
DePaul University DePaul University

Via Sapientiae Via Sapientiae

Technical Reports College of Computing and Digital Media

4-2008

Clustering and its Application in Requirements Engineering Clustering and its Application in Requirements Engineering

Chuan Duan
DePaul

Follow this and additional works at: https://via.library.depaul.edu/tr

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Duan, Chuan. (2008) Clustering and its Application in Requirements Engineering.
https://via.library.depaul.edu/tr/7

This Article is brought to you for free and open access by the College of Computing and Digital Media at Via
Sapientiae. It has been accepted for inclusion in Technical Reports by an authorized administrator of Via
Sapientiae. For more information, please contact digitalservices@depaul.edu.

https://via.library.depaul.edu/
https://via.library.depaul.edu/tr
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/tr?utm_source=via.library.depaul.edu%2Ftr%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=via.library.depaul.edu%2Ftr%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/tr/7?utm_source=via.library.depaul.edu%2Ftr%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

1

Clustering and its Application in Requirements Engineering

Chuan Duan

School of Computing

DePaul University

duanchuan@cti.depaul.edu

Abstract

Large scale software systems challenge almost every

activity in the software development life-cycle, including

tasks related to eliciting, analyzing, and specifying

requirements. Fortunately many of these complexities

can be addressed through clustering the requirements in

order to create abstractions that are meaningful to

human stakeholders. For example, the requirements

elicitation process can be supported through dynamically

clustering incoming stakeholders’ requests into themes.

Cross-cutting concerns, which have a significant impact

on the architectural design, can be identified through the

use of fuzzy clustering techniques and metrics designed to

detect when a theme cross-cuts the dominant

decomposition of the system. Finally, traceability

techniques, required in critical software projects by many

regulatory bodies, can be automated and enhanced by the

use of cluster-based information retrieval methods.

Unfortunately, despite a significant body of work

describing document clustering techniques, there is

almost no prior work which directly addresses the

challenges, constraints, and nuances of requirements

clustering. As a result, the effectiveness of software

engineering tools and processes that depend on

requirements clustering is severely limited. This report

directly addresses the problem of clustering requirements

through surveying standard clustering techniques and

discussing their application to the requirements

clustering process.

1. Introduction

Software requirements specify the goals, functionalities,

and constraints of a software system [Zave97]. The

discipline of systematically managing requirements is

known as requirements engineering (RE). To decompose

the problem of managing requirements, RE defines a set

of basic tasks, such as elicitation, analysis and validation,

and documentation of the requirements within a software

requirement specification (SRS). The effectiveness of

these tasks, namely the extent to which they improve the

overall quality of the software product, depends a good

deal on the supporting tools and characteristics of the

software project itself. Many manually executed tasks

work well in small or medium projects, but are ineffective

in large projects. This is illustrated by the failure of FBI

Virtual Case File (VCF) project [Gold05]. This was a

170 million dollar project whose functionality was

documented in an 800 page requirements specification.

As a specialist involved in the VCF project once pointed

out, the problems in eliciting, managing, and prioritizing

requirements significantly contributed to the disaster. In

particular, during the requirement elicitation, significant

effort was expended to manually discover and understand

the requirements from hundreds of stakeholders but,

unfortunately, this huge effort did not translate into a

successful product. RE tasks, especially when related to

very large projects, are in need of automated support.

The crux of the problem is how to automatically and

efficiently coordinate large numbers of stakeholders‘

requests, and to arrange the subsequent requirements into

meaningful structures.

Clustering, or cluster analysis, provides a potential

solution to help address this problem. Clustering is

defined as the automatic division of the data or population

into cohesive subsets or clusters. Despite its long history

of study, the importance of clustering has become more

obvious since the emergence of the internet, with the

onslaught of huge volumes of data, generated and

accumulated through the exchange of information.

Methods needed to be developed to organize the data and

to mine useful information. Clustering has been

employed widely in text retrieval and mining to address

several issues such as retrieval performance improvement

[Kowalski97], document browsing [Cutting92], topics

discovery [Ertz01], organization of search results

[Zamir97], and concept decomposition [Dhillon01].

Clustering methods can be classified according to the

nature of the data, such as spatial data, time series data,

2

and document data. Given that most software

requirements are specified as documents in natural

language, it is reasonable to adopt theories, methods, and

tools from the document clustering discipline.

Admittedly, the two areas of document clustering and

requirements clustering, have a lot in common. For

example, as mentioned previously, both cases deal with

textual information, suggesting that the basic framework

of document clustering, including preprocessing

techniques, similarity calculations between two

documents, clustering algorithms, and validation of

clusters, can be adopted in requirements clustering. Both

problem domains also share a number of challenges, such

as high dimensionality of the data, significant background

noise, and the need for scalability.

The clustering of requirements, however, is

significantly more difficult than the clustering of ordinary

documents in a number of ways. First, the cluster

granularity, i.e. the number of clusters, needs to be

determined automatically in requirements clustering at a

very fine level of granularity. Whereas document

clustering stems from the need to sort or filter large

collections of texts, such as books, patent articles, or web

pages, the purpose, which is usually the sole purpose, of

information clustering, is to organize the documents into

a limited number of categories to ease a few basic tasks

such as browsing and searching. The number of the

categories is typically small, and is usually known in

advance. On the other hand, the purposes for clustering

of requirements are highly variable and are dependent on

the tasks for which the generated clusters will be put to

use. Many tasks rely upon very fine-grained clusters, and

have no existing reference categories, meaning that the

granularity and themes of the clusters must be determined

automatically.

Second, each domain makes different assumptions

about the membership of each datum. Document

clustering usually assumes each document comes from

one of the fixed numbers of categories; in other words,

each document belongs to one and only one cluster. In

contrast, crisp clustering assignments are insufficient for

requirements, and a single requirement may need to be

placed into multiple clusters. Furthermore a significant

number of requirements may be outliers which do not

belong in any cluster.

Third, the two domains differ in the distribution of

topics among the data set. The documents studied in

typical document clustering tend to contain rich textual

information and exhibit only one dominant significant

topic in each document. Software requirements, on the

other hand, are typically documented tersely and their

common segments tend to be short and sometimes appear

trivial. Consequently, the requirements clusters generated

by traditional document clustering algorithms are often

formed around a dominant topic, while critical cross-

cutting concerns are dispersed across multiple clusters.

For example, the three requirements shown below, are all

related to the topic of login and could reasonably be

placed into a login cluster, however they were actually

scattered across three more dominant clusters of local

display, unique ID‘s, and informing the employee. A

better approach would have been to place them each into

two distinct clusters, representing each of their themes.

Figure 1.1 Trivial topics distort more meaningful

clustering

Finally, document clustering has a wealth of available

data sets to support empirical evaluation of clustering

algorithms. These include carefully selected large scale

document data sets, such as TREC [TREC], UCI KDD

data sets [Hettich99], which have been manually cleaned

up and classified as reference answer sets for clustering.

The fact that requirement clustering has no such answer

set to serve the purpose of evaluation, is a significantly

non-trivial problem that is addressed later in this proposal.

In fact one of the secondary contributions of this research

will be the placement of three requirements datasets into

the public domain for use in ongoing comparative studies

for requirements clustering.

These three problems related to the dynamic

determination of granularity, dealing with terse multi-

topic requirements, and a lack of a standard answer set

pose serious challenges to the requirements clustering

problem, which have not been fully addressed and well

tackled in existing research. The objective of the research

in this proposal is to incorporate these unique challenges

into the design and validation of clustering algorithms in

order to identify, enhance, or develop clustering

algorithms capable of generating cohesive and loosely

coupled clusters that provide efficient automated support

for a wide variety of RE related tasks.

2. Document clustering

This chapter first introduces the general process of

document clustering. Each of the following primary

components is discussed: preprocessing, weighting,

similarity computation, clustering algorithms, and cluster

validation. While the survey focuses on crisp clustering

3

algorithms, a fuzzy clustering algorithm based on

correlation metrics and the neural method of self-

organizing maps (SOM), are also discussed. The chapter

then reviews the author‘s prior work on applying

traditional clustering algorithms to the requirements

domain.

2.1 Definition and Notation

Clustering is defined as the division of a set of objects

into K clusters or groups for which the intra-cluster

cohesion is maximized and the inter-cluster coupling is

minimized. This proposal is devoted to the discussion of

clustering on documents and textual software

requirements. For a more comprehensive review of

various clustering research fields, see [Jain88, Jain99,

Berkhin02, Theodoridis06, Duda01].

In this proposal, the name ―artifact‖ is used to refer to

a document, which in the requirements domain is

synonymous with either a requirement or a raw statement

of stakeholder‘s needs. It is usually represented by an

artifact vector whose components correspond to the terms

that have been extracted from the artifact collection. Let

the set of terms be denoted as T = {t1, t2, … td}, then the

whole artifact collection can be represented as a term-by-

document matrix where each column

corresponds to an artifact. The component value

 in artifact denotes the weight

of term for . This weight could simply be the number

of occurrences of in , but is more typically a score

computed by taking additional factors into account, a

procedure called ―weighting‖ that is to be discussed in

section 2.4.

 In the remainder of the discussion the following

notation is adopted. Regular letters denote scalars, small-

bold letters such as x or y denote any of the artifact

vectors, and capital-bold letters such as A, B denote

matrices.

2.2 Components of document clustering process

For systematic studies, the process of document clustering

is generally described by decomposing the clustering

process into the following components: preprocessing,

weighting, similarity calculations, grouping by use of a

clustering algorithm, and cluster validation. As shown in

Figure 2.1, the sequence of these components includes

two feedback paths. The first one represents the output of

the grouping algorithm fed back into the next round of

computations, while second feedback path represents the

feedback from evaluating the clusters, which impacts the

next iteration of grouping.

weighting
similarity

calculation
groupingpreprocessing validation

raw

artifacts

Figure 2.1 Components of a document clustering

process

2.3 Preprocessing of raw artifacts

The purpose of preprocessing is to remove any

information that is either insignificant, or detrimental to

the clustering. First the text is split into meaningful

tokens, which are generally referred to as ords. Next, stop

words i.e. extremely common words including articles,

pronouns, and any other frequently occurring term such

as do and make, are eliminated since they do not provide

useful information for helping to differentiate between

different documents. Remaining words are then stemmed

to their root forms. These stemmed words are typically

referred to as terms. Finally, it is possible, although not

yet demonstrated to return consistently improved results

[REF], to use a thesaurus or explicitly constructed

matching word listto unify the occurrence of synonyms or

other forms of domain equivalencies. Following this step,

any term that occurs only once in the entire document

collection can also be removed, as these terms are not

useful for clustering purposes. After these preprocessing

steps, a raw artifact is represented by a vector whose

components correspond to the terms determined to be

significant in the collection.

2.4 Weighting of terms

The term weights represent values attached to each term

to indicate their importance within an artifact. Three main

components that are used to compute a term weight

include: the term frequency (tf), the inverse document

frequency factor (idf), and a document length

normalization (dl) factor [Salton86]. The most frequently

used term weighting is the product of tf and idf, referred

to as tf-idf and computed as:

where is the occurrence of term j in document i, N is

the total number of documents, and Nj is the number of

documents in which term j appears at least once. This

simple weighting scheme is very widely used because it is

4

intuitively sound – the more a term appears in a collection,

the less useful information it provides for computing

similarity between two documents.

Despite the success of tf-idf and its variations, a

number of additional weighting schemes have been

proposed and empirically proven to be more efficient.

One of them, pivoted document length normalization

weighting [Singhal96], is defined as

where , , s is the slope constant, p is the

average number of distinct terms throughout the

collection, and u is the number of distinct terms in

document i. In a study by Singhal [Singhal96] this

weighting was demonstrated to obtain 13.7% more

relevant documents [Singhal96].

Latent Semantic Analysis

Another type of term weighting, more commonly called

indexing, attempts to capture the semantic relationship

between documents by the reduction or transformation of

term dimensions. It can be viewed as an implicit domain

thesaurus. Among many such schemes of term indexing,

Latent Semantic Indexing (LSI), or Latent Semantic

Analysis (LSA) has been shown to be able to filter noisy

data and absorb synonymy i.e. the use of two different

terms that share the same meaning, and polysemy i.e. the

use of a single term to mean to distinct things, in large

corpus [Deerwester90, Dumais93, Dumais95, Berry05].

The basic derivation of LSI is as follows. Let X be the

term by document matrix

 is the occurrence vector of term i, and

 is the vector of document j. The dot-

product then gives the correlation between terms, and

matrix XX
T
 contains all of the correlations. Likewise,

 represents the correlation between documents, and

matrix X
T
X stores all such correlations.

Singular Value Decomposition (SVD) is applied to X

to produce three components:

where U and V are orthonormal matrices and ∑ is a

diagonal square. Applying this factorization to XX
T
 and

X
T
X:

In other words, the columns of U are the eigenvectors of

matrix XX
T
, the columns of the V are the eigenvectors of

matrix X
T
X, and ∑ is the square root of the eigenvalues of

matrix XX
T
 or X

T
X. This can also be denoted as follows:

The selection of k largest singular values, and the

corresponding singular vectors from U and V, constitutes

a rank K approximation to X, , with the

smallest error in terms of Frobenius Norm, where each

artifact di can be represented by K weights vi.

Furthermore, this approximation transforms the original

purely physical occurrence into the relationship in the

concept space, leading to a new similarity calculation

between terms or documents.

However, LSA has three serious problems. First,

the purely matrix factorization derivation of LSI makes

the resulting dimensions difficult to interpret. Second, and

more important, LSA assumes that words and documents

form a joint Gaussian model, while is against the

commonly observed Poisson distribution. And last, the

optimal k must be empirically determined by numerous

trials.

Non-negative matrix factorization

Non-negative matrix factorization (NMF) represents a

similar dimensional transformation technique to LSA.

NMF factorizes a matrix X into two matrices U and V

with the constraints that the elements in U and V are non-

negative, namely, X = UV
T
, uij ≥ 0 and vij ≥ 0. NMF for a

matrix is not exclusive and the choice of factorization

depends on the divergence of resulting factorization UV
T

from the original matrix X. For example, as discussed in

http://en.wikipedia.org/wiki/Poisson_distribution

5

[Xu03], the Frobenius norm
1

can be used as the

divergence criterion, whose optimization involves the

minimization of the objective function or

equivalently :

with the constraints that , and by

introducing proper Lagrange multipliers, the following

iterative estimation of U and V is reached:

The whole iteration has time complexity O(tKN), where t

is the number of the iterations.

Similarly to LSA, NMF discovers a latent

semantic space from the data, in which each axis captures

the base topic of a candidate document cluster. Each

document is then represented as an addictive combination

of the base topics. NMF differs noticeably from LSI in

two aspects. First, the latent space found by NMF does

not need to be orthogonal. Second, and more important to

clustering, the projection values are all positive, so that

the clusters could be directly derived from V – i.e. the

cluster membership of each document is determined by

finding the base topic or topics with which the document

has the largest projection value. Nevertheless the

dimensions found by NMF can still be hard to interpret.

2.5 Similarity calculation between artifact vectors

In most heuristic algorithms, requirement clustering is

strongly dependent upon computing the similarity

between pairs of documents. Therefore the similarity

computation of two artifact vectors can significantly

impact the quality of the resulting clustering. The

concepts of distance and similarity are complementary,

with distance representing the level of dissimilarity

between two documents, and similarity denoting the level

to which they resemble each other. The more general

1
 The Frobenius norm of a matrix A = (aij) is the sum of

square of all the elements of A: .

word ―proximity‖ is therefore sometimes used to denote a

certain metric between two artifacts which can be

expressed either as similarity or distance. The commonly

used proximity metrics for documents include:

Correlation. For two artifact represented as column

vectors x = (x1, x2, …, xd)
T
 and y = (y1, y2, …, yd)

T
, their

un-normalized correlation is their dot product:

Euclidean Distance. Euclidean distance measures the

distance between vector x and y in d-dimensional space:

Euclidean distance is a special case of the Minkowski

metric when θ is set to 2:

Direction Cosine. While Euclidean distance is concerned

with the absolute distance between vectors, the direction

cosine measures the similarity purely based on the

relative magnitudes of the features:

where and are the Euclidean norms of the vector,

defined as . Their distinction can be observed

from Figure 2.2. It should be noted that if vectors x and y

have been normalized with regard to the norm,

, then the Euclidean distance is completely

complementary to the dot-product, since

.

6

A

B

C

Figure 2.2 Normally Euclidean distance and cosine

direction give unrelated scores for raw vectors,

demonstrated by the fact that is incompatible to

the measure of ; on the other hand, for normalized

vectors, the two metrics function equally.

Hamming distance. Originally defined for binary codes,

Hamming distance can be used to compare any ordered

sets that consist of discrete-valued elements. It defines the

dissimilarity of two vectors of the same lengths to be the

number of different symbols in them normalized by the

length of the vector:

Probabilistic similarity. In information retrieval, the

similarity between two documents can be formulated as

the inference probability from one document to another.

Formally, the inference of document x given query y in a

d-term space can be defined as the posterior probability:

There are many alternate methods for calculating .

Some assume a specific distribution of terms such as

Poisson or multinomial [Zaragoza03] and then integrate

the probability density function in the inference, while

others assume no known parametric distributions and

proceed in an ad hoc way. One of the latter techniques

uses the frequency of term ti in the x fx,i to estimate

, an approximation that leads to

 and . The estimation of

 usually follows the idea of reversed term frequency

discussed in the last section on weighting, namely,

, where is the total occurrence of , and

N is the total number of the artifacts. Notice that unlike

the three proximities just discussed, sb is asymmetric, i.e.,

the belief acquired from x to y is usually different from

the one acquired from y to x given that x and y are

different.

The choice of proximity calculation technique

depends on the nature of the data, representation of the

data, and other requirements or constraints. For example,

in spatial data clustering, Euclidean distance is a natural

choice, while in document clustering, which depends on

the frequencies of components rather than on their

absolute scores, Cosine distance is more appropriate and

therefore more widely used, as reported in [Feature

Projection]. However if the speed of calculation is

important, asymmetric metrics should be used with great

caution because of the extra time needed to normalize

averages such as and .

2.6 Crisp document clustering algorithms

For an artifact collection with size m the number of

possible K-clusterings has been proven to be the Stirling

number of the second kind [Anderberg73]

Even for a very small requirement collection, this number

would be huge. So instead of brute-force evaluation of

each possible clustering, a heuristic search algorithm must

be designed to converge towards an optimal solution

quickly.

A high quality clustering requires clusters to be

internally cohesive and to exhibit low inter-cluster

coupling, and this goal can be expressed as an objective

function. A clustering algorithm can then be viewed as an

optimization process that either implicitly or explicitly

satisfies designated objective functions either at a local or

global level. In structure, the optimization can be bottom-

up, top-down, or flat iterative. The taxonomies of crisp

clustering algorithms, which for completeness purposes

are not limited to the ones used in clustering requirements,

are shown in Figure 2.3.

Figure 2.3 Classification of clustering algorithms

7

Before reviewing each of these algorithms, one important

point must be made: just like a deck of poker cards may

be arranged effectively but in different ways by different

players, it is also true that no universally optimal

clustering algorithm exists. Each clustering algorithm

makes implicit assumptions about the shape of clusters

the data should exhibit, has different capabilities for

handling high dimensionality and large scale data,

consumes various lengths of time, adopts different

strategies to tackle outliers, and so forth.

Hierarchical algorithms have been frequently

used for clustering clustering documents. They are

divided into agglomerative (bottom-up) and divisive (top-

town) [Hartigan75, Jain88] approaches. The

agglomerative algorithms start from singleton clusters and

continuously merge the most similar clusters, while

divisive ones begin with a large cluster containing all of

the data and recursively split the least cohesive cluster.

The decisions that traditional hierarchical clustering

algorithms make at merging or splitting are based on the

linkage metric i.e. the similarity or distance between two

clusters. Common approaches include the single link,

which calculates the shortest distance between objects in

each of the two clusters, complete link, which calculates

the two farthest objects, and average link which computes

the average. A slightly different approach is adopted in

the Ward algorithm, which uses an objective function

similar to the one used in K-means. The complete link,

average link, and Ward work well only in finding tightly

bound or compact clusters. In contrast, the single-link

algorithm is more versatile – it can not only extract

concentric clusters, as shown in Figure 2.4, but can also

find the clusters that are mixed with noise patterns.

However, it suffers from a chaining effect [Nagy68],

which means it has a tendency to produce clusters that are

straggly or elongated. These traditional algorithms are

used less nowadays because their typical time complexity

is O(N
2
) which is not cost-effective when clustering a

large amount of data, and also they are not able to revisit

clusters that have already been formed in order to perform

additional optimizations or reclustering. Despite these

limitations, they may still prove useful within the RE

domain, as many of the initial clustering tasks can be

performed offline as batch processes, meaning that

running time is not as significant as cluster quality.

Some sophisticated hybrid hierarchical

algorithms have been proposed to alleviate these

weaknesses. The algorithm CURE, described in [Guha98],

represents each cluster by a fixed number of points

instead of simply by a centroid or medoid. This

algorithm is therefore able to identify non-spherical

shapes and to dampen the effect of outliers. It also

improves scalability through using random sampling and

partitioning. The 2-phase algorithm CHAMELEON

[Karypis99] uses dynamic modeling to measure the

similarity between two clusters. In the first phase, a K-

nearest neighbor connectivity graph is generated and

produces small tight clusters. In the second phase, these

tight clusters, as well as processed interim clusters, are

recursively merged only if the mutual inter-connectivity

and closeness are relatively high in comparison to the

internal inter-connectivity and closeness. This dynamic

modeling was found to be able to identify the clusters that

CURE and DBSCAN [Sander98] failed to identify.

Another agglomerative hierarchical algorithm proposed

by Chiu et al. [Chiu01] adopted a probabilistic technique

Figure 2.4 The versatility of single-link clustering [Jain99]

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

8

for measuring similarity between Gaussian distributed

clusters. For each cluster c, its log likelihood is

, and then the distance between two

clusters is defined as a descent likelihood

. By using this model-based measure,

the merging is able to effectively filter out outliers.

Unfortunately, these effective algorithms are usually

applied to spatial data where shape and density is often

geometrically clear. They become inept in dealing with

the documents, since documents reside in very high

dimensional space where similarity is calculated using

correlation instead of Euclidean distance.

In contrast to the hierarchical clustering

algorithms which construct hierarchies, partitional

clustering algorithms iteratively optimize a flat separation

structure. The subclasses of partitional algorithms are

relocation method, probabilistic method, density-based

method, and graph-theoretic method. The relocation

method reassigns the data points to its nearest cluster

usually guided by an objective function. It has two

variations differentiated by different choices for

representing a cluster. K-Medoids methods, such as PAM

[Kaufman90], CLARA [Kaufman90], and CLARANS

[Ng02], choose a data point within a cluster as a cluster

representative, whereas K-means methods, such as

Forgy‘s algorithm [Forgy65] and incremental K-means

[Duda01], calculate the arithmetic mean of a cluster as its

representative. K-medroids methods present no limitation

on data types and are less sensitive to the outliers.

Although affected by outliers, K-means has the advantage

of clear geometric and statistical meaning [Dhillon01a].

Probabilistic methods, which will be elaborated further in

Chapter 4, assume closed form statistical models

for each cluster, learn this model from the data, and

classify the data by a Bayesian discriminate:

Although often suffering from the initialization problem

that a bad initial configuration will lead to local optima,

relocation and probabilistic clustering methods are used

widely in clustering documents thanks to their O(N) time

efficiency. For example, the series of papers by Dhillon

present an excellent, thorough introduction to K-means‘

application in document clustering, discussing basics

[Dhillon01b], scalability [Dhillon01b], heuristic

improvement [Dhillon02], and utilization [Dhillon01a].

The third subclass of partitional methods are

density-based algorithms, including DBSCAN [Sander98],

DBCLASD [Xu98], etc, while the fourth subclass of

graph-theoretic methods are gaining in popularity because

of their success in image segmentation [Shi00, Meila01].

They will not be discussed in this proposal because of the

strong reliance on spatial relationships for density-based

methods and high computational cost (O(N
2
)) for Graph-

theoretic methods.

It is far from trivial to determine the best

clustering algorithm for a specific clustering task,

however some hybrid hierarchical clustering algorithms,

such as PDDP [Boley98] and bisecting 2-means [Zhao02]

have been shown in document clustering to outperform

purely hierarchical methods or purely partitional methods.

2.7 Fuzzy K-means based on correlation metrics

This fuzzy algorithm, also known as FCM, is a

generalized K-means clustering, with an extended

objective function defined over correlation metric space:

where is the membership assignment of artifact i to

the cluster j, and is the centroid of clustering j, and

is a hyper-parameter to control the magnitude of

calculated norm. To minimize , the updating of

membership scores and centroids follow as [Rodrigues04]:

and

where as usual, N is the number of artifacts, and d is the

number of terms.

2.8 Self-organizing maps (SOM)

A self-organizing Map (SOM) is a Vector Quantization

(VQ) and neural data projection technique, often used in

clustering and visualizing high-dimensional data

[Kaski97, Kohonen01, Vesanto97]. The high-dimensional

input data are mapped into 2-dimensional or 3-

9

dimensional lattices to approximate the density

distribution of the input. On one hand, similarly to K-

means and principal curves projection [Hastie89], SOM is

a VQ method, which finds a series of vectors called

codebooks or models, so as to represent a large collection

of vectors. On the other hand, SOM tries to preserve the

topological relationship among the input vectors so that

the adjacent map units resemble each other coherently.

Combining these two typically contradictory facets, SOM

achieves a tradeoff between VQ resolution and

topological preservation.

In a nutshell, with input vectors x(t), the time t =

0,1,…,N, as shown in Figure 2.5, the SOM array or lattice

is comprised of an ordered set of codebook units mi that

act as representatives of similar inputs. The array is

updated nonlinearly through a number of training

iterations. Each iteration goes through two steps: first

every input is attached to the best matched unit (BMU),

i.e. the model that is most related; then after all the inputs

are classified, each model mi is updated as the mean or

median of the Ni neighbor associated inputs within a

certain radius. The process of iterations stops when the

values of codebook converge.

The cluster structure of a trained SOM can be

viewed by a U-matrix. It stores the similarity scores

between adjacent array units in an orderly manner and

can be visualized as a ―bordered‖ SOM, where a group of

darker cells represents a possible cluster and a series of

brighter cells represents a possible cluster border. Figure

2.6 is the U-matrix visualization of Iris data [Anderson35],

a classical dataset consisting of 50 samples from each of

three species of Iris flowers (Iris setosa, Iris virginica and

Iris versicolor). From U-matrix it is easy to identify two

clusters distributed vertically on the map although the

formation of the third one is not very sharp.

Figure 2.6 The U-matrix of Iris data

2.8.1 Formal definition of SOM training

An incremental SOM training process using Euclidean

distance measures is formally described as follows

[Kohonen01]:

Initialization

The coordinates of models could be initialized randomly,

or linearly, where vectors are calculated in an orderly

fashion along the linear subspace spanned by the two

SOM 19-Nov-2007

U-matrix

0.108

0.743

1.38

Figure 2.5 The structure and training of an SOM [Kohonen01]

10

principal eigenvecters of input data set using Gram-

Schmidt orthogonalization.

Iteration in time t+1

(1) With each input x, the best-matching unit

 is identified

(2) Each model j is updated as

Where is a neighborhood function, a

smoothing kernel, usually defined as

.

In practice, there are two simple choices for . In the

first one, if , and 0 otherwise.

 can be any function that decreases

monotonically in time, such as . The

second choice takes into account the distance of unit j and

BMU in , where both

 and are decreasing

monotonically in time.

Due to the high time complexity of the

incremental version, SOM can also be trained in batch

mode. Apparently in the equilibrium of SOM, since

, then , where x is

one of the closest data point to mi. By expansion,

which means each must coincide with the centroid of

the respective influence region. This observation leads to

batch SOM training, where the models are updated by all

of the input vectors simultaneously, as Figure 2.5 has

shown.

The training of SOM depends on several

parameters which must be explicitly specified. These

include the shape and model number of the SOM array,

radius of a neighbor, and iteration times. Among them,

the size of the SOM array significantly influences the

training time. To achieve a good result, the number of

iterations must normally be at least 500 (array size).

2.8.2 Quality measurement

The quality of SOM is usually measured in terms of

topology preservation, VQ resolutions, or a combination

of both of them.

Since SOM is the mapping of the original data density, it

should not exhibit significant differences between

adjacent units, meaning that it should be smooth. This

smoothness can be calculated as

(a) ,

Cij = 1 if unit i and j are the two closest BMUs

of ANY input vector x ;

(b) where if the

corresponding closest two BMUs are not

adjacent.

In the perspective of data clustering, the quantization

error over the whole testing data:

should be minimized. So a combined quality measure is

appropriate, such as

where the second term calculates the minimum path from

1
st
 BMU to 2

nd
 BMU.

2.9 Granularity determination

In some clustering tasks the number of clusters to be

generated, also referred to as the ‗stopping criterion‘ is

predefined. However in many cases, the granularity

needs to be determined automatically at runtime by the

clustering process. There are five common approaches to

estimating the granularity of a clustering. These include

cross-validation, penalized likelihood estimation,

permutation tests, re-sampling, and finding the significant

turning point of a metric curve [Salvador04]. Model-

based methods, such as cross-validation and penalized

likelihood estimation, are computationally expensive and

often require the clustering algorithm to be run several

times. Permutation tests and re-sampling are extremely

inefficient, since they require the entire clustering

algorithm to be re-run hundreds or even thousands of

times. Even worse, many of the evaluation functions that

are used to evaluate a set of clusters run in O(N
2
) time.

This means that it may take longer just to evaluate a set of

clusters than it does to generate them.

The fifth approach, which searches for a

significant turning point, is more widely used in practice.

A statistical based validation metric is computed during

the sequence of clustering and then all the scores of this

metric are composed into a score curve. The appropriate

11

number of clusters is determined by locating a significant

point, which can either be a maximum or minimum, or

turning points represented as a ―knee‖ or ―elbow‖ of the

score curve. There are methods that statistically evaluate

each point in the score curve and pick the significant

points automatically. Such methods include the gap

statistic [Tibshirani03], prediction strength [Tibshirani01],

and ―L‖ method [Salvador04]. These methods generally

require the entire clustering algorithm to be run for each

potential number of clusters. However, for hierarchical

algorithms computation is inexpensive, because the only

difference between two successive clusters numbered K

and K-1 is one additional merge or split.

Generally these validation metrics are

categorized into internal metrics which measure cohesion,

external metrics which measure coupling, and hybrid

metrics.

Cohesion metrics

For a clustering comprised of cluster set , the

internal metrics evaluate the cohesion of clusters by

considering either the similarity between artifacts and the

centroid or the similarity between each possible pair of

artifacts. For the convenience of formulation, for cluster

, let a composite vector represent the sum

of its contained artifact vectors, and

 represent the vector of the centroid,

cohesion metrics are then defined as

Coupling metrics

External metrics estimate the level of coupling between

clusters. One way of defining the total coupling is to

calculate the size weighted sum of similarity to the

centroid of the entire collection:

Another commonly used coupling measurement is

computed as the average pair-wise similarity between

cluster centroids:

A recent work by Kulkarni discussed the clustering

stopping criteria in the bisecting clustering algorithm

[Kulkarni06]. Her method focused on the study on the

curve of the objective function (called cf in the paper).

Three metrics PK1(m) which transforms the metric score

into a normalized z-score, PK2(m) which measures the

ratio of two consecutive scores, and PK3(m) which

normalizes the score by the sum of scores from adjacent

steps , are shown below:,

,

,

were considered to decide whether granularity m is an

optimal stopping point. The limitation of these metrics is

that they only consider cohesion of the clusters, but

ignore the coupling between the clusters. This is

problematic because coupling and cohesion tend to trade-

off against each other. Some widely used metrics that

take into account both cohesion and coupling are

reviewed next.

Hybrid metrics

Hybrid metrics combine both internal and external

metrics; in other words, they attempt to maximize

cohesion while simultaneously minimizing coupling.

Obviously the ratio of internal and external metrics can

serve naturally as hybrid metrics, such as .

Other commonly used hybrid metrics are described as

follows.

MinMaxCut [Zhao01]

12

This metric simply calculates the average of the coupling-

cohesion ratio, and so lower scores represents better

clustering.

Davies-Bouldin (DB) index [Davies79]

DB measures the goodness of a clustering by its average

dispersion and cluster coupling. In a partition of n objects

into K clusters, for all pairs of clusters and , the

within-to-between cluster spread is defined as

where ej and ek are the standard deviation of point-to-

centroid distances for and respectively, and

. Then the spread for

individual cluster is defined as

Finally, the DB index for K-cluster clustering is

Intuitively, DB index considers the average distance of

clusters to their nearest clusters respectively, therefore the

smaller DB (K) indicates the better clustering.

Dunn’s index [Dunn74]

This metric is built on the notion of distj,k which was just

defined, and also cluster diameter

. It attempts to capture both

the mutual distance between clusters and the inner span of

a cluster simultaneously by using the formula:

The larger Dunn (K) score is an indicator of a better

clustering.

Hubert’s statistic [Halkidi01]

This metric measures the quality of clustering by

considering the correlation between the partitioning and

the original proximity matrix. Denoting the proximity

matrix as X = [xij] and cluster labeling matrix Y = [yij],

where yij=1 when requirement i and j are in the same

cluster, and yij=0 otherwise, Hubert statistic is defined

as the point correlation between X and Y

A normalized Hubert‘s statistic can also be defined as:

where M = n(n -1)/2, and mx, my, sx, sy are the mean and

standard deviation of two matrices respectively. A direct

application of Pearson‘s linear correlation, means that the

normalized Hubert is always between -1 and 1.

Unusually large absolute values of suggest that two

matrices agree with each other. But since the index

increases monotonically as K increases, one can

determine the optimal clustering granularity by

identifying significant turning points.

As an example, of the Hubert index applied to

the IBS data set, the scores of these metrics, with a small

modification that uses correlation instead of Euclidean

distance to measure similarity, are plotted in Figure 2.7 at

successive values of K.

Figure 2.7 Score curves of DB, Dunn, Hubert, and

normalized Hubert for IBS

Three main problems make the direct application of these

metrics in requirements clustering dubious:

(1) They require substantial computation. Most of them

have time complexity of O(N
2
).

0

0.2

0.4

0.6

0.8

1

1.2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Hubert% Dunn DB Hubert

13

(2) They usually return different answers and it is not

clear which one is best. For example, in the Figure 2.7,

the knees or elbows for Hubert, DB, Dunn, and

Normalized Hubert are 6, 3, 4, and 5 respectively. As

IBS is a relatively small dataset, these differences

represent significantly different granularity strategies.

Additional factors are therefore needed to select the

optimal granularity from these solutions

(3) They do not take into account the purposes of

particular clustering tasks which place additional

constraints on the granularity. For example, if the 214

requirements of IBS data are divided into 10 clusters,

the average cluster size will be 22. Although in theory,

this granularity represents a best fit to the data, when

used in tasks for which clusters are used directly by

humans, 22 requirements per cluster is not ideal and

would be hard for a human analyst to work with.

2.10 Correlation measure of partitions

Correlation metrics between partitions are necessary for

validating and comparing clusters against a priori

clustering, often an answer set that has been manually

produced and scrutinized. Three types of correlation

metrics exist in the literature of cluster analysis. They

include metrics based on binary vector comparison, those

based on information theory, and finally those based on

retrieval performance evaluation.

Binary vector comparison

In a clustering, for all artifact pairs , an indicator

is set to 1 if the pair belongs together and 0 otherwise.

Thus in two clusterings, there are 4 possible combinations:

11, 00, 10, and 01, as shown in the table below:

 1 0

1 a B

0 c D

Three commonly used basic correlation coefficients

known as Rand, Jaccard, and Folkes and Mallows index

have been derived from this confusion table:

 Some modifications are proposed, most of which apply

certain weightings on the ―a‖ in the Jaccard index, such as:

Intuitively, Rand takes into account both commonalities,

whereas Jaccard focuses on the togetherness. In practice,

these two metrics normally differ significantly: Rand

index is too high, and Jaccard index is too low, and

unfortunately no great guidelines exist in index choice.

One problem with Rand index is that its

expected value for two random partitions does not take a

constant value. The adjusted Rand index assumes the

generalized hyper-geometric distribution as the model of

randomness, i.e., the two partitions are picked at random

such that the number of objects in the classes and clusters

are fixed. With the extended confusion table shown below:

U/V v1 v2 …. vC Sums

u1 n11 n12 … n1C n1.

u2 n21 n22 … n2C n2.

…. … … … … …

uR nR1 nR2 … nRC nR.

Sums n.1 n.2 … n.C n..=n

and the adjusted Rand index [Hubert85] as:

where

Typically the adjusted Rand index is much lower than the

Rand index.

Information theoretical measures

Unlike binary vector comparison, which makes a hard

pair-wise examination of two partitions, information

theoretical measures the extent to which knowledge of

one partition reduces uncertainty of the other. The

agreement between two partitions P
a
 and P

b
 is expressed

by the mutual information:

14

where ka and kb are the cluster numbers of two partitions,

n is the total number of artifacts, is the number of

shared artifacts in cluster a of clustering P
a
 and cluster b

of clustering P
b
 (similar explanation to). To

make the value bounded between 0 and 1, the

normalization can be added by arithmetic [Fred05] or

geometric average [Strehl03]:

where H(P) is the entropy of a clustering

.

Maximum F-measure

This metric considers the agreement between two

clusterings as a retrieval evaluation, for and , for

which the recall, precision, and F-measure are defined as:

Since NMI and F-measure have monotonous dependency

on the cluster number and cluster size, they are typically

used when two clusterings have comparable granularity.

2.11 Related work on requirement clustering

Despite the large body of literature on clustering, there

has not yet been a substantial body of research focused on

the clustering of requirements. This section discusses the

available literature discussing clustering in requirements

engineering.

Hsia et al [Hsia88, Hsia96] realized that

although functional decomposition of design is mature, it

is hard to map these functional parts onto customer-

recognizable components. They therefore proposed the

idea of decomposing requirements into a certain number

of useful, usable, and semi-independent partitions that

would facilitate incremental delivery (ID). The proximity

matrix is constructed indirectly from the references

requirements make to a set of system components; the

clustering algorithm is a simplified hierarchical clustering

technique in which requirements are segmented by

continuous application of a series of proximity thresholds.

This approach is reasonable in their example because the

size of the requirements set is not large. However, they

did not provide a convincing method or empirical

evidence to validate their choice of clustering methods.

Yaung [Yaung92] has the similar motivation and applies

hierarchical clustering to explore the analogy between

design modularity and requirements modularity; but again

no rigorous evaluation of experimental results is

presented.

Chen et al. [Chen05] used requirements

clustering to automatically construct feature models for

software product line analysis. They calculated the

proximity between requirements by their various access

modes to system resources, constructed a graph whose

edge weights were based on the proximities, and utilized

an iterative graph-splitting approach to cluster the

requirements. They evaluated the individual cluster

quality using an independency metric (IM), which is a

graph theoretical metric that computes the ratio of the

sum of outer edge weights over the sum of inner edges

weights.

These limited studies have focused on very

specific and unique clustering applications, but have not

addressed the challenges described in Chapter 1, which

are critical to successful clustering of real-life large scale

requirement repositories. For example, most of the studies

use trivial-sized data sets for concept proving, picked a

clustering algorithm without empirical evaluation to

compare different techniques, and did not address the

issue of comprehensive cluster validation. Motivated by

the flourish of clustering research in many other areas and

the necessity of introducing robust automated methods to

deal with large requirement collections, the author has

done some earlier work to investigate the use of

traditional term-based clustering algorithms within the

requirements domain.

15

2.12 Author’s earlier work using crisp document

clustering methods

Duan et al [Duan07b] described a process for using

traditional clustering algorithms and validation metrics to

support automated tracing. Clustering algorithms are used

to organize the candidate links in ways which would be

more intuitive to the analyst, and would facilitate the

analyst‘s task of evaluating the correctness of each link.

Three clustering algorithms of average link

agglomerative hierarchical, K-means, and bisecting 2-

means hierarchical, were evaluated. Two validation

metrics, Hubert index and CC, were used to determine

cluster granularity. Based on the observation that these

two metrics did not return results that fully

accommodated the tasks the clusters were intended to

support, a new metric, named theme metric, along with a

heuristic that constrained the average cluster size, was

proposed to achieve optimal cluster granularity.

2.12.1 Data sets in these prior experiments

The three datasets included in the experiment were the Ice

Breaker System (IBS), Event Based Traceability (EBT),

and Public Health Watcher (PHW).

IBS was initially described in [Robertson99] and

enhanced with requirements mined from documents

obtained from the public work departments of Charlotte,

Colorado; Greeley, Colorado; and the Region of Peel,

Ontario. IBS manages de-icing services to prevent ice

formation on roads. It receives inputs from a series of

weather stations and road sensors within a specified

district, and uses this information to forecast freezing

conditions and manage dispersion of de-icing materials.

The system consists of 180 functional requirements, 72

classes, and 18 packages.

EBT, which was initially developed at the

International Center for Software Engineering at the

University of Illinois at Chicago, provides a dynamic

traceability infrastructure based on the publish-subscribe

scheme for maintaining artifacts during long-term change

maintenance. It is composed of 54 requirements, 60

classes, and 8 packages.

Finally PHW represents a health complaint

system developed to improve the quality of the services

provided by health care institutions [Soares02]. The

specification is mainly structured as use cases, and in this

paper, each use-case step is extracted as a requirement,

resulting in 241 requirements.

2.12.2 Clustering algorithms

For completeness, the three algorithms are briefly

described as follows.

Average-link agglomerative hierarchical clustering

(AHC)

Initialization Each requirement is assigned to an

individual cluster, and the similarities

between requirements are calculated as

the similarities between clusters.

Iterations - Merge the most similar pair of clusters

 - Calculate the similarity between the

new cluster ci and each existing cluster cj by

ji caca

c

ji

ji aas
cc

ccS
21 ,

21),(
||||

1
),(

Termination The target granularity K is met.

K-means clustering

Initialization Define a set of centroids M = {m1,

m2, …, mK} for clusters {c1, c2, …, cK}.

To avoid poor quality clusters, pick K

artifacts from D to serve as initial

centroids such that these artifacts

exhibit as little mutual similarity as

possible.

Iterations - For each artifact ai, compute the

similarity scores between ai and each

centroid. Identify the centroid mj that is

most similar to ai, and assign or

reassign ai to cluster cj.

- For each cluster cj, recompute the

newly formed center mj as the mean of

all the artifacts contained in cj.

Termination No membership reassignment occurs

during an iteration.

Bisecting Hierarchical Clustering (BHC)

The bisecting Hierarchical clustering algorithm relies on

K-means (K=2 specifically) clustering to consecutively

bisect a larger cluster into two smaller ones. It runs as

follows:

Initialization Assign all the artifacts to a single

cluster

Iterations - For each ci in the present clustering C,

bisect it using 2-means clustering and

16

then compute the score of the objective

function E over the resulting clusters

- Select the cluster cp that exhibits the

highest E score. For this cluster,

commit the splitting of cp, by removing

cp, and adding the two new clusters into

the clustering.

Termination The target granularity K is met.

Comparison

In time complexity, both K-means and BHC exhibit a

time complexity of O(N), although BHC is usually slower

than K-means since its complexity has a much larger

constant. AHC has a O(N
2
) complexity, thus is much

slower when clustering large scale data sets.

The biggest advantage of bisecting clustering

over K-means clustering is that it tends to produce

relatively uniformly sized clusters, a nice property

especially useful in supporting applications where the

average size of the clusters is relatively small. Actually,

through the empirical comparison with answer set by

using the partition comparison metrics just introduced,

bisecting clustering produces better document clusters

than K-means most of the time, as already demonstrated

by Steinbach et al. [Steinbach00] and Zhao [Zhao02].

However, this balance cluster assumption in bisecting

algorithms may embed outliers in clusters, therefore

reducing the cohesion of the clustering.

2.12.3 Granularity determination

Hubert index and CC, the ratio between intra-cluster

cohesion and inter-cluster coupling, were adopted to

determine the right number of clusters for the bisecting

algorithm. Figure 2.8 and 2.9 show their score curves and

highlight the significant turning points for 3 data sets.

Figure 2.8 Hubert’s index against three datasets

Figure 2.9 CC index against three datasets

The first problem with these two metrics is that they

return very different answers to the granularity question.

The second problem is that human evaluation of the

generated clusters suggested that several of the resulting

clusters contained multiple meaningful topics or themes,

and that it was not the case that every requirement in a

cluster belonged to a single, and clearly identifiable

theme. Furthermore, many of the resulting clusters were

not cohesive enough for practical use by human analysts.

To locate the stopping point that produced truly cohesive

clusters and to measure the quality of the generated

clusters i.e. clusters with a single dominant theme, a set of

theme-based metrics were designed.

The basic idea of the theme-based metric is that a

cohesive cluster should have only one dominant theme.

This dominant theme within a cluster is represented by a

Iterations

H
ub

er
t V

al
ue

0

0.005

0.01

0.015

0.02

0.025

0.03

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Potential
stopping
points

IBS

PHW

EBT

11

22

56

6

11
20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66

Iterations

C
C

-r
a
ti

o
 V

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66

C
C

-r
a
ti

o
 V

a
lu

e

C
C

-r
a
ti

o
 V

a
lu

e

a. Public Health Watcher System. b. Ice Breaker System. c. Event Based Traceability

CH: Cohesion

IS: Intercluster

similarity

11

20

18

28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16

CC-ratio

6

13 Potential

stopping

point

33

40

54

Figure 2.10 Theme cohesion and coupling for three datasets showing ideal cluster window.

Iterations

a. Public Health Watcher System. b. Ice Breaker System. c. Event Based Traceability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9 17 25 33 41 49 57 65 73 81 89 97

w
e
ig

h
te

d
 s

u
m

 V
a
lu

e

TCH

1-TCP

Combined

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9 17 25 33 41 49 57 65 73 81 89 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16

Ideal cluster

window

Stopping

point

48

26
11

17

set of dominant terms Dt = {dt1, dt2, dt3,…dtm} , each of

which satisfies p
N

dtN

R

iR)(
, where NR(dti) is the number

of requirements in the cluster containing term dti, NR is

the total number of artifacts in the cluster, and 0 p 1 is

a threshold. Based on the definition of dominant terms,

theme cohesion (TCH) is computed as

R

R

N

DtIN
TCH

))((
 where NR(I(Dt) α) represents the

number of requirements containing at least percentage α

of all dominant terms, and theme coupling (TCP) is the

normalized correlation between dominant terms

2/)1(

|]|||/[
,

kk

DtDtDtDt

TCP
Ccc

jiji
ji

. Then the theme

metric (TM) is defined as the weighted combination of

TCH and TCP: . For the

practical use of TM in granularity determination of

bisecting clustering, a target range has to be first

estimated since the TM is not compatible with the

objective function that guides the bisecting algorithm.

This range is based on George Miller‘s research which

showed that an average person can handle around seven

chunks, plus or minus five, of information in working

memory at a time [Miller56]. Our approach therefore

targeted an average cluster size within the range of seven

to twelve, and used this to compute the target number of

clusters needed. The granularity that optimized theme

cohesion within the target number of clusters, as shown

by a maximum on the TM curve, in Figure 2.10, was then

selected.

3. Probabilistic topic-based modeling of

textual artifacts

The clustering of documents or requirements can also be

studied from the perspective of model learning. In that

view, the artifacts in a cluster are similar in that they

conform to the same parametric distribution, and

accordingly, the clustering is a process of identifying

those distributions and classifying artifacts according to

their most related distributions. Because these

approaches have a sound probabilistic interpretation,

adapt flexibly to data of different characteristics, and are

empirically proven to exhibit good performance in both

supervised and un-supervised learning, they are becoming

prevalent in machine learning and information retrieval.

Topic-based modeling is one example of such state-of-

the-art document modeling methods. Intuitively, a topic is

represented by a set of terms that are most closely related

to that topic. In the language of statistics, a topic z

corresponds to a distribution of terms, in most cases a

multinomial

distribution . A

number of topic models exist in literature, differentiated

by their assumption on the relationship between

documents and topics. Some of them, such as

multinomial mixture and Dirichlet compound

multinomial mixture, assume that a document is

associated with only one topic, while others, such as

PLSA and LDA, assume that a document can be a

mixture of multiple topics. The latter has been

demonstrated to be more flexible, performing better in

document modeling, document categorization, and

collaborative filtering [Blei03], etc. This chapter

provides a survey of a number of these models and the

inference of them.

3.1 Maximum likelihood estimates of mixture

model and EM framework

Before further discussing the modeling of topics, the

basic finite mixture model and some techniques for

estimating the parameters of mixture models are reviewed

as the former is the skeleton of almost all the probabilistic

latent topic models and the latter is indispensible in model

inference.

Maximum likelihood estimates (MLE)

Among various estimation techniques, MLE is the most

widely used for its simplicity. The basic idea is to choose

the parameters that maximize the likelihood function of

the samples. Suppose n i.i.d. (identically and

independently distributed) samples ,

let be the log-

likelihood function of the samples, then parameter is

estimated as . Numerically the MLE

is typically given by the solution of the linear equation

. The MLE solution could represent a true global

maximum, a local maximum or minimum, or an inflection

point of .

As an example, in cases where the samples conform

to a multivariate Gaussian distribution p(x) ~ N(μ,∑)

18

where and

− = − − , the MLE of calculated by

the vanishing gradient of L are:

Expectation-Maximization (EM)

The MLE of models with simple closed form of

likelihood such as Gaussian can be directly derived, while

this is more complicated for other models such as

multinomial mixture models (see the next section). A

particularly important method of estimating complicated

models is the EM framework. EM was originally

proposed as a computational framework to cope with the

problem of missing data [Dempster77], and it has also

been applied in problem domains where, even though the

observable data are complete, the problem can be

reformulated into one with missing latent variables. This

section introduces EM in its most general form.

First, by Jensen‘s inequality, if

, then

EM tries to maximize the difference between samples‘

likelihoods of two iterations:

where is the likelihood of desired parameters θ, and

 is the likelihood of desired parameters θn.

Denoting by Z the unobserved or missing variables,

likelihood can be un-marginalized as

then the difference of two likelihoods is:

 (2)

By introducing ,

and writing

Any θ that increases in turn increases L(θ), the

parameter of which is denoted as θn+1. So by dropping the

terms that are constant with respect to θ , :

The intuitive way to understand this is: now that the

values of X and θn are known and θ is the parameter to be

adjusted, then distribution of Z is governed by p(z|X, θn);

with this Z distribution, the next value of θ will be the one

that maximized expected value of ln p(z|X, θn) w.r.t. Z.

Based on the derivation above, the two iterative steps

of EM are:

- E-step: Determine the conditional expectation

- M-step: Maximize the expression with respect to θ

So EM provides a framework for parameter estimate

while taking into account the unobserved or missing data

Z.

19

3.2 Finite mixture model and unsupervised

learning of mixture model

The finite mixture model assumes the probability density

of a sample as the weighted mixture of a certain number

of component densities, namely,

where K is the number of components, is the

p.d.f. of the component i, is the prior of the component

i, and includes all the parameters of Kcomponents.

By ML,

In practice, since the log of the sum of densities is not

easy to handle, EM is typically used to simplify the

learning of the models [McLachlan00]. Let Zi be a

random discrete variable with value among 1, 2 , …, and

K, namely an indicator which component actually issues

the sample xi. then the likelihood can be simplified as

According to the EM framework just introduced, the E-

step (as defined in section 4.1.2) will be

The parameters can then be calculated in the M-step

where and . It has been

proven that the iterative calculation of parameters by EM

never decreases the likelihood, so in many cases an

optimal estimate can be achieved once certain difference

tolerances of the likelihood difference is met.

3.3 Related work on un-supervised learning of

finite mixture document model

Fraley et al discussed the use of a mixture model in

clustering multivariant normal data and Bayesian

Information Criterion (BIC) in model selection [Fraley98,

Fraley02]. The mixture model of a sample is:

where a Gaussian distribution is assumed:

. In

addition, they modeled the noise and outliers as a constant

rate Poisson process, resulting in the mixture log

likelihood of

where V is the hypervolume of the data region. In this

modeling, if an observation is noisy, it contributes 1/V to

the likelihood, and a normal mixture likelihood otherwise.

Their experiment on Diabetes diagnosis and minefield

detection suggested that for their data, the Gaussian

mixture model clustering outperformed K-means and

single link hierarchical clustering, whether noise was

present or not.

For modeling documents where supposedly a

topic is in fact a multinomial distribution over terms,

mixture multinomial models are proposed for supervised

and un-supervised learning [Nigam00, Rigouste07],

where the probability of document x of length n is:

Another type of mixture model, Dirichlet compound

multinomial (DCM) model and EDCM model, addressed

in [Madsen05, Elkan06], adds one more degree of

freedom by modeling the generation of a document in a

Polya process which first performs a Dirichlet drawing:

and then a multinomial drawing:

20

Integrating the parameter , a DCM

where n is the length of the artifact x and s is the sum of

Dirichlet parameter vector. The DCM mixture model

learned using EM is shown to outperform the multinomial

mixture in clustering NIPS document sets [Elkan06].

A serious problem in these mixture models is that

they all assume a document exhibits only a single

dominant topic, which results in overfitting especially

when the collection has insufficient samples [Blei03].

This limitation can only be overcome by assuming the

existence of multiple topics in a document.

3.4 Topic-based modeling of documents

Based on the assumption that semantic information can be

derived from a word-document co-occurrence matrix, the

topic-based modeling methods claim that documents are

composed of a mixture of topics, where a topic is a

probability distribution over words. For example, in a

requirements data set PCS, the topic of database

construction will be mainly comprised of words such as

database, server, backup, microsoft, configure, oracle,

SQL. For the purpose of clustering, the desired outcome

of topic models includes not only the topics, but also the

topic distribution over documents, two sets of parameters

denoted in and here. Two widely used models, PLSA

and LDA, will be described as follows.

3.4.1 Probabilistic LSA (PLSA)

Probabilistic LSA [Hoffman99] is a pioneer in

probabilistic topic modeling of documents. Although

strictly speaking not a generative model, it achieves a

document decomposition and topic extraction with sound

probabilistic interpretation. A description and fitting of

the model using EM [Hoffman99] is now described.

The model used by PLSA to model documents is

called the aspect model, a latent variable model which

associates an un-observed topic with

each observation of occurrence of a document d and a

term w, whose joint probability can be written as:

One important assumption underlying this modeling is the

conditional independence – the d and w are independent

conditioned on the state of the associated latent variable.

Putting P(d) inside the summation leads to the following

symmetric expression of joint probability:

The distinction is illustrated in Figure 3.1.

By defining

, the joint model P could be written as

 Although this factorization resembles the

LSA, PLSA differs from LSA primarily in the objective

function used to determine the optimal approximation.

LSA uses Frobenius norm, which corresponds to an

implicit additive Gaussian noise assumption on counts; in

contrast, PLSA relies on the likelihood function of

multinomial sampling, a well-defined probability

distribution and factors that have a clear probabilistic

meaning.

d

z

w d

z

w

Figure 3.1 Graphical Model representation of aspect

model in the symmetric (left) and asymmetric (right)

parameterization.

Learning of the PLSA model using EM

PLSA uses EM to find the MLE of parameters, so it does

not guarantee to find the global maximum. The joint

probability and log likelihood are:

21

Applying the EM estimate of the mixture model, letting

the targeted parameters be all , , and

,

The posterior

After the introduction of Lagrange multipliers and solving

, the iterative estimate of the parameters are:

Among them, represents the term distribution

over topics φ. Further, θ, the topic distribution specific to

a document di can be calculated using Bayes rule:

Having been demonstrated to outperform many other

semantic methods such as LSA, PLSA has two

weaknesses. First over-fitting and local optima estimation

occurs in the learning of the model. Second, as it is not a

generative model for documents, the likelihood of a new

document w can only be represented heuristically by

marginalizing over all the existing documents:

3.4.2 Latent Dirichlet Allocation (LDA)

LDA is a three-level hierarchical generative model for

documents, constrained with two set of corpus

parameters , Dirichlet priors , and

term distributions over topics , where

. A document represented by vector w of length

W is generated in the following steps:

1. Draw a topic distribution θ from Dirichlet

distribution Dir(α) with prior

2. For each term position in w

draw a topic z from Multinomial(θ)

draw a word w from Multinomial(z, β)

The relationship between observed and latent variables is

shown in the plate diagram below:

α θ z w

β

M
N

Figure 3.2 Graphical model representation of LDA

Therefore, the joint distribution of a document w with

latent topics z under topic distribution θ is:

By integrating over θ and summing over topics z, the

above leads to the marginal distribution of a document:

Model learning using Gibbs Sampling

Since the form of document distribution is intractable, in

Blei‘s original LDA paper [Blei03], Variational Bayesian

22

(VB) was used for model inference. The method

described here is a Gibbs sampling based estimation

method described in [Griffiths04, Steyvers07] as it‘s easy

to implement, and competitive in speed and performance

with other methods.

The Gibbs sampling LDA inference adds a

Dirichlet prior on the term distributions over topics,

denoted as β in [Blei03]. To unify the denotation in

clustering which uses both PLSA and LDA, β here is

switched to represent Dirichlet prior and φ is used for

term distributions. The probabilistic model of LDA with

Dirichlet prior is:

And their graphical model plate is shown in Figure 3.3.

α θ z w

β

M
N

φ

T

Figure 3.3 Graphical model representation of LDA

with Dirichlet Prior on term distributions

Given a plausible assumption of uniform priors for α and

β, since Dirichlet distributions and are

conjugate to the multinomial distributions

 and , the

distributions and can be directly expressed

in α and β, leading to a convenient expression of posterior

, that is:

and

Where W is the number of the terms, D is the number of

artifacts, is the number of times word w is assigned to

topic j, and is the number of times a word from

document d is assigned to topic j. Then, a Gibbs

sampling process is carried over this posterior distribution

until a stable set of samples is obtained. Finally the

statistics that are independent of individual topics can be

computed by integrating across the whole set of samples,

and φ and θ can be estimated using samples from the

converged chain:

Theme # 1

Theme # 2

Theme # 3

Theme # 4

Theme # 5
Term Score Term Score Term Score Term Score Term Score

Email 0.042 calendar 0.06 campaign 0.066 print 0.033 case 0.016

Messag 0.027 meet 0.048 target 0.055 territori 0.029 document 0.016

Address 0.022 abil 0.025 list 0.041 assign 0.028 text 0.015

contact 0.015 appoint 0.024 email 0.037 team 0.022 opportun 0.012

associ 0.015 dai 0.021 send 0.019 pro 0.014 layout 0.011

account 0.014 event 0.021 contact 0.016 manag 0.01 lead 0.011

link 0.013 schedul 0.02 lead 0.014 option 0.01 second 0.011

histori 0.012 dashlet 0.017 mail 0.014 record 0.009 project 0.011

automat 0.012 displai 0.016 distribut 0.013 sale 0.008 descript 0.01

send 0.011 time 0.016 sent 0.011 state 0.008 search 0.009

Figure 3.4 A sample of themes extracted from SugarCRM feature requests showing top terms. Terms over a

threshold >= 0.15 are shaded.

23

It has been proven in [Girolami03] that PLSA is a

maximum a posteriori estimated LDA model under a

uniform Dirichlet prior, which is exactly the setting that

the Gibbs sampling based inference takes. However, as

they have different numerical inferences and those

inferences highly rely on the characteristic of data, the

performance must be evaluated within specific domain

applications.

As an illustration of extracted topics from

requirements using topic probabilistic models, Figure 3.4

shows five topics or themes from mining SUGAR data

sets.

It can seen that not all the topics are equally

meaningful and strong, so in general, when these

algorithms are applied, the identified topics will be

rigorously analyzed along with other parameters inferred

from model fitting, producing sets of parameters that are

used to derive the clustering by classifying each

requirement according to the topics that it primarily

contains. For comparison purposes, the popular fuzzy K-

means algorithm will be implemented and compared with

the topic-based clustering in the coverage of found topics.

4. Conclusion

 The first part of this report extensively surveys the

document clustering methods, and presents the

experiments results using several popular heuristic-based

crisp clustering algorithms on requirements. Based on the

observation that typical requirements have terse

representation and multiple topics, which causes the loss

of significant topics, the second part proposes using

probabilistic topic models, such as PLSA and LDA, to

directly extract topics from requirements and then to

derive clusters from significant topics. The future work

will include the vigorous validation of topic-based

clustering of requirements, investigating whether it can

produce more cohesive clusters and wider range of topics

to facilitate various requirement engineering tasks.

References
[Ambroise00] Ambroise, C., Seze, G., Badran, F., and Thiria, S.

2000. Hierarchical clustering of self-organizing maps for cloud

classification. Neurocomputing, 30(1):47–52.

[Anderberg73] Anderberg, M. R. 1973. Cluster Analysis for

Applications. Academic Press.

[Anderson35] Anderson, E. 1935. The irises of the Gaspe

Peninsula. Bulletin of the American Iris Society 59: 2–5.

[Antoniol02] Antoniol, G., Canfora, G., Casazza, G., De Lucia

A., and Merlo, E. 2002. Recovering traceability links between

code and documentation. IEEE Transactions on Software

Engineering, Vol. 28, No. 10, 2002, pp. 970-983.

[Bacao05] Bacao, F., Lobo, V., and Painho, M. 2005. Self-

organizing Maps as Substitutes for K-Means Clustering. Lecture

Notes in Computer Science, Volume 3516/2005, pp. 476-483,

2005.

[Baniassad04] Baniassad, E. and Clarke, S. 2004. Finding

Aspects in Requirements with Theme/Doc. In Proceedings of

Early Aspects 2004.

[Baniassad06] Baniassad, E., Clements, P., Araujo, J., Moreira,

A., Rashid, A., and Tekinerdogan, B. 2006. Discovering early

aspects. IEEE Software, Vol 23, No 1, Jan/Feb 2006, pp. 61-70.

[Berkhin02] Berkhin, P. 2002. Survey of Clustering Data

Mining Techniques. Accrue Software.

[Berry05] Berry, M. W. and Browne, M. 2005.

Understanding Search Engines: Mathematical Modeling and

Text Retrieval (Software, Environments, Tools), Second Edition.

Society for Industrial and Applied Mathematics.

[Blei03] Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003.

Latent dirichlet allocation. J. Mach. Learn. Res. 3 (Mar. 2003),

993-1022.

[Boehm04] Boehm, B. and Turner, R. 2004. Balancing

Agility and Discipline: A Guide for the Perplexed, Addison

Wesley.

[Boley] Boley, D.L. 1998. Principal direction divisive

partitioning. Data Mining and Knowledge Discovery, 2, 4, 325-

344.

[Bradley98] Bradley, P. S. and Fayyad, U. M. 1998. Refining

initial points for k-means clustering. In J. Shavlik, editor,

Proceedings of the Fifteenth International Conference on

Machine Learning (ICML '98), pages 91--99, San Francisco, CA,

1998.

[Can90] Can, F. and Ozkarahan, E. A. 1990. Concepts

and effectiveness of the cover-coefficient-based clustering

methodology for text databases. ACM Trans. Database Syst. 15,

4 (Dec. 1990), 483-517.

[Castro-Herrera08] Castro-Herrera, C., Duan, C., Cleland-

Huang, J., and Mobasher, B. 2008. Using Data Mining and

Recommender Systems to Facilitate Large-Scale, Open, and

Inclusive Requirements Elicitation Processes. submitted to

RE'08.

[Chen05] Chen, K., Zhang, W., Zhao, H., and Mei, H. 2005.

An Approach to Constructing Feature Models Based on

Requirements Clustering. In Proceedings of the 13th IEEE

international Conference on Requirements Engineering (Re'05),

Volume 00, IEEE Computer Society, Washington, DC, 2005.

[Chiu01] Chiu, T., Fang, D., Chen, J., Wang, Y., and Jeris,

C. 2001. A robust and scalable clustering algorithm for mixed

type attributes in large database environment. In Proceedings of

the Seventh ACM SIGKDD international Conference on

24

Knowledge Discovery and Data Mining (San Francisco,

California, August 26 - 29, 2001). KDD '01.

[Ciampi00] Ciampi, A. and Lechevallier, Y. 2000. Clustering

large, multi-level data sets: an approach based on kohonen self-

organizing maps. In Principles of Data Mining and Knowledge

Discovery. 4th European Conference, PKDD 2000. Proceedings

(Lecture Notes in Artificial Intelligence Vol.1910). Springer-

Verlag, Berlin, Germany, pages 353–8.

 [Cleland-Huang05a] Cleland-Huang, J., Settimi, R.,

BenKhadra, O., Berezhanskaya, E., and Christina, S. 2005. Goal

Centric Traceability for Managing Non-Functional

Requirements. Intn‘l Conf on Software Engineering, (ICSE‘05),

(St Louis, USA, May 2005), ACM Press, 362-371.

[Cleland-Huang05b] Cleland-Huang, J., Settimi, R., Duan, C.,

and Zou, X. 2005. Utilizing supporting evidence to improve

dynamic requirements traceability. In proceeding of

International Requirements Engineering Conference, Paris,

France, 2005. pp. 135-144.

[Cleland-Huang06] Cleland-Huang, J., Settimi, R., Zou, X., and

Solc, P. 2006. The detection and classification of non-functional

requirements with application to early aspects. IEEE Intn’l Conf.

on Reqs Engineering, Minneapolis, MN, 2006, pp. 39-48.

[Cleland-Huang07a] Cleland-Huang, J., Settimi, R., Zou, X.,

and Solc, P. 2007. Automated Classification of Non-Functional

Requirements. Requirements Engineering Journal, August,

2007.

[Clelend-Huang07b] Cleland-Huang, J., Berenbach, B., Clark,

S., Settimi, R., and Romanova, E. 2007. Best Practices for

Automated Traceability. IEEE Computer, 40, 5, (June, 2007),

24-32.

[Cleland-Huang08] Cleland-Huang, J., and Mobasher, B. 2008.

Using Data Mining and Recommender Systems to Scale up the

Requirements Process. 3rd International Workshop on Ultra

Large Software Systems, Leipzig, Germany, May, 2008.

 [Cutting92] Cutting, D. R., Karger, D.R., Pedersen, J.O., and

Tukey, J. W. 1992. Scatter/Gather: A Cluster-based Approach to

Browsing Large Document Collections. Conf. on Research and

Development in information Retrieval, (Copenhagen, Denmark,

1992), pp. 318-329.

 [Davies79] Davies, D. L. and Bouldin, W. 1979. A cluster

separation measure. IEEE PAMI, 1:224–227, 1979.

[Davis06] Davis, A., Dieste, O., Hickey, A., Juristo, N., and

Moreno, A. 2006. Effectiveness of Requirements Elicitation

Techniques. IEEE Intn’l Requirements Engineering Conf.,

Minneapolis, MN, Sept. 2006, pp. 179-188.

[Deerwester90] Deerwester, S., Dumais, S. T., Furnas, G. W.,

Landauer, T. K., and Harshman, R. 1990. Indexing by latent

semantic analysis. Journal of the American Society for

Information Science, 41(6), 391-407.

[Dekhtyar07] Dekhtyar, A., Hayes, J. H., Sundaram, S.,

Holbrook, A., and Dekhtyar, O. 2007. Technique Integration for

Requirements Assessment. RE'07. (Oct. 2007), 141-150.

[DeLucia06] De Lucia, A., Fasano, F., Oliveto, R., and Tortora,

G. 2006. ADAMS: advanced artefact management system. 10th

European Conference on Software Maintenance and

Reengineering, (CMSR’06), (2006), 349-350.

[Dempster77] Dempster, A., Laird, N., and Rubin, D. 1977.

Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society, Series B,

39(1):1–38, 1977.

[Dhillon01a] Dhillon, I. S. and Modha, D. S. 2001. Concept

decompositions for large sparse text data using clustering.

Machine Learning, 42, ½, (Jan. 2001), 143-175.

[Dhillon01b] Dhillon, I., Fan, J., and Guan, Y. 2001. Efficient

Clustering of Very Large Document Collections. In R.

Grossman, G. Kamath, and R. Naburu, editors, Data Mining for

Scientific and Engineering Applications, Kluwer Academic

Publishers, 2001.

[Dhillon01c] Dhillon, I. S. 2001. Co-clustering documents and

words using bipartite spectral graph partitioning. In Proceedings

of the Seventh ACM SIGKDD international Conference on

Knowledge Discovery and Data Mining (San Francisco,

California, August 26 - 29, 2001).

[Dhillon02] Dhillon, I. S., Guan, Y., and Kogan, J. 2002.

Iterative Clustering of High Dimensional Text Data Augmented

by Local Search. In Proceedings of the 2002 IEEE international

Conference on Data Mining (Icdm'02) (December 09 - 12,

2002).

[Duan07a] Duan, C. and Cleland-Huang, J. 2007. A

Clustering Technique for Early Detection of Dominant and

Recessive Cross-Cutting Concerns. In Proceedings of the Early

Aspects At Icse: Workshops in Aspect-Oriented Requirements

Engineering and Architecture Design (May 20 - 26, 2007).

International Conference on Software Engineering.

[Duan07b] Duan, C. and Cleland-Huang, J. 2007. Clustering

Support for Automated Tracing. International Conference on

Automated Software Engineering, Atlanta, Georgia, November,

2007.

[Duda01] Duda, R. O., Hart, P. E., and Stork, D. G. 2001.

Pattern classification (2nd edition), Wiley, New York.

[Dumais93] Dumais, S. 1993. LSI Meets TREC: A Status

Report, In Proc. First Text Retrieval Conference (TREC1), pp.

137--152, NIST Special Publication 500-207.

[Dumais95] Dumais, S. 1995. Latent semantic indexing (LSI):

TREC-3 report. In D. Hartman, editor, The Third Text REtrieval

Conference, NIST special publication 500-225, pages 219-

230,1995.

[Dunn74] Dunn, J. C. 1974. Well separated clusters and

optimal fuzzy partitions. Journal of Cybernetics, 4:95-104, 1974.

[Elkan06] Elkan, C. 2006. Clustering documents with an

exponential-family approximation of the Dirichlet compound

multinomial distribution. In Proceedings of the 23rd

international Conference on Machine Learning (Pittsburgh,

Pennsylvania, June 25 - 29, 2006). ICML '06, vol. 148.

 [Ertz01] Ertz, L., Steinbach, M., and Kumar, V. 2001.

Finding Topics in Collections of Documents: A Shared Nearest

Neighbor Approach. Text Mine '01 at SIAM Intn‘l. Conf. on

Data Mining, (Chicago, IL, 2001).

http://www.answers.com/topic/peter-e-hart

25

[Fern03] Fern, X. Z. and Brodley, C. E. 2003. Random

projection for high dimensional data clustering: A cluster

ensemble approach. In Proc. of ICML, Washington, DC (2003)

186—193.

[Fern04] Fern, X. Z. and Brodley, C. E. 2004. Solving

cluster ensemble problems by bipartite graph partitioning. In

Proceedings of the Twenty-First international Conference on

Machine Learning (Banff, Alberta, Canada, July 04 - 08, 2004).

[Forgy65] Forgy, E. 1965. Cluster analysis of multivariate

data: Efficiency versus interpretability of classification.

Biometrics, 21, 768-780.

[Fraley98] Fraley, C. and Raftery, A. E. 1998. How many

clusters? Which clustering method? -Answers via model-based

cluster analysis. The Computer Journal 41, 578–588.

[Fraley02] Fraley, C. and Raftery, A. E. 2002. Model-based

clustering, discriminant analysis and density estimation. Journal

of the American Statistical Association 97, 611–631.

[Fred05] Fred, A. L. and Jain A. K. 2005. Combining

Multiple Clusterings Using Evidence Accumulation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 27, no. 6, pp. 835-850, June, 2005.

[Flexer01] Flexer, A. 2001. On the use of self-organizing

maps for clustering and visualization. Intelligent Data Analysis,

5:373–84.

[Girolami03] Girolami, M. and Kabán, A. 2003. On an

equivalence between PLSI and LDA. In Proceedings of the 26th

Annual international ACM SIGIR Conference on Research and

Development in informaion Retrieval (Toronto, Canada, July 28

- August 01, 2003). SIGIR '03.

[Gold05] Goldstein, H. 2005. Who Killed the Virtual Case

File? IEEE Spectrum, Vol. 42, No. 9, 2005, pp. 24-35.

 [Gotel94] Gotel, O. C. Z. and Finkelstein A. C. W. 1994.

An Analysis of the Requirements Traceability Problem. Proc.of

the 1st Intn’l Conf. on Requirements Engineering (ICRE '94),

(Colorado Springs, CO, 1994), IEEE Computer Society Press,

94-101.

[Gotel95] Gotel, O. 1995. Contribution Structures for

Requirements Traceability. London, England: Imperial College,

Department of Computing, 1995.

[Griffiths04] Griffiths, T. and Steyvers, M. 2004. Finding

Scientific Topics. Proceedings of the National Academy of

Sciences, 101 (suppl. 1), 5228-5235.

[Guha98] Guha, S., Rastogi, R., and Shim, K. 1998. CURE:

An efficient clustering algorithm for large databases. In

Proceedings of ACM SIGMOD International Conference on

Management of Data, pages 73--84, New York, 1998.

[Halkidi01] Halkidi, M., Batistakis, Y., and Vazirgiannis, M.

2001. On Clustering Validation Techniques. Journal of

Intelligent Information Systems, 17,2-3,. (Dec. 2001), 107-145.

[Hartigan75] Hartigan, J. 1975. Clustering Algorithms. John

Wiley & Sons, New York, NY.

[Hastie89] Hastie, T. and Stuetzle, W. 1989. Principal

curves. Journal of the American Statistical Association, 84:502-

516.

[Hayes06] Huffman Hayes, J., Dekhtyar, A., and

Karthikeyan Sundaram, S. 2006. Advancing Candidate Link

Generation for Requirements Tracing: The Study of Methods.

IEEE Transactions on Software Engineering, 32, 1, (2006),

IEEE Computer Society Press, 4-19.

[Hettich99] Hettich, S. and Bay, S. D. 1999. The UCI KDD

Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of

California, Department of Information and Computer Science.

[Hofmann99] Hofmann, T. 1999. Probabilistic latent semantic

indexing. In Proceedings of the 22nd Annual international ACM

SIGIR Conference on Research and Development in information

Retrieval (Berkeley, California, United States, August 15 - 19,

1999).

[Hsia88] Hsia, P. and Yaung, A. T. 1988. Another

Approach to System Decomposition: Requirements Clustering.

In Proceedings of COMPSAC ’88, Chicago, IL, October 3-6,

1988.

 [Hsia96] Hsia, P., Hsu, C. T., Kung, D. C., and Holder, L.

B. 1996. User-Centered System Decomposition: Z-Based

Requirements Clustering. In Proceedings of the 2nd

international Conference on Requirements Engineering (ICRE

'96) (April 15 - 18, 1996). ICRE. IEEE Computer Society,

Washington, DC, 126.

[Jain88] Jain, A. K. and Dubes, R. C. 1988. Algorithms

for Clustering Data. Prentice-Hall, Inc.

[Jain99] Jain, A. K., Murty, M. N., and Flynn, P. J. 1999.

Data Clustering: A Review. ACM Computing Surveys, Vol 31,

No. 3, 264-323.

[Kaski97] Kaski, S. 1997. Data Exploration Using Self-

Organizing Maps. PhD thesis, Helsinki University of

Technology, 1997.

[Karypis99] Karypis, G., Han, E., and Kumar, V. 1999.

Chameleon: Hierarchical Clustering Using Dynamic Modeling.

Computer 32, 8 (Aug. 1999), 68-75.

[Kaufman90] Kaufman, L. and Rousseeuw, P. 1990. Finding

Groups in Data: An Introduction to Cluster Analysis. John

Wiley and Sons, New York, NY.

[Kit06] Kit, L., Man, C., and Baniassad, E. 2006.

Isolating and relating concerns in requirements using latent

semantic analysis. SIGPLAN Not. 41, 10 (Oct. 2006).

[Kohonen01] Kohonen, T. 2001. Self-organizing Maps.

Springer-Verlag, Berlin Heidelberg New York.

[Kowalski97] Kowalski, G. 1997. Information Retrieval

Systems – Theory and Implementation. Kluwer Academic

Publishers.

[Kulkarni06] Kulkarni, A. 2007. Unsupervised Context

Discrimination and Automatic Cluster Stopping. Master Thesis.

[Laerhoven01] Van Laerhoven, K. 2001. Combining the self-

organizing map and k-means clustering for on-line classification

of sensor data. In Artificial Neural Networks-ICANN 2001,

Proceedings, pages 464–469.

[Lange05] Lange, T. and Buhmann, J. M. 2005. Combining

partitions by probabilistic label aggregation. In Proceeding of

the Eleventh ACM SIGKDD international Conference on

26

Knowledge Discovery in Data Mining (Chicago, Illinois, USA,

August 21 - 24, 2005).

[Li04] Li, T., Ogihara, M., and Ma, S. 2004. On

combining multiple clusterings. In Proceedings of the

Thirteenth ACM international Conference on information and

Knowledge Management (Washington, D.C., USA, November

08 - 13, 2004).

[Lin06] Lin, J., Lin, C.C., Cleland-Huang, J., Settimi, R.,

Amaya, J., Bedford, G., Berenbach, B., Ben Khadra, O., Duan,

C., and Zou, X. 2006. Poirot: A Distributed Tool Supporting

Enterprise-Wide Traceability. IEEE International Conference

on Requirements Engineering, (September, 2006), 356-357.

[Madsen05] Madsen, R. E., Kauchak, D., and Elkan, C. 2005.

Modeling word burstiness using the Dirichlet distribution. In

Proceedings of the 22nd international Conference on Machine

Learning (Bonn, Germany, August 07 - 11, 2005). ICML '05,

vol. 119.

[Marcus03] Marcus A. and Maletic, J. 2003. Recovering

Documentation-to-Source-Code Traceability Links using Latent

Semantic Indexing. International Conference on Software

Engineering, 2003, pp. 125-137.

[Marcus05] Marcus, A., Maletic, J. I., and Sergeyev, A. 2005.

Recovery of Traceability Links Between Software

Documentation and Source Code. International Journal of

Software Eng. and Knowledge Eng., 15, 4, (October 2005),

World Scientific Publishing Co. 811-836.

[McLachlan00] McLachlan, G. J. and D. Peel. 2000. Finite

Mixture Models. Wiley.

[Meila98] Meila, M. and Heckerman, D. 1998. An

Experimental Comparison of Several Clustering and

Initialization Methods. In Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence (Morgan

Kaufmann, Inc., San Francisco, CA, 1998) 386-395.

[Meila01] Meila, M. and Shi, J. 2001. Learning

Segmentation with Random Walk. Neural Information

Processing Systems, NIPS, 2001.

[Miller56] Miller, G.A. 1956. The Magical Number Seven,

Plus or Minus Two: Some Limits on our Capacity for

Processing Information. The Psychological Review, 63, (1956),

81-97.

[Monti03] Monti, S., Pablo, T., Mesirov, J. and Golub, T.

2003. Consensus Clustering: A Resampling-Based Method for

Class Discovery and Visualization of Gene Expression

Microarray Data. Machine Learning, 52, pp. 91-118, 2003.

[Nigam00] Nigam, K., McCallum, A. K., Thrun, S., and

Mitchell, T. 2000. Text Classification from Labeled and

Unlabeled Documents using EM. Mach. Learn. 39, 2-3 (May.

2000), 103-134.

[Ng02] Ng, R. T. and Han, J. 2002. CLARANS: A

Method for Clustering Objects for Spatial Data Mining. IEEE

Transactions on Knowledge and Data Engineering,

vol. 14, no. 5, pp. 1003-1016, September/October, 2002.

[Pena99] Pena, J.M., Lozano, J.A. and Larran~aga P. 1999.

An empirical comparison of four initialization methods for the

k-means algorithm. Pattern Recognition Letters, 20, 1999,

1027-1040. 50.

[Rashid02] Rashid, A., Sawyer, P., Moreira, A. M., and

Araújo, J. 2002. Early Aspects: A Model for Aspect-Oriented

Requirements Engineerin. In Proceedings of the 10th

Anniversary IEEE Joint international Conference on

Requirements Engineering (September 09 - 13, 2002). RE. IEEE

Computer Society, Washington, DC, 199-202.

[Rashid03] Rashid, A., Moreira, A., and Araújo, J. 2003.

Modularisation and composition of aspectual requirements. In

Proceedings of the 2nd international Conference on Aspect-

Oriented Software Development (Boston, Massachusetts, March

17 - 21, 2003). AOSD '03. ACM, New York, NY, 11-20.

[Rigouste07] Rigouste, L., Cappé, O., and Yvon, F. 2007.

Inference and evaluation of the multinomial mixture model for

text clustering. Inf. Process. Manage. 43, 5 (Sep. 2007), 1260-

1280.

[Robertson99] Robertson, S. and Robertson, J. 1999. Mastering

the Requirements Process. Addison-Wesley, 1999.

[Rodrigues04] Mendes Rodrigues, M. E. S. and Sacks, L. 2004.

A scalable hierarchical fuzzy clustering algorithm for text

mining. In: Proc. of the 4th International Conference on Recent

Advances in Soft Computing, RASC'2004, pp. 269-274,

Nottingham, UK, Dec. 2004.

[Rosenhaine04] Rosenhaine, L. 2004. Identifying Crosscutting

Concerns in Requirements Specifications.

[Roth02] Roth, V., Lange, T., Braun, M., and Buhmann, J. 2002.

A Resampling Approach to Cluster Validation. In Intl. Conf. on

Computational Statistics, pp. 123-129, 2002.

 [Salton86] Salton, G. and McGill, M. J. 1986. Introduction to

Modern Information Retrieval. McGraw-Hill, Inc.

[Salvador04] Salvador, S. and Chan, P. 2004. Determining the

Number of Clusters/Segments in Hierarchical

Clustering/Segmentation Algorithms. In Proceedings of the 16th

IEEE international Conference on Tools with Artificial

intelligence (Ictai'04) - Volume 00 (November 15 - 17, 2004).

[Sander98] Sander, J., Ester, M., Kriegel, H. P., and Xu, X.

1998. Density-based clustering in spatial databases: the

algorithm GDBSCAN and its applications. In Data Mining and

Knowledge Discovery, 2, 2, 169-194.

[Sampaio05] Sampaio, A., Loughran, N., Rashid, A., and

Rayson, P. 2005. Mining Aspects in Requirements. Workshop

on Early Aspects 2005.

[Schapire03] Schapire, R. E. 2003. The boosting approach to

machine learning: An overview. In D. D. Denison, M. H.

Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear

Estimation and Classification. Springer.

[Shi00] Shi J. and Malik, J. 2000. Normalized Cuts and

Image Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(8), 888-905, August 2000.

[Siersdorfer04] Siersdorfer, S. and Sizov, S. 2004. Restrictive

clustering and metaclustering for self-organizing document

collections. In Proceedings of the 27th Annual international

ACM SIGIR Conference on Research and Development in

http://www.rasc2004.info/

27

information Retrieval (Sheffield, United Kingdom, July 25 - 29,

2004).

[Singhal96] Singhal, A., Buckley, C., and Mitra, M. 1996.

Pivoted document length normalization. In Proceedings of the

19th Annual international ACM SIGIR Conference on Research

and Development in information Retrieval (Zurich, Switzerland,

August 18 - 22, 1996). SIGIR '96.

[Smyth96] Smyth, P. 1996. Clustering Using Monte-Carlo

Cross-Validation. In Proc. 2nd KDD, pp.126-133, 1996.

[Soares02] Soares, S., Laureano, E., and Borba, P. 2002.

Implementing Distribution and Persistence Aspects with

AspectJ. In Proc. of Object Oriented Programming, Systems,

Languages, and Applications (OOPSLA’ 02), (November, 2002),

174–190.

[Steinbach00] Steinbach, M., Karypis, G., and Kumar, V. 2000.

A comparison of document clustering techniques. Workshop on

Text Mining at Intn‘l Conf on Knowledge Discovery and Data

Mining.

[Steyvers07] Steyvers, M. and Griffiths, T. 2007. Probabilistic

topic models. In T. Landauer, D McNamara, S. Dennis, and W.

Kintsch (eds), Latent Semantic Analysis: A Road to Meaning.

Laurence Erlbaum.

[Strehl03] Strehl, A. and Ghosh, J. 2003. Cluster ensembles

– a knowledge reuse framework for combining multiple

partitions. J. Mach. Learn. Res. 3 (Mar. 2003), 583-617.

[Theodoridis06] Theodoridis, S. and Koutroumbas, K. 2006.

Pattern Recognition (3rd edition), Elsevier.

[TREC] TREC Data collection from Text REtrieval

Conference (TREC), URL http://trec.nist.gov/.

[Tibshirani01] Tibshirani, R., Walther, G., Botstein, D., and

Brown, P. 2001. Cluster Validation by Prediction Strength,

Technical Report, 2001-21, Dept. of Biostatistics, Stanford Univ,

2001.

[Tibshirani03] Tibshirani, R., Walther, G., and Hastie, T. 2003.

Estimating the number of clusters in a dataset via the Gap

statistic. In JRSSB 2003.

[Topchy03] Topchy, A., Jain, A. K., and Punch, W. 2003.

Combining Multiple Weak Clusterings. In Proceedings of the

Third IEEE international Conference on Data Mining

(November 19 - 22, 2003).

[Vasko02] Vasko, K. and T. Toivonen. 2002. Estimating

the number of segments in time series data using permutation

tests. In Proc. IEEE Intl. Conf. on Data Mining, pp. 466-473,

2002.

[Vesanto97] Vesanto, J. Data Mining Techniques Based on

the Self-Organizing Map, Master thesis.

[Vesanto00] Vesanto, J. and Alhoniemi, E. 2000. Clustering

of the self-organizing map. IEEE Transactions on Neural

Networks, 11(3):586–600.

[Wiegers99] Wiegers, K. E. 1999. Software Requirements,

Microsoft Press, Redmond, WA, 1999.

[Wu03] Wu, W., Xiong, H., and Shekhar. S., (Eds.) 2003.

Clustering and Information Retrieval. Kluwer.

[Xu98] Xu, X., Ester, M., Kriegel, H. P., and Sander, J.

1998. A distribution-based clustering algorithm for mining in

large spatial databases. In Proceedings of the 14th ICDE, 324-

331, Orlando, FL.

[Xu03] Xu, W., Liu, X., and Gong, Y. 2003. Document

clustering based on non-negative matrix factorization. In

Proceedings of the 26th Annual international ACM SIGIR

Conference on Research and Development in informaion

Retrieval (Toronto, Canada, July 28 - August 01, 2003).

[Yaung92] Yaung, A. T. 1992. Design and implementation

of a requirements clustering analyzer for software system

decomposition. In Proceedings of the 1992 ACM/SIGAPP

Symposium on Applied Computing: Technological Challenges

of the 1990's, Kansas City, Missouri, 1992.

[Zaragoza03] Zaragoza, H., Hiemstra, D., and Tipping, M.

2003. Bayesian extension to the language model for ad hoc

information retrieval. In Proceedings of the 26th Annual

international ACM SIGIR Conference on Research and

Development in informaion Retrieval (Toronto, Canada, July 28

- August 01, 2003). SIGIR '03.

[Zamir97] Zamir, O., Etzioni, O., Madani, O., and Karp, R.

M. 1997. Fast and Intuitive Clustering of Web Documents. In

Proc. of the Intn’l Conf on Knowledge Discovery and Data

Mining, (August 14-17, 1997), 287-290.

[Zave97] Zave, P. 1995. Classification of Research Efforts

in Requirements Engineering. In Proc. RE'95 - 2nd IEEE Int.

Symposium on Requirements Engineering, March 1995, 214-

216.

[Zhao01] Zhao, Y. and Karypis, G. 2001. Criterion

functions for document clustering: Experiments and analysis.

Technical Report TR #01--40, Department of Computer Science,

University of Minnesota.

 [Zhao02] Zhao, Y, and Karypis, G. 2001. Evaluation of

hierarchical clustering algorithms for document datasets. In

Proceedings of the Intn’l Conf. on information and Knowledge

Management, (McLean, Virginia, Nov 4-9, 2002), 515-524.

	Clustering and its Application in Requirements Engineering
	Recommended Citation

	tmp.1220978788.pdf.mqGg7

