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Abstract

If a graph can be drawn in the projective plane so that every two

non-adjacent edges cross an even number of times, then the graph can be

embedded in the projective plane.

1 Introduction

In the plane there is a beautiful characterization of planar graphs known as
the Hanani-Tutte theorem: a graph is planar if and only if it can be drawn in
the plane so that every two non-adjacent edges cross an even number of times.
Equivalently, any drawing of a non-planar graph in the plane must contain two
non-adjacent edges that cross oddly.

There are several proofs of the Hanani-Tutte theorem, including the original
1934 proof by Hanani and the 1970 proof by Tutte, see [7] for more references.
Our goal in the current paper is to show that the result remains true in the
projective plane.1

Theorem 1.1. Let G be a graph. Suppose that G can be drawn in the projec-
tive plane so that every two non-adjacent edges cross evenly. Then G can be
embedded in the projective plane.

This is not the first result that indicates that the Hanani-Tutte theorem
is not a special property of the plane. Using homology theory, Cairns and
Nikolayevsky [2] showed that if a graph can be drawn on an orientable surface

1A sphere with a crosscap. We assume that the reader is familiar with the basic terminology
of drawings and embeddings in surfaces. For background see [6, 3].
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so that every pair of edges (not just non-adjacent ones) crosses an even number of
times, then the graph can be embedded in that surface. Pelsmajer, Schaefer, and
Štefankovič [8] gave a new, elementary proof of this weak Hanani-Tutte theorem
that also establishes the result for non-orientable surfaces. Theorem 1.1 is the
first time the strong version of the Hanani-Tutte theorem has been established
for any higher-order surface.

There is an alternative view of the Hanani-Tutte theorem in terms of crossing
numbers. The crossing number of a graph G, denoted by crS(G), is the minimum
number of pairs of edges that cross in any drawing of G in surface S. Hence a
graph G is embeddable in S if and only if crS(G) = 0. The odd crossing number
of G, denoted by ocrS(G), is the minimum number of pairs of edges that cross
oddly in any drawing of G in surface S. The independent odd crossing number
of G, iocrS(G), is the minimum number of pairs of non-adjacent edges that cross
oddly in any drawing of G in surface S.

The strong Hanani-Tutte theorem can now simply be stated as “iocr(G) = 0
implies cr(G) = 0” and Theorem 1.1 becomes “iocrN1

(G) = 0 implies crN1
(G) =

0” using N1 as a symbol for the projective plane. The weak Hanani-Tutte
theorem in this notation reads “ocrS(G) = 0 implies crS(G) = 0” and is true
for all surfaces S as we mentioned above. The crossing number point of view
emphasizes the algebraic nature of the Hanani-Tutte theorem as argued by van
der Holst in [9].

Our proof of the strong Hanani-Tutte theorem for the projective plane uses
techniques we developed for the Hanani-Tutte theorem and related results in the
plane and higher-order surfaces [7, 8] and combines them with ideas from Mohar
and Robertson on embeddings in the projective plane [5]; see Section 2. The
proof will not naturally extend to any surface other than the projective plane,
since it makes use of the list of minimal forbidden minors for the projective
plane.

2 From Embeddings to Drawings

In this section we develop the necessary tools to deal with drawings in the
projective plane. Some of these tools are extensions of well-known results for
embeddings. All of them will play an important rôle in the proof of the strong
Hanani-Tutte theorem for the projective plane.

2.1 Basic Observations

Recall that a closed curve is contractible if it can be contracted to a point. In
the projective plane a closed curve is contractible if and only if it passes through
the crosscap an even number of times.

Lemma 2.1. The family of non-contractible cycles in a graph drawn in the
projective plane satisfies the 3-path condition: given three internally disjoint
paths with the same endpoints, if two of the cycles formed by the paths are
contractible then so is the third.
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Proof. Let P1, P2, P3 be the three paths. Call a path even (odd) if it passes
through the crosscap an even (odd) number of times. Then a cycle is contractible
if and only if it is formed by two paths of the same parity. If two of the cycles
are contractible then all three paths have the same parity and the third cycle is
also contractible.

Lemma 2.1 is based on [6, Proposition 4.3.1].

For convenience, we say that a particular drawing of a graph is iocr-0 if no
pair of non-adjacent edges crosses an odd number of times.

Lemma 2.2. If a graph G drawn on the projective plane contains two vertex-
disjoint non-contractible cycles, then the drawing is iocr-0.

Proof. In the projective plane any two non-contractible curves cross an odd
number of times.2 Therefore there must be an edge in each of the two cycles
such that the two edges cross oddly. These must be non-adjacent, as they belong
to vertex-disjoint cycles, so the given drawing of G is iocr-0.

A ∆Y -exchange in G is a process that replaces a triangle in a drawing of G

with a claw (a K1,3). The three vertices of the triangle become the leaves of the
claw.

Lemma 2.3. Let G be a graph with iocrN1
(G) > 0, and suppose G′ can be

obtained from G by a ∆Y -exchange. Then iocrN1
(G′) > 0.

Proof. Consider an iocr-0 drawing of G′. Let e1, e2 and e3 be the three edges
of the claw. Draw a new edge f1 by closely following e1 and e2; similarly add f2

following e2, e3 and f3 following e3, e1. If f1 crosses an edge e of G′−{e1, e2, e3}
oddly, then e must cross either e1 or e2 oddly; hence e is incident to f1. Similarly
f2 and f3 only cross adjacent edges oddly. Removing e1, e2, e3 now yields an
iocr-0 drawing of G, which implies that iocrN1

(G′) = 0.

2.2 Redrawing Tools

We will occasionally apply redrawing moves that lead to self-intersections of
edges. These can be removed as shown in Figure 1.

The removal of self-intersections does not change the type of a curve in the
projective plane:

Lemma 2.4. If C is a closed curve drawn in the projective plane, and C′ is
a closed curve obtained from C by removing all self-intersections as shown in
Figure 1, then C is contractible if and only if C′ is; moreover, C′ is a simple
closed curve.

2Any one-sided (or non-contractible) curve can serve as the crosscap, and we know that
the other curve must use the crosscap an odd number of times since it is non-contractible.
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⇒

Figure 1: Removing a self-intersection; illustration from [7].

Proof. Let D be the boundary of the crosscap; then D is a simple closed curve.
Any closed curve in the projective plane can be modified slightly so that it
crosses D a finite number of times, and then it is contractible if and only if
it crosses D an even number of times. The crossing parity3 between the two
curves is not changed by removing self-intersections.

We will use the following lemma in Section 3.1 to clear a cycle in K3,5 of
crossings. The proof is based on ideas from [7, Theorem 3.1]. An edge in a
drawing is even if it crosses every other edge an even number of times.

Lemma 2.5. Let G be a graph with iocrN1
(G) = 0, and let C be a non-

contractible cycle in an iocr-0 drawing of G. Then G can be redrawn so that the
independent odd crossing number remains zero and no edge of C is involved in
any crossing.

Proof. By redrawing locally near each vertex of C, we can make all edges of
C even, as follows: For any two consecutive edges e, e′ incident to a common
vertex v, we redraw e near v (if needed) so that e and e′ cross an even number
of times. Then for every other edge f incident to v, we redraw f near v so that
f crosses each of e and e′ evenly. Since the original drawing is iocr-0, all edges
on C are now even and the new drawing is still iocr-0.

Now, contract all the edges of C but one, call it eC . The edge eC is now
an even loop, possibly with self-intersections, which we can remove as shown in
Figure 1. By Lemma 2.4, eC is non-contractible, since C is.

For each edge f that crosses eC , partition the crossings into pairs along
eC . Each such pair splits eC into two curves; let c be the one that avoids the
endpoint of eC . Severing f at eC turns each pair of crossings into four free
ends, which we reconnect by two curves along each side of c; see Figure 2.2,
left and middle. Repeating this for all edges crossing eC removes all crossings
with eC , while preserving crossing parity for every pair of edges. However, an
edge f might turn into a set of curve components. Consider a component of f

and deform a small portion of it, without crossing eC , so that it joins another
component of f ; this is possible since eC is not surface-separating (because eC is
non-contractible); see Figure 2.2, middle and right. This deformation does not
change the crossing parity between any two edges, and repeating this process
turns f into a simple curve again.

3The crossing parity of two curves or edges is the parity of the number of times they cross.
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Figure 2: Cycle C contracted to a single edge eC (gray) with two crossing edges
(black) in the projective plane (crosscap as dotted line). Before redrawing (left);
after severing edges crossing eC and reconnecting ends along eC (middle), note
that both curves consist of two components now; after reconnecting the two
components of the left curve (right).

Finally, we can uncontract to recover C from eC , because we did not change
the rotation at the vertex of ec. Now C is a crossing-free non-separating cycle
in an iocr-0 drawing of G.

The following lemma shows, roughly speaking, that for an iocr-0 drawing
it is not a single vertex that makes the difference between planarity and non-
planarity.

Lemma 2.6. Let x ∈ V (G) and H = G−x. Suppose there is an iocr-0 drawing
of G in the projective plane such that all cycles in H are contractible. Then G

is planar.

Proof. Consider the specified drawing of G in the projective plane.

Claim: We can redraw G so that each edge of H passes through the crosscap
an even number of times, and the drawing is still iocr-0.

Let F be a spanning forest of H . Process the edges of F in a breadth-first
order as follows: suppose uv is an edge of F oriented towards the root of its
component (that is, u is closer to the root of uv’s component than v). Contract
uv by moving v along uv towards u, pushing all crossings along with it until uv

passes through the crosscap an even number of times. Call uv processed. Note
that this move does not change the parity of how often any processed edge of
F other than uv passes through the crosscap, since the only edges whose parity
is changed by the contraction are edges incident to v, and none of those can
have been processed already. At the end, every edge of F passes through the
crosscap an even number of times. Every edge in E(H) − E(F ) also uses the
crosscap evenly, since it completes a contractible cycle with some edges in F .

We now remove the crosscap and replace it with a disk. We reconnect severed
edges by simple curves within the newly added disk.
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Any two such curves within the disk have to cross oddly, since their crossings
with the disk boundary alternate. Since each edge of H passes through the disk
an even number of times, its crossing parity with every other edge does not
change. Hence, any two edges whose crossing parity changes must be incident
to x, which means that the independent odd crossing number is not affected by
replacing the crosscap with a disk. We have thus obtained an iocr-0 drawing
of G in the sphere (and, thereby, the plane), which implies that the graph is
planar by the Hanani-Tutte theorem for the plane.

2.3 K-graphs and iocr

Let H be a subgraph of a graph G. An H-component or H-bridge is either an
edge (and its endpoints) that does not belong to H but both of whose endpoints
do, or a connected component of G − V (H) together with all edges (and their
endpoints) connecting this component to H .

H is a K4-graph of G if it is a subdivision of K4, and there is an H-component
that is attached to all the vertices of degree 3 in H . H is a K2,3-graph of G if it
consists of three internally disjoint paths connecting two vertices, x and y, and
there is an H-component that contains at least one internal vertex of each of
the three paths. A K-graph is either a K4-graph or a K2,3-graph.

The following result is a well-known fact for embeddings (see [5, p326]). We
relax the assumption that G is embedded to allow crossings, but control the
crossings by requiring iocrN1

(G) = 0.

Lemma 2.7. Let G be a graph containing a K-graph. Then every iocr-0 drawing
of G in the projective plane contains two non-contractible cycles in the K-graph.

Proof. Fix a drawing of G with independent odd crossing number 0 in the pro-
jective plane; let H be the K-graph within G. Note that if a K-graph contains
one non-contractible cycle, then it must contain two (this is a consequence of
the 3-path property, Lemma 2.1). Hence, for a contradiction, we may assume
that all the cycles in H are contractible.

Suppose first that H is a subdivision of a K2,3. Then H is the union of
three paths P1, P2, P3 that have the same endpoints x and y but share no other
vertices, and there is an H-component B containing an internal vertex of each
path. Consider three edges from these vertices of H to V (B)−V (H), and let T

be a minimal tree in B that contains those edges. Then T has three leaves, so it
must contain a unique vertex z of degree 3. Let G′ = H ∪ T . By construction,
G′ is a subdivision of K3,3. The drawing of G yields an iocr-0 drawing of G′.
All the cycles in G′ − z are cycles in H , which are contractible by assumption.
Applying Lemma 2.6 implies that G′ is planar, which is a contradiction.

If H is a subdivision of a K4, let S be the set of its 4 vertices of degree 3
and let B be an H-component that contains S. As above, there is a tree T in
B such that the set of its leaves is S. Since T has four leaves it either has a
unique vertex of degree 4 or two vertices of degree 3. Let G′ = H ∪ T which is
a minor of K5. If T contains a vertex z of degree 4 we proceed as in the case of
K2,3: the cycles in G′ − z are cycles in H and therefore contractible, but then
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Lemma 2.6 implies that G′ is planar, which is a contradiction. If T contains two
vertices u, v of degree 3, let Q be the path between u and v in T . Let uw be the
first edge in the path (possibly w = v). Contract uw by moving u along uw to
w and then identifying u and w. As we contract, we may create odd crossings
and self-intersections. Self-intersections we deal with using Lemma 2.4. Any
new odd crossing will be between an edge e1 that was incident to u before the
contraction, and an edge e2 that had crossed uw oddly. But e2 must have been
incident to either u or w, since the drawing was iocr-0. After contraction both
edges are incident to u = w, so the drawing is still iocr-0. In this fashion we can
contract all the edges along the path Q until we have a single vertex of degree
4 and are back in the first case, which suffices.

Apart from applying Lemma 2.7 directly, we will also use it in the two
variants stated as corollaries below.

Corollary 2.8. Let G be a graph containing a K-graph. Then every iocr-0
drawing of G in the projective plane contains a non-contractible induced cycle.

Proof. By Lemma 2.7 the drawing of G contains a non-contractible cycle, so
we can choose a shortest non-contractible cycle. If that cycle had a chord,
that chord would split the cycle into two shorter cycles which are therefore
contractible. But by the 3-path property this would imply that the cycle itself
would have to be contractible, a contradiction.

Corollary 2.9. If a graph G contains two disjoint K-graphs, then iocrN1
(G) > 0.

Proof. Assume iocrN1
(G) = 0. Applying Lemma 2.7 twice gives us two vertex-

disjoint non-contractible cycles, which contradicts Lemma 2.2.

3 Proof of the Main Theorem

If G cannot be embedded in the projective plane, then it must contain at least
one of 35 minimal forbidden minors for the projective plane determined by
Archdeacon, Glover, Huneke, and Wang [1, 4]. For a complete list of minimal
forbidden minors and their names see [6, p198] or [5]4. We will show that all
these graphs have independent odd crossing number larger than zero, which will
establish Theorem 1.1. It suffices because given an iocr-0 drawing of a graph,
one can easily obtain an iocr-0 drawing of any minor of that graph.5

The first twelve graphs are formed from two Kuratowski graphs by a disjoint
union, a one-vertex identification, or a two-vertex identification and possibly
deleting an edge between these vertices. It is easy to see that each contains two
disjoint K-graphs. By Corollary 2.9 the independent odd crossing number of
each of these twelve graphs is nonzero.

4All reference to [5] in this section are to the proof of Theorem 3.1 in that paper.
5We already used this at the end of the proof of Lemma 2.7. This fact also underlies almost

all proofs of the strong Hanani-Tutte theorem.
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Of the remaining 23 minimal forbidden minors, C7, E19, D12, E11, E27, D9,
G1 [5, Fig. 3] and D17, E20, F4 [5, Fig. 6] also contain two disjoint K-graphs, as
observed in [5]. Again, by Corollary 2.9, the independent odd crossing number
is nonzero for all of these graphs.

It is also known that each graph B7, C4, C3, D2 and E2 [5, Fig. 6] can be
obtained from graph A2 through a sequence of ∆Y -exchanges, and the graph
E5 can be obtained from the graph D3 in the same way [5]. By Lemma 2.3 we
need only show that iocrN1

(D3) > 0 and iocrN1
(A2) > 0 to prove a nonzero

independent odd crossing number for all of these graphs.
Thus we are left with seven graphs, E22, A2, D3, F1, B1, E18, and E3.

For each we will assume an iocr-0 drawing in the projective plane, then find a
contradiction.

Consider E22, letting x be its unique degree 4 vertex as seen in Figure 3.
Every 4-cycle not containing x is disjoint from a K2,3-graph, so it must be
contractible, by Lemma 2.2. Then Lemma 2.6 gives a planar drawing of E22, a
contradiction.

We deal with A2 by a similar argument. Let x be the unique degree 6
vertex in A2 (see Figure 3). Any triangle in not containing x is disjoint from a
K4-graph and is therefore contractible (Lemma 2.2). Lemma 2.6 gives us the
desired result as for E22.

x
x

Figure 3: Vertex x in E22 (left) and in A2 (right)

For graphs F1 and D3 we borrow part of an argument from [5]. The cy-
cles v1v2v3v4 and v1v2v3u1 in F1 (see Figure 4) are each disjoint from a K2,3-
graph, so they must both be contractible by Lemma 2.2. But the vertices
v1, v2, v3, v4, u1 induce a K2,3-graph in F1, and at most one of its three cycles is
contractible, which contradicts Lemma 2.7.

For D3 we apply the same argument to its cycles v1v3v2x and v1v3v2y

(see Figure 4): Each is disjoint from a K4-graph so both are contractible
(Lemma 2.2). But there is a K2,3-graph on vertices v1, v2, v3, x, y, and at most
one of its cycles is non-contractible, contradicting Lemma 2.7.

Next consider B1. We note that, in any drawing of B1 in the projective plane,
any triangle containing exactly one of the vertices x, y, z is contractible since it
is disjoint from a K4-graph. Then by Lemma 2.1, the 4-cycles xu1yu2, xu1zu2,
yu1zu2 are all contractible. But these are all the cycles in the K2,3-graph on
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vertices {x, y, z}, {u1, u2}, which contradicts Lemma 2.7.

v1 v2

v3

v4

u1 u2 u3

u4 u5

v1 v2

v3
x z y

u1 u2

v1 v2

x y

z

u1 u2

Figure 4: F1, D3 and B1 (left to right) with labels

Only E18 and E3 remain; E3 requires a lengthier argument which we leave to
Section 3.1; so consider E18, which is K4,4 with one edge removed (see Figure 5).
Suppose iocrN1

(E18) = 0. Let {u1, u2, u3, u4}, {v1, v2, v3, v4} be the two partite
sets and let u4v4 be the missing edge. Each of u4 and v4 is contained in 9 induced
4-cycles. Furthermore, for each 4-cycle containing u4 there is a disjoint 4-cycle
containing v4 [5]. Hence, at least one of the two cycles must be contractible by
Corollary 2.9. So one of u4, v4, say u4, belongs to at most 4 non-contractible
cycles. But {u4, vi, vj , ui, uj} induces a K2,3-graph for each distinct pair i, j

in {1, 2, 3}, and by Lemma 2.7 each one contains two non-contractible cycles.
Since all these cycles are pairwise distinct, there are at least 6 non-contractible
4-cycles containing u4, a contradiction.

u1

u2

u3

u4

v1

v2

v3

v4

Figure 5: E18 = K4,4 − u4v4

3.1 The Forbidden Minor E3

In this section we show that iocrN1
(E3) > 0, where E3 = K3,5. Consider an

iocr-0 drawing in the projective plane.
Let {a1, a2, a3, a4, a5} and {b1, b2, b3} be the partite sets of K3,5. By Corol-

lary 2.8 the drawing contains an induced non-contractible cycle which, without
loss of generality, we can assume to be a1b1a2b2. Using Lemma 2.5 we can clear
this cycle of all crossings and then cut the surface along it. This creates for each
vertex v two new vertices v′, v′′. The graph is now drawn within a disk with
the boundary cycle a′

1
b′
1
a′

2
b′
2
a′′

1
b′′
1
a′′

2
b′′
2

(see Figure 6).
Let G′ be the graph drawn within the disk; note that |E(G′)| = |E(G)| − 4

and for each edge uv ∈ E(G) with u 6∈ {a1, b1, a2, b2} and v ∈ {a1, b1, a2, b2},

9



a′

2

b′2

a′′

1

b′′1

a′′

2

b′′2

a′

1

b′1

Figure 6: The boundary 8-cycle

we have either uv′ or uv′′ in E(G′).

Lemma 3.1. G′ does not contain two vertex-disjoint paths whose endpoints
alternate on the boundary of the disk and that contain at most one vertex from
each of the sets {v′, v′′} for v ∈ {a1, a2, b1, b2}.

Proof. The two paths P1 and P2, together with the boundary cycle and a new
vertex outside the disk connecting (without crossings) to the four endpoints of
the paths, form a K5-subdivision. Since iocr(K5) > 0, the K5-subdivision must
contain two non-adjacent subdivided paths that cross an odd number of times;
plainly these must be P1 and P2. There must be an edge of P1 and an edge
in P2 that cross oddly. However, we assumed that at most one version of each
vertex, either v′ or v′′ can occur in the paths; hence the odd crossing parity
occurs between two edges that were not adjacent in G. This contradicts the
assumption that we started with an iocr-0 drawing of G.

Since b3a1 and b3a2 are edges of G, there must be corresponding edges in
G′, and we can assume, without loss of generality, that they are b3a

′

1
and b3a

′

2

(see Figure 6). Consider the path b1a3b2 in G. It cannot be the case that
a3b

′

1
∈ E(G′) since that edge together with either a3b

′

2
or a3b

′′

2
would contradict

Lemma 3.1. Hence a3b
′′

1
∈ E(G′), and, by the same argument, a4b

′′

1
, a5b

′′

1
∈

E(G′).
By the pigeonhole principle at least two of {a3, a4, a5} must be adjacent to

the same vertex in {b′
2
, b′′

2
}. Without loss of generality, let us assume that a3b

′

2

and a4b
′

2 belong to E(G′). Let G′′ be the graph induced by G′ on {a3, a4, b
′′

1 , b′2, b3}
together with the edge a′

1
b3, the boundary cycle, and a new vertex outside the

disk connected to each of a′

1, b
′′

1 , b′2 without crossings. Then G′′ is a subdivision
of K3,3 and therefore contains two non-adjacent edges that cross oddly. As in
the proof of Lemma 3.1 these two edges must correspond to non-adjacent edges
in G that crossed oddly, contradicting the assumption that the drawing of G

had independent odd crossing number 0. This completes the proof.
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