analysis. Although, Gabor filters are proved to be powerful in face expression analysis, they

are time and memory consuming. Due to that fact, another method called Local Binary Patterns

(LBP) gains more popularity in facial texture analysis.

Local Binary Patterns were introduced by Olaja et al. [32] as an effective texture descriptors.

Input image is transformed into LBP representation by sliding window technique where value of

each pixel in the neighborhood is thresholded with value of central pixel (Fig. 9). Central pixel is

encoded with LBP code (binary or decimal) in corresponding LBP image pixel. Binary codes are so

called 'micro-textons' that represent texture primitives such as curved edges, flat or convex areas.

18

Fig. 8: Face elements localization

 Basic version of LBP uses 3x3 sliding window to code the texture. Recently, the operator has been

extended to different sizes and shapes (circular neighborhood). The size of the neighborhood

directly influences the range of code values. Having operator of size P and radius R, the range of

possible codes are from 0 to 2P. The image texture is described by a 2P bin histogram of

corresponding LBP image.

Encoding facial texture features can be done in holistic or analytic way. Holistic approach

encodes whole face region with LBP features. The disadvantage of this approach is that spatial

information about texture is lost. In the second method face region is divided into a grid of patches

and each patch is transformed to LBP histogram separately.

The latter method encodes the spatial information about the face texture. However, many

patches consist of data that is not affected by expression like hair or neck parts. That is why, in my

system the LBP operator is applied on two regions that are highly involved in face activity. Those

regions are forehead-eyes area and chin-mouth-cheeks area (Fig. 10). Regions are estimated with

regard to face representation created in the first module of my system.

19

Fig. 9: LBP encoding [20]

Fig. 10: Regions involved in expressions analysis

Before features can be extracted, particular face region need to be normalized. All regions

are rescaled to the same size, namely: 90x48 for upper region and 72x48 for lower region. Next,

regions are divided into grids of sizes: 4x4 in lower part and 5x4 in upper part of the face. (Fig. 11).

Each window from a grid is encoded with LBP histogram. Basic version of LBP operator

was implemented in the proposed system so the amount of bins in the histogram is 28 = 256. Feature

vector that represents particular emotion consists of 36 histograms (Fig. 12). Thus, each expression

is described by 9216 features.

20

Fig. 12: Visualization of feature set

Fig. 11: Face regions grids

 3.3 Expression Recognition

The last stage of my system is devoted to facial expressions recognition. This task requires

classifier training with a set of images with particular emotions displayed. For the purpose of

training I obtained two facial expression databases.

First one is the FG-NET Facial Expression and Emotion Database [34] which consists of

MPEG video files with spontaneous emotions recorded. Database contains examples gathered from

18 subjects (9 female and 9 male). Proposed system was trained with captured video frames in

which the displayed emotion is very representative. The training set consists of 675 images of seven

states neutral and emotional (surprise, fear, disgust, sadness, happiness and anger).

Second database is the Cohn-Kanade Facial Expression Database [35] and contains 486

image sequences displayed by 97 posers. The sequence displays the emotion from the start to the

peak, however, only the last image of a sequence is used for training. What is more, the database is

labeled with Action Units which is not applicable in my system. That is why, the AU labels needed

to be translated into emotion categories, according to the rules provided with the database. The

training and testing sets formed from Cohn-Kanade database contain 518 images divided into seven

classes: neutral, surprise, fear, disgust, sadness, happiness and anger.

Having appropriate training sets, the procedure of classifier training could be performed.

In proposed system the Support Vector Machine with Radial Based Kernel Function is used as a

classifier. The Support Vector Machine is an adaptive learning system which receives labeled

training data and transforms it into higher dimensional feature space. Then separating hyperplane

with respect to margin maximization is computed to determine the best separation between classes.

The greatest advantage of SVM is that even with small set of training data it has good performance

in generalization.

Developed FER system was trained and tested with each database separately. In FEED

database, each person shows certain emotion three times and usually first two samples are used in

training and the third one in testing. Similarly, 330 images captured from the third trial videos are

used as a testing set in proposed system. In Cohn-Kanade database peak images from sequences are

split into training set (518 images) and testing set (53 images).

System's performance was measured with accuracy rate, that is the proportion of properly

classified images to all images in the test set. System trained with a FEED database can recognize

emotions with accuracy rate of 71%. However, the system trained with Cohn-Kanade database is

able to recognize emotions with 77% of accuracy (Table 3).

21

Additionally, the recognition results were presented by confusion matrix, which not only

shows accuracy of each emotion recognition but also indicates the emotions with which the certain

one is confused. Dealing with spontaneous expression recognition, the emotions are often confused,

probably because the differences between them are quite subtle. The best recognition rate was

obtained for sadness (91%), the worst one for anger (51%) which was usually confused with

sadness (Table 2).

System trained with Cohn-Kanade database performs much better and the best accuracy obtained

for disgust and surprise is 100%. This could be caused by the fact that texture in both those

emotions is distinct. That is why, in expressions which involve less changes in texture like neutral

and fear have the worst recognition rates, namely 60% and 56% (Table 1). Furthermore, CK

database consists of posed emotions and due to that, expressions are usually exaggerated and easier

to differentiate.

What is more, the system was compared to other systems proposed in literature (Table 3).

In order to make the comparison reliable, only the systems which use the same database and

recognition type (7-class classification) were mentioned.

22

Table 3: Accuracy rates of exemplar FERS

Table 1: Confusion matrix of testing with
 Cohn-Kanade Database

Table 2: Confusion matrix of testing with
 FG-NET FEED

Shan et al. [19] evaluated the performance of LBP features as facial expression descriptors and they

obtained the result of 89% by use of SVM with RBF Kernel trained with CK database. My system

uses the similar technique but the result is lower (77%) what could be caused by difference in LBP

code range. Shan et al. used the 59 bin histogram according to the theory that some of the patterns

are uniform. Furthermore, proposed system has lower accuracy rate than system developed in work

by Zhan et al.[31] in which the Gabor wavelets are used as texture descriptors. Although, the results

achieved by proposed system are lower than in compared systems, they can be accepted with regard

to the fact, that the best accuracy rate obtained for 7-class recognition is 89%.

23

Conclusion

The aim of this thesis was to explore the area of facial expression recognition. Beginning

with the psychological motivation for facial behavior analysis, this field of science has been

extensively studied in terms of application and automation. Manual face analysis used by

psychologists was quickly replaced by suitable computer software. A wide variety of image

processing techniques was developed to meet the facial expression recognition system

requirements. However, there are still many challenges and problems to solve in such systems,

especially in the area of their performance and applicability improvement.

Apart from theoretical background, this work provides the design and implementation of

Facial Expression Recognition System. Proposed system was developed to process the video of

facial behavior and recognize displayed actions in terms of six basic emotions. Major strengths of

the system are full automation as well as user and environment independence. Even though the

system cannot handle occlusions and significant head rotations, the head shifts are allowed.

Additionally, the recognition results are quite promising with regard to the fact that only appearance

features were used to encode the facial expression.

In the future work, I would like to focus on improving the recognition rate of my system.

One of the possible solutions could be adding the motion information to the expression

representation. The action could be described by geometrical features as well as appearance

features. Finally, I would like to improve the time efficiency of my system in order to make it

appropriate to use in different applications.

24

References

[1] A. Mehrabian, "Communication without Words", Psychology Today, Vol. 2, No. 4,

p. 53-56, 1968.

[2] P. Ekman, T. Huang, T. Sejnowski, J. Hager, "Final Report To NSF of the Planning

Workshop on Facial Expression Understanding", 1992.

accessed on:"http://face-and-emotion.com/dataface/nsfrept/nsf_contents.html"

[3] Z. Kasiran, S. Yahya, "Facial Expression as an Implicit Customers Feedback and

the Challenges", Computer Graphics, Imaging and Visualisation, p. 377-381, 2007.

[4] http://2wanderlust.files.wordpress.com/2009/03/picture-2.png

[5] M. Pantic, L. Rothkrantz, "Automatic Analysis of Facial Expressions: The State of the Art",

IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol. 22, No. 12, 2000.

[6] Z. Zeng, .M. Pantic, G. I. Roisman, T. S. Huang, „A Survey of Affect Recognition Methods:

Audio,Visual, and Spontaneous Expressions”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 31, No. 1, 2009.

[7] C.L. Huang and Y.M. Huang, "Facial Expression Recognition Using Model-Based Feature

Extraction and Action Parameters Classification," J. Visual Comm. and Image

Representation, Vol. 8, No. 3, p. 278-290, 1997.

[8] M. Pantic and L. Rothkrantz, "Expert System for Automatic Analysis of Facial

Expression", Image and Vision Computing J., Vol. 18, No. 11, p. 881-905, 2000.

[9] H. Kobayashi and F. Hara, "Facial Interaction between Animated 3D Face Robot and

Human Beings," Proc. Int'l Conf. Systems, Man, Cybernetics, p. 3,732-3,737, 1997.

[10] S. Kimura and M. Yachida, "Facial Expression Recognition and Its Degree Estimation",

Proc. Computer Vision and Pattern Recognition, p. 295-300, 1997.

[11] I. Essa and A. Pentland, "Coding, Analysis Interpretation,Recognition of Facial

Expressions", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.19, No. 7,

p. 757-763, July 1997.

[12] H. Rowley, S. Baluja, T. Kanade, "Neural Network-Based Face Detection", IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, p. 23 – 38,1998.

[13] P. Viola and M. J. Jones, “Robust real-time object detection”, International Journal of

Computer Vision, Vol. 57, No. 2, p.137–154, 2004.

25

[14] M.J. Black and Y. Yacoob, "Recognizing Facial Expressions in Image Sequences Using

Local Parameterized Models of Image Motion," lnt'l J. Computer Vision, Vol. 25, No. 1,

p. 23-48, 1997.

[15] G.J. Edwards, T.F. Cootes, and C.J. Taylor, "Face Recognition Using Active Appearance

Models," Proc. European Conf. Computer Vision, Vol. 2, p. 581-695, 1998.

[16] J.F. Cohn, A.J. Zlochower, J.J. Lien, and T. Kanade, "Feature-Point Tracking by Optical

Flow Discriminates Subtle Differences in Facial Expression," Proc. Int'l Conf. Automatic

Face and Gesture Recognition, p. 396-401, 1998.

[17] Z. Zeng, Y. Fu, G. I. Roisman, Z. Wen, Y. Hu and T. S. Huang, "Spontaneous Emotional

Facial Expression Detection", Journal of Multimedia, Vol. 1, No. 5, p. 1-8, 2006.

[18] G.C. Littlewort, M.S. Bartlett, J. Chenu, I. Fasel, T. Kanda, H. Ishiguro,

J.R. Movellan,"Towards social robots: Automatic evaluation of human-robot interaction by

face detection and expression classification", Advances in Neural Information Processing

Systems, Vol 16, p. 1563-1570, 2004.

[19] C.Shan, S. Gong, P. McOwan, “Facial expression recognition based on Local Binary

Patterns: A comprehensive study”, Image and Vision Computing, Vol. 27, p. 803-816, 2009.

[20] Q. Ji, P. Lan, and C. Looney, “A Probabilistic Framework for Modeling and Real-Time

Monitoring Human Fatigue”, IEEE Systems, Man, and Cybernetics Part A, Vol. 36, No. 5,

p. 862-875, 2006.

[21] G.C. Littlewort, M.S. Bartlett, and K. Lee, “Faces of Pain: Automated Measurement of

Spontaneous Facial Expressions of Genuine and Posed Pain”, Proc. Ninth ACM Int’l Conf.

Multimodal Interfaces, p. 15-21, 2007.

[22] M.F. Valstar, H. Gunes, and M. Pantic, “How to Distinguish Posed from Spontaneous Smiles

Using Geometric Features”, Proc. Ninth ACM Int’l Conf. Multimodal Interfaces,

p. 38-45, 2007.

[23] H. Gunes and M. Piccardi, “Affect Recognition from Face and Body: Early Fusion versus

Late Fusion”, Proc. IEEE Int’l Conf.Systems, Man, and Cybernetics, p. 3437-3443, 2005.

[24] B. Fasel, F. Monay, and D. Gatica-Perez, “Latent Semantic Analysis of Facial Action Codes

for Automatic Facial Expression Recognition,” Proc. Sixth ACM Int’l Workshop Multimedia

Information Retrieval, p. 181-188, 2004.

[25] M. Valstar, M. Pantic, and I. Patras, “Motion History for FacialAction Detection from Face

Video”, Proc. IEEE Int’l Conf. Systems,Man and Cybernetics, vol. 1, p. 635-640, 2004.

26

[26] M. van Amelsvoort, E. Krahmer, "Appraisal of Children’s Facial Expressions while

Performing Mathematics Problems", Proceedings of the 31st Annual Meeting of the

Cognitive Science Society, p.1698-1703, 2009.

[27] G. Shergill, A. Sarrafzadeh, O. Diegel, A. Shekar, "Computerized Sales Assistants:

The Application of Computer Technology to Measure Consumer Interest – a Conceptual

Framework", Journal of Electronic Commerce Research, Vol. 9, No. 2, p.176-191, 2008.

[28] G. Pioggial, M.L. Sical, M. Ferrol, R. Jgliozzi, F. Muratori, A. Ahluwalia, D. De Rossi,

"Human-Robot Interaction in Autism: FACE, an Android-based Social Therapy",

16th IEEE International Conference on Robot & Human Interactive Communication, 2007.

[29] L. Hazelhoff, J. Han, S. Bambang-Oetomo, P. de With, "Behavioral State Detection of

Newborns Based on Facial Expression Analysis", Advanced Concepts for Intelligent Vision

Systems, p. 698–709, 2009.

[30] Z. Kazi, S. Chen, M. Beitler, D. Chester, R. Foulds, "Multimodal HCI for Robot Control:

Towards an Intelligent Robotic Assistant for People with Disabilities", AAAI Technical

Report p.46-53, 1996.

[31] C. Zhan, W. Li, P. Ogunbona,F. Safaei, A Real-Time Facial Expression Recognition System

for Online Games, International Journal of Computer Games Technology, Volume 2008.

[32] T. Ojala, M. Pietikainen, T. Maenpaa, “Multiresolution gray-scale and rotation invariant

texture with local binary patterns”, IEEE Transactions on Pattern Analysis and Machine

Intelligence Vol. 7, No. 7, p. 971-987, 2002.

[33] H. Tao and T.S. Huang, “Explanation-Based Facial Motion Tracking Using a Piecewise

Bezier Volume Deformation Mode”, Proc. IEEE Int’l Conf. Computer Vision and Pattern

Recognition, Vol. 1, p. 611-617, 1999.

[34] F. Wallhoff, "Facial Expressions and Emotion Database", Technische Universität München,

2006, http://www.mmk.ei.tum.de/~waf/fgnet/feedtum.html.

[35] T. Kanade, J. F. Cohn, Y. Tian, “Comprehensive database for facial expression analysis”,

Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture

Recognition, Grenoble, France, p.46-53, 2000.

27

Appendix 1

modules.hpp

/**
* author: Ewa Piatkowska
* header file for 3 modules of FER system
* Face detection
* Expression description
* Training & Recognition
*/

#ifndef modules_hpp
#define modules_hpp

#include "helpers.hpp"
#include "cv.h"
#include "highgui.h"
#include "ml.h"
using namespace cv;

class Landmark
{
public:

Landmark();
Landmark(CvRect box);

CvRect bbox;
bool isEmpty();
int getX();
int getY();
CvRect getRect();

};
class Eye :public Landmark
{
public:

Eye(){}
Eye(CvRect box){}
~Eye(){}

};
class Eyebrow :public Landmark
{
public:

CvPoint left;
CvPoint center;
CvPoint right;

Eyebrow(){}
Eyebrow(CvRect box){}
~Eyebrow(){}

};
class Mouth :public Landmark
{
public:

CvPoint left;
CvPoint center;

28

CvPoint upperCenter;
CvPoint lowerCenter;
CvPoint right;

Mouth(){}
Mouth(CvRect box){}
~Mouth(){}

};
class Face :public Landmark
{
public:

CvRect bbox;
CvRect upperface;
CvRect lowerface;
Eye lefteye;
Eye righteye;
Mouth mouth;
Eyebrow lefteyebrow;
Eyebrow righteyebrow;

/**methods**/
Face(){}
Face(CvRect box){}
~Face(){}

void drawBox(IplImage* image, CvRect box);
void drawPoints(IplImage *image);
void drawElements(IplImage *image);

};

/********detector***********/
class FaceDetection
{
public:

Face face;
private:

CvMemStorage *buffer;
CvHaarClassifierCascade *faceCascade, *reyeCascade, *leyeCascade, *mouthCascade;
CvPoint currentROIlocation;
IplImage *image;

public:
FaceDetection(IplImage *image);
~FaceDetection();
Face getFace();
IplImage* getImage();
void calculatePoints();
bool detectElements();
void setRegions();

private:
bool detectFace();
void detectEyes();
CvRect setBrow(CvRect box);
void detectMouth();
void setEyebrows();
void setAbsoluteCoordinates(CvRect &r);
void setAbsoluteCoordinates(CvPoint &p);
void setCurrentROIlocation(int x, int y);
CvSeq* getMax(CvSeq * contours, double boxarea);

};

29

/*********extraction**********/
class FeatureExtraction
{
public:

FeatureExtraction();
FeatureExtraction(IplImage* upper, IplImage* lower);
~FeatureExtraction();

IplImage *upper;
IplImage *lower;
int indx;
float feature_vector[36*256];

public:
void normalize(IplImage* upper, IplImage* lower);
void calculateLBP();
void setLBPGrid(IplImage *img, int width, int height);

};
/****Multiclass Training****/
class MultiTrain
{
public:

MultiTrain();
~MultiTrain();

CvSVM SVM;
CvMat *trainData;
CvMat *labels;
CvTermCriteria criteria;
CvSVMParams params;
double ACC;

void createDataSet(string inputdir, string outputdir);
void loadDataSet(string filename);
void trainModel(string outputdir);
void loadModel(string filename);
int getPrediction(IplImage *image);
void testModel(string filename);
void createConfusionMatrix(string filename);
void calculateTrainDataCount(int tab[]);
void prepareSets(int class_counts[], int counts[], int part, int parts, CvMat *traindata, CvMat *trainlabels,

CvMat *testdata, CvMat *testlabels);
void performCrossValidation(int parts);

private:
void processData(string path, int i);

};

/**cvSeq comparison function**/
static int comp_func(const void* _a, const void* _b, void* userdata);
static int comp_func_x(const void* _a, const void* _b, void* userdata);

#endif

30

modules.cpp

/**
* author: Ewa Piatkowska
*/

#include "helpers.hpp"
#include "modules.hpp"
#include "lbp.hpp"

/****landmark****/
Landmark::Landmark()
{

this->bbox = cvRect(0,0,0,0);
}
Landmark::Landmark(CvRect box)
{

this->bbox = box;
}
bool Landmark::isEmpty()
{

if(this->bbox.height == 0 || this->bbox.width == 0)
return true;

return false;
}
int Landmark::getX()
{

return this->bbox.x;
}
int Landmark::getY()
{

return this->bbox.y;
}
CvRect Landmark::getRect()
{

return this->bbox;
}
/******Face******/
void Face::drawBox(IplImage* image, CvRect box)
{

cvRectangle(image, cvPoint(box.x, box.y), cvPoint(box.x+box.width, box.y+box.height), CV_RGB(255,0,0),
1, 8, 0);
}
void Face::drawElements(IplImage *image)
{

this->drawBox(image, this->bbox);
this->drawBox(image, this->lefteye.bbox);
this->drawBox(image, this->righteye.bbox);
this->drawBox(image, this->mouth.bbox);

}
/***********Face Detection*******************/
FaceDetection::FaceDetection(IplImage *image)
{

this->buffer = cvCreateMemStorage(0);
char *face = "../haarcascades/haarcascade_frontalface_default.xml";
char *eye_left= "../haarcascades/haarcascade_mcs_lefteye.xml";
char *eye_right = "../haarcascades/haarcascade_mcs_righteye.xml";
char *mouth = "../haarcascades/haarcascade_mcs_mouth.xml";
this->faceCascade = (CvHaarClassifierCascade*)cvLoad(face, 0, 0, 0);

31

this->leyeCascade = (CvHaarClassifierCascade*)cvLoad(eye_left, 0, 0, 0);
this->reyeCascade = (CvHaarClassifierCascade*)cvLoad(eye_right, 0, 0, 0);
this->mouthCascade = (CvHaarClassifierCascade*)cvLoad(mouth, 0, 0, 0);
this->currentROIlocation = cvPoint(0,0);
this->image = image;
this->face = Face();

}
FaceDetection::~FaceDetection()
{

cvReleaseHaarClassifierCascade(&faceCascade);
cvReleaseHaarClassifierCascade(&leyeCascade);
cvReleaseHaarClassifierCascade(&reyeCascade);
cvReleaseHaarClassifierCascade(&mouthCascade);
cvReleaseMemStorage(&buffer);

}
Face FaceDetection::getFace()
{

return this->face;
}
IplImage* FaceDetection::getImage()
{

return this->image;
}
bool FaceDetection::detectElements()
{

if(! this->detectFace()) return false;
this->detectEyes();
this->detectMouth();
this->setEyebrows();
this->setCurrentROIlocation(0,0);
return true;

}
bool FaceDetection::detectFace()
{

CvSeq *faces = cvHaarDetectObjects(this->image, faceCascade, buffer, 1.1, 3, 0, cvSize(30,30));
if(!faces->total) return false;
else
{

/**get the biggest detected face**/
cvSeqSort(faces, comp_func, 0);
CvRect *r = (CvRect*) cvGetSeqElem(faces, 0);
this->face.bbox = *r;
cvClearMemStorage(this->buffer);

}
return true;

}
void FaceDetection::detectEyes()
{

/*left eye*/
cvSetImageROI(this->image, cvRect(this->face.bbox.x, this->face.bbox.y, this->face.bbox.width/2, (this-

>face.bbox.height*2/3)));
this->setCurrentROIlocation(this->face.bbox.x, this->face.bbox.y);

CvSeq *eyes = cvHaarDetectObjects(this->image, this->leyeCascade, this->buffer, 1.1, 3,0, cvSize(5,5));
cvSeqSort(eyes, comp_func, 0);
if(eyes->total != 0)
{

CvRect *left = (CvRect*) cvGetSeqElem(eyes, 0);
this->setAbsoluteCoordinates(*left);
this->face.lefteye.bbox = *left;

32

}
cvClearMemStorage(this->buffer);
cvResetImageROI(this->image);

/*right eye*/
cvSetImageROI(this->image, cvRect(this->face.bbox.x+(this->face.bbox.width/2), this->face.bbox.y, this-

>face.bbox.width/2, (this->face.bbox.height*2/3)));
this->setCurrentROIlocation(this->face.bbox.x+(this->face.bbox.width/2), this->face.bbox.y);

CvSeq *reyes = cvHaarDetectObjects(this->image, this->reyeCascade, this->buffer, 1.1, 3,0, cvSize(5,5));
cvSeqSort(reyes, comp_func, 0);
if(reyes->total != 0)
{

CvRect *right = (CvRect*) cvGetSeqElem(reyes, 0);
this->setAbsoluteCoordinates(*right);
this->face.righteye.bbox = *right;

}
cvClearMemStorage(this->buffer);
cvResetImageROI(this->image);

}
void FaceDetection::detectMouth()
{

cvSetImageROI(image, cvRect(this->face.bbox.x, this->face.bbox.y+(this->face.bbox.height/2), this-
>face.bbox.width, (this->face.bbox.height/2)));

setCurrentROIlocation(this->face.bbox.x, this->face.bbox.y+(this->face.bbox.height/2));

CvSeq *mouth = cvHaarDetectObjects(image, mouthCascade, buffer, 1.1, 3,0, cvSize(1,1));
if(mouth->total)
{

cvSeqSort(mouth, comp_func, 0);
CvRect *r = (CvRect*) cvGetSeqElem(mouth, 0);
this->setAbsoluteCoordinates(*r);
this->face.mouth.bbox = *r;

}
cvClearMemStorage(this->buffer);
cvResetImageROI(this->image);

}
void FaceDetection::setEyebrows()
{

this->face.lefteyebrow.bbox = this->setBrow(this->face.lefteye.bbox);
this->face.righteyebrow.bbox = this->setBrow(this->face.righteye.bbox);

}
CvRect FaceDetection::setBrow(CvRect box)
{

int x = box.x - box.width/3;
int y = box.y - box.height*3/2;
int width = box.width*5/3;
int height = box.height*2;
return cvRect(x, y, width, height);

}
void FaceDetection::setRegions()
{

//upper
int x = this->face.lefteyebrow.bbox.x;
int y = this->face.lefteyebrow.bbox.y;
int width = this->face.lefteyebrow.bbox.width + this->face.righteyebrow.bbox.width;
int height = this->face.lefteyebrow.bbox.height + this->face.lefteye.bbox.height;

33

this->face.upperface = cvRect(x, y, width, height);
//lower
x = this->face.lefteye.bbox.x;
width = (this->face.righteye.bbox.x+this->face.righteye.bbox.width) - this->face.lefteye.bbox.x;
y = this->face.mouth.bbox.y - this->face.mouth.bbox.height/2;
height = 2*this->face.mouth.bbox.height;

this->face.lowerface = cvRect(x,y,width,height);
}
void FaceDetection::setCurrentROIlocation(int x, int y)
{

currentROIlocation.x = x;
currentROIlocation.y = y;

}
void FaceDetection::setAbsoluteCoordinates(CvRect &r)
{

r.x += currentROIlocation.x;
r.y += currentROIlocation.y;

}
void FaceDetection::setAbsoluteCoordinates(CvPoint &p)
{

p.x += currentROIlocation.x;
p.y += currentROIlocation.y;

}

/***********feature extraction ***************/
FeatureExtraction::FeatureExtraction()
{

this->upper = 0;
this->lower = 0;
this->indx = 0;

}
FeatureExtraction::FeatureExtraction(IplImage* upper, IplImage* lower)
{

this->normalize(upper, lower);
}
FeatureExtraction::~FeatureExtraction()
{

if(this->upper) cvReleaseImage(&this->upper);
if(this->lower) cvReleaseImage(&this->lower);

}

void FeatureExtraction::normalize(IplImage* upper, IplImage* lower)
{

this->upper = cvCreateImage(cvSize(90,48), upper->depth, upper->nChannels);
this->lower = cvCreateImage(cvSize(72,48), lower->depth, lower->nChannels);

cvResize(upper, this->upper);
cvResize(lower, this->lower);

}
void FeatureExtraction::calculateLBP()
{

this->indx = 0;
this->setLBPGrid(this->lower, 18, 12);
this->setLBPGrid(this->upper, 18, 12);

}
void FeatureExtraction::setLBPGrid(IplImage *img, int width, int height)
{

for(int i=0; i< (img->width/width); i++)

34

for (int j=0; j< (img->height/height); j++)
{

LBP lbp;
cvSetImageROI(img, cvRect(i*width,j*height, width, height));
lbp.createLBP(img);
lbp.histogram();
lbp.fillFeatureSet(this->feature_vector, this->indx);
this->indx+=256;
//cvRectangle(img, cvPoint(0,0), cvPoint(width, height), cvScalar(255,0,0));
cvResetImageROI(img);

}
}

/******MulticlassTraining****/
MultiTrain::MultiTrain()
{

this->trainData = 0;
this->labels = 0;
this->params = CvSVMParams();
this->params.term_crit.epsilon = 1.0000000116860974e-007;
this->params.term_crit.type = CV_TERMCRIT_EPS;
this->params.svm_type = CvSVM::C_SVC;
this->params.kernel_type = CvSVM::RBF;
this->params.gamma = 3.0000000000000001e-006;
this->params.C = 20;

}
MultiTrain::~MultiTrain()
{

if(this->trainData) cvReleaseMat(&this->trainData);
if(this->labels) cvReleaseMat(&this->labels);

}
void MultiTrain::createDataSet(string inputdir, string outputdir)
{

/*
0 neutral
1 happiness
2 sadness
3 surprise
4 anger
5 fear
6 disgust
*/
vector<string> neutral = vector<string>();
vector<string> happy = vector<string>();
vector<string> sad = vector<string>();
vector<string> surprise = vector<string>();
vector<string> angry = vector<string>();
vector<string> fear = vector<string>();
vector<string> disgust = vector<string>();

listFiles(inputdir, "*neutr*", neutral);
listFiles(inputdir, "*happy*", happy);
listFiles(inputdir, "*sad*", sad);
listFiles(inputdir, "*surpr*", surprise);
listFiles(inputdir, "*ang*", angry);
listFiles(inputdir, "*fear*", fear);
listFiles(inputdir, "*disg*", disgust);

int count = (int)(neutral.size()+happy.size()+sad.size()+surprise.size()+angry.size()+fear.size()+disgust.size());

35

cout<<count<<endl;
this->trainData = cvCreateMat(count, 36*256, CV_32FC1);
this->labels = cvCreateMat(count, 1, CV_32SC1);
cvZero(this->trainData);
cvZero(this->labels);
int j=0;

for(int i=0; i< (int)neutral.size(); i++)
{

cout<<"processing image # "<<i<<endl;
this->processData(inputdir+"/"+neutral[i], i);
CV_MAT_ELEM(*this->labels, int, i,0) = 0;

}
j += (int) neutral.size();

for(int i=0; i< (int)happy.size(); i++)
{

cout<<"processing image # "<<i+j<<endl;
this->processData(inputdir+"/"+happy[i], i+j);
CV_MAT_ELEM(*this->labels, int, i+j,0) = 1;

}
j += (int) happy.size();
for(int i=0; i< (int)sad.size(); i++)
{

cout<<"processing image # "<<i+j<<endl;
this->processData(inputdir+"/"+sad[i], i+j);
CV_MAT_ELEM(*this->labels, int, i+j,0) = 2;

}
j += (int) sad.size();
for(int i=0; i< (int)surprise.size(); i++)
{

cout<<"processing image # "<<i+j<<endl;
this->processData(inputdir+"/"+surprise[i], i+j);
CV_MAT_ELEM(*this->labels, int, i+j,0) = 3;

}
j += (int) surprise.size();
for(int i=0; i< (int)angry.size(); i++)
{

cout<<"processing image # "<<i+j<<endl;
this->processData(inputdir+"/"+angry[i], i+j);
CV_MAT_ELEM(*this->labels, int, i+j,0) = 4;

}
j += (int) angry.size();
for(int i=0; i< (int)fear.size(); i++)
{

cout<<"processing image # "<<i+j<<endl;
this->processData(inputdir+"/"+fear[i], i+j);
CV_MAT_ELEM(*this->labels, int, i+j,0) = 5;

}
j += (int) fear.size();
for(int i=0; i< (int)disgust.size(); i++)
{

cout<<"processing image # "<<i+j<<endl;
this->processData(inputdir+"/"+disgust[i], i+j);
CV_MAT_ELEM(*this->labels, int, i+j,0)= 6;

}

CvFileStorage *file = cvOpenFileStorage((outputdir+"/emotrainset.xml").c_str(), 0, CV_STORAGE_WRITE);
cvWrite(file, "dataset", this->trainData);
cvWrite(file, "labels", this->labels);

36

cvReleaseFileStorage(&file);
}
void MultiTrain::loadDataSet(string filename)
{

CvFileStorage* file = cvOpenFileStorage(filename.c_str(), 0, CV_STORAGE_READ);
this->trainData = (CvMat*)cvRead(file, cvGetFileNodeByName(file,0, "dataset"));
this->labels = (CvMat*) cvRead(file, cvGetFileNodeByName(file,0, "labels"));
cvReleaseFileStorage(&file);

}
void MultiTrain::trainModel(string outputdir)
{

cout<<"Training the SVM classifier......"<<endl;
SVM.train(this->trainData, this->labels, 0,0,this->params);
SVM.save((outputdir+"/emo_svm_model.xml").c_str());
cout<<"SVM model saved to file: "<<"emo_svm_model.xml"<<endl;

}

void MultiTrain::loadModel(string filename)
{

this->SVM.load(filename.c_str());
}
void MultiTrain::calculateTrainDataCount(int tab[])
{

for(int i=0; i<this->labels->rows; i++)
{

tab[CV_MAT_ELEM(*this->labels, int, i,0)]++;
}

}
void MultiTrain::prepareSets(int class_counts[], int counts[], int part, int parts, CvMat *traindata, CvMat *trainlabels,
CvMat *testdata, CvMat *testlabels)
{

int class_integral[7] = {0};
for(int i=1; i<7; i++)
{

class_integral[i] = calcSum(class_counts,0,i-1);
}

int test_iter, train_iter;
test_iter = train_iter = 0;
int type = -1;
for(int i=0; i<this->trainData->rows; i++)
{

if(i < (class_integral[0]+class_counts[0]))
type = 0;

else if(i < (class_integral[1]+class_counts[1]))
type = 1;

else if(i < (class_integral[2]+class_counts[2]))
type = 2;

else if(i < (class_integral[3]+class_counts[3]))
type = 3;

else if(i < (class_integral[4]+class_counts[4]))
type = 4;

else if(i < (class_integral[5]+class_counts[5]))
type = 5;

else if(i < (class_integral[6]+class_counts[6]))
type = 6;

if(type>=0)
{

37

CvMat *r = cvCreateMat(1, 36*256, CV_32FC1);
cvGetRow(this->trainData, r, i);

if((i >=(part*counts[type]+class_integral[type])) && (i<((part+1)*counts[type]
+class_integral[type])))

{
for(int j= 0; j<r->cols; j++)
{

CV_MAT_ELEM(*testdata, float, test_iter, j) = r->data.fl[j];
CV_MAT_ELEM(*testlabels, int, test_iter, 0) = type;

}
test_iter++;

}
else
{

for(int j= 0; j<r->cols; j++)
{

CV_MAT_ELEM(*traindata, float, train_iter, j) = r->data.fl[j];
CV_MAT_ELEM(*trainlabels, int, train_iter, 0) = type;

}
train_iter++;

}
}

}
}

void MultiTrain::performCrossValidation(int parts)
{

vector<double> test_results;
int class_counts[7] = {0};
int counts [7] = {0};

if(parts !=0)
{

calculateTrainDataCount(class_counts);
for(int i=0; i<7; i++)
{

counts[i] = (class_counts[i]/parts);
}

}
if(parts == 0 || parts == 1) cout<<"Cross validation cannot be performed for such input values"<<endl;
else if(calcSum(counts, 7)<7) cout<<"The database is too small for performing the "<<parts<<"-fold cross

validation."<<endl;
else
{

//MAIN LOOP
for(int p=0; p<parts; p++)
{

//CREATE SETS
CvMat *traindata = 0;
CvMat *trainlabels = 0;
CvMat *testdata = 0;
CvMat *testlabels = 0;

testdata = cvCreateMat(calcSum(counts, 7), 36*256, CV_32FC1);
testlabels = cvCreateMat(calcSum(counts, 7),1, CV_32SC1);

traindata = cvCreateMat(this->trainData->rows - calcSum(counts, 7), 36*256, CV_32FC1);
trainlabels = cvCreateMat(this->trainData->rows - calcSum(counts,7), 1, CV_32SC1);

38

//PREPARE SETS
this->prepareSets(class_counts, counts, p, parts, traindata, trainlabels, testdata, testlabels);

//PERFORM TRAINING
cout<<"Training the SVM classifier...part#"<<p<<endl;
SVM.train(traindata, trainlabels, 0,0, this->params);

//PERFORM TESTING
int TP = 0;
for(int i=0; i<(int)traindata->rows; i++)
{

CvMat *row = cvCreateMat(1, 36*256, CV_32FC1);
cvGetRow(traindata, row, i);
int res = (int)this->SVM.predict(row);
if(res == trainlabels->data.i[i])

TP++;
}
double accuracy = (double)TP/(double)traindata->rows;
cout<<"accuracy for part#"<<p<<" : "<<accuracy<<endl;
//RELEASE SETS
cvReleaseMat(&traindata);
cvReleaseMat(&trainlabels);
cvReleaseMat(&testdata);
cvReleaseMat(&testlabels);
this->SVM.clear();
cout<<"---"<<endl;

}
}

}
int MultiTrain::getPrediction(IplImage *image)
{

int res = 0;
FaceDetection fd(image);

if(!fd.detectElements()) return -3;

fd.setRegions();
Face f = fd.getFace();
cvSetImageROI(image, f.upperface);
IplImage *up = cvCreateImage(cvGetSize(image), image->depth, image->nChannels);
cvCopy(image, up, 0);
cvResetImageROI(image);
cvSetImageROI(image, f.lowerface);
IplImage *lo = cvCreateImage(cvGetSize(image), image->depth, image->nChannels);
cvCopy(image, lo, 0);
cvResetImageROI(image);
FeatureExtraction fe(up, lo);
fe.calculateLBP();

CvMat *mat = cvCreateMat(1, 36*256, CV_32FC1);
//cvInitMatHeader(mat, 1, 36*256, CV_32FC1, fe.feature_vector);
for(int i=0; i<mat->cols; i++)

mat->data.fl[i] = fe.feature_vector[i];

res = (int) this->SVM.predict(mat);
cvReleaseMat(&mat);
return res;

}
void MultiTrain::testModel(string filename)

39

{
this->loadDataSet(filename);

int TP = 0; //true prediction counter

for(int i=0; i<(int)this->trainData->rows; i++)
{

CvMat *row = cvCreateMat(1, 36*256, CV_32FC1);
cvGetRow(this->trainData, row, i);
int res = (int)this->SVM.predict(row);
if(res == this->labels->data.i[i])

TP++;
}
cout<<TP<<endl;
this->ACC = (double)TP/(double)this->trainData->rows;
cout<<"accuracy:"<<this->ACC<<endl;

}
void MultiTrain::createConfusionMatrix(string filename)
{

int confusionMatrix[7][7]= {0};
int overall[7] = {0};
int TP = 0;

this->loadDataSet(filename);

for(int i=0; i<(int)this->trainData->rows; i++)
{

CvMat *row = cvCreateMat(1, 36*256, CV_32FC1);
cvGetRow(this->trainData, row, i);
int res = (int)this->SVM.predict(row);
confusionMatrix[this->labels->data.i[i]][res]++;
if(res == this->labels->data.i[i])

TP++;
}

cout<<"-------------------------------------"<<endl;
cout<<"----------confusion matrix-----------"<<endl;
for(int i=0; i<7; i++)
{

overall[i] = calcSum(confusionMatrix[i], 7);
for(int j=0; j<7; j++)
{

double perc = (double)confusionMatrix[i][j]*100/(double)overall[i];
cout<<perc<<"\t";

}
cout<<endl;

}
cout<<"-------------------------------------"<<endl;
this->ACC = (double)TP/(double)this->trainData->rows;
cout<<"accuracy:"<<this->ACC<<endl;

}
void MultiTrain::processData(string path, int i)
{

//(inputdir+"/"+filenames[i]).c_str()
IplImage *image = cvLoadImage(path.c_str(), 1);
FaceDetection detector(image);
if(detector.detectElements())
{

detector.setRegions();

40

Face f = detector.getFace();

cvSetImageROI(image, f.upperface);
IplImage *up = cvCreateImage(cvGetSize(image), image->depth, image->nChannels);
cvCopy(image, up, 0);
cvResetImageROI(image);
cvSetImageROI(image, f.lowerface);
IplImage *lo = cvCreateImage(cvGetSize(image), image->depth, image->nChannels);
cvCopy(image, lo, 0);
cvResetImageROI(image);

FeatureExtraction fe(up, lo);
fe.calculateLBP();

for(int j=0; j<36*256; j++)
{

this->trainData->data.fl[i*36*256+j] = fe.feature_vector[j];
}
cvReleaseImage(&up);
cvReleaseImage(&lo);

}
cvReleaseImage(&image);

}
/**cvSeq comparison function**/
static int comp_func(const void* _a, const void* _b, void* userdata)
{

CvRect * a = (CvRect*)_a;
CvRect * b = (CvRect*)_b;
int areaA = a->width * a->height;
int areaB = b->width * b->height;
if(areaA < areaB) return 1;
else return -1;

}

static int comp_func_x(const void* _a, const void* _b, void* userdata)
{

CvRect * a = (CvRect*)_a;
CvRect * b = (CvRect*)_b;
if(a->x > b->x) return 1;
else return -1;

}

lbp.hpp

/**
* author: Ewa Piatkowska
* class for LBP encoding
*/
#include "modules.hpp"
#include "cxcore.h"

class LBP
{
public:

LBP();
public:

~LBP();

41

IplImage* image;
IplImage* LBPimage;
CvHistogram* hist;

public:
/* calculate LBP features */
void createLBP(IplImage *patch);
/* create histogram of LBP features */
void histogram();
/* copy histogram to feature set */
void LBP::fillFeatureSet(float *set, int start_indx);

};

lbp.cpp

/**
* author: Ewa Piatkowska
*/
#include "lbp.hpp"

LBP::LBP()
{

image =0;
LBPimage =0;
hist =0;

}
LBP::~LBP()
{

if(image) cvReleaseImage(&image);
if(LBPimage) cvReleaseImage(&LBPimage);

}
void LBP::createLBP(IplImage* patch)
{

IplImage* temp_image = cvCreateImage(cvGetSize(patch), patch->depth, patch->nChannels);
cvCopy(patch, temp_image);
image = cvCreateImage(cvSize(temp_image->width, temp_image->height), 8, 1);

if (temp_image->nChannels == 3)
{

cvCvtColor(temp_image, image, CV_BGR2GRAY);
}
LBPimage = cvCreateImage(cvSize(image->width, image->height), 8, 1);

int center=0;
int center_lbp=0;
for (int row=1; row<image->height-1; row++)
{

 for (int col=1; col<image->width-1; col++)
 {

 center = cvGetReal2D(image, row, col);
 center_lbp = 0;
 if (center >= cvGetReal2D(image, row-1, col-1))
 {

 center_lbp += 1;
 }
 if (center >= cvGetReal2D(image, row-1, col))

42

 {
 center_lbp += 2;

 }
 if (center >= cvGetReal2D(image, row-1, col+1))
 {

 center_lbp += 4;
 }
 if (center >= cvGetReal2D(image, row, col-1))
 {

 center_lbp += 8;
 }
 if (center >= cvGetReal2D(image, row, col+1))
 {

 center_lbp += 16;
 }
 if (center >= cvGetReal2D(image, row+1, col-1))
 {

 center_lbp += 32;
 }
 if (center >= cvGetReal2D(image, row+1, col))
 {

 center_lbp += 64;
 }
 if (center >= cvGetReal2D(image, row+1, col+1))
 {

 center_lbp += 128;
 }
 cvSetReal2D(LBPimage, row, col, center_lbp);

 }
}
cvReleaseImage(&temp_image);

}

void LBP::histogram()
{

int bins = 256;
int hsize[] = {bins};
float range[] = {0,256};
float * ranges[] = {range};
float min_value =0, max_value = 0;
IplImage * planes[] = {this->LBPimage};

this->hist = cvCreateHist(1, hsize, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes, this->hist, 0,0);

}
void LBP::fillFeatureSet(float *set, int start_indx)
{

for(int i=0; i<256; i++)
{

set[i+start_indx] = cvQueryHistValue_1D(hist, i);
}

}

43

helpers.hpp

/**
* author: Ewa Piatkowska
* set of different functions
*/

#ifndef helpers_hpp
#define helpers_hpp

#include <vector>
#include <string>
#include <sstream>
#include <fstream>
#include <math.h>
#include <iostream>
using namespace std;

/* function for listing files that match the pattern from directory*/
void listFiles(string directory, string pattern, vector<string> &files);
/* function for concatenating strings with integers */
string createSname(string path, string fname, string f, int indx, string ext);
/* function for concatenating strings - creating temporary file names */
string createFname(string path, string fname, string ext);
/* function for translating emotion codes */
string showResult(int code);
/* function for suming the array values*/
int calcSum(int *tab, int n);
/* function for suming the array values from indx1 to indx2*/
int calcSum(int *tab, int idx1, int idx2);

#endif

helpers.cpp

/**
* author: Ewa Piatkowska
*/
#include "helpers.hpp"
#include "modules.hpp"

void listFiles (string directory, string pattern, vector<string> &files)
{

string command = "dir "+directory+"\\"+pattern+" /B > temp.txt";
string d;
system(command.c_str());
ifstream in;
in.open("temp.txt", ifstream::in);

if(in.is_open())
{

while(true)
{

if(!(in>>d)) break;
files.push_back(d);

}
in.close();

}

44

}
string createSname(string path, string fname, string f, int indx, string ext)
{

//path +filename+ frame+ idnx + ext
string t;
stringstream s;
s<< indx;
s>> t;
string result = path+fname+f+t+ext;
return result;

}
string createFname(string path, string fname, string ext)
{

string result= path+fname+ext;
return result;

}
string showResult(int code)
{

string result="";

switch(code)
{
case 0:

result = "neutral";
break;

case 1:
result = "happy";
break;

case 2:
result = "sad";
break;

case 3:
result = "surprised";
break;

case 4:
result = "angry";
break;

case 5:
result = "fear";
break;

case 6:
result = "disgusted";
break;

}
return result;

}
int calcSum(int *tab, int n)
{

int sum =0;
for(int i =0; i<n; i++)

sum+= tab[i];

return sum;
}
int calcSum(int *tab, int idx1, int idx2)
{

int sum=0;
for(int i=idx1; i<=idx2; i++)

sum+= tab[i];

45

return sum;
}

tasks.hpp

/**
* author Ewa Piatkowska
* functions for performing particular tasks
*/

#ifndef tasks_hpp
#define tasks_hpp

#include "modules.hpp"

/** show image **/
void show(IplImage *im);
/** sample emotion recognition **/
void sample(string filename);
/** perform face detection **/
void processDetection(string inputdir, string outputdir, string pattern);
/** capture snaphots (frames) from a video file **/
void captureSnapshots(string inputdir, string outputdir, int rate, string pattern);

/*****DEMO****/
class Demo
{
public:

Demo(string filename, string type);
~Demo();

vector<int> predictions;
string videofile;
string type;

void processVideo();
void displayPredictions(bool save);
void getStatistics();

};
/************/
#endif

tasks.cpp

/**
* author: Ewa Piatkowska
*/

#include "tasks.hpp"

/*********************DEMO***********************************/
Demo::Demo(string filename, string type)
{

this->videofile = filename;
this->predictions = vector<int>();
this->type = type;

}

46

Demo::~Demo(){}

void Demo::processVideo()
{

CvCapture * capture = cvCaptureFromAVI(this->videofile.c_str());
cout<<"Loading classifier...."<<endl;
MultiTrain mt;
string path = "..\\datasets\\"+type+"\\";
mt.loadModel((path+"emo_svm_model.xml"));
int fps = (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);

if(!capture)
{

cout<<"problems with avi file"<<endl;
}
else
{

cout<<"Processing video...."<<endl;
IplImage *frame=0;
int k = 0;
while(1)
{

frame = cvQueryFrame(capture);
if(!frame) break;

if(k%10 == 0)
{

int res = (int)mt.getPrediction(frame);
cout<<"Prediction for frame #"<<k<<" => "<<res<<endl;
this->predictions.push_back(res);

}
k++;

}
cvReleaseImage(&frame);

}
cvReleaseCapture(&capture);

}
void Demo::displayPredictions(bool save)
{

CvCapture * capture = cvCaptureFromAVI(this->videofile.c_str());
CvVideoWriter *writer = 0;
int isColor = 1;
int fps = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);
int frameWidth = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH);
int frameHeight = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT);

if(save)
{

writer = cvCreateVideoWriter("demo.avi",-1, fps, cvSize(frameWidth, frameHeight), isColor);
}

cvNamedWindow("preview", 1);
CvFont font;
cvInitFont(&font,0, 1.1f, 1.1f,0,2,8);
string result ="";
if(!capture)
{

cout<<"problems with avi file"<<endl;
}
else

47

{
IplImage *frame=0;
int k = 0, l=0;
while(1)
{

frame = cvQueryFrame(capture);
if(!frame) break;
if(k%10 == 0)
{

result = showResult(this->predictions[l++]);
cout<<"Prediction for frame #"<<k<<" => "<<result<<endl;

}
cvPutText(frame, result.c_str(), cvPoint(50,50), &font, cvScalar(255,0,0));
cvShowImage("preview",frame);
if(save && writer)
{

cvWriteFrame(writer, frame);
}
cvWaitKey(1000/fps);
k++;

}
cvReleaseImage(&frame);

}
cvReleaseCapture(&capture);
cvDestroyWindow("preview");
if(writer) cvReleaseVideoWriter(&writer);

}
void Demo::getStatistics()
{

int n, h, sd, su, a, f,d;
n=h=sd=su=a=f=d=0;
for(int i=0; i< (int)this->predictions.size(); i++)
{

switch(this->predictions[i])
{
case 0:

n++; break;
case 1:

h++; break;
case 2:

sd++; break;
case 3:

su++; break;

case 4:
a++; break;

case 5:
f++; break;

case 6:
d++; break;

}
}
cout<<"---------------------------------"<<endl;
cout<<"Emotions recognized:"<<endl;
cout<<"Neutral: " << (double)n/(double)this->predictions.size() <<endl;
cout<<"Happy: " << (double)h/(double)this->predictions.size() <<endl;
cout<<"Sad: " << (double)sd/(double)this->predictions.size() <<endl;
cout<<"Suprised: " << (double)su/(double)this->predictions.size() <<endl;
cout<<"Angry: " << (double)a/(double)this->predictions.size() <<endl;
cout<<"Fear: " << (double)f/(double)this->predictions.size() <<endl;

48

cout<<"Disgusted: " << (double)d/(double)this->predictions.size() <<endl;
cout<<"---------------------------------"<<endl;

}
/**/
void show(IplImage *im)
{

cvNamedWindow("preview");
cvShowImage("preview", im);
cvWaitKey(0);
cvDestroyWindow("preview");

}
/**/
void sample(string filename, string type)
{

CvFont font;
cvInitFont(&font,0, 1.0f, 1.0f,0,2,8);

IplImage *img = cvLoadImage(filename.c_str(), 1);
MultiTrain mt;
cout<<"Loading the classifier...."<<endl;
mt.loadModel("..\\datasets\\"+type+"\\emo_svm_model.xml");
int res = mt.getPrediction(img);
string result = showResult(res);
cvPutText(img, result.c_str(), cvPoint(20,20), &font, cvScalar(255,255,0));
cout<<result<<endl;
show(img);
cvReleaseImage(&img);

}
/**/
void processDetection(string inputdir, string outputdir, string pattern="*.jpg")
{

vector<string> filenames = vector<string>();
listFiles(inputdir, pattern, filenames);
try
{

IplImage *image=0;
for(int i=0; i<(int)filenames.size(); i++)
{

image = cvLoadImage((inputdir+"/"+filenames[i]).c_str(), 1);
FaceDetection detector(image);
if(! detector.detectElements()) continue;

detector.detectElements();
detector.setRegions();

Face f = detector.getFace();

cvRectangle(image, cvPoint(f.upperface.x, f.upperface.y), cvPoint(f.upperface.x+
f.upperface.width, f.upperface.y+f.upperface.height), cvScalar(0,255,255));

cvRectangle(image, cvPoint(f.lowerface.x, f.lowerface.y),
cvPoint(f.lowerface.x+f.lowerface.width, f.lowerface.y+f.lowerface.height), cvScalar(0,0,255));

cvSaveImage((outputdir+"/"+filenames[i]).c_str(), image);
cout<<"image #"<<i<<(outputdir+"/"+filenames[i]).c_str()<<" is being saved..."<<endl;

}
cvReleaseImage(&image);

}
catch(cv::Exception &e)
{

cout<<e.what()<<endl;

49

}
}
/**/
void captureSnapshots(string inputdir, string outputdir, int rate, string pattern="*")
{

CvCapture *capture = 0;
cvNamedWindow("preview", 1);
vector<string> filenames = vector<string>();
listFiles(inputdir, pattern, filenames);

for(int i=0; i< (int) filenames.size(); i++)
{

capture = cvCaptureFromAVI((inputdir+"/"+filenames[i]).c_str());
int fps = (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);
if(!capture)
{

cout<<"problems with avi file"<<endl;
continue;

}
else
{

IplImage *frame=0;
int k=1;
while(1)
{

frame = cvQueryFrame(capture);
if(!frame) break;

if(k%rate == 1)
{

//if(k>30)
{

string fname = filenames[i].substr(0, (filenames[i].length()-4));
fname = createSname(outputdir+"/", fname, "_frame", k, ".jpg");
cvSaveImage(fname.c_str(), frame);
cout<<"file: "<<fname<<" is saving..."<<endl;

}
}
k++;
cvShowImage("preview",frame);
cvWaitKey(1000/fps);

}
cvReleaseImage(&frame);

}
}
cvReleaseCapture(&capture);
cvDestroyWindow("preview");

}

50

main.cpp

#include "modules.hpp"
#include "lbp.hpp"
#include "tasks.hpp"

void playDemo(string type)
{

//string videofile = "../sample_videos/disgs_0004_3.mpg";
string videofile = "../sample_videos/happy_0014_1.mpg";
//string videofile = "../sample_videos/sadns_0005_1.mpg";
Demo demo(videofile, type);
demo.processVideo();
demo.displayPredictions(false);
demo.getStatistics();

}

int main()
{

try
{

playDemo("FEED");
}
catch(Exception &e)
{

cout<<e.what()<<endl;
}
system("pause");
return 0;

}

51

	Facial Expression Recognition System
	Recommended Citation

	Introduction
	 1 Psychological Background
	 2 Related work
	 2.1 System requirements
	 2.2 Face detection
	 2.3 Feature extraction
	 2.4 Expression Recognition
	 2.5 Recent advances
	 2.6 Applications

	 3 Proposed system
	 3.1 Face detection and tracking
	 3.2 Feature Extraction
	 3.3 Expression Recognition

	Conclusion
	References
	Appendix 1

