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Abstract 

Large scale software systems challenge almost every 

activity in the software development life-cycle, including 

tasks related to eliciting, analyzing, and specifying 

requirements.  Fortunately many of these complexities 

can be addressed through clustering the requirements in 

order to create abstractions that are meaningful to 

human stakeholders.   For example, the requirements 

elicitation process can be supported through dynamically 

clustering incoming stakeholders’ requests into themes.  

Cross-cutting concerns, which have a significant impact 

on the architectural design, can be identified through the 

use of fuzzy clustering techniques and metrics designed to 

detect when a theme cross-cuts the dominant 

decomposition of the system.   Finally, traceability 

techniques, required in critical software projects by many 

regulatory bodies, can be automated and enhanced by the 

use of cluster-based information retrieval methods.  

Unfortunately, despite a significant body of work 

describing document clustering techniques, there is 

almost no prior work which directly addresses the 

challenges, constraints, and nuances of requirements 

clustering.  As a result, the effectiveness of software 

engineering tools and processes that depend on 

requirements clustering is severely limited.  This report 

directly addresses the problem of clustering requirements 

through surveying standard clustering techniques and 

discussing their application to the requirements 

clustering process.  

1. Introduction 

Software requirements specify the goals, functionalities, 

and constraints of a software system [Zave97]. The 

discipline of systematically managing requirements is 

known as requirements engineering (RE).  To decompose 

the problem of managing requirements, RE defines a set 

of basic tasks, such as elicitation, analysis and validation, 

and documentation of the requirements within a software 

requirement specification (SRS).  The effectiveness of 

these tasks, namely the extent to which they improve the 

overall quality of the software product, depends a good 

deal on the supporting tools and characteristics of the 

software project itself.   Many manually executed tasks 

work well in small or medium projects, but are ineffective 

in large projects.  This is illustrated by the failure of FBI 

Virtual Case File (VCF) project [Gold05].  This was a 

170 million dollar project whose functionality was 

documented in an 800 page requirements specification. 

As a specialist involved in the VCF project once pointed 

out, the problems in eliciting, managing, and prioritizing 

requirements significantly contributed to the disaster. In 

particular, during the requirement elicitation, significant 

effort was expended to manually discover and understand 

the requirements from hundreds of stakeholders but, 

unfortunately, this huge effort did not translate into a 

successful product.  RE tasks, especially when related to 

very large projects, are in need of automated support.  

The crux of the problem is how to automatically and 

efficiently coordinate large numbers of stakeholders‘ 

requests, and to arrange the subsequent requirements into 

meaningful structures. 

Clustering, or cluster analysis, provides a potential 

solution to help address this problem. Clustering is 

defined as the automatic division of the data or population 

into cohesive subsets or clusters. Despite its long history 

of study, the importance of clustering has become more 

obvious since the emergence of the internet, with the 

onslaught of huge volumes of data, generated and 

accumulated through the exchange of information. 

Methods needed to be developed to organize the data and 

to mine useful information.  Clustering has been 

employed widely in text retrieval and mining to address 

several issues such as retrieval performance improvement 

[Kowalski97], document browsing [Cutting92], topics 

discovery [Ertz01], organization of search results 

[Zamir97], and concept decomposition [Dhillon01]. 

Clustering methods can be classified according to the 

nature of the data, such as spatial data, time series data, 
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and document data. Given that most software 

requirements are specified as documents in natural 

language, it is reasonable to adopt theories, methods, and 

tools from the document clustering discipline. 

Admittedly, the two areas of document clustering and 

requirements clustering, have a lot in common. For 

example, as mentioned previously, both cases deal with 

textual information, suggesting that the basic framework 

of document clustering, including preprocessing 

techniques, similarity calculations between two 

documents, clustering algorithms, and validation of 

clusters, can be adopted in requirements clustering. Both 

problem domains also share a number of challenges, such 

as high dimensionality of the data, significant background 

noise, and the need for scalability.  

The clustering of requirements, however, is 

significantly more difficult than the clustering of ordinary 

documents in a number of ways. First, the cluster 

granularity, i.e. the number of clusters, needs to be 

determined automatically in requirements clustering at a 

very fine level of granularity.  Whereas document 

clustering stems from the need to sort or filter large 

collections of texts, such as books, patent articles, or web 

pages, the purpose, which is usually the sole purpose, of 

information clustering, is to organize the documents into 

a limited number of categories to ease a few basic tasks 

such as browsing and searching. The number of the 

categories is typically small, and is usually known in 

advance.  On the other hand, the purposes for clustering 

of requirements are highly variable and are dependent on 

the tasks for which the generated clusters will be put to 

use. Many tasks rely upon very fine-grained clusters, and 

have no existing reference categories, meaning that the 

granularity and themes of the clusters must be determined 

automatically.  

Second, each domain makes different assumptions 

about the membership of each datum. Document 

clustering usually assumes each document comes from 

one of the fixed numbers of categories; in other words, 

each document belongs to one and only one cluster. In 

contrast, crisp clustering assignments are insufficient for 

requirements, and a single requirement may need to be 

placed into multiple clusters.  Furthermore a significant 

number of requirements may be outliers which do not 

belong in any cluster.  

Third, the two domains differ in the distribution of 

topics among the data set. The documents studied in 

typical document clustering tend to contain rich textual 

information and exhibit only one dominant significant 

topic in each document. Software requirements, on the 

other hand, are typically documented tersely and their 

common segments tend to be short and sometimes appear 

trivial.  Consequently, the requirements clusters generated 

by traditional document clustering algorithms are often 

formed around a dominant topic, while critical cross-

cutting concerns are dispersed across multiple clusters.  

For example, the three requirements shown below, are all 

related to the topic of login and could reasonably be 

placed into a login cluster, however they were actually 

scattered across three more dominant  clusters of local 

display, unique ID‘s, and informing the employee.   A 

better approach would have been to place them each into 

two distinct clusters, representing each of their themes. 

 

Figure 1.1 Trivial topics distort more meaningful 

clustering 

Finally, document clustering has a wealth of available 

data sets to support empirical evaluation of clustering 

algorithms.  These include carefully selected large scale 

document data sets, such as TREC [TREC], UCI KDD 

data sets [Hettich99], which have been manually cleaned 

up and classified as reference answer sets for clustering.  

The fact that requirement clustering has no such answer 

set to serve the purpose of evaluation, is a significantly 

non-trivial problem that is addressed later in this proposal.  

In fact one of the secondary contributions of this research 

will be the placement of three requirements datasets into 

the public domain for use in ongoing comparative studies 

for requirements clustering. 

These three problems related to the dynamic 

determination of granularity, dealing with terse multi-

topic requirements, and a lack of a standard answer set 

pose serious challenges to the requirements clustering 

problem, which have not been fully addressed and well 

tackled in existing research.  The objective of the research 

in this proposal is to incorporate these unique challenges 

into the design and validation of clustering algorithms in 

order to identify, enhance, or develop clustering 

algorithms capable of generating cohesive and loosely 

coupled clusters that provide efficient automated support 

for a wide variety of RE related tasks.  

2.  Document clustering 

This chapter first introduces the general process of 

document clustering.  Each of the following primary 

components is discussed: preprocessing, weighting, 

similarity computation, clustering algorithms, and cluster 

validation.  While the survey focuses on crisp clustering 
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algorithms, a fuzzy clustering algorithm based on 

correlation metrics and the neural method of self-

organizing maps (SOM), are also discussed. The chapter 

then reviews the author‘s prior work on applying 

traditional clustering algorithms to the requirements 

domain.   

2.1  Definition and Notation 

Clustering is defined as the division of a set of objects 

into K clusters or groups for which the intra-cluster 

cohesion is maximized and the inter-cluster coupling is 

minimized. This proposal is devoted to the discussion of 

clustering on documents and textual software 

requirements. For a more comprehensive review of 

various clustering research fields, see [Jain88, Jain99, 

Berkhin02, Theodoridis06, Duda01].  

In this proposal, the name ―artifact‖ is used to refer to 

a document, which in the requirements domain is 

synonymous with either a requirement or a raw statement 

of stakeholder‘s needs. It is usually represented by an 

artifact vector whose components correspond to the terms 

that have been extracted from the artifact collection. Let 

the set of terms be denoted as T = {t1, t2, … td}, then the 

whole artifact collection can be represented as a term-by-

document matrix  where each column 

corresponds to an artifact. The component value 

 in artifact  denotes the weight 

of term  for . This weight could simply be the number 

of occurrences of  in , but is more typically a score 

computed by taking additional factors into account, a 

procedure called ―weighting‖ that is to be discussed in 

section 2.4.  

 In the remainder of the discussion the following 

notation is adopted.  Regular letters denote scalars, small-

bold letters such as x or y denote any of the artifact 

vectors, and capital-bold letters such as A, B denote 

matrices. 

2.2  Components of document clustering process 

For systematic studies, the process of document clustering 

is generally described by decomposing the clustering 

process into the following components:  preprocessing, 

weighting, similarity calculations, grouping by use of a 

clustering algorithm, and cluster validation.  As shown in 

Figure 2.1, the sequence of these components includes 

two feedback paths.  The first one represents the output of 

the grouping algorithm fed back into the next round of 

computations, while second feedback path represents the 

feedback from evaluating the clusters, which impacts the 

next iteration of grouping. 

weighting
similarity 

calculation
groupingpreprocessing validation

raw 

artifacts

 

 

Figure 2.1 Components of a document clustering 

process 

2.3  Preprocessing of raw artifacts 

The purpose of preprocessing is to remove any 

information that is either insignificant, or detrimental to 

the clustering. First the text is split into meaningful 

tokens, which are generally referred to as ords. Next, stop 

words i.e. extremely common words including articles, 

pronouns, and any other frequently occurring term such 

as do and make, are eliminated since they do not provide 

useful information for helping to differentiate between 

different documents. Remaining words are then stemmed 

to their root forms.  These stemmed words are typically 

referred to as terms. Finally, it is possible, although not 

yet demonstrated to return consistently improved results 

[REF], to use a thesaurus or explicitly constructed 

matching word listto unify the occurrence of synonyms or 

other forms of domain equivalencies. Following this step, 

any term that occurs only once in the entire document 

collection can also be removed, as these terms are not 

useful for clustering purposes.  After these preprocessing 

steps, a raw artifact is represented by a vector whose 

components correspond to the terms determined to be 

significant in the collection. 

2.4 Weighting of terms 

The term weights represent values attached to each term 

to indicate their importance within an artifact. Three main 

components that are used to compute a term weight 

include: the term frequency (tf), the inverse document 

frequency factor (idf), and a document length 

normalization (dl) factor [Salton86]. The most frequently 

used term weighting is the product of tf and idf, referred 

to as tf-idf and computed as: 

 

where  is the occurrence of term j in document i, N is 

the total number of documents, and Nj is the number of 

documents in which term j appears at least once. This 

simple weighting scheme is very widely used because it is 
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intuitively sound – the more a term appears in a collection, 

the less useful information it provides for computing 

similarity between two documents. 

Despite the success of tf-idf and its variations, a 

number of additional weighting schemes have been 

proposed and empirically proven to be more efficient. 

One of them, pivoted document length normalization 

weighting [Singhal96], is defined as 

 

where , , s is the slope constant, p is the 

average number of distinct terms throughout the 

collection, and u is the number of distinct terms in 

document i. In a study by Singhal [Singhal96] this 

weighting was demonstrated to obtain 13.7% more 

relevant documents [Singhal96]. 

Latent Semantic Analysis  

Another type of term weighting, more commonly called 

indexing, attempts to capture the semantic relationship 

between documents by the reduction or transformation of 

term dimensions. It can be viewed as an implicit domain 

thesaurus. Among many such schemes of term indexing, 

Latent Semantic Indexing (LSI), or Latent Semantic 

Analysis (LSA) has been shown to be able to filter noisy 

data and absorb synonymy i.e. the use of two different 

terms that share the same meaning, and polysemy i.e. the 

use of a single term to mean to distinct things, in large 

corpus [Deerwester90, Dumais93, Dumais95, Berry05]. 

The basic derivation of LSI is as follows. Let X be the 

term by document matrix  

 

  is the occurrence vector of term i, and 

 is the vector of document j. The dot-

product  then gives the correlation between terms, and 

matrix XX
T
 contains all of the correlations. Likewise, 

 represents the correlation between documents, and 

matrix X
T
X stores all such correlations.  

Singular Value Decomposition (SVD) is applied to X 

to produce three components: 

 

where U and V are orthonormal matrices and ∑ is a 

diagonal square. Applying this factorization to XX
T
 and 

X
T
X: 

 

 

In other words, the columns of U are the eigenvectors of 

matrix XX
T
, the columns of the V are the eigenvectors of 

matrix X
T
X, and ∑ is the square root of the eigenvalues of 

matrix XX
T
 or X

T
X. This can also be denoted as follows: 

 

The selection of k largest singular values, and the 

corresponding singular vectors from U and V, constitutes 

a rank K approximation to X, , with the 

smallest error in terms of Frobenius Norm, where each 

artifact di can be represented by K weights vi. 

Furthermore, this approximation transforms the original 

purely physical occurrence into the relationship in the 

concept space, leading to a new similarity calculation 

between terms or documents.   

However, LSA has three serious problems. First, 

the purely matrix factorization derivation of LSI makes 

the resulting dimensions difficult to interpret. Second, and 

more important, LSA assumes that words and documents 

form a joint Gaussian model, while is against the 

commonly observed Poisson distribution. And last, the 

optimal k must be empirically determined by numerous 

trials. 

Non-negative matrix factorization 

Non-negative matrix factorization (NMF) represents a 

similar dimensional transformation technique to LSA.  

NMF factorizes a matrix X into two matrices U and V 

with the constraints that the elements in U and V are non-

negative, namely, X = UV
T
, uij ≥ 0 and vij ≥ 0. NMF for a 

matrix is not exclusive and the choice of factorization 

depends on the divergence of resulting factorization UV
T
 

from the original matrix X. For example, as discussed in 

http://en.wikipedia.org/wiki/Poisson_distribution
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[Xu03], the Frobenius norm 
1

can be used as the 

divergence criterion, whose optimization involves the 

minimization of the objective function  or 

equivalently : 

 

with the constraints that , and by 

introducing proper Lagrange multipliers, the following 

iterative estimation of U and V is reached: 

 

 

The whole iteration has time complexity O(tKN), where t 

is the number of the iterations.  

Similarly to LSA, NMF discovers a latent 

semantic space from the data, in which each axis captures 

the base topic of a candidate document cluster. Each 

document is then represented as an addictive combination 

of the base topics. NMF differs noticeably from LSI in 

two aspects. First, the latent space found by NMF does 

not need to be orthogonal. Second, and more important to 

clustering, the projection values are all positive, so that 

the clusters could be directly derived from V – i.e. the 

cluster membership of each document is determined by 

finding the base topic or topics with which the document 

has the largest projection value. Nevertheless the 

dimensions found by NMF can still be hard to interpret. 

2.5 Similarity calculation between artifact vectors 

In most heuristic algorithms, requirement clustering is 

strongly dependent upon computing the similarity 

between pairs of documents.  Therefore the similarity 

computation of two artifact vectors can significantly 

impact the quality of the resulting clustering. The 

concepts of distance and similarity are complementary, 

with distance representing the level of dissimilarity 

between two documents, and similarity denoting the level 

to which they resemble each other. The more general 

                                                           
1
 The Frobenius norm of a matrix A = (aij) is the sum of 

square of all the elements of A: . 

word ―proximity‖ is therefore sometimes used to denote a 

certain metric between two artifacts which can be 

expressed either as similarity or distance.  The commonly 

used proximity metrics for documents include: 

Correlation. For two artifact represented as column 

vectors x = (x1, x2, …, xd)
T
 and y = (y1, y2, …, yd)

T
, their 

un-normalized correlation is their dot product: 

 

Euclidean Distance. Euclidean distance measures the 

distance between vector x and y in d-dimensional space: 

 

Euclidean distance is a special case of the Minkowski 

metric when θ is set to 2: 

 

Direction Cosine. While Euclidean distance is concerned 

with the absolute distance between vectors, the direction 

cosine measures the similarity purely based on the 

relative magnitudes of the features: 

 

where  and  are the Euclidean norms of the vector, 

defined as  . Their distinction can be observed 

from Figure 2.2. It should be noted that if vectors x and y 

have been normalized with regard to the norm,

, then the Euclidean distance is completely 

complementary to the dot-product, since 

.  
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A

B

C

 

Figure 2.2 Normally Euclidean distance and cosine 

direction give unrelated scores for raw vectors, 

demonstrated by the fact that  is incompatible to 

the measure of ;  on the other hand, for normalized 

vectors, the two metrics function equally. 

Hamming distance. Originally defined for binary codes, 

Hamming distance can be used to compare any ordered 

sets that consist of discrete-valued elements. It defines the 

dissimilarity of two vectors of the same lengths to be the 

number of different symbols in them normalized by the 

length of the vector: 

 

Probabilistic similarity. In information retrieval, the 

similarity between two documents can be formulated as 

the inference probability from one document to another. 

Formally, the inference of document x given query y in a 

d-term space can be defined as the posterior probability: 

 

There are many alternate methods for calculating . 

Some assume a specific distribution of terms such as 

Poisson or multinomial [Zaragoza03] and then integrate 

the probability density function in the inference, while 

others assume no known parametric distributions and 

proceed in an ad hoc way. One of the latter techniques 

uses the frequency of term ti in the x fx,i to estimate 

, an approximation that leads to 

 and . The estimation of 

 usually follows the idea of reversed term frequency 

discussed in the last section on weighting, namely, 

, where  is the total occurrence of , and 

N is the total number of the artifacts.  Notice that unlike 

the three proximities just discussed, sb is asymmetric, i.e., 

the belief acquired from x to y is usually different from 

the one acquired from y to x given that x and y are 

different.  

The choice of proximity calculation technique 

depends on the nature of the data, representation of the 

data, and other requirements or constraints. For example, 

in spatial data clustering, Euclidean distance is a natural 

choice, while in document clustering, which depends on 

the frequencies of components rather than on their 

absolute scores, Cosine distance is more appropriate and 

therefore more widely used, as reported in [Feature 

Projection]. However if the speed of calculation is 

important, asymmetric metrics should be used with great 

caution because of the extra time needed to normalize 

averages such as  and . 

2.6  Crisp document clustering algorithms 

For an artifact collection with size m the number of 

possible K-clusterings has been proven to be the Stirling 

number of the second kind [Anderberg73] 

 

Even for a very small requirement collection, this number 

would be huge. So instead of brute-force evaluation of 

each possible clustering, a heuristic search algorithm must 

be designed to converge towards an optimal solution 

quickly.  

A high quality clustering requires clusters to be 

internally cohesive and to exhibit low inter-cluster 

coupling, and this goal can be expressed as an objective 

function. A clustering algorithm can then be viewed as an 

optimization process that either implicitly or explicitly 

satisfies designated objective functions either at a local or 

global level. In structure, the optimization can be bottom-

up, top-down, or flat iterative.  The taxonomies of crisp 

clustering algorithms, which for completeness purposes 

are not limited to the ones used in clustering requirements, 

are shown in Figure 2.3.   

 

Figure 2.3 Classification of clustering algorithms 
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Before reviewing each of these algorithms, one important 

point must be made: just like a deck of poker cards may 

be arranged effectively but in different ways by different 

players, it is also true that no universally optimal 

clustering algorithm exists. Each clustering algorithm 

makes implicit assumptions about the shape of clusters 

the data should exhibit, has different capabilities for 

handling high dimensionality and large scale data, 

consumes various lengths of time, adopts different 

strategies to tackle outliers, and so forth.  

Hierarchical algorithms have been frequently 

used for clustering clustering documents. They are 

divided into agglomerative (bottom-up) and divisive (top-

town) [Hartigan75, Jain88] approaches. The 

agglomerative algorithms start from singleton clusters and 

continuously merge the most similar clusters, while 

divisive ones begin with a large cluster containing all of 

the data and recursively split the least cohesive cluster. 

The decisions that traditional hierarchical clustering 

algorithms make at merging or splitting are based on the 

linkage metric i.e. the similarity or distance between two 

clusters. Common approaches include the single link, 

which calculates the shortest distance between objects in 

each of the two clusters, complete link, which calculates 

the two farthest objects, and average link which computes 

the average. A slightly different approach is adopted in 

the Ward algorithm, which uses an objective function 

similar to the one used in K-means.  The complete link, 

average link, and Ward work well only in finding tightly 

bound or compact clusters. In contrast, the single-link 

algorithm is more versatile – it can not only extract 

concentric clusters, as shown in Figure 2.4, but can also 

find the clusters that are mixed with noise patterns. 

However, it suffers from a chaining effect [Nagy68], 

which means it has a tendency to produce clusters that are 

straggly or elongated. These traditional algorithms are 

used less nowadays because their typical time complexity 

is O(N
2
) which is not cost-effective when clustering a 

large amount of data, and also they are not able to revisit 

clusters that have already been formed in order to perform 

additional optimizations or reclustering.  Despite these 

limitations, they may still prove useful within the RE 

domain, as many of the initial clustering tasks can be 

performed offline as batch processes, meaning that 

running time is not as significant as cluster quality. 

Some sophisticated hybrid hierarchical 

algorithms have been proposed to alleviate these 

weaknesses. The algorithm CURE, described in [Guha98], 

represents each cluster by a fixed number of points 

instead of simply by a centroid or medoid.   This 

algorithm is therefore able to identify non-spherical 

shapes and to dampen the effect of outliers. It also 

improves scalability through using random sampling and 

partitioning. The 2-phase algorithm CHAMELEON 

[Karypis99] uses dynamic modeling to measure the 

similarity between two clusters. In the first phase, a K-

nearest neighbor connectivity graph is generated and 

produces small tight clusters. In the second phase, these 

tight clusters, as well as processed interim clusters, are 

recursively merged only if the mutual inter-connectivity 

and closeness are relatively high in comparison to the 

internal inter-connectivity and closeness. This dynamic 

modeling was found to be able to identify the clusters that 

CURE and DBSCAN [Sander98] failed to identify. 

Another agglomerative hierarchical algorithm proposed 

by Chiu et al. [Chiu01] adopted a probabilistic technique 

 

Figure 2.4 The versatility of single-link clustering [Jain99] 
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for measuring similarity between Gaussian distributed 

clusters. For each cluster c, its log likelihood is 

, and then the distance between two 

clusters is defined as a descent likelihood 

. By using this model-based measure, 

the merging is able to effectively filter out outliers.  

Unfortunately, these effective algorithms are usually 

applied to spatial data where shape and density is often 

geometrically clear. They become inept in dealing with 

the documents, since documents reside in very high 

dimensional space where similarity is calculated using 

correlation instead of Euclidean distance. 

In contrast to the hierarchical clustering 

algorithms which construct hierarchies, partitional 

clustering algorithms iteratively optimize a flat separation 

structure.  The subclasses of partitional algorithms are 

relocation method, probabilistic method, density-based 

method, and graph-theoretic method. The relocation 

method reassigns the data points to its nearest cluster 

usually guided by an objective function. It has two 

variations differentiated by different choices for 

representing a cluster. K-Medoids methods, such as PAM 

[Kaufman90], CLARA [Kaufman90], and CLARANS 

[Ng02], choose a data point within a cluster as a cluster 

representative, whereas K-means methods, such as 

Forgy‘s algorithm [Forgy65] and incremental K-means 

[Duda01], calculate the arithmetic mean of a cluster as its 

representative. K-medroids methods present no limitation 

on data types and are less sensitive to the outliers. 

Although affected by outliers, K-means has the advantage 

of clear geometric and statistical meaning [Dhillon01a]. 

Probabilistic methods, which will be elaborated further in 

Chapter 4, assume closed form statistical models  

for each cluster, learn this model from the data, and 

classify the data by a Bayesian discriminate: 

 

Although often suffering from the initialization problem 

that a bad initial configuration will lead to local optima, 

relocation and probabilistic clustering methods are used 

widely in clustering documents thanks to their O(N) time 

efficiency. For example, the series of papers by Dhillon 

present an excellent, thorough introduction to K-means‘ 

application in document clustering, discussing basics 

[Dhillon01b], scalability [Dhillon01b], heuristic 

improvement [Dhillon02], and utilization [Dhillon01a].  

The third subclass of partitional methods are 

density-based algorithms, including DBSCAN [Sander98], 

DBCLASD [Xu98], etc, while  the fourth subclass of 

graph-theoretic methods are gaining in popularity because 

of their success in image segmentation [Shi00, Meila01]. 

They will not be discussed in this proposal because of the 

strong reliance on spatial relationships for density-based 

methods and high computational cost (O(N
2
)) for Graph-

theoretic methods. 

It is far from trivial to determine the best 

clustering algorithm for a specific clustering task, 

however some hybrid hierarchical clustering algorithms, 

such as PDDP [Boley98] and bisecting 2-means [Zhao02] 

have been shown in document clustering to outperform 

purely hierarchical methods or purely partitional methods.  

2.7  Fuzzy K-means based on correlation metrics 

This fuzzy algorithm, also known as FCM, is a 

generalized K-means clustering, with an extended 

objective function defined over correlation metric space: 

 

where  is the membership assignment of artifact i to 

the cluster j,  and  is the centroid of clustering j, and  

is a hyper-parameter to control the magnitude of 

calculated norm.  To minimize , the updating of 

membership scores and centroids follow as [Rodrigues04]: 

 

and 

 

where as usual, N is the number of artifacts, and d is the 

number of terms. 

2.8  Self-organizing maps (SOM) 

A self-organizing Map (SOM) is a Vector Quantization 

(VQ) and neural data projection technique, often used in 

clustering and visualizing high-dimensional data 

[Kaski97, Kohonen01, Vesanto97]. The high-dimensional 

input data are mapped into 2-dimensional or 3- 



9 
 

dimensional lattices to approximate the density 

distribution of the input. On one hand, similarly to K-

means and principal curves projection [Hastie89], SOM is 

a VQ method, which finds a series of vectors called 

codebooks or models, so as to represent a large collection 

of vectors. On the other hand, SOM tries to preserve the 

topological relationship among the input vectors so that 

the adjacent map units resemble each other coherently. 

Combining these two typically contradictory facets, SOM 

achieves a tradeoff between VQ resolution and 

topological preservation. 

In a nutshell, with input vectors x(t), the time t = 

0,1,…,N, as shown in Figure 2.5, the SOM array or lattice 

is comprised of an ordered set of codebook units mi that 

act as representatives of similar inputs. The array is 

updated nonlinearly through a number of training 

iterations. Each iteration goes through two steps: first 

every input is attached to the best matched unit (BMU), 

i.e. the model that is most related; then after all the inputs 

are classified, each model mi is updated as the mean or 

median of the Ni neighbor associated inputs within a 

certain radius. The process of iterations stops when the 

values of codebook converge. 

The cluster structure of a trained SOM can be 

viewed by a U-matrix. It stores the similarity scores 

between adjacent array units in an orderly manner and 

can be visualized as a ―bordered‖ SOM, where a group of 

darker cells represents a possible cluster and a series of 

brighter cells represents a possible cluster border. Figure 

2.6 is the U-matrix visualization of Iris data [Anderson35], 

a classical dataset consisting of 50 samples from each of 

three species of Iris flowers (Iris setosa, Iris virginica and 

Iris versicolor). From U-matrix it is easy to identify two 

clusters distributed vertically on the map although the 

formation of the third one is not very sharp. 

 
Figure 2.6 The U-matrix of Iris data 

2.8.1  Formal definition of SOM training 

An incremental SOM training process using Euclidean 

distance measures is formally described as follows 

[Kohonen01]: 

Initialization 

The coordinates of models could be initialized randomly, 

or linearly, where vectors are calculated in an orderly 

fashion along the linear subspace spanned by the two 

SOM 19-Nov-2007

U-matrix

 

 

0.108

0.743

1.38

 

Figure 2.5 The structure and training of an SOM [Kohonen01] 
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principal eigenvecters of input data set using Gram-

Schmidt orthogonalization. 

Iteration in time t+1 

(1) With each input x, the best-matching unit 

 is identified 

(2) Each model j is updated as  

 

Where  is a neighborhood function, a 

smoothing kernel, usually defined as 

.  

In practice, there are two simple choices for . In the 

first one,  if , and 0 otherwise. 

 can be any function that decreases 

monotonically in time, such as . The 

second choice takes into account the distance of unit j and 

BMU in , where both 

 and  are decreasing 

monotonically in time. 

Due to the high time complexity of the 

incremental version, SOM can also be trained in batch 

mode. Apparently in the equilibrium of SOM, since 

, then , where x is 

one of the closest data point to  mi. By expansion, 

 

which means each  must coincide with the centroid of 

the respective influence region. This observation leads to 

batch SOM training, where the models are updated by all 

of the input vectors simultaneously, as Figure 2.5 has 

shown. 

The training of SOM depends on several 

parameters which must be explicitly specified.  These 

include the shape and model number of the SOM array, 

radius of a neighbor, and iteration times. Among them, 

the size of the SOM array significantly influences the 

training time. To achieve a good result, the number of 

iterations must normally be at least 500  (array size). 

2.8.2 Quality measurement 

The quality of SOM is usually measured in terms of 

topology preservation, VQ resolutions, or a combination 

of both of them. 

Since SOM is the mapping of the original data density, it 

should not exhibit significant differences between 

adjacent units, meaning that it should be smooth. This 

smoothness can be calculated as      

(a) , 

Cij = 1 if unit i and j are the two closest BMUs 

of ANY input vector x ;  

(b)  where if the 

corresponding closest two BMUs are not 

adjacent. 

In the perspective of data clustering, the quantization 

error over the whole testing data:  

should be minimized. So a combined quality measure is 

appropriate, such as 

 

where the second term calculates the minimum path from 

1
st
 BMU to 2

nd
 BMU. 

2.9 Granularity determination 

In some clustering tasks the number of clusters to be 

generated, also referred to as the ‗stopping criterion‘ is 

predefined.   However in many cases, the granularity 

needs to be determined automatically at runtime by the 

clustering process.  There are five common approaches to 

estimating the granularity of a clustering.  These include 

cross-validation, penalized likelihood estimation, 

permutation tests, re-sampling, and finding the significant 

turning point of a metric curve [Salvador04]. Model-

based methods, such as cross-validation and penalized 

likelihood estimation, are computationally expensive and 

often require the clustering algorithm to be run several 

times. Permutation tests and re-sampling are extremely 

inefficient, since they require the entire clustering 

algorithm to be re-run hundreds or even thousands of 

times. Even worse, many of the evaluation functions that 

are used to evaluate a set of clusters run in O(N
2
) time. 

This means that it may take longer just to evaluate a set of 

clusters than it does to generate them.  

The fifth approach, which searches for a 

significant turning point, is more widely used in practice. 

A statistical based validation metric is computed during 

the sequence of clustering and then all the scores of this 

metric are composed into a score curve. The appropriate 
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number of clusters is determined by locating a significant 

point, which can either be a maximum or minimum, or 

turning points represented as a ―knee‖ or ―elbow‖ of the 

score curve. There are methods that statistically evaluate 

each point in the score curve and pick the significant 

points automatically. Such methods include the gap 

statistic [Tibshirani03], prediction strength [Tibshirani01], 

and ―L‖ method [Salvador04]. These methods generally 

require the entire clustering algorithm to be run for each 

potential number of clusters. However, for hierarchical 

algorithms computation is inexpensive, because the only 

difference between two successive clusters numbered K 

and K-1 is one additional merge or split. 

Generally these validation metrics are 

categorized into internal metrics which measure cohesion, 

external metrics which measure coupling, and hybrid 

metrics.  

Cohesion metrics 

For a clustering comprised of cluster set , the 

internal metrics evaluate the cohesion of clusters by 

considering either the similarity between artifacts and the 

centroid or the similarity between each possible pair of 

artifacts. For the convenience of formulation, for cluster 

, let a composite vector  represent the sum 

of its contained artifact vectors, and  

 represent the vector of the centroid, 

cohesion metrics are then defined as 

 

 

  

Coupling metrics 

External metrics estimate the level of coupling between 

clusters. One way of defining the total coupling is to 

calculate the size weighted sum of similarity to the 

centroid of the entire collection: 

 

Another commonly used coupling measurement is 

computed as the average pair-wise similarity between 

cluster centroids: 

 

A recent work by Kulkarni discussed the clustering 

stopping criteria in the bisecting clustering algorithm 

[Kulkarni06]. Her method focused on the study on the 

curve of the objective function  (called cf in the paper). 

Three metrics PK1(m) which transforms the metric score 

into a normalized z-score, PK2(m) which measures the 

ratio of two consecutive scores, and PK3(m) which 

normalizes the score by the sum of scores from adjacent 

steps , are shown below:, 

,

,  

were considered to decide whether granularity m is an 

optimal stopping point.  The limitation of these metrics is 

that they only consider cohesion of the clusters, but 

ignore the coupling between the clusters.  This is 

problematic because coupling and cohesion tend to trade-

off against each other.  Some widely used metrics that 

take into account both cohesion and coupling are 

reviewed next. 

Hybrid metrics 

Hybrid metrics combine both internal and external 

metrics; in other words, they attempt to maximize 

cohesion while simultaneously minimizing coupling. 

Obviously the ratio of internal and external metrics can 

serve naturally as hybrid metrics, such as . 

Other commonly used hybrid metrics are described as 

follows. 

MinMaxCut [Zhao01] 
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This metric simply calculates the average of the coupling-

cohesion ratio, and so lower scores represents better 

clustering.   

Davies-Bouldin (DB) index [Davies79]  

DB measures the goodness of a clustering by its average 

dispersion and cluster coupling. In a partition of n objects 

into K clusters, for all pairs of clusters  and , the 

within-to-between cluster spread is defined as 

 

where ej and ek are the standard deviation of point-to-

centroid distances for  and  respectively, and 

. Then the spread for 

individual cluster is defined as 

 

Finally, the DB index for K-cluster clustering is 

 

Intuitively, DB index considers the average distance of 

clusters to their nearest clusters respectively, therefore the 

smaller DB (K) indicates the better clustering. 

Dunn’s index [Dunn74]  

This metric is built on the notion of distj,k which was just 

defined, and also cluster diameter 

. It attempts to capture both 

the mutual distance between clusters and the inner span of 

a cluster simultaneously by using the formula: 

 

The larger Dunn (K) score is an indicator of a better 

clustering.  

Hubert’s  statistic [Halkidi01]  

This metric measures the quality of clustering by 

considering the correlation between the partitioning and 

the original proximity matrix. Denoting the proximity 

matrix as X = [xij] and cluster labeling matrix Y = [yij], 

where yij=1 when requirement i and j are in the same 

cluster, and yij=0 otherwise, Hubert  statistic is defined 

as the point correlation between X and Y  

 

A normalized Hubert‘s  statistic can also be defined as:  

 

where M = n(n -1)/2, and mx, my, sx, sy are the mean and 

standard deviation of two matrices respectively. A direct 

application of Pearson‘s linear correlation, means that the 

normalized Hubert  is always between -1 and 1. 

Unusually large absolute values of  suggest that two 

matrices agree with each other. But since the index 

increases monotonically as K increases, one can 

determine the optimal clustering granularity by 

identifying significant turning points. 

As an example, of the Hubert index applied to 

the IBS data set, the scores of these metrics, with a small 

modification that uses correlation instead of Euclidean 

distance to measure similarity, are plotted in Figure 2.7 at 

successive values of K. 

 

Figure 2.7 Score curves of DB, Dunn, Hubert, and 

normalized Hubert for IBS 

Three main problems make the direct application of these 

metrics in requirements clustering dubious: 

(1) They require substantial computation. Most of them 

have time complexity of O(N
2
). 

0

0.2

0.4

0.6

0.8

1

1.2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Hubert% Dunn DB Hubert



13 
 

(2) They usually return different answers and it is not 

clear which one is best. For example, in the Figure 2.7, 

the knees or elbows for Hubert, DB, Dunn, and 

Normalized Hubert are 6, 3, 4, and 5 respectively. As 

IBS is a relatively small dataset, these differences 

represent significantly different granularity strategies.  

Additional factors are therefore needed to select the 

optimal granularity from these solutions 

(3) They do not take into account the purposes of 

particular clustering tasks which place additional 

constraints on the granularity. For example, if the 214 

requirements of IBS data are divided into 10 clusters, 

the average cluster size will be 22. Although in theory, 

this granularity represents a best fit to the data, when 

used in tasks for which clusters are used directly by 

humans, 22 requirements per cluster is not ideal and 

would be hard for a human analyst to work with.   

2.10 Correlation measure of partitions 

Correlation metrics between partitions are necessary for 

validating and comparing clusters against a priori 

clustering, often an answer set that has been manually 

produced and scrutinized.  Three types of correlation 

metrics exist in the literature of cluster analysis.  They 

include metrics based on binary vector comparison, those 

based on information theory, and finally those based on 

retrieval performance evaluation. 

Binary vector comparison 

In a clustering, for all artifact pairs , an indicator 

is set to 1 if the pair belongs together and 0 otherwise.  

Thus in two clusterings, there are 4 possible combinations:  

11, 00, 10, and 01, as shown in the table below: 

 1 0 

1 a B 

0 c D 

 

Three commonly used basic correlation coefficients 

known as Rand, Jaccard, and Folkes and Mallows index  

have been derived from this confusion table: 

 

 

 

 Some modifications are proposed, most of which apply 

certain weightings on the ―a‖ in the Jaccard index, such as: 

 

Intuitively, Rand takes into account both commonalities, 

whereas Jaccard focuses on the togetherness. In practice, 

these two metrics normally differ significantly: Rand 

index is too high, and Jaccard index is too low, and 

unfortunately no great guidelines exist in index choice.    

One problem with Rand index is that its 

expected value for two random partitions does not take a 

constant value. The adjusted Rand index assumes the 

generalized hyper-geometric distribution as the model of 

randomness, i.e., the two partitions are picked at random 

such that the number of objects in the classes and clusters 

are fixed. With the extended confusion table shown below: 

U/V v1 v2 …. vC Sums 

u1 n11 n12 … n1C n1. 

u2 n21 n22 … n2C n2. 

…. … … … … … 

uR nR1 nR2 … nRC nR. 

Sums n.1 n.2 … n.C n..=n 

 

and the adjusted Rand index [Hubert85] as: 

 

where 

 

Typically the adjusted Rand index is much lower than the 

Rand index. 

Information theoretical measures 

Unlike binary vector comparison, which makes a hard 

pair-wise examination of two partitions, information 

theoretical measures the extent to which knowledge of 

one partition reduces uncertainty of the other. The 

agreement between two partitions P
a
 and P

b
 is expressed 

by the mutual information: 
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where ka and kb are the cluster numbers of two partitions, 

n is the total number of artifacts, is the number of 

shared artifacts in cluster a of clustering P
a
 and cluster b 

of clustering P
b
 (similar explanation to ).  To 

make the value bounded between 0 and 1, the 

normalization can be added by arithmetic [Fred05] or 

geometric average [Strehl03]: 

 

 

where H(P) is the entropy of a clustering 

. 

Maximum F-measure 

This metric considers the agreement between two 

clusterings as a retrieval evaluation, for  and , for 

which the recall, precision, and F-measure are defined as: 

 

 

 

Since NMI and F-measure have monotonous dependency 

on the cluster number and cluster size, they are typically 

used when two clusterings have comparable granularity.  

2.11 Related work on requirement clustering 

Despite the large body of literature on clustering, there 

has not yet been a substantial body of research focused on 

the clustering of requirements. This section discusses the 

available literature discussing clustering in requirements 

engineering. 

Hsia et al [Hsia88, Hsia96] realized that 

although functional decomposition of design is mature, it 

is hard to map these functional parts onto customer-

recognizable components.  They therefore proposed the 

idea of decomposing requirements into a certain number 

of useful, usable, and semi-independent partitions that 

would facilitate incremental delivery (ID). The proximity 

matrix is constructed indirectly from the references 

requirements make to a set of system components; the 

clustering algorithm is a simplified hierarchical clustering 

technique in which requirements are segmented by 

continuous application of a series of proximity thresholds.  

This approach is reasonable in their example because the 

size of the requirements set is not large. However, they 

did not provide a convincing method or empirical 

evidence to validate their choice of clustering methods. 

Yaung [Yaung92] has the similar motivation and applies 

hierarchical clustering to explore the analogy between 

design modularity and requirements modularity; but again 

no rigorous evaluation of experimental results is 

presented.    

Chen et al. [Chen05] used requirements 

clustering to automatically construct feature models for 

software product line analysis. They calculated the 

proximity between requirements by their various access 

modes to system resources, constructed a graph whose 

edge weights were based on the proximities, and utilized 

an iterative graph-splitting approach to cluster the 

requirements. They evaluated the individual cluster 

quality using an independency metric (IM), which is a 

graph theoretical metric that computes the ratio of the 

sum of outer edge weights over the sum of inner edges 

weights. 

These limited studies have focused on very 

specific and unique clustering applications, but have not 

addressed the challenges described in Chapter 1, which 

are critical to successful clustering of real-life large scale 

requirement repositories. For example, most of the studies 

use trivial-sized data sets for concept proving, picked a 

clustering algorithm without empirical evaluation to 

compare different techniques, and did not address the 

issue of comprehensive cluster validation. Motivated by 

the flourish of clustering research in many other areas and 

the necessity of introducing robust automated methods to 

deal with large requirement collections, the author has 

done some earlier work to investigate the use of 

traditional term-based clustering algorithms within the 

requirements domain. 
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2.12 Author’s earlier work using crisp document 

clustering methods 

Duan et al [Duan07b] described a process for using 

traditional clustering algorithms and validation metrics to 

support automated tracing. Clustering algorithms are used 

to organize the candidate links in ways which would be 

more intuitive to the analyst, and would facilitate the 

analyst‘s task of evaluating the correctness of each link. 

Three clustering algorithms of average link 

agglomerative hierarchical, K-means, and bisecting 2-

means hierarchical, were evaluated. Two validation 

metrics, Hubert index and CC, were used to determine 

cluster granularity. Based on the observation that these 

two metrics did not return results that fully 

accommodated the tasks the clusters were intended to 

support, a new metric, named theme metric, along with a 

heuristic that constrained the average cluster size, was 

proposed to achieve optimal cluster granularity.  

2.12.1 Data sets in these prior experiments 

The three datasets included in the experiment were the Ice 

Breaker System (IBS), Event Based Traceability (EBT), 

and Public Health Watcher (PHW).   

IBS was initially described in [Robertson99] and 

enhanced with requirements mined from documents 

obtained from the public work departments of Charlotte, 

Colorado; Greeley, Colorado; and the Region of Peel, 

Ontario.  IBS manages de-icing services to prevent ice 

formation on roads.  It receives inputs from a series of 

weather stations and road sensors within a specified 

district, and uses this information to forecast freezing 

conditions and manage dispersion of de-icing materials.  

The system consists of 180 functional requirements, 72 

classes, and 18 packages. 

EBT, which was initially developed at the 

International Center for Software Engineering at the 

University of Illinois at Chicago, provides a dynamic 

traceability infrastructure based on the publish-subscribe 

scheme for maintaining artifacts during long-term change 

maintenance.  It is composed of 54 requirements, 60 

classes, and 8 packages. 

Finally PHW represents a health complaint 

system developed to improve the quality of the services 

provided by health care institutions [Soares02]. The 

specification is mainly structured as use cases, and in this 

paper, each use-case step is extracted as a requirement, 

resulting in 241 requirements. 

2.12.2 Clustering algorithms 

For completeness, the three algorithms are briefly 

described as follows. 

Average-link agglomerative hierarchical clustering 

(AHC) 

Initialization Each requirement is assigned to an 

individual cluster, and the similarities 

between requirements are calculated as 

the similarities between clusters.  

Iterations - Merge the most similar pair of clusters 

  - Calculate the similarity between the 

new cluster ci and each existing cluster cj by  

  

 

ji caca

c

ji

ji aas
cc

ccS
21 ,

21 ),(
||||

1
),(  

Termination The target granularity K is met. 

K-means clustering 

Initialization Define a set of centroids M = {m1, 

m2, …, mK} for clusters {c1, c2, …, cK}.  

To avoid poor quality clusters, pick K 

artifacts from D to serve as initial 

centroids such that these artifacts 

exhibit as little mutual similarity as 

possible.  

Iterations - For each artifact ai, compute the 

similarity scores between ai and each 

centroid.  Identify the centroid mj that is 

most similar to ai, and assign or 

reassign ai to cluster cj.  

- For each cluster cj, recompute the 

newly formed center mj as the mean of 

all the artifacts contained in cj. 

Termination  No membership reassignment occurs 

during an iteration. 

 

Bisecting Hierarchical Clustering (BHC) 

The bisecting Hierarchical clustering algorithm relies on 

K-means (K=2 specifically) clustering to consecutively 

bisect a larger cluster into two smaller ones. It runs as 

follows: 

 

Initialization Assign all the artifacts to a single 

cluster 

Iterations - For each ci in the present clustering C, 

bisect it using 2-means clustering and 
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then compute the score of the objective 

function E over the resulting clusters 

- Select the cluster cp that exhibits the 

highest E score.  For this cluster, 

commit the splitting of cp, by removing 

cp, and adding the two new clusters into 

the clustering. 

Termination  The target granularity K is met. 

Comparison 

In time complexity, both K-means and BHC exhibit a 

time complexity of O(N), although BHC is usually slower 

than K-means since its complexity has a much larger 

constant. AHC has a O(N
2
) complexity, thus is much 

slower when clustering large scale data sets.  

The biggest advantage of bisecting clustering 

over K-means clustering is that it tends to produce 

relatively uniformly sized clusters, a nice property 

especially useful in supporting applications where the 

average size of the clusters is relatively small. Actually, 

through the empirical comparison with answer set by 

using the partition comparison metrics just introduced, 

bisecting clustering produces better document clusters 

than K-means most of the time, as already demonstrated 

by Steinbach et al. [Steinbach00] and Zhao [Zhao02]. 

However, this balance cluster assumption in bisecting 

algorithms may embed outliers in clusters, therefore 

reducing the cohesion of the clustering. 

2.12.3 Granularity determination 

Hubert index and CC, the ratio between intra-cluster 

cohesion and inter-cluster coupling, were adopted to 

determine the right number of clusters for the bisecting 

algorithm. Figure 2.8 and 2.9 show their score curves and 

highlight the significant turning points for 3 data sets. 

 

Figure 2.8 Hubert’s index against three datasets 

 

Figure 2.9 CC index against three datasets 

The first problem with these two metrics is that they 

return very different answers to the granularity question. 

The second problem is that human evaluation of the 

generated clusters suggested that several of the resulting 

clusters contained multiple meaningful topics or themes, 

and that it was not the case that every requirement in a 

cluster belonged to a single, and clearly identifiable 

theme.  Furthermore, many of the resulting clusters were 

not cohesive enough for practical use by human analysts. 

To locate the stopping point that produced truly cohesive 

clusters and to measure the quality of the generated 

clusters i.e. clusters with a single dominant theme, a set of 

theme-based metrics were designed.  

The basic idea of the theme-based metric is that a 

cohesive cluster should have only one dominant theme. 

This dominant theme within a cluster is represented by a 
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Figure 2.10  Theme cohesion and coupling for three datasets showing ideal cluster window. 
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set of dominant terms Dt = {dt1, dt2, dt3,…dtm} , each of 

which satisfies p
N

dtN

R

iR )(
, where NR(dti) is the number 

of requirements in the cluster containing term dti, NR is 

the total number of artifacts in the cluster, and 0  p  1 is 

a threshold.  Based on the definition of dominant terms, 

theme cohesion (TCH) is computed as 

R

R

N

DtIN
TCH

))((
 where NR(I(Dt) α) represents the 

number of requirements containing at least percentage α 

of all dominant terms, and theme coupling (TCP) is the 

normalized correlation between dominant terms 

2/)1(

|]|||/[
,

kk

DtDtDtDt

TCP
Ccc

jiji
ji

. Then the theme 

metric (TM) is defined as the weighted combination of 

TCH and TCP: . For the 

practical use of TM in granularity determination of 

bisecting clustering, a target range has to be first 

estimated since the TM is not compatible with the 

objective function that guides the bisecting algorithm. 

This range is based on George Miller‘s research which 

showed that an average person can handle around seven 

chunks, plus or minus five, of information in working 

memory at a time [Miller56].  Our approach therefore 

targeted an average cluster size within the range of seven 

to twelve, and used this to compute the target number of 

clusters needed.     The granularity that optimized theme 

cohesion within the target number of clusters, as shown 

by a maximum on the TM curve, in Figure 2.10, was then 

selected. 

3.   Probabilistic topic-based modeling of 

textual artifacts 

The clustering of documents or requirements can also be 

studied from the perspective of model learning. In that 

view, the artifacts in a cluster are similar in that they 

conform to the same parametric distribution, and 

accordingly, the clustering is a process of identifying 

those distributions and classifying artifacts according to 

their most related distributions.  Because these 

approaches have a sound probabilistic interpretation, 

adapt flexibly to data of different characteristics, and are 

empirically proven to exhibit good performance in both 

supervised and un-supervised learning, they are becoming 

prevalent in machine learning and information retrieval. 

Topic-based modeling is one example of such state-of-

the-art document modeling methods. Intuitively, a topic is 

represented by a set of terms that are most closely related 

to that topic.  In the language of statistics, a topic z 

corresponds to a distribution of terms, in most cases a 

multinomial 

distribution . A 

number of topic models exist in literature, differentiated 

by their assumption on the relationship between 

documents and topics. Some of them, such as 

multinomial mixture and Dirichlet compound 

multinomial mixture, assume that a document is 

associated with only one topic, while others, such as 

PLSA and LDA, assume that a document can be a 

mixture of multiple topics. The latter has been 

demonstrated to be more flexible, performing better in 

document modeling, document categorization, and 

collaborative filtering [Blei03], etc.  This chapter 

provides a survey of a number of these models and the 

inference of them. 

3.1 Maximum likelihood estimates of mixture 

model and EM framework 

Before further discussing the modeling of topics, the 

basic finite mixture model and some techniques for 

estimating the parameters of mixture models are reviewed 

as the former is the skeleton of almost all the probabilistic 

latent topic models and the latter is indispensible in model 

inference. 

Maximum likelihood estimates (MLE) 

Among various estimation techniques, MLE is the most 

widely used for its simplicity. The basic idea is to choose 

the parameters that maximize the likelihood function of 

the samples. Suppose n i.i.d. (identically and 

independently distributed) samples , 

let  be the log-

likelihood function of the samples,  then parameter  is 

estimated as . Numerically the MLE 

is typically given by the solution of the linear equation 

. The MLE solution could represent a true global 

maximum, a local maximum or minimum, or an inflection 

point of .  

As an example, in cases where the samples conform 

to a multivariate Gaussian distribution p(x) ~ N(μ,∑) 
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where  and 

− = − − , the MLE of  calculated by 

the vanishing gradient of L are: 

 

 

Expectation-Maximization (EM) 

The MLE of models with simple closed form of 

likelihood such as Gaussian can be directly derived, while 

this is more complicated for other models such as 

multinomial mixture models (see the next section).  A 

particularly important method of estimating complicated 

models is the EM framework. EM was originally 

proposed as a computational framework to cope with the 

problem of missing data [Dempster77], and it has also 

been applied in problem domains where, even though the 

observable data are complete, the problem can be 

reformulated into one with missing latent variables. This 

section introduces EM in its most general form. 

First, by Jensen‘s inequality, if 

, then  

 

EM tries to maximize the difference between samples‘ 

likelihoods of two iterations: 

 

where  is the likelihood of desired parameters θ, and 

 is the likelihood of desired parameters θn.  

Denoting by Z the unobserved or missing variables, 

likelihood can be un-marginalized as 

 

then the difference of two likelihoods is: 

   (2) 

By introducing , 

 

and writing  

 

 

Any θ that increases  in turn increases L(θ), the 

parameter of which is denoted as θn+1. So by dropping the 

terms that are constant with respect to θ , : 

 

The intuitive way to understand this is: now that the 

values of X and θn are known and θ is the parameter to be 

adjusted, then distribution of Z is governed by p(z|X, θn); 

with this Z distribution, the next value of θ will be the one 

that maximized expected value of ln p(z|X, θn) w.r.t. Z. 

Based on the derivation above, the two iterative steps 

of EM are: 

- E-step: Determine the conditional expectation 

 

- M-step: Maximize the expression with respect to θ 

So EM provides a framework for parameter estimate 

while taking into account the unobserved or missing data 

Z. 
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3.2 Finite mixture model and unsupervised 

learning of mixture model 

The finite mixture model assumes the probability density 

of a sample as the weighted mixture of a certain number 

of component densities, namely, 

 

where K is the number of components,  is the 

p.d.f. of the component i,  is the prior of the component 

i, and  includes all the parameters of Kcomponents.  

By ML, 

 

In practice, since the log of the sum of densities is not 

easy to handle, EM is typically used to simplify the 

learning of the models [McLachlan00]. Let Zi be a 

random discrete variable with value among 1, 2 , …, and 

K, namely an indicator which component actually issues 

the sample xi. then the likelihood can be simplified as 

 

According to the EM framework just introduced, the E-

step (as defined in section 4.1.2) will be 

 

The parameters can then be calculated in the M-step 

where  and . It has been 

proven that the iterative calculation of parameters by EM 

never decreases the likelihood, so in many cases an 

optimal estimate can be achieved once certain difference 

tolerances of the likelihood difference is met. 

3.3 Related work on un-supervised learning of 

finite mixture document model 

Fraley et al discussed the use of a mixture model in 

clustering multivariant normal data and Bayesian 

Information Criterion (BIC) in model selection [Fraley98, 

Fraley02]. The mixture model of a sample is: 

 

where a Gaussian distribution is assumed: 

. In 

addition, they modeled the noise and outliers as a constant 

rate Poisson process, resulting in the mixture log 

likelihood of 

 

where V is the hypervolume of the data region. In this 

modeling, if an observation is noisy, it contributes 1/V to 

the likelihood, and a normal mixture likelihood otherwise. 

Their experiment on Diabetes diagnosis and minefield 

detection suggested that for their data, the Gaussian 

mixture model clustering outperformed K-means and 

single link hierarchical clustering, whether noise was 

present or not. 

For modeling documents where supposedly a 

topic is in fact a multinomial distribution over terms, 

mixture multinomial models are proposed for supervised 

and un-supervised learning [Nigam00, Rigouste07], 

where the probability of document x of length n is: 

 

Another type of mixture model, Dirichlet compound 

multinomial (DCM) model and EDCM model, addressed 

in [Madsen05, Elkan06], adds one more degree of 

freedom by modeling the generation of a document in a 

Polya process which first performs a Dirichlet drawing: 

 

and then a multinomial drawing: 
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Integrating the parameter , a DCM  

 

where n is the length of the artifact x and s is the sum of 

Dirichlet parameter vector. The DCM mixture model 

learned using EM is shown to outperform the multinomial 

mixture in clustering NIPS document sets [Elkan06]. 

A serious problem in these mixture models is that 

they all assume a document exhibits only a single 

dominant topic, which results in overfitting especially 

when the collection has insufficient samples [Blei03]. 

This limitation can only be overcome by assuming the 

existence of multiple topics in a document. 

3.4 Topic-based modeling of documents 

Based on the assumption that semantic information can be 

derived from a word-document co-occurrence matrix, the 

topic-based modeling methods claim that documents are 

composed of a mixture of topics, where a topic is a 

probability distribution over words. For example, in a 

requirements data set PCS, the topic of database 

construction will be mainly comprised of words such as 

database, server, backup, microsoft, configure, oracle, 

SQL. For the purpose of clustering, the desired outcome 

of topic models includes not only the topics, but also the 

topic distribution over documents, two sets of parameters 

denoted in  and  here. Two widely used models, PLSA 

and LDA, will be described as follows. 

3.4.1 Probabilistic LSA (PLSA) 

Probabilistic LSA [Hoffman99] is a pioneer in 

probabilistic topic modeling of documents. Although 

strictly speaking not a generative model, it achieves a 

document decomposition and topic extraction with sound 

probabilistic interpretation. A description and fitting of 

the model using EM [Hoffman99] is now described.  

The model used by PLSA to model documents is 

called the aspect model, a latent variable model which 

associates an un-observed topic  with 

each observation of occurrence of a document d and a 

term w, whose joint probability can be written as:  

 

One important assumption underlying this modeling is the 

conditional independence – the d and w are independent 

conditioned on the state of the associated latent variable. 

Putting P(d) inside the summation leads to the following 

symmetric expression of joint probability: 

 

The distinction is illustrated in Figure 3.1. 

By defining 

, the joint model P could be written as 

 Although this factorization resembles the 

LSA, PLSA differs from LSA primarily in the objective 

function used to determine the optimal approximation. 

LSA uses Frobenius norm, which corresponds to an 

implicit additive Gaussian noise assumption on counts; in 

contrast, PLSA relies on the likelihood function of 

multinomial sampling, a well-defined probability 

distribution and factors that have a clear probabilistic 

meaning.  

d

z

w d

z

w
 

Figure 3.1 Graphical Model representation of aspect 

model in the symmetric (left) and asymmetric (right) 

parameterization. 

 

Learning of the PLSA model using EM 

PLSA uses EM to find the MLE of parameters, so it does 

not guarantee to find the global maximum. The joint 

probability and log likelihood are: 
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Applying the EM estimate of the mixture model, letting 

the targeted parameters  be all , , and 

, 

 

The posterior  

 

After the introduction of Lagrange multipliers and solving 

, the iterative estimate of the parameters are: 

 

 

 

Among them,  represents the term distribution 

over topics φ. Further, θ, the topic distribution specific to 

a document di can be calculated using Bayes rule: 

 

Having been demonstrated to outperform many other 

semantic methods such as LSA, PLSA has two 

weaknesses. First over-fitting and local optima estimation 

occurs in the learning of the model. Second, as it is not a 

generative model for documents, the likelihood of a new 

document w can only be represented heuristically by 

marginalizing over all the existing documents: 

 

3.4.2 Latent Dirichlet Allocation (LDA) 

LDA is a three-level hierarchical generative model for 

documents, constrained with two set of corpus 

parameters , Dirichlet priors , and 

term distributions over topics , where 

. A document represented by vector w of length 

W is generated in the following steps: 

1. Draw a topic distribution θ from Dirichlet 

distribution Dir(α) with prior 

  

2. For each term position in w 

draw a topic z from Multinomial(θ) 

draw a word w from Multinomial(z, β)   

The relationship between observed and latent variables is 

shown in the plate diagram below: 

α θ z w

β

M
N

 

Figure 3.2 Graphical model representation of LDA 

Therefore, the joint distribution of a document w with 

latent topics z under topic distribution θ is: 

 

By integrating over θ and summing over topics z, the 

above leads to the marginal distribution of a document: 

 

Model learning using Gibbs Sampling 

Since the form of document distribution is intractable, in 

Blei‘s original LDA paper [Blei03], Variational Bayesian 
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(VB) was used for model inference. The method 

described here is a Gibbs sampling based estimation 

method described in [Griffiths04, Steyvers07] as it‘s easy 

to implement, and competitive in speed and performance 

with other methods. 

The Gibbs sampling LDA inference adds a 

Dirichlet prior on the term distributions over topics, 

denoted as β in [Blei03]. To unify the denotation in 

clustering which uses both PLSA and LDA, β here is 

switched to represent Dirichlet prior and φ is used for 

term distributions. The probabilistic model of LDA with 

Dirichlet prior is: 

 

 

 

 

And their graphical model plate is shown in Figure 3.3. 

α θ z w

β

M
N

φ

T

 

Figure 3.3 Graphical model representation of LDA 

with Dirichlet Prior on term distributions 

Given a plausible assumption of uniform priors for α and 

β, since Dirichlet distributions  and  are 

conjugate to the multinomial distributions 

 and ,  the 

distributions  and  can be directly expressed 

in α and β, leading to a convenient expression of posterior 

, that is: 

 

 

and 

 

Where W is the number of the terms, D is the number of 

artifacts,  is the number of times word w is assigned to 

topic j, and  is the number of times a word from 

document d is assigned to topic j.  Then, a Gibbs 

sampling process is carried over this posterior distribution 

until a stable set of samples is obtained. Finally the 

statistics that are independent of individual topics can be 

computed by integrating across the whole set of samples, 

and φ and θ can be estimated using samples from the 

converged chain: 

 

Theme # 1 
 

Theme # 2 
 

Theme # 3 
 

Theme # 4 
 

Theme # 5 
Term Score   Term Score   Term Score   Term Score   Term Score 

Email 0.042   calendar 0.06   campaign 0.066   print 0.033   case 0.016 

Messag 0.027   meet 0.048   target 0.055   territori 0.029   document 0.016 

Address 0.022   abil 0.025   list 0.041   assign 0.028   text 0.015 

contact 0.015   appoint 0.024   email 0.037   team 0.022   opportun 0.012 

associ 0.015   dai 0.021   send 0.019   pro 0.014   layout 0.011 

account 0.014   event 0.021   contact 0.016   manag 0.01   lead 0.011 

link 0.013   schedul 0.02   lead 0.014   option 0.01   second 0.011 

histori 0.012   dashlet 0.017   mail 0.014   record 0.009   project 0.011 

automat 0.012   displai 0.016   distribut 0.013   sale 0.008   descript 0.01 

send 0.011   time 0.016   sent 0.011   state 0.008   search 0.009 

 

Figure 3.4 A sample of themes extracted from SugarCRM feature requests showing top terms.  Terms over a 

threshold >= 0.15 are shaded. 
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It has been proven in [Girolami03] that PLSA is a 

maximum a posteriori estimated LDA model under a 

uniform Dirichlet prior, which is exactly the setting that 

the Gibbs sampling based inference takes. However, as 

they have different numerical inferences and those 

inferences highly rely on the characteristic of data, the 

performance must be evaluated within specific domain 

applications. 

As an illustration of extracted topics from 

requirements using topic probabilistic models, Figure 3.4 

shows five topics or themes from mining SUGAR data 

sets. 

It can seen that not all the topics are equally 

meaningful and strong, so in general, when these 

algorithms are applied, the identified topics will be 

rigorously analyzed along with other parameters inferred 

from model fitting, producing sets of parameters that are 

used to derive the clustering by classifying each 

requirement according to the topics that it primarily 

contains. For comparison purposes, the popular fuzzy K-

means algorithm will be implemented and compared with 

the topic-based clustering in the coverage of found topics. 

4. Conclusion 

  The first part of this report extensively surveys the 

document clustering methods, and presents the 

experiments results using several popular heuristic-based 

crisp clustering algorithms on requirements. Based on the 

observation that typical requirements have terse 

representation and multiple topics, which causes the loss 

of significant topics, the second part proposes using 

probabilistic topic models, such as PLSA and LDA, to 

directly extract topics from requirements and then to 

derive clusters from significant topics. The future work 

will include the vigorous validation of topic-based 

clustering of requirements, investigating whether it can 

produce more cohesive clusters and wider range of topics 

to facilitate various requirement engineering tasks.  
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