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Introduction to the Series

The Technical Bulletin series is targeted at scientists and technicians
managing genetic resources collections. Each title will aim to provide
guidance on choices while implementing conservation techniques
and procedures and the experimentation required to adapt these to
local operating conditions and target species. Techniques are discussed
and, where relevant, options presented and suggestions made for
experiments. The Technical Bulletins are authored by scientists working
in the genetic resources area. Bioversity welcomes suggestions of
topics for future volumes. In addition, Bioversity would encourage,
and is prepared to support, the exchange of research findings obtained
at the various genebanks and laboratories.
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Foreword

In the last 50 years, coconut breeders have been conducting intensive
research on the coconut in order to improve total farm productivity
and enhance farmers’ income. A major part of this effort is the
identification and characterization of coconut diversity and the
development of varieties and hybrids which are high-yielding, resistant
to biotic and abiotic stresses, and possessing important traits for
producing high-value products.

A major problem of this effort is the long gestation period of
these research activities. This is partly due to the perennial nature
of the coconut which takes 4-12 years before resulting varieties and
hybrids start to produce fruits. This problem is further complicated
by the lack of standardized methods of coconut breeding which has
prevented coconut researchers from comparing results. An equally
important factor is the fast turnover of coconut breeders as some
of them retire, occupy administrative posts, or shift to other
professional activities. This requires that coconut research institutes
conduct training of young coconut researchers on coconut genetic
resources and improvement. Unfortunately, many countries do not
have resources or are incapable of conducting this training.

To address the above problems, the International Coconut Genetic
Resources Network (COGENT) published in 1994 the “Manual on
standardized techniques in coconut breeding” (STANTECH). While
the manual has been useful, it does not contain enough details to
enable coconut researchers to more effectively conduct experiments
and analyze and interpret results. To complement this publication,
COGENT is publishing this “Data Analysis Manual for Coconut
Researchers”. The manual does not only provide basic statistical
concepts but also details of experimental designs to use in agronomic
and multilocation trials and methods for analysis of multilocation
trials data and determination of genetic distance. The manual uses
actual coconut data in demonstrating how data can be analyzed and
interpreted. Using this tutorial-type manual, coconut researchers can
practise computations by themselves using the examples and then
use the same procedure to analyze their own data.

I would like to thank the Central Plantation Crops Research
Institute (CPCRI), and the Indian Institute of Spices Research (IISR)
of the Indian Council of Agricultural Research (ICAR), and The
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French Agricultural Research Centre for International Development
(CIRAD) for allowing their staff to help develop this manual. I also
thank the International Fund for Agricultural Development (IFAD)
for supporting its publication.

Richard Markham

Director

Commodities for Livelihood Programme
Bioversity International
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Chapter 1. Basic statistical concepts

The science of statistics deals with the methods of collection, presentation, analysis
and interpretation of data. Applications of such methods are not necessary when
all the units under observation indicate no variation or follow a rigid mathematical
law. In such cases, observation on a few units would provide all the needed
information about the population or of the units. However, in biological science,
such uniformity is rare and it is necessary to take recourse to the statistical science
to secure sound methods of collecting data and appropriate techniques for analyzing
the data to derive reliable conclusions. In this context, statistics may well be defined
as the science of the study of variations. Consider the problem with the objective
of characterization of coconut tall population for nuts per bunch in a garden. The
researcher can either count nuts per bunch from all the coconut trees of tall
population in that garden or count only from few selected trees. It is obvious that
the number of nuts vary between bunches of a tree and also between trees. To
characterize the population one has to summarize the observations made on the
individuals (either for whole of the population or a part of it). By applying
appropriate statistical techniques, observation on a few units would provide all
the information needed about the population or the totality of units. The quality
of information generated by applying these methods and the inferences thus drawn
largely depends on the appropriateness of procedures used.

There are two categories of statistics: descriptive statistics and inferential statistics.
A set of observations obtained from individuals, comprising the universe, can be
processed and summarized using textual, tabular and graphical methods of data
presentation. Frequency distribution tables (FDT), bar graphs, or polygons help to
visualize the distribution of the observations. Numerical descriptive measures
which include measures of central tendency and measures of dispersion are effective
ways to summarize a voluminous set of data into a significantly smaller number
of values. On the other hand, inferential statistics involves estimation and tests
of hypotheses. Estimation includes different methods of sampling, choice of
estimators, and tests of hypotheses about parameters of a single population or those
of two or more populations. To allow valid comparisons, experiments should follow
the basic principles of experimental designs and must meet the assumptions of
the statistical procedures. Specific statistical procedures such as genetic distance
estimation genetic diversity assessment and genotype x environment interaction
are especially applicable for coconut genetic resources evaluation and multilocation
trials. Multivariate procedures such as cluster analysis and principal component
analysis, while also descriptive, summarizing observations on many characters, can
be used to test inferences about the populations as well. For better appreciation,
each of these methods will be discussed in detail with real data from coconut
experiments. The data used for most of the examples in this manual are actual
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research data on coconut generated at the Central Plantation Crops Research
Institute (CPCRI), Kasaragod, India. Almost all the analyses described in this
manual have been described with some suitable examples and step-by-step
procedures. It is therefore expected that this publication will help the coconut
scientific community to better plan and manage their experiments and, analyze
and interpret their experimental data.

Definition of terms
Meanings of some of the basic statistical terms which will be used throughout this
manual and which are sometimes confusing are defined below:

Universe

A universe consists of the totality of units or individuals under study. It may be
a variety or an open-pollinated population of coconut palms. The individual palms
are the individual units comprising the universe.

Variable

A characteristic that may vary from unit to unit is called a variable. In a set of
coconut palms, stem height is a variable and so are stem diameter, leaf morphology,
length of central axis, fruit and nut shapes.

Population

A population, statistically speaking, consists of all possible values of the variable
or characteristic of interest. Hence E = {x : 12m < x < 30m} is a population induced
by stem height (denoted as x) on the universe under study and because of this
they are interchangeably used.

Qualitative variable

A variable is said to be qualitative if its values reflects quality, attribute or categories.
The colour of seedling, shape of crown, leaf spiral direction, presence or absence
of trichomes, etc. are examples of some quality characters in coconut.

Quantitative variable

A variable is said to be gquantitative if its values reflects magnitude or amount of
an attribute like measurements or counts. Quantitative variables may either be
continuous or discrete. Stem height, days to 50% flowering, leaf number, width of
leaf scar, fruit weight, copra yield, etc. are some examples of quantitative characters
in coconut.

Continuous variable

A quantitative variable that take values within an interval characterized by an
infinite set of possible values is said to be continuous. Crop yield, plant height,
plant weight, temperature and volume are examples of continuous variables.
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Discrete variable

A quantitative variable that take only certain specific values usually integral values
within a given range is said to be discrete. The number of nuts in a bunch, the
number of fruit bearing trees in a plantation and the number of leaf scars are
examples of discrete variables. Two forms of discrete data may be recognized viz.,
attributes and counts. The first form, which can be related to qualitative type of
data, classifies individuals as having or not having a particular attribute or more
commonly, describes a group of individuals by the proportion or percentage of
individuals possessing a particular attribute. Some examples are proportion of
coconut trees infected by leaf blight, seedling survival rate (expressed as per cent),
etc. In the second form, the individual is described by a numerical count that cannot
be expressed as proportion. Some of the examples for coconut are number of first
split leaf, number of leaflets, number of spikelets with female flowers and number
of spikelets without female flowers.

A distinction is made between continuous and discrete variables because the
two types of data may require different statistical analysis. Most of the sampling
methods and computational procedures described are applicable for continuous
variables. The analytical procedures for discrete variables are generally more complex.
By increasing the number of values that a discrete variable can assume, however,
it is often possible to handle such data by the continuous variable methods.

Sample

A sample is a subset of the universe or a population about which we wish to
draw information. Using the information obtained from the sample, statistical
inferences about the population are made.

Parameter

Parameters are numerical measures that describe the population and distinguish
it from other populations. Once the parameters are known they completely specify
the mathematical form of the distribution of the observations. The exact values
of these parameters are obtained if and only if all the members of the universe
are observed.

Statistic

By observing a subset of the population, the population parameter is estimated
by some rule or estimator which is called a statistic. Being a characteristic of the
sample, values of the statistic may vary from sample to sample.

Statistical inference

The statements that can be made about the parameters of a population or the form
of its distribution based on the information contained in the samples. Inferences,
however, can only be made when samples used are probability samples.
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Point estimate

It is a single number stated as an estimate of some quantitative property of the
population. For example, the average stem height of a coconut population is
25 m, 3.5% of coconut trees were infected with leaf blight, or 45 plants in a coconut
germplasm accessions have egg-shaped fruit polar section shape.

Interval estimate

It is a statement that a population parameter has a value lying between two
specified limits. For example, the average stem height of a coconut population is
between 23 and 27 m, coconut germplasm collection from any country may have
15 to 20% accessions with erect stem.

Confidence interval

It is one type of interval estimate. In repeated sampling, a known proportion of
the intervals computed by this method would include the population parameter.
For example, the 95% confidence interval of average stem length at 11 leaf scars
in a coconut population is between 5.2 and 12.1 dm.

Random sampling
Random sampling in its simplest form is a method of drawing a sample such that
each member of the population has an equal chance of being included in the sample.

Sampled population

It is the population to which statistical inferences from the sample apply. The
process by which samples are obtained gives every member of the population a
known chance of being represented. In practice, the sampled population is sometimes
hypothetical rather than real, because the only available data may not have been
drawn at random from a known population.

Target population

The target population is the aggregate about which the investigator is trying to
make inferences from the sample. Although this term is not in common use, it
is sometimes helpful in focusing attention on differences between the population
actually sampled and the population that we are attempting to study.

Frequency distribution

In a frequency distribution, the values in the sample are grouped into a limited
number of classes. A table is made showing the class boundaries and the frequencies
(number of members of the population/sample) in each class. The purpose is to
obtain a compact summary of the data.
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Null hypothesis

A null hypothesis is a specific assumption or belief about a population that is being
tested for its validity by means of appropriate data analysis of the samples or
treatments.

Test of significance

A test of significance is, in general term, a calculation by which the sample results
are used to throw light on the truth of a null hypothesis. It measures the extent
to which the sample departs from the null hypothesis in some relevant aspect.
If the value of the test criterion falls beyond certain limits into a region of rejection,
the departure is said to be statistically significant. Tests of the level of significance
have a known value, most commonly 0.05 (significant) or 0.01 (highly significant).

Critical difference
It is the value, equal to or greater than which the difference between two treatment
effects is significant.

Degrees of freedom

The number of independent comparisons that can be made between the members
of a sample (e.g., subjects, test items, trials, conditions, etc.). The number of degrees
of freedom is one less than the number of variates in the sample concerned.

Primary data

Data collected by an investigator or researcher for the purpose of the current
investigation are called primary data. Usually, the primary data are collected from
field or laboratory trials or from observations on a sample of individuals/units
of a population.

Secondary data

Data taken from existing records maintained by various institutions for some other
purpose. The area and production statistics of coconut documented by government
agencies and used by researchers are examples of secondary data.
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Chapter 2: Sampling methods

When the population size is large, it is not possible to make observation on all
the units constituting that population. In such situations information on the population
can be drawn by observing only a few units. The principles employed for selection
of a sample of units from a population are described in this chapter, and subsequently
the sampling strategy for coconut germplasm collecting.

Reasons for sampling

Consider the problem of estimating the total coconut production for a given locality
in a given cropping season. Clearly, it is impractical to harvest and weigh the
produce from all the fields growing coconut in the locality which constitute the
population under study. It is obvious that in cases, where the population is too
large, the investigator has to obtain information about the population from only
a part thereof. The process of selecting a part of the population to represent the
entire population under study is known as sampling and the part selected is known
as sample. The manner by which we draw the sample hardly matters provided
the population is homogeneous with respect to the character of interest. However,
when the units of the population vary considerably, the method by which we draw
the sample plays a critical role.

Two types of samples arise based on how they were obtained. Non-probability
samples constitute those samples in which the elements were selected on purpose
while probability samples are those that were obtained using some random
mechanism. Between the two, it is the probability samples that are of interest as
only with these samples can we make valid statistical inferences about the population.
We are more interested in probability sampling as it provides valid estimates of
error, based on probability theory, and objective conclusions could be drawn. There
would be some exception to random sampling and we will discuss this at appropriate
places (for example, selection of elite coconuts from a population).

Some of the reasons why we sample include: 1) reduced cost, 2) greater speed
in making the results available, 3) greater scope, 4) greater accuracy and 5) necessity.
Because of limited resources in the form of money, trained personnel or some
specialized equipment, it is not feasible to observe every member of the population.
With only a few units observed, more information can be obtained with greater
accuracy on the units.

Principal steps in sampling

In any survey activity, the objectives should be clearly stated. Details in planning
can easily obscure the goals of the survey when they are not clear and defined.
Defining the sampling units and population is fundamental to any sampling
process. The list of sampling units that divide the population into non-overlapping
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parts is called the sampling frame. Other considerations includes: 1) degree of
precision desired, 2) availability of resources, 3) selection of the sample and 4)
organization of the fieldwork. The sample size for specified precision needs special
consideration as it should be neither too large nor too small. The sample size
required for measuring the population parameters with statistically acceptable
precision at a given cost could be worked out by using suitable formulae (For more
details refer to Cochran 1946 and 1984).

Methods of probability sampling

Simple random sampling

Simple random sampling is a method of selection of ‘n” individual units out of
a population of ‘N’ units, such that each unit of the population unit has an equal
chance of being included in the sample. In practice, a table of random numbers
is used for selection of units and sampling is done without replacement. The
application of simple random sampling presumes the population under study to
be divisible into a number of distinct identifiable units from which selection can
be done.

The practical difficulty in the way of random selection has been largely overcome
by the use of published tables of random numbers. They usually consist of columns
of 1, 2, 3 or 4 digit numbers randomly drawn and tested for randomness. To use
these tables, the units constituting the populations are to be numbered. The size
of the population determines the random number table of 1, 2, 3, or 4 digits to
be used. If the population size is less than 10, we use one digit random numbers.
If it is less than 100, 1000, or 10000, we use 2, 3, or 4 digit random number tables,
respectively. These tables could also be used in the case of larger population sizes.
Starting any where in these tables, customarily one moves down the column then
to the next columns to choose the numbers in the populations. For the purpose
of illustration, the set of random numbers arranged in Table 2.1 will be used.

lllustration

Suppose we have to choose a sample of five coconut palms from a population
size of 80. In this case, we make use of two digit random numbers as the population
size is less than 100. Starting at random in the table of random numbers (Table
2.1) and moving down, we select random numbers say, 21 followed by 87, 91,
73, 96, 27, 23, 23, 18, etc. The coconut palms corresponding to the numbers drawn
are included in the sample. Since the first random number is 21, palm no. 21 in
the population is selected. Selected numbers greater than 80 or the population size
is therefore rejected since no palms will be numbered as such. The third unit
selected corresponding to palm no. 27, followed by palm no. 23. Note that the
next random number is again 23. If the sampling is being done with replacement,
the unit number 23 is again included in the sample. For sampling without replacement,
this number is rejected. The process is continued until the required number of units
has been selected. In this example, for sampling without replacement, the sample
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will consist of units 21, 73, 27, 23 and 18. However, in the case of sampling with
replacement, the selected unit numbers will be 21, 73, 27, 23 and 23. Other methods
of using tables of random numbers for various purposes can be obtained in Fisher
and Yates (1963).

The mean of the observations on the sampled units is called the sample mean.
This is used to gain knowledge on the mean of the population. In other words,
the sample mean is the estimator of the population mean. As might be expected,
the various sample means differ among themselves. The standard deviation of all
possible sample means is commonly referred as standard error. The square of the
standard error is called the sampling variance of the mean. It is important to note
that standard error involves a factor f = (N-n)/N, the finite population correction.
Denoting the ‘sample variance’ as s? (obtained by dividing the sum of squares by

n-1), the estimate of standard error is given by S\/(f/ n )

Sometimes, it is not possible to recognize and number the individual units
within the population. For example, if we wish to select a sample of random nuts
from a coconut plantation for taking observations, it will not be possible to
recognize individual nuts and number them. Under such conditions, alternative
procedures of random selection are available. Instead of numbering the nuts, we
could number the palms first based on random selection and thereafter select the
nut(s) at random from within the selected palms for inclusion in the sample. This
procedure of selecting a random sample in successive stages is called sub-sampling
or multi-stage random sampling and is discussed later in this chapter. This device
is extensively used in sampling due to ease in selection and economy of labour.

Stratified sampling

It is obvious that a reduction in ‘sample variance” will lead to estimates with less
standard error. Stratified random sampling is a method that takes advantage of
known information about the population to reduce sample variance. In stratified
random sampling, the N units in the population are grouped into L sub-populations
or strata on the basis of similarity with respect to some characteristic. The groups
or sub-populations are of sizes N, N, ... N, such that N, + N, + ... N, = N. A
random sample from each stratum is obtained to give an estimate of the stratum
mean. The estimates of the different strata are then combined to give an estimate
of the population mean.

In sampling large coconut populations, we stratify the palms into the major
palm types, make separate sample estimates for each type, and then combine to
get an estimate for the entire population. If the variation among units within a
stratum is less than the variation among units of different strata then the combined
estimates will be more precise. This sampling procedure is widely used due to
its convenience, especially when the stratification is adopted according to geographical
contiguity or administrative classification such as state, province/district, block,
village, etc. Another useful basis for stratification is agroclimatic zones/classification.
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Table 2.1. Section of 10000 random digits
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Stratified random sampling offers two primary advantages over simple random
sampling. First, it provides separate estimates of the mean and variance of each
stratum (e.g. irrigated and rainfed coconut plantation areas). Second, for a given
sampling intensity, it often gives more precise estimates of the population parameters
than would a simple random sample of the same size. For the latter advantage,
however, it is necessary that the strata be set up in such a way that the variability
among unit values within a stratum is less than the variability among units from
different strata.

Some drawbacks of stratified sampling however are: 1) each unit in the population
has to be assigned to one and only one stratum, 2) the size of each stratum has
to be known, and 3) sample has to be taken from each stratum.

The most common constraint in using stratified random sampling is the lack
of information on the stratum sizes. If the sampling fractions are small in each
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stratum, it is not necessary to know the exact stratum size. The population means
and standard errors can be computed from the relative sizes.

Cluster sampling

In some situations, the sampling units exist in naturally formed groups (clusters).
It will then be convenient and cost effective to sample the clusters. All the units
in the selected cluster should be included in the sample.

Systematic sampling

The sample in this method is obtained by selecting units at fixed intervals in the
population. Estimation of error and possible bias arising from unrecognized trends
or cycles in the population are the drawbacks of this method.

To select sample from an area, systematic sampling in two dimensions may
be used. Here, systematic sample points are fixed for both directions (East to West
and North to South) separately and then form a grid by repeating the sample points
of one direction through every sample point selected in the other direction. The
intersecting points form the sample. Instead of the ‘square grid” pattern of sample
selection, an ‘unaligned” sample can also be selected.

Multi-stage sampling

If each unit in a sample can be sub-divided into a number of smaller units or
elements, further sampling can be done from each of the selected first stage units.
The sampling design is then termed two-stage sampling. The sub-divisions of the
first stage units may sometimes further be divided and sampled as third stage
units and so on. Multi-stage sampling design is popular in crop surveys because
of its flexibility in the selection of units.

Sampling strategy for coconut germplasm collecting

Knowledge on the extent of coconut growing areas, percentage area under the crop
and the degree of environmental diversity are used to stratify the location identified
for germplasm expedition. However, a basic problem in coconut germplasm collecting
arises from the fact that the crop has a cosmopolitan distribution with an uncertain
centre of origin.

Guided by the sampling methods described above, the coarse and fine grid
sampling strategies (Santos et al. 1996) outlined below would ensure that the areas
to be sampled are carefully scrutinized and that a minimum area is skipped. Since
there is no existing information on natural gene flow between coconut populations
(apart from the studies conducted on polyphenols, electrophoresis, and more
recently, DNA patterns among coconut varieties obtained from various origins, all
of which leads to variable and inconclusive results), the coarse grid sampling
strategy as described in a practical course initially organized by the Bioversity
International (Formally known as IPGRI and IBPGR) in 1978 and 1979 in Bogor,
Indonesia, has been tried leading to a potential systematic coverage of the coconut
areas in the Philippines (Santos, 1987) and Malaysia (Jamadon, 1987). When combined
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with fine-grid and biased sampling method, this strategy ensures that no important
diversity is missed, and that the widest possible array of conditions is covered.
Another feature of this strategy is that surveys can be suspended and resumed
as necessary by the explorer/collector because areas are pre-identified.

Coarse grid sampling method
The basic requirements for coarse grid sampling method are:
1. Knowledge of the extent of coconut-growing areas and distribution, and
2. Knowledge of the degree of environmental diversity in the areas where the
crop is grown.

The coarse grid sampling procedure is demonstrated as implemented by the
Breeding and Genetics Division of the Philippine Coconut Authority (PCA). The
procedure is as follows:

1. A suitable sized map of the Philippines is obtained (Scale: 1:1,000,000) and
grids of approximately 40 x 40 km were marked (Fig. 2.1), following latitude
and longitude divisions/degrees.

2. All grids which included coconut-growing areas are then identified and
according to relative size or hectarage, the number of sampling sites is
determined per grid. (See item 6 below).

3. The leader of the survey team then makes travel arrangements with the
local PCA Regional and Provincial Offices so that all the needed equipment,
materials and supplies are prepared in advance.

4. The two-person team (e.g. the leader - a technical staff of the division and
a climber/technician) set out to travel to the pre-identified sites.

5. Local laborers are hired to assist in the fruit component analysis (FCA) and
vegetative measurements according to the minimum list of descriptors, and
passport data.

6. Each grid is surveyed using 5 to 6 sampling sites (SS) with intervals between
SS determined according to any noticeable changes in ecological conditions,
e.g. coastal to upland.

7. A local guide (normally the coconut development officer) assists the team
in explaining the objectives of the survey to the farmers/owners and to
the local population.

Biased sampling/outright collecting
1. If the technical person encounters something new, which he/she feels is
not represented in the genebank, the supervisor is notified and he/she will
determine whether the prospective population is unique or not. If it is, and
no important disease or pest is evident, then the decision is made to collect
200 nuts of the population or variety. These will be sent to the research
centre for conservation in the genebank.
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Figure 2.1. Map of the Philippines used for coarse grid sampling
(Source: Santos 1987).
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Note: Since good information on the distribution of diseases in the country (the
Philippines) exists, the above step is possible. But, it is emphasized that this is only
done when one is sure that the risk is negligible. Otherwise, collecting should be made
only after ascertaining that the transfer of the material is safe and sound.

2. After surveying 4 to 5 grids equivalent to 20-30 sampling sites, data are
processed which includes estimation of genetic distances of the surveyed
populations. Information on genetic diversity of the surveyed populations
are obtained using cluster analysis.

3. The survey is always coordinated with local officials and extension
workers because, depending on the result of the genetic partitioning, field
collecting of seed nuts from the identified farms are coordinated with the
local guides.

Collecting seed nuts

Depending on the results of statistical analysis, nuts are sampled in such a way
that the widest array of genotypes/phenotypes in the identified population(s) is
covered. If a certain grid is noted to be different in ecological condition from that
of the other grids but without any obvious significant differences noted between
sites, the same number of samples is collected for better coverage. The collection
is identified in the genebank as a unique accession to be assigned its own accession
number (Acc No.___) noting the grid number (Grid No. __) and the sampling site
number (SS No.___). The collection is planted at random within the designated
block with each palm properly identified as to its exact origin, e.g. Grid # Al4,
SS # 3.
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Chapter 3: Freguency distrioution of observations

As a standard procedure, both for qualitative or quantitative data, the researchers
keep records of their observations, corresponding to each individual under study.
Faced with voluminous data, researchers need to come up with methods that can
summarize the information contained in these datasets into fewer but concise
measures with very little loss of information. There are several ways of summarizing
and presenting data. Data can be summarized using textual, graphical and tabular
methods. Numerical descriptive measures which also described the population in
terms of one or more quantitative measures are frequency distribution and is a
first step towards summarizing data. The mathematical descriptions of several types
of frequency distribution are known. The form of distribution pattern is determined
by the values of the constants of its mathematical function. These constants are
referred to as the parameters of the distribution. Further, summarization of data
is possible in terms of parameters and can be used for comparison. This Chapter
deals with certain useful parameters of frequency distributions, in particular, that
of normal distribution.

Frequency distribution

One information that is of prime interest is how certain variables are distributed
in the populations under study. A most useful procedure for obtaining and presenting
this information is through the use of frequency distribution tables. Frequency
distribution tables group the observations into non-overlapping classes and present
both the frequencies and relative frequencies of the different classes. This way, one
gains an idea of which classes dominate or which classes are present in the
population. The importance of frequency distribution tables lies in the fact that
it can be used for both qualitative and quantitative characters.

Frequency distribution of qualitative data

In case of qualitative data, such as fruit shape, individual plants would be classified
according to the fruit shape and the corresponding number for each class will be
counted.

Example

In a population of 314 coconut palms, the shape of the nut in each palm was
classified as either round, egg-shaped, pear-shaped and elliptic. The four different
shapes are the “classes’” and the corresponding number of palms having nuts with
a specific shape is the frequency of that class. The frequency distribution thus
obtained is shown in Table 3.1. The relative frequencies expressed as percentages
will have the advantage of easy interpretation. For example, examining the Table
3.1, it is easy to state that more than half of the palms have round nuts.
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Frequency distribution of quantitative data

The frequency distribution of quantitative characters, on the other hand, necessitates
an arbitrary classification of the observations under study. For instance, to measure
the yield of nuts per palm from a coconut plantation, the researcher will obtain
measurements on a large number of palms from a coconut field under study. These
measurements may take any value within a certain range. After recording the data,
the researcher’s first task will be to classify these data with the object of reducing
them to a form in which they can be conveniently handled. The classification of
such data involves the partitioning of the range of values into a number of non-
overlapping but contiguous class intervals and recording the number of individual
observations falling in each class.

Table 3.1. Frequency distribution of fruit shape in coconut population

Class Frequency Relative Frequency
Round 169 53.82
Egg-shaped 61 19.43
Pear-shaped 62 19.74
Elliptic 22 7.01
Total 314 100.00

One must exercise caution in determining the class limits so that there is no
ambiguity as to which class an observation belongs. In constructing the non-
overlapping classes, the following important considerations should be borne in
mind:

1. The class interval should be of uniform width and of such size that the

characteristic features of the distribution are displayed.

2. The class interval must not be too large that can result in errors in assuming
that the mid-point of the interval as is the average value of the class.

3. It must also not be so small to give many classes with zero or very small
frequencies.

4. The range of the classes should cover the entire range of the data and the
classes must be continuous.

5. As a general rule, the average number of classes should be about 15 and
never more than 30 nor less than 6.

As an illustration, consider the frequency distribution of the stem length of 11
leaf scars from a coconut plantation. As indicated above, after recording the data,
the first task will be to classify these data with the object of reducing them to
a form in which they can be conveniently handled. Table 3.2 presents data on stem
length of 11 leaf scars to the nearest one tenth of a meter, i.e. decimetre (dm),
recorded from 50 palms. Table 3.3 shows its frequency distribution using six classes.
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In this example the shortest stem length measures 3.8 dm and the largest
measures 13.4 dm. We therefore, have a range of 3.8 to 13.4 dm, which can be
divided into six classes by taking class interval of 1.7 dm. The mid point of each
class is taken as the class value. The number of observations falling within the limits
of a particular class is then the frequency of that class.

Table 3.2. Stem length (dm) of coconut population

Plant Stem Plant Stem Plant Stem

No. length No. length No. length

1 8.6 18 10.4 35 4.3

2 8.3 19 5.9 36 12.8

3 9.6 20 9.9 37 7.7

4 9.1 21 8.2 38 5.8

5 10.4 22 6.1 39 13.2

6 6.3 23 9.3 40 4.8

7 11.9 24 12.7 41 12.6

8 9.3 25 13.4 42 8.9

9 9.7 26 11.0 43 11.6

10 4.5 27 7.9 44 10.8

11 8.6 28 6.8 45 6.3

12 7.8 29 7.7 46 12.2

13 7.9 30 41 47 8.9

14 12.6 31 8.5 48 10.2

15 8.4 32 104 49 9.8

16 10.4 33 9.8 50 11.9
17 11.5 34 3.8

Caution must be exercised in classifying those observations whose values fall
on the limits of each class range. For instance, the first class includes observations
of 3.5 dm up to 5.1 dm; the value 5.2 dm falls into the second class and similarly
6.9 dm falls into the third class and so on. In general, it will be seen that the
distribution is marked by low frequencies in the extreme classes. The frequency
increases gradually as one approaches the middle of the distribution, giving the
distribution a symmetrical appearance.

The last column in Table 3.3 gives the cumulative relative frequency (RCF),
which is the percentage of observations below the upper limit of a given class
interval. For example, 66% coconut palms have stem length equal or less than 10.2
dm.

The information contained in the frequency distribution can also be expressed
in a graph. This method permits a ready grasp of certain important features such
as the most frequent class, trends, which are common to some types of frequency
distributions and are discussed below:
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Table 3.3. Frequency distribution of stem length in coconut population

Class interval Class Frequency Cumulative Relative Cumulative

value of palms in frequency frequency relative

each class frequency

35 - 51 4.3 5 5 10.00 10.00

52 - 6.8 6.0 6 11 12.00 22.00

6.9 - 85 7.7 8 19 16.00 38.00

8.6 — 10.2 9.4 14 33 28.00 66.00

10.3 - 11.9 11.1 10 43 20.00 86.00

12.0 - 13.6 12.8 7 50 14.00 100.00
Total 50 100.00

Note: It is not necessary that the first class interval begins with the smallest value and
the last class interval ends with the largest value. Some provision for lesser values than
the smallest observed and bigger values than the largest value observed could be made,
in case of necessity, convenience or for presentation.

Graphical representation of frequency distribution

Graphical representation is another way of presenting frequency distribution of the
data. The histogram and frequency polygon are the two graphical representations
of frequency data.

In the histogram, the class interval is along the horizontal axis and to rise, over
these intervals (the contiguous ones will be overlapping), columns or rectangles
whose heights are proportional to the number or frequency (vertical axis) of
individuals falling into each class. The histogram for the frequency distribution
data from Table 3.3 is shown in Fig. 3.1A.

The information contained in Table 3.3 can also be expressed in the form of
frequency polygon which is obtained by plotting class values as abscissa (horizontal
axis) and class frequencies as ordinates (vertical axis) and joining of the points
by drawing straight lines. The frequency polygon for data in Table 3.3 is shown
in Fig. 3.1B.

From Fig. 3.1A and 3.1B, it is evident that maximum frequencies are at the
middle of the range and the class frequencies diminish more or less symmetrically
in the direction of the two extremes.

It is conventional that frequency polygon and histogram are drawn only for
quantitative data. For qualitative data, the frequency distribution is depicted either
in the form of a pie chart or a bar diagram. Using data in Table 3.1, the pie chart
and bar diagram are shown in Fig. 3.2A and 3.2B, respectively.
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Frequency curve and its characteristics

The frequency graph for any data, whether it is frequency polygon or a histogram,
approaches more and more the form of a smooth curve as the number of observations
increases and finer class intervals are used. Frequency curves are usually met with
a single hump or mode (value with the largest frequency) and can be distinguished
from one another by means of the following four characteristics:
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The central value;

The spread of the curve around the central value;

The symmetry or the departure from it, termed as skewness; and

The excess or deficiency of frequencies in the centre and the two extremes
compared with the flanks, termed the kurtosis.

L e

These characteristics are expressed in terms of the parameters of the distribution
viz.,

1. Parameters for measures of central tendency;
2. Parameters for measures of dispersion; and
3. Shape parameter for frequency distribution.

The values of the parameters can be computed from the data recorded on all
individuals in a population or can be estimated from a sample.

Measures of central tendency
As mentioned earlier, histograms may often appear to have a peak or high region,
with the heights of the bars dropping off to zero as one move to the right or left
extremes of the histogram. These peaks represent the region of values where a
high percentage of the observations fall, and so correspond in some sense to the
‘typical” value of the observed character.

This idea of a single ‘typical” value, representative of a sample or a population,
is very useful in data analysis. Since there are many ways of calculating such a
value, each with its own advantages and disadvantages, statisticians use the more
generic term ‘measures of central tendency’. These measures of central tendency
are single numerical values (in most instances) which are intended to indicate the
centre or middle region of the distribution of values. Therefore, measures of central
tendency are another way of summarizing distribution as typical score, representative
score or the point around which the data clusters.

There are three well known measures of the central tendency of a frequency
distribution viz., mean, mode and the median as discussed below:

Arithmetic mean

The mean is generally, the arithmetic mean of the values of the individuals in the
data and is the most useful measure of central tendency. It is obtained when the
sum of the values of the individuals is divided by the total number of individuals.
The mean is usually denoted by the symbol p.

Thus, u = (Zx)/N, where x denotes the observation, N denotes the number of
observations, and Xx denotes the sum of all the observations. For grouped data,
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Where, X is the class value of the i class, f. denotes the frequency of the i class
and i=1,2,....,k where k denotes the number of classes.

Note: This formula assumes that all the observations in any class are concentrated at
the middle of the class interval. This assumption is of course not strictly true and the
formula may therefore give results different from those obtained directly from the individuals
without grouping, but the difference is generally negligible.

Example
For the ungrouped data in Table 3.2, the mean can be calculated as follows:

(x)/N

86 + 83 +96 + ......... + 9.8 + 11.9)/50
452.6/50

= 9.052 dm

The mean (u)

For the grouped (frequency distribution) data in Table 3.3, the mean can be
estimated as follows:

(43x5)+(6.0x6)+(7.7x8)+(9.4x14)+(11.1x10) H12.8x 7)
(5+6+8+14+10+7)

= 13 =9.026 dm
50

You may observe that the effect of grouping on the estimation of the mean is
negligible.

Note: The value of arithmetic mean can be influenced by a relative few highly unusual
observations and in some situations; this can give a misleading result.
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Weighted mean

The computation of weighted arithmetic mean is similar to that described for
frequency data. If the weights add up to 1, the sum of products of weights and
values will give the weighted average.

Note: The other types of means, used in certain cases, such as geometric and harmonic
means are not discussed in this manual.

Mode

Similarly, the mode can be computed for grouped data. In a frequency table, the
modal class is the class that has the greatest frequency. This class can be determined
at once from a glance, but the actual value of the mode will be located somewhere
in that class interval, not necessarily at the mid-point of the class.

Example
For the ungrouped data in Table 3.2, the value 10.4 occurs most frequently than
any other value; as such its modal value is 10.4 dm.

Note: In the case of small sample data from a continuous distribution, this type of
calculation for mode could result in none of the values or an unacceptable value for the
mode due to the reason that the sampling fraction happens to be very small and the sample
values are likely to be different from one another.

For the grouped data in Table 3.3, the mode can be calculated as follows:

The class interval 8.6-10.2, with its mid-value as 9.4, is the modal class as this class
has the highest frequency of 14 among these class intervals. As indicated above,
the actual value of the mode will be located some where in this class interval not
necessarily at the mid-point of the class. The differences between the modal
frequency and the frequencies in the next lower and the next higher classes (in
this case 14 - 8 = 6, and 14 - 10 = 4) are used for interpolation for the exact value
of mode (Mo). The exact modal value thus will be calculated as:

Mo =B+ L CI
D, +D,

Where, B is the starting value of the modal class, D, and D,, are the differences
between the modal frequency and the frequencies of the next lower and the next
higher classes, respectively, and CI is the class width. Substituting values,

Mo =8.6+ x1.7 =9.6dm

6+4
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Median

The median is the value, which is located in the middle of a series when the
observations are arranged in order of increasing/decreasing magnitude. It divides
the series into two halves, half the number of the observations lying above it and
half below. The determination of the median is a simple matter when there is odd
number of observations in the series. Thus, if 101 observations are placed in the
order of their magnitude, the 51 observation will be the value of the median. If
there is an even number of observations in a series, the average of the two central
values may be taken as the median.

Example
The data in Table 3.2 when arranged in ascending order will be as: 3.8, 4.1, 4.3,
45,127, 12.8, 13.2 and 13.4. Since the number of observations in this example is
even, the mid-value will be the average of two central values, i.e. observation
numbers 25 and 26 in the ascending/descending order. In this example the central
values are 9.1 and 9.3, therefore, the median will be (9.1 + 9.3)/2 = 9.2 dm. Suppose
in the above example, the last observation, i.e.13.4, was not there, leaving a total
number of 49 observations, then the 25% observation, i.e. 9.1, will be the median.
For the grouped data, the median lies in the median class. This class includes
the middle value determined as the middle of the array of all observations or the
observation at the N/2 position. Hence for the data in Table 3.3, the median lies
in the class interval with class value 9.4, as there are 19 observations lower and
17 observations higher than this class. Since N=50, the mean of the 25" and 26™
values is the median. The class which includes this value is the median class. Noting
that the number of observations with values lower than the median class are 19
(F,) bringing the total number of observations up to and including the median
class as 33 (F,), and that the class interval is 1.7 dm, we find by interpolation the
value of the median in the interval 8.6 to 10.2. The median (Md) value for grouped
data is obtained as:

(N2) - F,
Fz - Fl

Md=B + x CI

Where, B is the lower limit of the median class, F, is the cumulative frequency
of the class before the median class and F, is the cumulative frequency of the median
class and CI is the class width.

For the data shown in Table 3.3, the median is obtained as:

(25 - 19)
=86+ ——2x 1.7=9329 dm
Md = 8.6 53-19)

Of these measures of central tendency, the arithmetic mean is by far the most
important and commonly used. The mode is the most striking measure of central
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tendency. Both the mode and the median are not affected by the extreme values,
as is the case with arithmetic mean. Nevertheless, the mean is preferred since it
provides more information about the central tendency than the other measures.
However, it must be noted that, in a set of values, the mode is the most frequently
occurring value; the median is the middle value; and the mean is the average value.
No single measure of central tendency provides a complete picture of the data.
Suppose the data are clustered in three areas viz., half around a single low value,
and half around two large values, both mean and median may return in the relatively
empty middle, and mode may return the dominant low value. In such situations,
all the three measures of central tendency give a wrong picture of the population.
For a normally distributed population, the mode, median and mean are equal.

Measures of dispersion

By dispersion we mean, overall to what extent the data values differ from each
other. The mean, as discussed above, gives us an idea of the central value around
which the individual observations are distributed; but it tells us nothing about how
they are distributed. Two populations can have different patterns of their individual
observations, though their means are the same.

Consider the two populations each consisting of five observations. Let A={2,
1,6, 3,5, 4} and B={5, 4, 5, 5, 6, 5}. Both populations have mean equal to 5. However,
the values in A tend to vary more compared to those of B. We say that A is
heterogeneous while B is homogeneous. There are several measures available for
measuring the spread or dispersion of observations in the population. These include
the range, the interquartile range, standard deviation, variance and the coefficient
of variation.

Range

The range of a distribution is the difference between the largest value (maximum)
and the smallest value (minimum) in the data set. The range, although a quick
measure, gives only a rough estimate of the amount of the variability present in
the population. It depends entirely on the two extreme values and takes no account
of the pattern of variation among the other values.

Example

For the ungrouped data in Table 3.2, which varies from 3.8 to 13.4 dm, the range
is equal to 134 - 3.8 = 9.6 dm. In most cases the range is simply presented by
indicating the smallest and largest observations, e.g. 3.8 to 13.4.

Note: Grouped data cannot provide a measure of range.
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Mean of the absolute deviation
Another measure of dispersion is the mean of deviation. This is calculated by
adding the absolute values of the deviations of individual observations from their
arithmetic mean and then dividing the sum by the number of observations

N

or Z:|xi - “l
N

Where, n is the population mean and N is the number of observations.
For grouped data, the mean deviation is obtained as:

k k
2 Sl-ul D,
Mean deviation = = - — i=lk

2 >
i=1 i=1

where, x, is the class value of the i™ class, f is the frequency of the i™ class, n
is the population mean and N is the number of observations.

Example
For the grouped data in Table 3.3 the mean value, as calculated above, is 9.026
dm. These calculations are shown in the Table 3.4 below.

Table 3.4. Estimation of mean deviation for grouped data

Class interval Class Frequency Deviation fd,
value (f) (d)
35 - 51 4.3 5 4.726 23.630
52 - 6.8 6.0 6 3.026 18.156
6.9 - 85 7.7 8 1.326 10.608
8.6 — 10.2 9.4 14 0.374 5.236
10.3 - 11.9 111 10 2.074 20.740
12.0 - 13.6 12.8 7 3.774 26.418
Total 50 104.788

Thus, the mean deviation is 104.788/50 = 2.096 dm.

For the ungrouped data in Table 3.2, the mean deviation works out to be 2.046
dm, since the sum of the deviation of the observations from the mean value without
taking the sign into consideration is 102.296, as explained in Table 3.5.

Thus, the mean deviation works out to be:

Mean deviation= 102.296/50
= 2.046 dm
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Table 3.5. Estimation of mean deviation for ungrouped data

Stem length Deviation Stem Deviation Stem Deviation
(d) length (d) length (d)
8.6 0.452 104 1.348 4.3 4.752
8.3 0.752 5.9 3.152 12.8 3.748
9.6 0.548 9.9 0.848 7.7 1.352
9.1 0.048 8.2 0.852 5.8 3.252
10.4 1.348 6.1 2.952 13.2 4.148
6.3 2.752 9.3 0.248 4.8 4.252
11.9 2.848 12.7 3.648 12.6 3.548
9.3 0.248 13.4 4.348 8.9 0.152
9.7 0.648 11.0 1.948 11.6 2.548
4.5 4.552 7.9 1.152 10.8 1.748
8.6 0.452 6.8 2.252 6.3 2.752
7.8 1.252 7.7 1.352 12.2 3.148
7.9 1.152 41 4.952 8.9 0.152
12.6 3.548 8.5 0.552 10.2 1.148
8.4 0.652 10.4 1.348 9.8 0.748
10.4 1.348 9.8 0.748 11.9 2.848
11.5 2.448 3.8 5.252
Grand Total (d) 102.296

Variance and standard deviation

The standard deviation, denoted by ¢ is calculated as the positive square root of
variance (6?). The variance is obtained as the mean of the squared deviations (d)
of each observation from the arithmetic mean and is obtained as:

N 2

N ) N in

2y xS
_ 5 N

2 i=1 —
N N

o =

Where, x,s are the observations, u is the population mean and N is the total
number of observations.

With grouped data, the variance is obtained as:

! k 21,
TR S A

2 i=1
£ N
=1

2

c =
/

1

Where, 1 is the population mean, x, and f, are the class value and the frequency
of the i™ class, respectively and i=1,2,...k, the total number of classes.
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Note: The formula for the ungrouped data is obtained by simply replacing f with 1 in
the above expression.

Example
For the ungrouped data in Table 3.2, the variance can be calculated as follows:

~ (8.6-9.052)"+(8.3-9.052)"+ ...+ (11.9 - 9.052)
a 50

Alternatively, using the formula involving the original values, ie. x’s

2

c =6.373 dm’

(8.6+83+ ...+ 11.9)
50

8.6+ 83+ ... +11.9°) —
o’ =

50

4415.6 (452.6)
Y50

= = 6.373 dm’
50

Hence, 5 =./6373 din* =2.5245 dm

For the grouped data in Table 3.3, the variance can be calculated using the
computation given in Table 3.6 below:

Table 3.6. Computations for the mean and variance for the grouped data

Class interval Class value Frequency f x f x?
) U]
35 - 51 4.3 5 21.5 92.45
52 - 6.8 6.0 6 36.0 216.00
6.9 - 85 7.7 8 61.6 474.32
8.6 — 10.2 9.4 14 131.6 1236.04
10.3 - 11.9 111 10 111.0 1232.10
12.0 - 13.6 12.8 7 89.6 1146.88
Total 50 451.3 4398.79
o2 = (1/50) {4398.79 - (451.3)2/50}

(1/50) (4398.79 — 4073.4338)
= 6507 dm?

Thus,
o = 2551 dm

Observations to be noted
e Since the deviations are squared, the variance is always positive.

e Unlike in the case of mean, the difference between estimates of the variance
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for grouped and ungrouped data is not always negligible and a correction
is required in computing the standard deviation from grouped data with
the help of the above formula.

e It should be remembered that the measures of dispersion are expressed in
the same units of measurements such as inches, grams, pounds, etc., in
which the observations themselves are measured.

e Among these measures of dispersion, ¢ is the most commonly used.

e The mean deviation is, perhaps, a simpler measure of variability than the
standard deviation, but is not easily amenable to algebraic treatment in the
way the standard deviation is.

e In fact, most methods of statistical analysis have evolved around the square
of the standard deviation or the variance. It has been shown that the variance
is the most informative among the measures of dispersion for populations
commonly encountered.

Coefficient of variation

The above measures of dispersion are absolute and are expressed in units in which
the observations are recorded. A measure of variation, which is independent of
the unit of measurement, and is therefore useful for comparison between different
populations and for different characters, is provided by the coefficient of variation
(CV). The coefficient of variation is expressed as the standard deviation as a
percentage of the mean and is obtained as:

Jo?

CV(%) =

(100)

The coefficient of variation remains unaltered by a change in scale such as,
for example, change of unit of measurement from feet to centimetres, but it is altered
by a change of origin, which affects the mean but not the standard deviation. Thus,
the CV of temperature would be different if the temperature were measured in
centigrade from that obtained when the unit of measurement is Fahrenheit. The
CV of the percentage of plants affected by a disease would not be the same as
that of the percentage of plants free from the infection. A population or character
with a higher value of CV indicates that it is comparatively more variable than
the other population. For experiments comparing treatments, the coefficient of
variation indicates the precision with which treatments are compared and is an
index of the reliability of the experiment. Thus, the greater the CV value, the lower
is the reliability of the experiment. The CV value varies greatly with the type of
experiment, crop grown and characters observed. Most of the characters of interest
in coconut experiment show coefficient of variation more than 20% implying the
requirement of relatively large sample size for coconut experiments.




Data analysis manual for coconut researchers 31

Example

With regard to data presented in Table 3.2, the mean and standard deviation for
the ungrouped data were obtained as 9.052 and 2.5245, respectively. The CV is
then obtained as follows:

CV = 100 x (2.5245/9.052)

= 27.89%

As indicated, the change of units/scale will not have any effect on the estimation
of CV. In the above example, if we measure the length of stem in terms of
millimetres in place of decimetres, the mean value will work out to be 905.2 mm
and the variance will work out to be 63732.96 mm? Thus, the CV will be:

CV = 100 x V 63732.96/905.02
100 (252.4539/905.02)
= 27.89%

However, when we change the origin for measurement, i.e. if we measure the
length of stem over and above 5 dm from ground level and work out the CV,
we will observe that while the mean changes to 4.052 dm, the variance and the
standard deviation remain unchanged as 6.373 dm?and 2.524 dm, respectively, then:
CV = 100 x 2.524/4.052
100 x 0.6232
= 62.32%

As you can see, the two values are not the same.

With regard to data presented in Table 3.3, the mean and standard deviation
for the grouped data are obtained as 9.026 and 2.251, respectively. The CV is then
obtained as follows:

CV = 100 x (2.551/9.026)

= 28.26%

Shape parameter for frequency distribution

After obtaining the mean and variance of a frequency distribution, our interest
focuses on which side of the mean lies more number of observations. This is
indicated by the value of skewness. The pattern in which the frequency decreases
on either side of the mean depends upon the value of kurtosis. Knowledge of
skewness and kurtosis will help to visualize the shape of a frequency distribution
as discussed below:
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Skewness

Skewness measures the symmetry of the frequency distribution. This measure is
centred at zero. A large positive value for skewness indicates a long right tail (Fig.
3.3A). That is, the low values of the observations are bunched close to the mean
but high values extend far above the mean. Extreme negative value for skewness
indicates a long left tail (Fig. 3.3B). Obviously for a symmetric distribution, the
value of skewness will be near to zero.

™~ g
M -
Mode pedian oo Mean \jegian ~Mode
Figure 3.3A. Skewness with positive Figure 3.3B. Skewness with negative
values. values.

A measure of the amount of skewness in a population is given by the average
value of d°, where d is the deviation of the observation (or the mid-value of the
class, in the case of classified data) from the mean. This quantity is called the third
moment about the mean. To render this measure independent of the scale on which
the data are recorded, it is divided by o°, where ¢ is the standard deviation. The
resulting coefficient of skewness is denoted by \/[31 and sometimes by 7,.

Thus:
B, =71, = Xd°/(Xd?>? for ungrouped data, and

= (Xf.d®/(Xf.d?)*? for grouped data.

Example
The computations for skewness using the formula given above can be simplified
using the x values, as follows:

First, we obtain the values h,, h, and h, which are:

h = (1/N) Xfx
h, = (1/N) Xfx*, and
h, = (1/N) Xfx®
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Thereafter, the values m, m, and m, are obtained as:

1 1
m,= h, - h? and
m,= h, - 3hh + 2h’

Then \/[3\1 is obtained as:
\/[31 = my/m, 2

In the case of grouped data, similar to the calculation of variance as shown
above in Table 3.6, a column for fx> may be added (Table 3.7).

Table 3.7. Computations for skewness for grouped data

Class Class value Frequency fx x? xé
interval (x) (A

35 - 5.1 43 5 21.5 92.45 397.54
52 - 6.8 6.0 6 36.0 216.00 1296.00
6.9 - 85 7.7 8 61.6 474.32 3652.26
8.6 - 10.2 9.4 14 131.6 1236.04 11628.18
10.3 - 11.9 111 10 111.0 1232.10 13676.31
12.0 - 13.6 12.8 7 89.6 1146.88 14680.06
Total 50 451.3 4398.79 45330.35

Finding the values

h, = (1/N) 3f h, = (1/N) 3f2 h, = (1/N) Sfic

= 451.3/50 = 4398.79/50 = 45330.35/50
= 9.026 = 87.9758 = 906.661
m,= h, m,=h, - h? m,= h, - 3hh, + 2h’
= 9.026 = 87.9758 - (9.026)> = 906.661 - 3(9.026)(87.976) + 2(9.026)°
= 6.5071 = -4.8755
Thus,
\/[3l = m,/m,*?
= - 0.2937

For the ungrouped data in Table 3.2, the skewness can be obtained as:
VB,= - 0.2764.
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Kurtosis

Kurtosis measures the peakness of the distribution. The centre or peak of a
distribution is compared against that of a ‘normal distribution” for which the
kurtosis is zero. Therefore, using the measure of kurtosis, we can state whether
the peak of the distribution is much shorter or taller than that of a normal
distribution. A large positive value for kurtosis indicates the tails of the distribution
are longer than that of normal distribution while a negative value of kurtosis
indicates shorter tails (Fig. 3.4).

Kurtosis > 0

Kurtosis = 0

Kurtosis < 0

Figure 3.4. Kurtosis with positive (>0) and negative (<0) values.

The coefficient B, is used as a measure of kurtosis and is computed by dividing
the average value of d* by ¢, where d and ¢ (defined in the previous section).
For the normal distribution, this ratio has the value of 3. As such y, = ,- 3 is
used as a measure of kurtosis. If the ratio exceeds 3, there is usually an excess
of values near the mean and far from it, with a corresponding depletion of the
flanks of the distribution curve. Ratios less than 3 result from curves that have
a flatter top than the normal.

Thus,

Y, = B,— 3 = {(Zd*)/(Zd*)?} - 3 for ungrouped data, and
= {(Xf.d")/(Zf.d*)?*} - 3 for grouped data.

Example

Besides the m, m,, and m,, as defined above, for the calculation of kurtosis we

also obtain the values of h, and m, as indicated below:
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=
Il

(1/N)>fx*, and
h, — 4h h, + 6h*h, - 3h*

1

=
I

The calculated values for h, and m, obtained for the grouped data are 9732.491
and 90.609, respectively.

Thus, the calculated value of v, for the grouped data is obtained as —0.860. For
the ungrouped data it was -0.655.

Note: For the calculation of standard deviation, skewness and kurtosis using various
statistical packages available, there may be different formulae treating the observations as
a sample from a population and making corrections for the sample. Thus, the results are
likely to be slightly different for these values, when obtained using different packages. For
example, if you are using MS Excel for data analysis for these descriptive statistics, the
formulae used are:

2 2
Standard Deviation = M
n(n—1)
n X —X ’
= *7)
Skewness (-1 (n—2) P

Kurtosis

n(n+1) x,-%\'"|  3;-1’
{(n—l)(n—2)(n—3)z( s j} (n—2)(n-3)

Using these above formulae, the values obtained for variance, skewness and
kurtosis were: 6.503, -0.285 and -0.595, respectively for the ungrouped data and
6.639, -0.306, and -0.771, respectively for the grouped data in the examples discussed
above. Their corresponding values as estimated above are shown in Table 3.9.

Table 3.8. Comparison of estimates using different statistical packages

Estimates Ungrouped data Grouped data
Calculation MS Excel Calculation MS Excel
Variance 6.373 6.503 6.507 6.639
Skewness -0.276 -0.285 -0.294 -0.306
Kurtosis -0.655 -0.595 -0.860 -0.771

The negative value of measure of skewness indicates a left tail for the frequency
distribution as can be seen in Fig. 3.3B. However, the value of the skewness in
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this example cannot be considered as a very extreme negative value. Similarly,
the value of kurtosis is also negative, suggesting that the tails of the distribution
is shorter when compared to the normal distribution.

To conclude, the distribution of the data in question is not exactly the normal
distribution, but at the same time the measures are not very far from that expected
from a normal distribution as well. This is the situation we often come across in
practice. The sample we selected for analysis may not be indicating that it is from
a normal population and a large deviation once encountered calls for special
treatment of the data.

Note: Because skewness and kurtosis are sensitive to anomalies in distribution, one should
study them in conjunction with a histogram. This is because the coefficient of skewness
and kurtosis are influenced by the extreme values in the sample while a complete description
of the data is made available by means of a histogram.

Normal distribution

We noted earlier that as the number of observations used for the frequency
distribution increases and the class interval is reduced, the graph approaches more
and more the form of a smooth curve known as the frequency curve. The concept
of frequency curve is of great value in statistics, since it provides an excellent
summary of the data and reflects their characteristics depending only on a few
constants, called parameters, representing the population. Depending on the nature
of the variable, whether discrete or continuous, the distributions are termed as
discrete or continuous distributions, respectively.

As we discussed earlier, the sample is used to represent the population. The
sample parameters hold certain relationships, depending upon the distribution of
the population, with the parameters of the population. Mean is by far the most
important characteristic and is mostly used in drawing inferences. The distribution
of the sample means is of special interest, particularly in biological sciences, where
it is seen that the sample mean of characters is distributed nearly as a normal
distribution.

Note: Other continuous distributions, which are extensively used by the biological workers,
include student’s t-distribution, y* - distribution, F-ratio, specially, for the purposes of
testing of hypotheses. Some of the commonly encountered discrete distributions in biological
sciences are the Binomial and Poisson distributions. The utility of these distributions are
for conducting statistical tests and will be discussed appropriately in subsequent chapters.

Normal curve

Normal curve or distribution (Fig. 3.5), which is a continuous one, is by far the
most important curve in the application of statistical theory to a large variety of
biological data. It is determined by two parameters viz., mean (1) and the standard
deviation (o). It is a bell shaped curve symmetric around the mean. The maximum
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ordinate, that is the peak, is at the mean. Thus, the mean coincides with the mode
and median in this curve.

As the deviation of a given value on either side from the mean is increased,
fewer and fewer values will be lying beyond that of a given value. Nearly 67%
of the observations lie within the range u + ¢ and nearly 95% of the observations
lie within the range p + 2c.

For a normal curve, the fraction of the area or observations that get cut off
depends only on the ratio y = (x - n)/c, where x stands for a given observation,
o its standard deviation, and x - p its deviation from the mean. This ratio is called
the standard normal deviate.

It is often our interest to find out the probability of getting values beyond a
specific value, for which we use the table of normal probability integral. It may
be recalled here that the area under the curve of any probability distribution is
unity as the total probability is always equal to 1. The table of normal probability
integral gives the fraction corresponding to the area lying to the left of different
positive values of the standard normal deviate (and is referred as the ordinates).
This area represents the probability of a standard normal deviate being less than
the value y (y > 0), and consists of the entire area left to the central value zero
(i.e. 0.5) and area of the right side leaving the right tail area (probability of the
right tail is conventionally denoted as a./2). In other words, the probability of values
less than y is 0.5 + 05 - o/2 = 1 - /2.

For negative values of (x - n)/c, the area to the left of the ordinate at y is
given by o/2 the ‘right tail’ area with respect to the corresponding positive value
of (x - w)/o. The area or the frequency of observations lying outside the + value
of the normal deviate is o and are tabulated in many reference books on statistics
(e.g. Fisher and Yates 1963).

Example

As an example for a normal population of the stem length at 11 leaf scars of coconut
palms with mean value 9.05 dm and variance 6.25 dm? or standard deviation 2.5
dm, the probability of occurrence of stem lengths of 13.85 dm and above can be
worked out as follows:

y =Kx-p/o
= (13.85 - 9.05)/2.5
= 1.92

In the table of normal probability integral values corresponding to 1.9 and 2.0,
values provided are 0.97128 and 0.97725, respectively. Hence, we interpolate the
value corresponding to 1.92 as 097128 + 2 * (0.97725 - 0.97128)/10 = 0.97247.

Therefore 1 - o/2 = 0.97247
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2.5% —\‘

u-3c u-26 u-c M u+o u+2c u+3c

Figure 3.5. Normal distribution with mean m and standard deviation G.

Thus, the probability of values less than 13.85 dm is 0.97247 and the probability
of occurrence of plants with stem lengths of 13.85 dm and above is 1 - 0.97247
= 0.02753 or the proportion of plants with stem length of 13.85 dm and above
is 2.75%.

Alternatively, the table for values for normal deviate (y) for chosen level of
P (or o in our nomenclature) may be used (Fisher and Yates 1963). From this table,
we observe that the P values are provided against y = 1.96 and y = 1.8808 as
0.05 and 0.06, respectively. Thus, the value of P (or o) for y = 1.92 works out
to be = 0.05505.

Hence o/2 = 0.05505/2 = 0.02753

Therefore, 1 - o/2 = 1 - 0.02753 = 0.97247 as obtained by using the table of
standard normal deviate.

Estimators of mean and variance

The normal distribution depends only on two parameters viz., mean (u) and
standard deviation (o). The best estimators of the parameters p and o* based on
a sample of n observations x, x,, ... , x_ are:

Estimator of n = Sample mean = x = (1/n) (x, + x, + ... + x ), and

Estimator of ¢® = s = {X(x; - X)*}/(n-1)
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These estimates are considered very satisfactory when dealing with normal and
nearly normal populations.

Confidence interval (Cl )

In biological sciences, the most important parameter of interest is the mean value
of the character under study. The confidence interval for the population mean is
the range of an interval around which the average (X¥) of the sample include the
‘true average’ (4) of the population with probability 1 - o, [generally, o = 0.05
(i.e. 5%)]. It is taken as 2b_and the confidence limits as (X - b, X + b,). The value
1 - o is known as confidence coefficient. The confidence interval and limits for other
population parameters can be similarly defined.

Example

Consider the data given in Table 3.2 as a sample drawn from a normal population
with unknown mean and known variance of 6.25. The sample mean based on
n = 50 observations was 9.052.

From the normal probability integral we find that the area left of the ordinate
for y = (x - n)/c = 1.96, is 0.975. That is the probability of Vn (x - m)/c < 1.96
is 0.95. In addition, we know that the sample mean is distributed as normal with
mean  and standard deviation /Vn = 0.3535 dm.

Substituting the values of X and o, the confidence limits of the population mean
u are given by x * 1.96 o/n ie. 9.052 = (1.96) (0.3535), i.e. 8.359 and 9.745 with
95% confidence coefficient.

Minimum sample size for estimating the mean
The following three factors have to be considered when choosing a sample size,
to measure a character:

1. The desired confidence interval (CI)
2. The coefficient of variation (CV)
3. The cost of the sample, which is related to the sample size n

In the normal populations, which are mostly encountered, the value of b
depends on the standard deviation (o), sample size (1) and a tabulated factor for
the chosen level o.

For example b = 1.96 (c/ \ n), where factor corresponds to o = 0.05. This allows
us to calculate the sample size required for a given confidence interval expressed
as percentage of mean and confidence coefficient.

Table 3.9 shows the calculated values for the optimal sample size for coconut
population according to CV and the desired (CI)) = 2 b,. The value of b  is taken
as percentage of u, the population mean.
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Table 3.9. Optimal sample size according to CV (%) and desired Cl, .

be, Coefficient of Variation (%)

5.0 7.5 10.0 125 15.0 17.5 20.0 22,5 25.0

5.0% 4 9 16 25 35 48 62 78 97
7.5% 2 4 7 11 16 21 28 35 43
10.0% 1 3 4 7 9 12 16 20 25
12.5% 1 2 3 4 6 8 10 13 16
15.0% 1 1 2 3 4 6 7 9 11

Example

Suppose the CV of the character stem-length is 24.63%, then a sample size of 97
palms is required to estimate the mean stem length within a difference of 10%
of the population mean as seen in Table 3.9 against b, = 5% and CV = 25%.

Reference
Fisher, R.A. and Yates, F. 1963. Statistical tables for biological, agricultural and
medical research (6™ edition.). Longman. 146p.

Further reading

Snedecor, G.W. and Cochran, W.G. 1967. Statistical Methods, 6% edition. Oxford
and IBH Publishing Co., New Delhi. 593p.

Steel, R.G.D and Torrie, J.H. 1981. Principles and Procedures of Statistics. McGraw-
Hill, Singapore. 572p.
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Chapter 4: Estimation and tests of significance

A great majority of applied researches involve the comparison of two or more
populations. These include experiments designed to discover methods for improved
production or performance such as fertilizer trials, variety trials, technology adaptation
experiments to compare the mean yields or surveys to determine the phenotypic
variability of different populations. To illustrate, consider an experiment to determine
which of three treatments is most efficient in increasing the total nut production.
The problem of determining whether copra production of different coconut varieties
differ from each other is another important application. In general, the interest is
to compare the average values of the various characters in different populations
assuming the data comes from random samples of units. Sometimes rather than
the means, the variability existing in the populations is the parameter of interest.
In all these situations, a null hypothesis asserting equality of the parameter to some
specific value is tested against an alternative which asserts other values aside from
that specified. Other parameters of interest include population proportion, P,
variability or measures of association between the characters. For each, an appropriate
statistic with known probability distribution is computed. Depending on the value
of the statistic, decisions are made according to some criterion. Such a procedure
is called test of significance or test of hypothesis. In this chapter, we discuss the
most important aspects of statistical inference viz., estimation and tests of significance.

Estimation

The main objective of statistical inference is to estimate the unknown parameters
of the distribution of the characteristics of interest and make statements about these
parameters. To do this, a random sample is obtained from the population under
study and observations are made on each unit. The parameter is then estimated
from these observations using the appropriate estimator or statistic. The estimator
is a rule or formula for obtaining an estimate of the parameter from the sample
observations. Estimation is concerned with assessing the magnitudes of the parameters
of the populations under study. It is not enough to establish a difference between
two treatment means as significant. For operational decisions, it would be necessary
to have knowledge of the magnitude of the effect of each treatment. It is also clear
that in most cases, we do not have data relating to the population as a whole
but only on a random sample of units from it, and the assessed value or estimate
is likely to deviate from the parameter it is intended to estimate. This deviation
in nature could be due to bias or chance error or both. Therefore, we would like
the deviation to be free from bias and the error as small as possible. There are
a number of methods for estimating a particular parameter or a function of it,
like o or 0% These different methods are called estimators, which are functions
of the sample observations.
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Estimators for specific parameters are not necessarily unique. Needless to say
the quality of the estimates will depend on the quality of the estimators themselves.
Hence, not only are we faced with estimating the parameter using a rule but we
are also faced with the problem of determining the best estimator. Some desirable
properties of estimators include: unbiasedness, consistency and efficiency.

An estimator is said to be unbiased if the mean of the estimates from many
samples is equal to the true value of the parameter being measured. This simply
means that with repeated estimations of the parameter using independent samples,
the average value of the estimates should approach the true value of the parameter.
Consistency, on the other hand, refers to the property of an estimator such that
as the sample size increases, the estimated value should approach the parametric
value more closely and more often. Such an estimator is called consistent. The
property of efficiency is based on the variance of the estimator. An estimator g based
on n observations is said to be efficient if its variance in large samples is least
among all the estimators of similar type.

The estimators discussed above are known as point estimators. A second type
of estimators is known as interval estimators. Point estimators give a single value
as an estimate of the parameter while interval estimators give a range of values
within which the true value may be included. If some probability level which
reflects the confidence that the true value is contained in the interval is attached
to it, then we call the interval a confidence interval.

n

—\2
Z (xl. B x)
The variance of the observations in the sample §? ==L is an example
n

of a biased point estimator of ¢* since the expected value of 3*2 is 6’(n-1)/n. Hence
n 2
Z (xi -X )
i=1

n-1
the variance of the sample observations, n is used as denominator, whereas, for
estimating population variance from the sample, the denominator is (n-1). We
refer s” as the ‘sample variance’.

Similar changes will be required for calculating the population parameters and
estimating them from the sample, as we have indicated earlier for the parameters
for skewness and kurtosis in chapter 3.

an unbiased estimator of o2 is §° = . In other words, while calculatin
g

Tests of significance

In statistical inference, we make statements about the parameter of the population
of interest. This statement is known as a statistical hypothesis. A statistical hypothesis
is a statement about the values of one or more parameters of the population. The
hypothesis to be tested is called the null hypothesis (H) and the hypothesis to
be accepted as true in the event that the null hypothesis is rejected is called the




Data analysis manual for coconut researchers 43

alternative hypothesis (H,). The null hypothesis asserts equality or no difference
between the populations compared while the alternative hypothesis asserts difference.
Hence, in comparing the production performance of two open-pollinated tall
populations of coconut, a possible pair of hypotheses is:

H,: The yield of the two populations is not different from each other versus
either one of the following alternative hypothesis

H,: Population A and Population B yields are different from each other;

H,: Population A yields less than Population B; or

H,: Population A yields better than Population B.

An experiment is conducted and based on the value of the test statistic, the
hypothesis is rejected or accepted with known probability of error. During the
course of testing the hypothesis, there are two situations where the experimenter
is likely to commit an error. When the hypothesis is actually true but is rejected,
a Type I error is committed. On the other hand, when the hypothesis is actually
false and is accepted, a Type II error is committed.

Obviously, one would like to minimize both these errors, which is not possible
to achieve simultaneously. Therefore, the magnitude of the Type I error is fixed.
For this, as a matter of convenience, the probability level of 5% (0.05) or 1% (0.01)
is commonly used (known as level of significance) for the cases of rejection of the
hypothesis when it is actually true.

The nature of alternative hypothesis (H,), if the null hypothesis (H) was not
true, is also to be considered to determine the nature of the test. Keeping the H,
and H, in mind, a test statistic that will help to minimize the second type of error
or maximize the power of the test, measured as (1 - probability of Type II error)
is developed.

The test of significance is based on the sample data generated/collected. It also
depends on the inherent distribution of the population(s) from which the sample
data are generated, besides the null and alternative hypotheses. The statistical
procedure involves the selection of a suitable test statistic which is a function of
the sample observations. Being a function of the observations, the distribution of
the test statistic is affected by the distribution from which the observations were
sampled. Hence the distribution of the test statistic is determined thereby allowing
calculation of probabilities of values of the test statistic. Hence for a given level
of significance, one can determine the critical value of the test.

When the result is not significant, we do not say the hypothesis H is accepted.
The reason is that, in observational sciences, no finite amount of experimentation
or observation can prove or establish a hypothesis. Observations are capable only
of disproving or rejecting a hypothesis.

A large difference between the means of two treatments is unlikely to have
arisen purely due to chance without a real difference in the effect of treatments.
A small difference could more easily have arisen by chance. However, it is necessary
to concede that with larger samples the probability of the difference of same small
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magnitude arising purely due to chance gets less, and thus one might be in a
position to reject the null hypothesis. If, with reasonable amount of data, the null
hypothesis is rejected one reaches a definite conclusion.

If the null hypothesis is not rejected by the test, one may conclude either that
the null hypothesis is true or that the data do not provide evidence for the null
hypothesis to be rejected.

Some of the more important and useful tests for the analysis of coconut
experimental data include the t-test for comparing two populations, the F-test for
comparing two or more populations and the z*- test for testing goodness-of-fit
and independence between two variables.

Test of hypothesis about the mean of one population (t-test)

This test, a landmark in the establishment of statistical methods for small samples,
was developed by W.S. Gosset, a brewery chemist who wrote under the pseudonym,
‘Student” in 1908 and hence has been referred to as “Student t-test”. Consider a
sample of n observations x,, x,, ..., x, drawn from a normal population with mean

u and variance ¢? ie., x~N (U, 6%). The sample mean, X, is distributed as normal

2 —
—_ (9] X-

with mean |, and variance &%/n, i.e. x~N [M,;] . Thus \/Z (_M) will be
o

distributed as N (0,1). However, the variance is usually unknown and needs to

be estimated from the sample itself. ‘Student’” worked out the distribution of the

(F-1)
?2

and t > 0, as the t — distribution with (n-1) df.

As in the case of the standard normal distribution, the t- tables are also available
giving the P(|t,|> t) for a given sample size and degrees of freedom (Fisher and
Yates 1963). The t- values required for significance at the 5 and 1 percent levels
of significance, for (n-1) df are denoted as £, and toor, respectively. Thus,
toos, w1y 1S that value such that P( |t | > toos, n- ) =

It may be noted that the t-dlstrlbutlon is deflned only for positive values of
t where as the difference (¥ - p ) can take both positive and negative values. Thus,
tyos, ) 1S that value which is exceeded with a probability 0.025 in the negative
direction and with a probability 0.025 on the positive direction making the total
probability of 0.05. A test of this kind is therefore referred as two-tailed test. It
may be noted here that in Table of t-values, the level of significance refers to the
two-tailed test (if not mentioned otherwise). For example, if the level of significance
is 5%, the values in the table referred under 5% is with respect to a two-tailed
test. If one-tailed test at 5% level is desired, one has to refer under 1% in such
Table. It may be noted here that in certain statistical software we may have to

specify the complement of the level of significance (i.e. 1-o) with regard to the

test statistic as, ZZ\/;

where, s* is the estimated variance from the sample

]/
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‘right tail” of the distribution only. For two-tailed test the probability of the right
tail is o/2. Therefore, if the two-tail test is at 5%, one has to specify 1 - 0.05/
2 = 0975 and for corresponding one-tail test, it is 1 - 0.05 = 0.95.

As the df increases, the t-values approaches the values of the standard normal
distribution. Thus for large size samples (n > 30), the tests are carried out taking
the distribution of the ratio above as approximately normal and using the normal
probability integral tables.

Application: Testing the hypothesis that a population mean is equal to some
specified value ..

Data: A sample of n observations (x,, x,, ..., X ).

Assumptions: The sample is drawn from a normal population.
Hypothesis: Test H, : u1 = p, against H, : p # n,

Computation:

zchZ(f_“)~z
S

n

¥

where, ¥ = = is the sample mean,
n

X,

1

i n . .
and §* = is the sample variance.
n-1

o, (n—1)

Decision: Reject H if | tc| >t 1 Which is obtained from the t-table. Critical value

for ‘two-tailed test’” at chosen level of significance (o) will be provided in the

t-Table. if | t |< ¢, wp the test fails to reject H,.

Example

It is known that the average copra yield per nut in WCT palms is 172 g. However,
a farmer claimed to have WCT palms with average copra yield per nut above 172
g. The plant breeding group wants to test the farmer’s claim on superior WCT
palms (o = 0.05). Samples of 26 nuts were collected from the palms and the weight
of copra obtained. The data is given below:

Data: 177.25, 154.50, 173.25, 193.50, 227.50, 155.25, 168.00, 233.00, 150.00, 158.75,
230.00, 200.75, 169.75, 176.75, 158.00, 164.25, 154.50, 162.50, 186.50, 207.00, 250.00,
157.50, 228.50, 216.50, 227.50, 181.50

Hypothesis: H  : nu = 172 against H, : n # 172
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Computation:
l, = \/%(x_—NZ)N L.05.25
s

Compute x¥ and s* as follows:

_ (177.25+15450+ .. +181.50) _ 4862.50
X = =
26

=187.0192

(17725 + 154.50+... +181.50)’

(177.252+ 154.50°+ .. +181‘502)
2 26 _
_ —945.3296

s
25

Therefore,

T (187.0192—172.00)_2.491

J9453296

Decision: The chosen level of significance is 5% and df = n-1 = 25. The tabulated

t-value is then f . o5 = 2.06. Since the calculated t value (2.491) is greater than

the tabulated t value, ie., t > 2.06, reject the null hypothesis H  : u = 172.

Conclusion: There is some evidence to support the farmer’s claim that the average
copra weight is greater than 172.

Note: The above test is two-tailed. More appropriately we can test H, : u = 172 against
H, : u > 172 as we are interested to a population that gives more than the average copra
yield per nut. The test statistic remains the same, but we take into account the direction
of the deviation also in this case. If the t-statistic is negative, we accept the null hypothesis
immediately in this case. If positive, for a chosen level of significance, we need to obtain
the value which is exceeded with a probability equal to double the level of significance
(i.e. with respect to 5% level of significance, we have to refer tabulated values corresponding
to 10%). The test that we adopt in such a case is called a one or single tailed test. (The
test with regard to H, : u # 172 is referred as two-tailed test).

If the null hypothesis is rejected based on the two-tailed test, the same decision
holds good with regard to single tailed test. With regard to the above example
the calculated t-statistic (2.491) is compared with tabulated value of t for 1% and
25 df, which is t = 1.708. Again t > t and we reject the null hypothesis.

0.1,(25) 0.1,(25)

Test of hypothesis about the mean difference of two populations
The tests for comparing the mean difference between two populations can be
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conducted using independent samples or using paired samples. First we consider
the case of two independent samples.

Independent samples

Let p, and u, be the means of population 1 and population 2, respectively. To
test hypothesis about the mean difference between two populations, random samples
from each population are taken independently. Let x, x, ..., x , denote the
observations on the first sample and let y,, y,, ..., y_, denote the observations on
the second sample. The difference between the two populations is estimated as
the difference between the two sample means.

Assumptions:
(1) The samples are drawn from normal population, and
(2) The variance is same for both the populations.

Hypothesis: H, : p, = p, against H : p, # p,
Computation:
-y
: 11
S;(-ﬁ-j
nl n2

Where, X and ¥ are the means of the two samples and S,f is the pooled variance
obtained as:

' (n1 —l)sf Jr(n2 —l)S22
- n+n, -2

S

Where, s? and s? are the sample variances and n, and n, are the sample sizes.

Decision: Reject H if |tc | Sty 4 in,—r Otherwise, fail to reject H

Example

During a field visit, scientists were told that intercropping in coconut garden favors
nut production. To verify this, two gardens, one garden which practiced intercropping
and another which practiced monocropping were selected. The mean yields of the
two gardens were estimated from the average number of nuts per bunch per palm
based on the three oldest bunches at the time of observation. Sixteen and eighteen
palms were randomly selected from the monocrop and intercropped gardens,

respectively. The data are given in Table 4.1.
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Table 4.1. Average number of nuts per bunch from two coconut populations

Sample Monocropping garden Intercropping garden
No. (x) v

1 16.3 21.4

2 15.5 13.2

3 27.3 26.8

4 22.6 29.3

5 12.2 17.4

6 18.7 16.3

7 7.3 121

8 9.7 9.0

9 21.3 20.8

10 15.5 17.7

11 22.2 194

12 13.2 15.2

13 19.0 18.3

14 17.4 18.0

15 28.8 254

16 14.9 17.3

17 18.8

18 19.5

Total 281.8 335.9
Sample size 16.0 18.0
Sample Mean 17.6 18.7
Sample Variance 34.6 25.1

Hypothesis: Test H_ :

Computation:
Sample size: n, = 16 and n, = 18

. (16-1)34.56+(18—1)25.11
S =

=29.54
’ 16+18-2

. 17.62-18.66 056

29.54 i+i
16 18

The df = n, + n

-2=232

2

Decision: From the table of t-values, we get t

u, = n, against H, : u, # n,

= 2.042. Since as |t |< 2.042,

0.05, 32

we do not reject the null hypothesis H; : u, = u,

Conclusion: The data do not provide evidence that intercropping favours coconut

production.
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With respect to the one-tailed test (against the alternative hypothesis H, :
< p,) also the null hypothesis is not rejected as t <t ., = 131
Paired Samples
Paired samples arise either by the use of similar units or through self-pairing. In
the first case, the samples are matched and each member of the pair belongs to
one of the populations to be compared. Pairs of coconut fruits where each pair
comes from the same bunch can be used to determine the efficacy of two virgin
oil extraction methods. On the other hand, self-pairing arises in “before and after”
treatments, where the individuals are observed twice, once before the treatment
and once after the treatment.

For example, to test if the copra yield in two seasons of harvest of a plantation
are equal, a researcher can observe the copra yields of the sampled palms for both
seasons or could choose different sets of sampled palms in different seasons.

When paired samples are used, the test of hypothesis about the mean difference,
u, = 1, - u, between the two populations is conducted as follows:

Data: Paired observations from a random sample of size n. Observations are
denoted by (x1, x2), (x1,, x2,), ..., (x1_, x2).

Hypothesis: H, : nu, = 0 (i.e., the averaged paired difference is zero), against
H :p,#0

1

Computation:

(=
S

n

>q

Where, 7 - =L and is the mean of n paired differences d, = x,, — x,,
n

2

n (Zdlj
d.2 _\i=l

= ; l

2 n

S

n—1

Decision: Reject H if [t | > t, ,, otherwise fail to reject H,.
Example
To study the effect of certain hormones, 16 palms were selected at random and

data on the average number of nuts per bunch before and after the hormone
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application were recorded. The paired observations (pre- and post-hormone
application) are given in Table 4.2.

Hypothesis: H : u, = 0, against H : n, # 0
Where, p, = difference between the means before and after the hormone treatment

Table 4.2. Paired observations for pre- and post- hormone application in coconut

Palm Number 1 2 3 4 5 6 7 8
Pre-treatment 16.3 15.5 27.3 22.6 12.2 18.7 7.25 9.7
Post-treatment 21.4 13.2 26.8 29.3 17.4 16.3 121 9.0
Difference (d) -5.1 2.3 0.5 -6.7 -5.2 2.4 -4.85 0.7
Palm Number 9 10 1 12 13 14 15 16
Pre-treatment 21.3 15.5 22.2 13.2 19.0 174 28.8 14.9
Post-treatment 20.8 17.7 19.4 15.2 18.3 18.0 25.4 17.3
Difference (d) 0.5 2.2 2.8 -2.0 0.7 -0.6 3.4 -2.4

7_ [(-5.0)+23+.+(24)]

= -0.9844
16
2
5.1)42.3+. (2.4
() +2.32+...+(-2.4)2}—[( ) (24)]
§ = 16 = 10.1899
15
1, = J16 0B _ 10335
31922
Decision: Since |tC| < tygss = 2131, we fail to reject H.

Conclusion: The data do not give evidence that the number of nuts per bunch
is affected by hormonal treatments.

Note: It has been shown that even in cases where the normality assumption may not
be satisfied, the results of t-test hold since the t-test is robust to moderate departures from
normality. However, the assumption that the paired differences are mutually independent
needs to be satisfied. This is satisfied if the paired observations are randomly sampled.

Test of hypothesis about equality of means of more than two
populations

With more than two populations under study, we might wish to test the hypothesis
that the samples come from populations having the same mean (ie. H : u, = n,
=...= 1) against the hypothesis that the population means vary significantly from
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each other. For these problems, the more appropriate procedure is known as
analysis of variance (ANOVA). The ANOVA is an extension of the independent
samples t-test of two populations. The ANOVA and F-test are extensively used
in the analysis of experimental data as such examples are deferred for later chapters.
F-test for equality of two variances is described below.

F- test for equality of two variances

The distribution of the ratio of two independent estimates of variance (of a normal
distribution) is known as F-distribution. It has two parameters v, and v, as the
DF associated with the estimate of variance in the numerator and denominator.
To perform statistical tests, we look for the tabulated F value at appropriate level
of significance and for the appropriate parameters, i.e. v, degrees of freedom (for
numerator) and v, degrees of freedom (for denominator).

An application of the F-test is in testing the equality of two variances. Consider
two independent random samples of size n and n,. Let x, x,, ..., x jand y, y,,
..., ¥, denote the observations on sample 1 and sample 2 , respectively. Assume
that the two populations are normally distributed.

Hypothesis: H : 6, = 0, against, H, : ¢, # o,

Where, 6?>and 6,> are the population variances of the two populations.

Computation:

2
S

F === .2 2
c =g i s > or

2
x

I =

c

, if sj>s

h|h
LY AR

Where, si and s_ are the sample variances
Decision: Reject H, if £, >F, (, ,, . Otherwise, fail to reject H.

Example

Consider data used in the previous example of comparing monocropping and
intercropping (Table 4.1). While testing the equality of means using the t-test, we
assumed that the variances of the two populations are the same without really
testing for equality of variance. The F-test allows us to validate the assumption
of equal variances.

Hypothesis: H : 6= o, against H, : ¢, # 0,
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Sample variances estimated for monocropping and intercropping gardens are (refer
Table 4.1):

S? = 34.56257 with 15 df
Sy2 = 25.11075 with 17 df

Since s? > s?,
x y

Computation:
F- 34.56257 ~1376
25.11075

Decision: Since F < F , = (2.308), we do fail to reject H,.

0.05(15,17
Conclusion: The variances of the two samples did not vary significantly from each
other. Hence the assumption of homogeneity of variances is valid.

Test for equality of more than two variances
To test the homogeneity of variances, the test based on chi-square is used. Consider
random samples of sizes n, n, n, drawn independently from normal population.

Let the observations of i éaﬁiﬁle be denoted as x,, x,, ..., X,y
Hypothesis: H  : 0, = 0, = .... = 0, against H, : at least one ¢, is different from
the rest
Computation:

k k

[Z (ni 'l)jloglo s* - Z(nz 'l)loglo Siz
1o=2.3026 <~ L
C

where,
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2
N

k
Z (n, = 1)s;
= &=L

D (n,-1)

i=1

1 £ 1
C=1+ - =
3(k-1) ;(ni -1) S, -1)

The coefficient 2.3026 is included in the formula because logarithm to the base
10 is being used. If natural logarithms are used, this coefficient should not be
included in the expression.

Decision: Reject H if x2 > x ,,. Otherwise, fail to reject H,.
Example
The weights of randomly selected nuts of four coconut accessions are shown in

Table 4.3. Test whether the variance of nut weight is the same in all four accessions.

Table 4.3. Weight of nuts(g) from four coconut populations

Sl. Accession 1 Accession 2 Accession 3 Accession 4
No (x,) (x,) (x,) (x,)
1 438 1004 1270 770
2 449 1018 1421 775
3 453 1019 1425 784
4 518 1032 1435 786
5 564 1045 1445 788
6 608 1053 1446 790
7 610 1056 1461 791
8 651 1060 1506 795
9 680 1068 1526 802
10 700 1074 1568 806
11 1087 1610 813
12 1095 1780 824
13 1116 838

14 1141

Computation: The calculation of the test statistic uses the computations shown in
Table 4.4.
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Table 4.4. Estimates of variance for nut weight in four accessions

Sample size (n) Accession 1 Accession 2 Accession 3 Accession 4
10 14 12 13

k

Z Z X 5671 14868 17893 10362

i=1 j=1

ko

Z Z X" 3303039 15809326 26851289 8263756

kK on -
i=l j=
szv k 87014.9 19510 171334.9 4444.9
i=l j=1 zn
1
i=1
Estimates of variance (s? 9668.3 1500.8 15575.9 370.4

k
From the table, (1, -1)=9+13+11+12=45

i=1

k=14

o _ 9(9668.322) + 13(1500.769) + 11(15575.9) + 12(370.4103) _
45

=6273.439

k
> L L L 03623
. 9 13 11 12

0.3623- Lj 1.0378

3(4 1) (

Y1, - T)logs? = 9(3.9854) + 13(3.1763) + 11(4.1925) + 12(2.5687) = 154.102

Then,

2.3026 {45 x log (6273.439) - 154.102}/1.037784
2.3026 {45 x 3.797506 - 154.102}/1.037784
2.3026 x 16.78633/1.037784

37.2438

%2

with v = k-1 = 3 DF.
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Decision: From table of y? we get x* ., = 7.81
Since x2> %* 05 y We reject the null hypothesis.
Conclusion: The variance of the nut weight of the four accessions is not homogeneous.

Analysis of qualitative data
Although most of the variables of interest are generally quantitative and continuous
in nature, qualitative, categorical or enumerative data also arise in research like
characterization studies. Two types of tests will be given here: test of goodness
of fit and test of independence.

Test of goodness-of-fit for frequency data

The ? test of goodness-of-fit is used to determine whether the observed frequencies
agree with the expected or the hypothesized frequencies. The data consist of counts
or frequencies of observations falling into c¢ classes or categories of a random
variable observed on a random sample. The observed frequencies are denoted as
O, O, ..., O_such that 2.0,=n. These observed frequencies are compared with
the expected frequenciesl:tl, E, ... E. If we let F(x) denote the hypothesized
frequencies and F(x), the true frequency distribution of the population, then the

hypotheses for the test can be expressed as follows:
Hypothesis: H, : F(x) = F(x), against H, : F(x) # F(x)
Computation:

< (0.-EY 2
. :Z(ZTI) ~ Xe1 under H,.

i=l i
Decision: Reject H, if y* > %2, _,. Otherwise, fail to reject H

Example

The average number of days for germination of seed nuts is known to be 60 days
with a standard deviation of 10 days. It was desired to test whether the character
follows a normal distribution. Data from 20 randomly selected seed nuts were
recorded and ordered according to increasing magnitude as shown below:

46, 47, 48, 48, 48, 49, 52, 52, 54, 54, 55, 57, 65, 65, 66, 67, 69, 72, 73, 76

Hypothesis: H : F(x) = F(x), against H, : F(x) # F(x)
Where, F(x) = N (60, 100)
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Computation:

Note that ¥ = ~ N(0,1). Hence, 50% of Y values lie between -0.6745 and

(X -60)
10
0.6745. Also the mean is 0 and 50% of the observations lie below it. Knowing these
and X = 60+10Y, then under H, the following probability statements can be made:

P[X<(60 + 10(-0.6745))] = F(53.255) = 0.25
P[X<(60 + 10(0))] = F(60.0) = 0.50
P[X<(60 + 10(0.6745))] = F(66.745) = 0.75

From the sample we estimate the probabilities. Hence, F(53.255) which is the
proportion of observations below 53.255 is 8/20 or 0.40. Similarly, F(60) = 12/20
= 0.6 and F(66.745) = 15/20 = 0.75.

Corresponding to the distribution function as defined under H, we then form
four classes as shown in Table 4.5.

Table 4.5. Observed frequencies for number of days to germination and expected frequencies when normal
distribution is assumed*

Classes <53.255 53.255-60 60-66.745 >66.745 Total
Observed frequency (O) 8 4 3 5 20
Expected frequency (E) 0.25x20=5 5 5 5 20
O - E 3 -1 -2 0 0
©,- EP 9 1 4 0 14

*Expected frequency = 20/4 = 5 for all the classes.
Now, y’=14/5=2.8 with df ¢-1 = 3.

Decision: From Table for values x* we get x* . , = 7.815. Since 2 < x*,, , we
fail to reject the null hypothesis.

Conclusion: The variable ‘number of days taken for germination” has normal
distribution with mean 60 days and standard deviation of 10 days.

Note: The use of )* requires that the frequency expected in any class is not too small,
i.e. 5 or less. Pooling of frequencies in the adjacent classes can be resorted to satisfy this
criterion remembering, however, that the pooled classes need to be treated as one class
and this pooling should not be carried out indiscriminately. The test is applicable only
in comparing observed and expected values of absolute frequencies and not relative frequencies
or proportions. The degrees of freedom is determined after taking into account the number
of restrictions like fixed total frequency, number of parameters/constants estimated from
the data to obtain the expected frequencies, etc., and reducing the number of final number
classes by the number of such restrictions.




Data analysis manual for coconut researchers 57

Test for independence

Consider n independent observations of a random variable X classified according
to two criteria. Suppose that there are c¢ classes for one factor and r classes for
the second factor. Hence the data of n observations can be classified into r x ¢
classes and can be arranged in a table with r rows and ¢ columns. The number
of observations in the (ij)* cell (in i row and j* column) of the r x ¢ contingency
table is denoted by O.. The n observations are drawn at random and each observation
is classified into one of categories of the first factor and to one of the categories
of the second factor.

H;: The row factor is independent of the column factor

H,: The row factor is not independent of the column factor

Computation:
L (0,-,)
X2 :ZZ# ~ onc,(r—l)(c—l)

i=l j=1 E

ij
Where, E; is the expected frequency of (ij)" cell under the null hypothesis and

f( i
n

obtained as: £, = ,with R the i row total and C]. the j™ column total.

Decision: Reject H if 7 > %°, ) - Otherwise fail to reject H,.

Example

To compare the germination percentage in embryo cultures of 8, 9 and 11 month
old coconuts, 179 coconut embryos were tissue cultured. The numbers of germinated
and non-germinated embryos for the three different ages of coconuts were recorded

and the results are summarized in the two-way table below.

Table 4.6. Germination percentage of embryos at varying ages (months)

Observed frequencies Expected frequencies
8 9 11 Total 8 9 11
Germinated 28 39 45 112 60x112/179 57x112/179 62x112/179
= 37.542 = 35.665 = 38.793
Not germinated 32 18 17 67 60x67/179 57x67/179 62x67/179
= 22.458 = 21.335 = 23.207
Total 60 57 62 179 60 57 62

One may check that the row total and column total of expected frequencies
will be the same as that of observed frequencies.
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2 2 2
,_(28-3752)  (39-35665)  (17-23.207)

: . =9.965
37.52 35.665 23.207

Note that alternatively x’can be computed as:

2 2
xo = 28 T 179-9965
37.542 23.207

Decision: We get df =(r - 1) (c- 1) =2 and 2 , , = 5.991. Since x? >5.991, reject
H.
0

Conclusion: The percentage germination is not independent of the age of coconuts.

References

Fisher, R.A. and Yates, F. 1963. Statistical tables for biological, agricultural and
medical research, 6th edition. Longman, Edinburgh. 146p.

Student. 1908. On the probable error of mean. Biometrika. 6: 1-25.
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Chapter 5: Analysis of relationships between variables

In the previous chapter, we have discussed the measurement of variation on a
single variable. We shall now consider the simultaneous variation of two or more
variables. It often happens that changes in one variable are accompanied by changes
in another variable and that a definite relation exists between the two. Correlation
and regression analyses are two statistical procedures used for analysis of
relationships between variables. We measure the association between two variables
by the coefficient of correlation and the functional relationship of one variable with
other variable(s) by the regression equation. Other applications of these two methods
like path-coefficient analysis provide further information on the direct effects of
causative variable on a dependent variable and also its indirect effect through other
causative variables. These techniques are discussed in this chapter.

Correlation

In the case of coconut and similar plants, as the crop grows taller, its girth also
tends to grow wider. Thus, we say that these two characters viz., the plant height
and the stem girth are correlated. When the two variables change together in such
a way that an increase in one variable is accompanied by an increase in the other,
as shown in the above example, the variables are said to be positively correlated.
Should an increase in one variable go hand in hand with a decrease in the other,
the variables are said to be negatively correlated. In biological measurements, the
relationship is not likely to be so complete in the sense that a certain unit change
in the measurement of one variable may not be accompanied by the same degree
of change in the other. Thus, the necessity to quantify the relationship arises for
which the coefficient of correlation is used.

Pearson’s coefficient of correlation

For two variables X and Y with respective means p_and p, and standard deviations
o, and ¢, the coefficient of correlation, usually indicated by the symbol p, is defined
as:

Xy

G0,

where, o, is the covariance between X and Y and is defined as:

> (X, - )5 -D)
c, = v
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-y

i=1
N

The correlation coefficient is independent of the units of measurements and its
value ranges from -1 to +1. A qualitative description of the magnitude of the
correlation coefficients is as follows:

Absolute Value of the Qualitative Interpretation
Correlation Coefficient
0.8 - 1.0 Very strong
0.6 — 0.8 Strong
04 - 0.6 Moderate
02 -04 Weak
0.0 - 0.2 Very Weak

Estimation of the correlation coefficient
The Pearson’s coefficient of correlation (©) between two variables X and Y is
estimated from a random sample of n observations by

S,

S.S,

V=

where, s is the sample covariance of X and Y and s _and s, are the sample
standard deviations. The sample covariance for ungrouped data is obtained as:

-l

Xy -

13

1 n

n—1

Whereas, for grouped data it is estimated as:

:zlﬁ<xi—x> (3-7)
2.1

Where, X and ) are the sample means of x and y and f, is the frequency of
the i™ class. The standard deviations are estimated using formulas given in earlier
chapters. The expression for sample correlation coefficient can be simplified as:

sxy:
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Z(ZJ(ZJ

3 (ZXJ $- (Zy}

Test of hypothesis about the correlation coefficient
Consider observations on two or more variables on 7 units of a randomly selected
sample. It is assumed that a linear association exists between the variables.

Hypothesis: H : p = 0, against H, : p # 0

Computation:

t = ! ~ t

‘ (1 —r ) )
n-2

where, r is the sample correlation coefficient. When H_ is true, the test statistic
t follows the t-distribution with n-2 df.

Decision: Reject H if t >t ., otherwise fail to reject the null hypothesis.

Note: This test can be more easily applied with the help of a Table (Table V1, Fisher
and Yates 1963), which gives the values of r (irrespective of sign) required for different
levels of significance for different df. For selected df, the following Table 5.1 gives values
of v at 5% and 1% level of significance.

Table 5.1. Tabulated values to test the significance of correlation (for selected DF)
DF 1 2 3 5 8 10 15 18 20 25 30 100

5% 0997 0.950 0.878 0.754 0.632 0.576 0.482 0.444 0.423 0.381 0.349 0.195
1% 1.000 0.990 0.959 0.874 0.765 0.708 0.606 0.561 0.537 0.487 0.449 0.254

Example

Consider data on fruit characteristics of 20 randomly selected West Coast Tall palms
shown in Table 5.2. The variables are fruit weight (FW), nut weight (NW), volume
of cavity (VC), endosperm/kernel weight (KW) and copra weight (CW). Test the
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hypothesis that FW and NW are linearly associated. The various computations
required for obtaining the correlation between characters are presented in Table 5.3.

Table 5.2. Fruit characteristics of 20 West Coast Tall (WCT) palms

Palm Fruit Nut Volume Kernel Copra
No. weight weight of cavity weight weight
(FW) (9) (NW) (9) (VC) (cm?) (KW) (9) (CW) (9)

1 1216 662 180 346 172
2 1445 735 200 383 187
3 786 466 110 262 157
4 784 467 110 272 152
5 750 464 120 262 155
6 1004 638 190 305 194
7 838 505 140 279 170
8 892 560 180 264 165
9 1019 614 190 321 198
10 860 486 170 252 158
11 1060 701 230 362 224
12 928 569 180 305 194
13 1568 875 310 429 245
14 1461 868 300 414 250
15 1141 686 270 386 209
16 1170 722 230 400 206
17 960 548 140 275 162
18 712 437 120 240 144
19 1002 532 130 280 174
20 1183 555 110 286 164

Table 5.3. Computations required for obtaining the correlation between characters

FW NwW vC KW Ccw
20
Z X, 20779 12090 3610 6323 3680
i=1
20
X 2
Z i 22726265 7626284 724300 2066707 694866
i=1
20 2
20 (Z Xz)
Z X_2 _N\iEL 1137923 317879 72695 67690.5 17746
= 20
20 2
. (2
ZX-Z _\i=l 1066.7 563.8 269.6 260.2 133.2
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Hypothesis: H : p = 0, against H : p # 0

Computation:
To obtain the coefficient of correlation between FW=X and NW=Y, first multiply
the paired values of the variables and sum as:

D XY = (1216) (662) + (1445) (735) + .. + (1183) (555) = 13119918
i=1

Hence the corrected sum of cross products is:

,, Yi_(ix,][ix

D XY -~ = ]= 13119918 - ( =559012.5
i=1

20779)(12090 )
20

n

Substituting in the formula for 7,

559012.5

frwnw - (1066.73)(563.81)

Decision: Since e 0.444 (the tabulated value of r with 18 df at 5% level, refer
Table 5.1), we reject the null hypothesis. Therefore we say the correlation between
FW and NW is significant at 5% level. It can be verified that the correlation between

FW and NW is significant at 1% as well.

Alternatively, we may compute the t-statistic for testing the significance of correlation
as:

0.9295

i \/(1—0.92952)

20-2

=10.6895

Decision: Since t >t g = 2.101, we reject H,.

0.05, 1

Conclusion: The fruit weight and nut weight are very strongly positively correlated
i.e. an increase in fruit weight is associated with an increase in nut weight.

Correlation matrix

When there are more than two variables, it is more convenient to present the
correlation coefficients between all possible pairs of variables in matrix form. To
illustrate the coefficients of correlation between all possible pairs of fruit characters
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in Table 5.2 were computed and presented in matrix format as shown in Table
5.4. The diagonal entries represent the correlation of the character with itself and
thus are all equal to 1. The correlation coefficients are given in the off-diagonal
cells. Hence the correlation coefficient between NW and VC is 0.922 while that
between CW and KW is 0.894.

Table 5.4. Correlation matrix between fruit characters

FW NwW vC KW cw
FW 1.000 0.929 0.769 0.888 0.772
NwW 1.000 0.922 0.960 0.924
vC 1.000 0.896 0.929
KW 1.000 0.894
cw 1.000

Since all the values in the Table 5.4 are above 0.561 and DF =18, we conclude
that all the correlations are significant at 1%.

Testing the equality of two correlation coefficients
To compare two correlation coefficients, the tests of significance involve the Z
transformation, specified by the relation:

Z = (1/2) log, ((1+1)/(-0)} = (1/2) [log, (1+7) - log, (1]

which approaches the normal distribution for all values of the number of pairs
1

n-3

n with a standard error Oz =

Example

Test whether correlation coefficient between fruit weight (FW) and copra weight
(CW) is significantly different from the correlation coefficient between nut weight
(NW) and Copra Weight (CW) based on the data provided in Table 5.2.

Based on sample size n = 20, the coefficients of correlation were obtained as,

r = 0772 and r = 0924

Fw,Cw NW,CW

Hypothesis: H : pp, o = Pawew against Hy @ poy o # Puwew

Computation:
Obtain the Z values as:
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_ [In (1+0.772) - In (1-0.772)]
2

= 1.0253

Z,

_ [In (1+0.924) - In (1-0.924)]
2

= 1.6157

ZZ

Since the sample size is the same, the variance of Z and Z, is given by
1/(n-3) which is 1/17 = 0.058824. Under the null hypothesis, (Z, - Z,) is distributed
as normal with mean 0 and variance v(Z,) + v(Z,) = 2 (0.0588) = 0.1176.

|z,-z)) _|1.0253—1.6157|_17215
© Mz-z) SJonre

Decision: Since Z_< 1.96, we do not reject the null hypothesis at 5% level.
Conclusion: There is no significant difference between the correlation coefficients.

Partial correlation

The correlation coefficient earlier discussed measures the association between two
characters. We may also consider the simultaneous variation of more than two
characters. For example, in coconut shell weight, amount of water, shell thickness,
kernel weight, kernel thickness, fruit weight, etc. are known to be correlated with
one another such that if we take any set of three characters, they will have
correlations among themselves. Fruit weight and nut weight may be strongly
positively correlated because a third variable say kernel weight is also strongly
positively correlated to both. What if the effect of the kernel weight is eliminated,
that is, for all fruits having the same kernel weight, will the association between
fruit and nut weight be still strong? A correlation coefficient known as partial
correlation coefficient measures the association of two variables after making
allowance for their association with other specified variables. The variable whose
influence is allowed for in the calculation of the partial correlation coefficient is
spoken as the eliminated variable. The partial correlation coefficients can be calculated
with the help of correlation coefficients by successively accounting for the influences
of other variables. The details for the calculation of the partial correlation coefficients
are not provided here, but could be obtained from Steel and Torrie (1981).

Regression

The functional relationship of a variable with other variables is often referred to
as regression. Unlike correlation, the object of regression analysis is to determine
the functional relationship or the equation which relates the variables. With this
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function, we are able to explain how much variation in the dependent variable
is due to the independent or the regressor variable. This function is also used to
predict the value of the dependent variable given the value of the independent
variable. While the concept of independent and dependent variables is absent in
correlation, these variables are clearly defined in regression analysis.

With one independent variable and a dependent variable, the regression is
known as simple regression. On the other hand, regression of one dependent
variable on two or more independent variables is called multiple regression. If the
relationship is linear, it is called linear regression. In many situations, a linear
regression model is adequate to describe the relationship of variables. Besides this,
linear regression model is easier to interpret and possesses certain mathematical
and statistical properties. In fitting regression models, it is advisable to assess
adequacy of linear models before venturing into more complex models.

Simple linear regression

When there is one dependent and only one independent variable, and the relationship
is assumed to be linear, the regression analysis is called simple linear regression
analysis. This involves determining the linear function between the independent
(X) and the dependent (Y) variables which is of the form

Yp=a+ﬁX+e

Where, Y, is the mean of Y for a given value of X; « is the y-intercept or the
value of Y, when X is zero; and f is the regression coefficient which is the change
in Y for every unit change in X. The random error component is denoted as e.

The function or line in this case is estimated by obtaining estimates of o and
B from the sample. Using the method of least squares, the estimators for o and
B are:

a=Y —-bX and b= S’;y, respectively

Where, ¥ is the mean of Y, X is the mean of X, S_, is the sample covariance
of X and Y and S?is the sample variance of X. Subst1tut1ng these values, the equation
of the line is estimated as ¥ — a+bX, where ¥ is the predicted value of Y for a
given value of X=x.

The computation of b can be made simplified by the following formula:

Sy (Zx)n(Zy)
)

n
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Unlike correlation coefficients, where Py = P the regression of Y on X is
different from the regression of X on Y. It should be borne in mind that no attempt
should be made to obtain the value of X corresponding to the value of Y from
the regression of y on x and vice versa. The two regression lines will intersect
at the point (X, Y). Further, if we multiply b and b" we obtain %, the square of
the correlation coefficient r. The correlation coefficient is therefore the geometric
mean of the two linear regression coefficients and is alternatively defined as such.
The determination of the independent and dependent variables is not a random
process and requires some knowledge of the principles in the process involved.

It may be noted that the method of least squares employed to estimate the
regression coefficients involves any assumptions on the population from where the
sample is drawn. However, under Gauss-Markov assumptions the procedure offers
a grate deal of statistical analysis and inference. These assumptions are:

e The errors (¢) are normally and independently distributed with mean 0

and constant variance;

e The independent variables are non-random and

¢ No independent variable can be expressed as a linear combination of the

remaining independent variables.

The failure of the last assumption is known as multicollinearity.

Example

Consider the fruit characteristics of 20 randomly selected West Coast Tall palms
shown in Table 5.2. The regression equation of nut weight, NW (Y), on whole fruit
weight, FW (X), is determined using the same calculation mentioned in Table 5.3
in connection with the computation of coefficient of correlation.

To determine the equation of the line, we need to estimate o and B. It may
be observed that the numerator of the expression for estimating B is the corrected
sum of cross products between X and Y and was obtained as 559012.5. The
denominator is corrected sum of squares for the variable X and is obtained as
1137923 (from Table 5.3). Thus,

i _290125 ) 491257
1137923
a=@—(0.491257) 297791 _ 94.10854
20 20

The regression equation of nut weight (Y) on fruit weight (X) is then

y = 94.10854 + 0.491257x
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On the other hand, the regression of fruit weight on nut weight is

b" =b, = 17586 and a’ = -1222.57

x/y

It can be verified that bx/y by/x = (0.4913)(1.7586) = 0.8640, which is equal to

Peaw = 0:9295% = 0.8640

Selection of the regression line

For a given pair of variables, we can construct two regression lines as indicated
above. The choice of appropriate line is based on the purpose of the analysis. For
example, if we are interested to know the nut weight without removing the husk
of fruit, we may fit a regression of NW on FW. This regression coefficient obtained
in this case will also provide us the incremental change in nut weight for every
unit change in fruit weight. On the other hand if one wants to know the incremental
changes in fruit weight per unit change in nut weight, the regression of FW on
NW needed to be fitted.

Test of hypothesis about the regression coefficient
Consider observations on two or more variables taken on n randomly selected units

of a sample. Assuming that a linear relation exists between the variables.

Hypothesis: H : 8 = 0, against H, : f# 0

Computation:
b
r.=
s.e.(b)

where b is the estimate of the regression coefficient, and

— 2 —
s,e,(b):s;i ﬁ and Sy :\/(n 1)( y2 bsxy)
X - n_

which under the null hypothesis follows the t-distribution with n-2 df

The simplified expression for s? is of interest to us:

[zyﬂ}b[z,WMJ

n n
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It may be observed that s? has two components: The first component is the
total sum of squares of variable y with (n-1) degrees of freedom and the second
expression is the sum of squares due to regression of y on x with 1 degree of
freedom. Therefore, s?  is referred as the residual sum of squares and have
df =n -2

The aforesaid partitioning of total sum of squares lead to an alternative test
statistic, which is based on the F-distribution and is obtained as the ratio of the
mean squares due to regression to the mean squares due to deviations from
regression. Mean squares are obtained by dividing the sum of squares with their
corresponding df. The above mentioned ratio has F distribution with df 1 and (n-
2) under the null hypothesis.

Decision: Reject H if t > by o otherwise, fail to reject H,.

Example
Using the previous example on 20 randomly selected West Coast Tall palms, test
the hypothesis that the nut weight is linearly dependent on the whole fruit weight.

Hypothesis: H, : f = 0 against H, : = 0

Computation:
Calculate S, SZ), Ssy, X and ¥ as follows:

(12167 + 1445 + ..+ 11837 (2161445 + .. & 1183)°
50
s. = 5 = 59890.68

2+ 7354 ...+ ’
(6622+7352+....+5552)—(66 735 555)

5, = 20 = 1673047
19
(1216) (662) + 1445) (735) + ... + (1183) (555) — 20/ 72) (12090)
= 20 B
S~ =29421.71
- 19
_ (1216°+1445" + ... + 1183
X= =1038.95
20
— (662 +735+ ...+ 555)
Y= =604.5

20
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Using the F-test,

_ b(n—1)s,  (0.4913) (19) (29421.71)
S 2403.347367

yix

F =114.2651

From the above computations for Sj (16730.47), SW (29421.71), S? (59890.68) and
b = 0.4913, obtain Sy ) as follows:

yx

\/(20 —1)(16730.47 — (0.4913) (29421.71))
S\/\‘ =

=49.0239
20-2
se.(b)= 49.0239 /L =0.0460
24473 y20-1
0.4913
ing the t-statistic, #,= =10.689

Using the t-statistic, Z, 0.0460
Decision: From tables we obtain t , = 2.101; and F( = 4.41. These values

0.05, 18 0.05, 1, 18)
are less than the corresponding test statistics. Hence, we reject the null hypothesis.

Conclusion: The regression coefficient of nut weight on fruit weight is significantly
different from zero. In other words, nut weight is linearly dependent on the fruit
weight. The practical utility of this relationship is that based on the values of weight
of fruit, the weight of nut may be predicted.

Multiple linear regression
When there are more than one or p independent variables in the linear regression
model, we refer to it as a multiple (linear) regression model

Y, =a+ BX, + BX, + .. + ﬁpo + €
which can be expressed in matrix notation as:
Y=XB+¢

Where, Y, is a n x 1 vector of observations on the dependent variables, X is
a n x (p+1) matrix of independent variables, B is (p+1)x1 vector of regression
coefficients and € is n x 1 vector of unobservable errors. Unlike simple regression,
the coefficients here do not fully describe the relation of dependent variable on
specific independent variable and hence is distinguished by the term partial regression
coefficient. Hence B, is the partial regression coefficient which is the change in Y
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for every unit change in x, given that x,, x; ..... , x_are held constant. So is the
estimation of coefficients. The procedure for estimating the regression coefficients
for a multiple linear regression analysis is given below. This step-by-step procedure
can be done in MS Excel or any spreadsheet software that can handle matrix
operations.

Step 1

Arrange data in matrix format with n rows corresponding to the observational units
and columns as the variables (refer the data on fruit characteristics used for
illustration of correlation coefficients shown in Table 5.2). It is conventional to keep
the dependent variable (Y) in the last column. Also add a new column with all
values equal to 1 and denote this variable as x . This is to include the coefficient
o in the regression model. We assume there are p independent variables. Therefore
we have to estimate p partial regression coefficients and a constant. Thus the total
number of parameters to be estimated becomes p+1. The data under p independent
variables and under x_is represented by the matrix X of order n x (p+1) (i.e. the
matrix X has n rows and p+1 columns). The data under the dependent variable
is denoted by the n x 1 vector y. Similarly, construct the B the (p+1) x 1 vector
of parameters and € the n x 1 vector of errors.

Step 2

Obtain the sums of squares and sums of cross products of all p+1 independent
variables (including x ) and arrange them accordingly as a matrix. This could be
done individually for the columns or carry out the matrix multiplication operation
X’X and denote the resulting matrix as S. Obtain the cross products of each of
the independent variables with the dependent variable or carry out the matrix
multiplication XY and denote this as column vector b.

Step 3

Obtain the inverse of S, denoted as S . The computation of inverse of a matrix
is not explained here; it is advised to do it in some spreadsheet software, for
example MS EXCEL.

Step 4

The solution for B or the vector of estimates of regression coefficients is obtained
as S'b; in which the first value is the estimate of o, second value is the estimate
of partial regression coefficient of first independent variable and so on.

Step 5
Test H: B, = B, = ... = ,Bp = 0 against H: At least one regression coefficient is
not equal to zero.
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To compute the value of the test statistic, the following sum of squares (SS)
need to be worked out:

1. Obtain the total sum of squares for Y (SSY)

" 2
(3]
Z y2 _Nid
i1 l n
Where, Y, is the observed value of the dependent variable on the ™ unit.

2. Obtain the regression SS as follows: Let the estimates of regression coefficients
be arranged in ﬁ so that its first element is the constant (estimate of o), second
element is estimate of B3, etc. Then regression SS is the product of corresponding
elements of ﬁ and b.

3. SS due to estimates of partial regression coefficients (3, B, ...) is then obtained
by subtracting (Xy,)*/n from the regression SS.

4. Residual SS is then obtained by subtracting the SS in (3) from the total SS.

Step 6

Calculation of test statistic: The df’s of the SS in 1 to 4 above is respectively
n-1, p+1, p, n-p-1, where, p is the number of independent variables. Obtain the
mean SS by dividing the SS with corresponding df. The test statistic is obtained
as:

P Mean Square due to 3, ...., 3,
B Mean Square Residual

which follows the F-distribution with parameters p and n-p-1

Step 7
The R* measures the adequacy of fit of the regression model to the observations
and is obtained as:

_ Sum of Squares due to Regression
- SSY

2

It is the square of the multiple correlation coefficient which is the correlation
between Y and Y.

Step 8
To test the significance of individual partial regression coefficients, the standard
errors of each are obtained as:
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Hypothesis: H : B, = 0, against H : B, # 0

Computation:

A~

g Bi
s.e.(;)

where, ﬁi is the estimator of Bi, and s.e. (f; ) is the standard error of ﬁi which is
obtained by

se(fsl):(\/M—SE)(\/di”)

Where, d. is the diagonal element of the S in the order of f.

Decision: Reject H if £ > £,
Example

Consider the data on fruit characteristics shown in Table 5.2. It is desired to predict
the copra weight (CW) based on fruit weight (FW), nut weight (NW), volume of
cavity (VC) and kernel weight (KW).

Step 1

Construct the X matrix with 20 rows and 5 columns corresponding to the 4
independent variables, FW, NW, VC and KW with a column of 1’s as the first
column.

1 1216 662 --- 172
1 1445 735 --- 187

1 1183 555 --- 164

Step 2

Obtain the matrix S = X'X or the matrix of sum of squares and sum of cross products
of the variables X, FW, NW, VC and KW. (This can be done using the MMULT
function in MS Excel). Note that the elements of the matrix were already worked
out at the time of computation of the correlation matrix as presented in Table 5.3,
except for the first row and first column. The sum of products of the aforesaid
variables with the dependent variable (CW) denoted by b is also shown in the
following Tables 5.5a to 5.5c (Steps 2 to 4 involved in the fitting of multiple linear
regression equation).
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[ 20 20779 12090 3610 6323 |
20779 22726265 13119918 3971650 6815670
S=XX=|12090 13119918 7626284 2322420 3963032
3610 3971650 2322420 724300 1204150
| 6323 6815670 3963032 120415 2066707
3680 |
3933024
b’ =XY =|2293940
697610
| 1194426 |
Table 5.5a. Results of matrix S and column vector b computation (Step 2)
Elements of the SSSP matrix (S) Elements
X, FW NwW vC KW of b
X, 20 20779 12090 3610 6323 3680
FW 20779 22726265 13119918 3971650 6815670 3933024
NwW 12090 13119918 7626284 2322420 3963032 2293940
vC 3610 3971650 2322420 724300 1204150 697610
KW 6323 6815670 3963032 1204150 2066707 1194426

Step 3
Obtain S7 (use MINVERSE function of MS Excel)

[3.007291857 0.002436509 -0.007827522 0.014360095 -0.010592955 |
0.002436509 1.05056E-05 -2.88087E-05 2.46732E-05 -1.23334E-06
S$7 =|-0.007827522 -2.88087E-05 0.000132055 -0.000102679 -7.44443E-05
0.014360095 2.46732E-05 -0.000102679 0.000150786 -1.62634E-05
| -0.010592955 -1.23334E-06 -7.44443E-05 -1.62634E-05 0.000189187 |

Table 5.5b. Results of S' computation (Step 3)

X, FW NwW vC KW
X, 3.0072919 0.0024365 -0.0078275 0.0143601 -0.0105930
FW 0.0024365 0.0000105 -0.0000288 0.0000247 -0.0000012
NwW -0.0078275 -0.0000288 0.0001321 -0.0001027 -0.0000744
vC 0.0143601 0.0000247 -0.0001027 0.0001508 -0.0000163

KW -0.0105930 -0.0000012 -0.0000744 -0.0000163 0.0001892
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Step 4:
Obtain p

[59.0606 |

-0.0613
p=8"b=|02683

0.1101

0.0207
Table 5.5c. Estimate of regression coefficients (Step 4)
Estimate of Calculation Estimate
Constant (a) 3.0072919 x 3680 + 0.0024365 x 3933024 + 59.060623

... -0.0105930 x 1194426

b., 0.0024365 x 3680 + ....... - 0.0000012 x 1194426 -0.061295
by -0.0078275 x 3680 +..... - 0.0000744x 1194426 0.268304
b, 0.0143601x 3680 + ...... - 0.0000163x 1194426 0.110142
b -0.0105930 x 3680 + + 0.0001892x 1194426 0.020722

Step 5
Hypothesis: H_: B, = By, = Byc = Byy = 0 against H, : At least one regression
coefficient not equal to zero.

Computation:
1. Total SS (of Y) = 694866 - 3680 x 3680/20 = 17746

2. The regression SS
= 59.060623 x 3680 + -0.061295 x 3933024 + ... + 0.020722 x 1194426
= 693329.323

3. The SS due to estimates of partial regression coefficients (B, By Bver Biw)
is then 693329.323 — 3680 x 3680/20 = 16209.32274

4. Residual SS = 17746 - 16209.32274 = 1536.677261

In the above example the number of independent variables k = 4

Mean SS due to partial regression coefficients = 16209.32274/4
= 4052.330684
Mean residual SS = 1536.677261/(20-4-1)
= 102.44515
F = 4052.330684/102.44515

= 39.5561
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Decision: Since F_>F = 3.06, we reject H.

(5%, 4,15)

Conclusion: At least one partial regression coefficient is significantly different from
zero.

Step 6
Coefficient of determination R? = 16209.32274/17746 = 0.9134. This implies that the
regression equation explains 91.34% of the variation in copra weight.

The individual tests for the parameters are given below (Table 5.5d). Since t

0(5%,15)
= 2131, only o and B, are significantly different from zero.

Table 5.5d. Testing significance of individual coefficients (Step 7)

Coefficients Estimate Diagonal Standard Test

element of S error statistic
Constant (o) 59.060623 3.0072919 17.55227819 3.3648
Bew -0.061295 0.0000105 0.032797471 -1.8689
Buw 0.268304 0.0001321 0.116331442 2.3064
By 0.110142 0.0001508 0.124292915 0.8861
Buw 0.020722 0.0001892 0.139221487 0.1488

Note: Many other topics of interest lies in the purview of regression analysis such as
selection of variables to be included in the regression equation, analysis of residuals, step
wise regression procedures, etc., but are not discussed here. [Interested readers may refer
to text books on Regression Analysis e.g., Draper and Smith (1981)].

Path coefficient analysis

In biological sciences, the observations for a character may be the outcome of
influences of several factors. For example, the copra yield of coconut is influenced
by several factors namely number of bunches, the number of nuts per bunch and
size of the nuts among others. These characters are in turn influenced by factors
such as the rainfall, irrigation levels, fertilizer levels, plant density, etc. If the
relationship between the cause and the effect is well defined, it is possible to
represent the whole system by a path-diagram which gives an idea of the
interrelationships and possible roles of the variables in the system under study.
Let us consider the above mentioned example of the copra yield “Y" of a coconut
palm as the result of various causal factors like, number of nut bunches per palm
(X,), number of nuts per bunch (X,) and nut size (X,). Let us also assume that
these factors are associated as shown in Fig. 5.1.

In Fig. 5.1, copra yield (Y) is depicted as the result of components X,, X,, X,,
and some unidentified factors designated by ‘R’. Further, we also know that X,
X, and X, are correlated among themselves. In this cause-effect relationship we
try to ascribe the variability in the effect to contributions from different causal
factors. For this purpose, we use the path-coefficients as the measures to quantify
the influences of the causal factors on the effect. In Fig. 5.1, a, b, ¢, and h are
the path-coefficients due to the respective variables X, X,, X, and R.
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Figure 5.1. Causes and effect relationship.

A path-coefficient is defined as the ratio of the standard deviation of the effect
due to a given cause to the total standard deviation of the effect i.e., if Y is the
effect and X, is the cause, then the path-coefficient for the path from cause X, to
the effect Y is ¢/ o,

It may be noted that the evaluation of causal models requires clear definition
of cause and effect relationships. The estimation of path-coefficients is similar to
estimation of regression coefficients but an incorrect theoretical model may result
to false and misleading conclusions.

With respect to estimation, the path-coefficients are equivalent to standardized
regression coefficients. Contrary to regression analysis, where only single dependent
variable is expressed in terms of other independent variables, no such restriction
exists for path-coefficient analysis. In other words, path-coefficient analysis may
use results of more than one regression analysis.

Assumptions: Relationship among the variables is linear and additive; in case more
than one error term is involved, they are uncorrelated with each other; and only
one-way causal flows in the system.

Data: Observations on two or more variables on n units of a randomly selected
sample.

Step 1
Prepare the data following the same format as described for multiple linear regression.

Step 2

Obtain the mean and standard deviation of all variables. Transform the variables
to standard random variables with mean zero and variance 1. This is achieved
by subtracting the mean from every observation of a variable and then dividing
by the standard deviation of that variable.
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Step 3
Obtain the correlation matrix and the regression coefficients of the dependent
variable on other independent variables.

Step 4

Construct the table of direct and indirect effects in a matrix form. The diagonal
elements represent the direct effects, which are nothing but the regression coefficients
as obtained above. Unlike correlation, this matrix is not symmetrical. In other
words, the indirect effect of the variable X, through X, is not the same as that
of X, through X. Denoting the standardized regression coefficients of X, X, on
the dependent variable Y as b, and b,, and the correlation coefficient between X,
and X, by r, the indirect effect of X, through X, (on Y) is defined as b, r .. The
indirect effect of X, through X, is defined as b;r,,.

Step 5
The ‘residual effect’ or ‘residual path term’ is defined as vi-R*, where R? is the
coefficient of determination of the regression equation defined.

Example

Consider the data on fruit characteristics shown in Table 5.2 and determine the
magnitudes of the direct and indirect effects of the fruit characters viz., fruit weight
(FW), nut weight (NW), volume of cavity (VC) and kernel weight (KW) on copra
weight (CW).

Step 1

Obtain the sample mean and standard deviation (already obtained while computing
the correlation coefficients - refer Table 5.3). For example, for FW, the sample mean
is obtained as 20779/20 = 1038.95 and the standard deviation is v1137923/19 =244.7257 .

Step 2

Transform the data under each variable to standard form by subtracting the
corresponding sample mean from the observations and dividing by the standard
error. For example, the value 1216 of FW becomes (1216 - 1038.95)/244.7257 = 0.72;
the value 1445 becomes (1445 — 1038.95) /244.7257 = 1.66 and so on. The standardized
values are shown in Table 5.6.

Step 3

The correlations between the variables were already worked out in Table 5.4 and
will not be changed by the above transformation. Next, work out the partial
regression coefficients of FW, NW, VC, and KW on CW using the standardized
data shown above. The regression coefficients obtained are as follows:

b, = -0.491; b, = 1.136; b, = 0.223; b, = 0.040

Fw
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Step 4

Obtain the matrix of direct and indirect effects. Examples of the
indirect effects of FW on CW are as follows:

Direct effect = b, = -0.491

computation on

Indirect effect of FW via NW = b, 1., w = 1.136 x 0.929 = 1.055344

Indirect effect of FW via VC = b, r., ,. = 0223 x 0.769 = 0.171487

Indirect effect of FW via KW = b, 1. ., = 0.040 x 0.888 = 0.03552

Table 5.6. Standardized scores of variables indicated in Table 5.2
FW NW Ve KW cw
0.72 0.44 -0.01 0.50 -0.39
1.66 1.01 0.32 1.12 0.10
-1.03 -1.07 -1.14 -0.91 -0.88
-1.04 -1.06 -1.14 -0.74 -1.05
-1.18 -1.09 -0.98 -0.91 -0.95
-0.14 0.26 0.15 -0.19 0.33
-0.82 -0.77 -0.65 -0.62 -0.46
-0.60 -0.34 -0.01 -0.87 -0.62
-0.08 0.07 0.15 0.08 0.46
-0.73 -0.92 -0.17 -1.07 -0.85
0.09 0.75 0.80 0.77 1.31
-0.45 -0.27 -0.01 -0.19 0.33
2.16 2.09 2.09 1.89 2.00
1.72 2.04 1.93 1.64 2.16
0.42 0.63 1.45 1.17 0.82
0.54 0.91 0.80 1.40 0.72
-0.32 -0.44 -0.65 -0.69 -0.72
-1.34 -1.29 -0.98 -1.28 -1.31
-0.15 -0.56 -0.82 -0.61 -0.33
0.59 -0.38 -1.14 -0.51 -0.65
Verification

The sum of all the effects will be equal to the correlation coefficient of FW with
CW (i.e. 0.772, as can be seen from the correlation matrix given above).

Sum of effects = -0.491 + 1.055344 + 0.171487 + 0.03552 = 0.771351

Similarly other indirect effects may be worked out and presented as follows:

Table 5.7. Direct (diagonal) and indirect effect of copra weight in coconut

Characters Fruit Nut Volume Kernel Sum of

weight weight of cavity weight effects
Fruit weight -0.491 1.055 0.171 0.035 0.771
Nut weight -0.456 1.136 0.206 0.038 0.924
Volume of cavity -0.377 1.047 0.223 0.036 0.929
Kernel weight -0.436 1.090 0.200 0.040 0.894
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Step 5
It may be verified, as indicated above, that the coefficient of determination of the
regression equation considered in this example is R? = 0.9134. Therefore, the

‘residual effect’ or ‘residual path term’ is ,/ (1 -0.9134) =0.294267.

Alternative approach
The path coefficients can also be worked out from the correlations as described
below:

The first step is the formation of equations based on the path-diagram. These
equations provide information on the direct and indirect contribution of these causal
factors to the effect.

The theoretical basis of these equations may be explained considering the
correlation between X, and Y, i.e. in Fig. 5.1. Assuming that:

Y=X +X,+X, +R (@)
Thus,
Y=X +X,+X,+R

O xy cov(X,, X, + X, + X;+R) o)
G.G My =
oy O, Oy

Further, we know that 7y , =

By substituting the value of Y in the above equation, we get

which simplifies to

PR SRS AP D I S e
Xy
6,0, GOy GOy
= % TexO | O,
Gy Gy G,
Where,

cov (X,, X,) = variance of X, = O'il
cov (X, R) = 0 as assumed earlier in the diagram

cov (X, X)) = I'yx,0x0x, as per definition of correlation coefficient
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Further, as derived earlier for the diagram above,
o, /o, = ‘a’, the path-coefficient from X, to Y

1
o, /o, = ‘b’, the path-coefficient from X, to Y,

2

GX3/ o, = ‘c’, the path-coefficient from X, to Y.

Thus, equation (2) becomes

r,, = atr,  b+r, . c 3
X, Y X%, TTX X, 3)

From the above equation (3) it is obvious that the correlation between X, and
Y can be partitioned into three parts namely:

1. Due to the direct effect of X, on Y which amounts to ‘a’;
2. Due to indirect effect of X, on Y via X, which amounts to r,,,

3. Due to indirect effect of X, on Y via X, which equals to r,,,.c.

b; and

Similarly, we can work out the equations for r, ,, r,  and r,. We thus finally

get a set of simultaneous equations as given below: °

ro,=a+r,,b+r, . c
XIY XIXZ X1X3

r,,.=7r,.a4a+b+r, c
X2Y XYXZ X2X3

Ty = Tyy@ + 1, b +c
3 13

Tey = h

Considering only the three defined factors, ie. X, X, and X, the first three
simultaneous equations may be solved to get the values of the path-coefficients
viz., a, b and c.

Example
Based on the correlation between copra weight and other fruit characters (Table
5.4), the simultaneous equations can be written as follows:

0.772 = by, + 0929 by, 0769 b,. + 0.888 b,
0924 = 0929 b, + by, 0.922 b, + 0.960 by,
0929 = 0769 b, + 0922 b, b, + 0.89 by,

0.894

0.888 b, + 0960 b, 089 b,. + by,
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The aforesaid simultaneous equations can be conveniently written in matrix
notation as:

r=Cb

Where, r represents the column vector of correlation coefficients shown in the
right hand side of the above equations; C is the matrix of correlation coefficients
between the characters FW, NW, VC, and KW; and b is the column vector of direct
effects.
Now b = C' r

Where, C! is the inverse of the matrix C.

The computations could be done using MS Excel. The C* is obtained as:

" 11.66004 16.7724 6.835857 -0.37755
ca_ |167724 41.07369 -15.148 -10.9642
= | 6835857 115.148 10.74588 1.15645
| 0.37755 -10.9642 1.15645 12.8971
and
-0.483
1.129
b =1 9230
0.033

The direct effects obtained in this approach are not exactly the same as in Table
5.7. This is because of numerical error in calculation of inverse of a matrix, etc.
More accurate values will be the one obtained in the previous method (i.e. the
standardized regression approach).

Note: The residual effect can be obtained as:

Rr,cw J 1 - (brw rcw, Fw) - (bxw few, nw) - (bve rew, ve) - (bkw Iew, kw)

\I 1 - (-0.483)(0.772) - (1.129)(0.924) - (0.230)(0.929) - (0.033)(0.894)

\I 1-0.913443 = 0.294205
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The ‘residual effect’ or ‘residual path term’ is therefore 0.294205; it may be
recalled here that the residual effect in the previous method was 0.294267.
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Chapter 6: Basic principles for planning and conducting coconut
field trials

An experiment is a planned inquiry to obtain new facts or to verify the results
of previous scientific studies. Comparison of varieties, controlled investigation for
testing the efficacy of fertilizers or pesticides, specially designed programmes for
progeny testing or selection trials, identifying the best medium for germination
of embryos, etc. are examples of experiments.

The resource requirements in terms of land, labour and money for coconut field
trials are significantly higher compared to annual crops since coconut occupies
larger area and requires 4 to 7 years before it can start producing nuts. Proper
planning of coconut field trials is, therefore, a must to optimize the use of resources.
The principles of experimentation viz., randomization, replication and reducing
error, when followed, will result in optimum use of resources. To meet this,
appropriate experimental designs should be selected and followed. In this chapter,
we will discuss the general aspects for laying and conducting coconut field trials.
The description of commonly used experimental designs is deferred to subsequent
chapters.

Types of experiments
The coconut field trials can be broadly categorized as follows:

1. Comparative experiments (e.g. evaluation of varieties, comparison of methods,
comparison of newly introduced accessions in a genebank with one or more
local check varieties).

2. Factorial experiments involving two or more factors; besides comparison
of different levels (categories) of each factor, the interaction between two
or more factors is also of interest (e.g. to find out the best combination of
N, P and K fertilizers for high yield, to find out the best hormone combination
for a tissue culture medium).

3. Experiments with mixtures; essentially a factorial experiment, but for any
treatment the quantity of levels of different factors when added will have
same quantity (e.g. to find out the optimum number of split application
of fixed amount of fertilizer for higher yield).

4. Experiments for fitting the response pattern of multi-factors; here the selection
of different levels of factors are made in such a way that the response pattern
can be best fitted (i.e. the variance of estimated response is a function of
the sum of squares of the corresponding levels of factors). The design to
meet this criterion is called second order rotatable response surface design.

The other types of experiments include bioassays (to estimate the potency of
the test preparation relative to that of the standard preparation in a pharmacological
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trial or entomology experiment), experiments using partial diallel crosses to estimate
genetic parameters. We discuss here only the comparative experiments in which
the effects of two or more treatments are compared.

Treatment
The material or procedure whose performance/effect is to be estimated or compared
is referred to as the treatment. The treatment may be varieties, pesticides, nutrient
levels, combination of different levels of factors such as sucrose and charcoal in
an in vitro experiment. Treatments are decided according to the objectives of the
experiment.

Experimental unit

An experimental unit or experimental plot is the unit of material to which a
treatment is applied. In a fertilizer experiment, a plot of nine contiguous coconut
trees may receive a particular dose of fertilizers. A different dose of fertilizer will
be applied to another plot and so on.

Treatment effect

Observation on the experimental unit (plot) or observation on a fraction of the
experimental unit is made to measure the effect of a treatment. The average of
measurements (response) of a treatment is taken as its effect. The response is usually
taken as the values of economically important characters (e.g. the copra yield per
palm in an agronomic experiment or time taken for flowering of 50% palms in
a plot).

If the effects of two treatments are the same, that is the difference of average
response between the two treatments is equal to zero, we say that the two treatments
are at par. Otherwise, one treatment may be preferred (or superior) over the other.
In practice, even the difference of average response between two identical treatments
may not be equal to zero. This is because the response is not solely due to the
treatments, but influenced by many external factors. It is not possible to generate
data in which the contribution of external factors is identical while comparing any
two treatments. In this regard, the data collected from a comparative trial is
considered as a ‘sample’ of observations drawn from the populations defined by
the treatments. Hence, it is necessary to follow procedures of statistical test of
significance to draw conclusions. The statistical test involved partitioning of the
‘total” variability in the data to various sources of variation, known as the analysis
of variance, which will be discussed in subsequent chapters.

Experimental error
Variation among experimental units may be seen due to:
1. Inherent variability, and
2. Variation that results from any lack in uniformity in the physical conduct
of the experiment.
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Experimental error is a measure of variation, which exists among observations
on experimental units that are treated alike. Experimental designs are evolved for
reducing the experimental error. The error mean square (which will be discussed later)
obtained from the analysis of variance of the experimental data provides an estimate
of experimental error.

Control of experimental error
It is desirable to reduce the experimental error to detect even a small real difference
between treatments. The techniques used to reduce experimental error are:

1. Blocking

2. Use of auxiliary variable, and

3. Choice of size and shape of plots.

Blocking

It is obvious that when two treatments are applied to identical plots, the difference
of the plot values will be the actual difference between the treatments. However,
in practice, such identical plots are seldom available. Under these circumstances,
we group the experimental units in such a way that the variation is less within
group (of plots) when compared to variation between groups. This kind of grouping
of homogeneous experimental units or plots is called blocking and groups thus
formed are called blocks. The experimental units are grouped into blocks based on
their earlier responses or on the basis of their characteristics influencing the
response.

In field trials, contiguous plots are grouped to form blocks, with respect to the
direction of fertility gradient. That is, plots within a block will have almost uniform
fertility status. Another way to do blocking is to arrange the units in the decreasing
or increasing order of magnitudes of certain characteristic value (e.g. yield). With
this, the units that are showing sudden changes in values may be avoided.

Auxiliary observations

If auxiliary observations are available, which are not affected by the treatment
effects, variation in treatment response may be corrected for variation in the
auxiliary variable at the time of data analysis. This technique is known as analysis
of covariance.

Formation of plots

In general, a plot of 'n” observations will have variance reduced to the order
1/n. However, this benefit will become less important when ‘n” increases. Hence,
it is necessary to workout optimum plot sizes to reduce cost of experimentation.
It is desirable to have uniform plot size for all treatments in a trial. Otherwise,
different treatment effects will have different standard errors.
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Replication
The repetition of the same experimental treatment under an investigation is known
as replication. The purposes of replication are:

e Provides an estimate of experimental error;

e Improves the precision of the experiment by reducing standard error of the
mean, thereby, increasing the scope of inference of the experimental results,
and

e Effectively control or minimise the error variance.

Increasing the replications by r times, increases the precision by \r times due
to reduction of the standard error to (1/ \r ) times. It is desirable, in general, not
to have merely the bare minimum of two replications to estimate error but a larger
number to reap other advantages. However, it can be seen that 6%/ decreases
rapidly when r is increased from two onwards initially, but the benefits become
less as r increased further. Therefore, increasing the number of replications beyond
a certain limit does not bring returns by way of increased precision commensurate
with the additional resources to be spent. The number of replications required for
a trial is decided, by taken into account a number of factors such as the experimental
design chosen for the trial, precision, inherent variability of experimental units,
resources available, etc.

Number of replications

One of the general considerations for determining the number of replications in
an experiment is that the error variance (mean squares) is estimated with at least
10 to 12 degrees of freedom. The expression given below calculates the number
of replications required to enable us to infer the difference between two treatments
if significant at a given level, i.e. when the observed difference exceeds a given
percent of the mean. One thumb rule is to fix the percentage to secure economic
viability of treatments compared. Suppose this difference is fixed as d% of the
overall mean . Let the coefficient of variation of observations on experimental
units (if more than one observation per plot, the average values) be denoted by
C%. Then number of replications (r) required for significant difference between
two treatment effects at o significant level is obtained from the relation:

d\/?
Z(ocn:__
o c\2

where, . is the critical value of t-distribution at o significant level for n’
df. In practice o will be fixed in advance as 5%. As an approximate, we can take
te, » as 2, the value corresponding to critical value of the t-distribution at 5%
significant level for large samples.
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Example

Consider a situation in which it is required to detect treatment difference that
exceeds 15% of the mean (i.e. d = 15). Let the coefficient of variation C = 8%.
Then the number of replication required is given by the relationship:

15 2 .
2<— r or r>4><82><1—' re, r>227

57
Thus, the minimum number of replications required for detecting the given

difference at the 5% level of significance is the next integer greater than 2.27, that
is 3.

Note: The number of replications suggested for coconut trials will be discussed later in
this Chapter.

Critical difference
If s? is the error mean square, the standard error of the difference of two treatment
means is given by

1 1
sz(—+—j
h n

Where, r, and r, are the replications of treatment 1 and 2, respectively. The
ratio of difference of two treatment means to its standard error is distributed as
Student’s t. Consequently, the difference will be significant if the ratio is greater
than the value of t for error degrees of freedom at, as taken usually, 5% level.
In other words, the difference is significant if the difference between means is

greater than /s
h n
pair of treatments is being compared and any difference larger than the obtained

t,,s value is considered significant. It is, therefore, called the least significant difference

or the critical difference.

1
Sz(—Jr—j. This expression is independent of which particular

Randomization

The function of randomization is to avoid bias in the estimate of treatment effects
and to provide valid estimate of experimental error and thus ensure the validity
of the statistical tests. The randomization is effected by the allotment of treatments
at random to the experimental units (plots). However, the experimental design
chosen or the layout plan may impose certain restrictions on randomization, which
will be described later while discussing various experimental designs. The tables
of random numbers or random permutations may be used for randomization
(Fisher and Yates 1963).
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Example

Consider an experiment having four treatments, T,, T,, T, and T, that are to be
randomly allocated among 24 experimental units (say, trees) so that each treatment
is replicated six times. The first step is to serially number the trees from 1 to 24.
By referring a table of random digits, the treatments can be allocated at random
in the following alternative methods:

Method 1

Locate a starting point in the table (say, second row and fifth column). Then
select 24 three digit numbers. Suppose we obtained the following numbers:
142, 503, 674, 499, 647, ... 737, 969, 277, 233, 231. (Note that the number of
experimental units is of two digit).

Rank these numbers from 1 to 24 so that the smallest number (96) is rank
1 and the largest number 969 is rank 24. The ranks obtained in order are
shown below:

2 10 16 9 15 21 11 14
18 17 20 1 13 8 6 12
3 22 23 19 24 7 5 4

Take first 6 ranks (ie. 2, 10, 16, 9, 15 and 21) and assign treatment T, to
trees (or plots) having these serial numbers. Plots with serial numbers
corresponding to next 6 ranks (i.e. 11, 14, 18, 17, 20 and 1) will be assigned
Treatment T, and so on.

Method 2

Take the largest two digit number divisible by 24 (note that number experimental
units is of two digit and is 24); which is 96.

Locate a position in the random number table (say, second row and fifth
column).

For each two-digit random number (less than or equal to 95) read vertically,
record the reminder until we get 24 distinct numbers as shown in Table
6.1. The random numbers obtained and corresponding reminders worked
out are given below. It may be seen that, the number 24 was not obtained
even after considering the subsequent columns (starting with 60). As all
other numbers were obtained, the last one can be taken as 24 in this case.
Now as in the previous method, assign treatment T, to plots of serial number
corresponding to the first 6 ‘reminders’ (i.e. 14, 2, 19, 1, 16, 12), etc.
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Table 6.1. Selection of random numbers following method 2

Random Reminder Random Reminder Random Reminder
number number number

14 14 41 17 35 11

50 2 26 2 66 1+8

67 19 55 7 28 4

49 1 21 21 37 +3

64 16 87 15 a7 23

84 12 91 +9 76 4

53 5 73 + 25 +

61 13 27 3 23 23

71 23 23 23 38 +4

68 20 23 23 31 7

77 5 18 18 30 6

9 9 90 1+8 51 3

56 8 10 10 67 +9

Selection of an experimental design

As discussed earlier, suitable design needs to be employed for conducting any
experiment. Based on the principle that grouping of experimental units for
homogeneity will lead to reduced experimental error, different types of designs
are suggested for conducting experiments. Table 6.2 presents distinct features of
various experimental designs.

Analysis of data

The statistical procedures to be employed for analysis of data from experimental
design depend on the chosen design as well as the type of experiment (as described
in the beginning of this chapter). Majority of the situations where experimental
designs used in coconut are for comparison among treatments. The test of hypothesis
is then H: u, = u, =...= y,_(i.e. there is no difference among the treatment means)
against the alternative hypothesis H, that at least one treatment mean significantly
different from the rest. Analogous to the partitioning of total variance of the
dependant variable in the regression analysis to that due to regression and residual,
we partition the total variance to that due to treatments and residual (error) and
employ F-test for testing the hypothesis. Partitioning of the variance to different
components is referred as Analysis of Variance (ANOVA). There are few assumptions
while employ ANOVA to test the aforesaid hypothesis. They are: (i) the underlying
model is additive (i.e. effects of treatment, replication, and error are additive); (ii)
experimental errors are random, independently and normally distributed with
mean zero and common variance (homogeneity of variances). It is found that
ANOVA is a robust procedure for the assumption of homogeneity of variances.
It is also a practice to transform the data so as to satisfy the assumptions before
attempting ANOVA. The ANOVA appropriate to different designs will be discussed
in the subsequent chapters while describing the respective designs.
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Table 6.2. Summary features for commonly used experimental designs

Name of design

Description

Completely
Randomized
Design (CRD)

Randomized
(Complete) Block
Design (RCBD)

Latin Square Design
(LSD)

Split-plot Design

Strip-plot Design

Incomplete Block
Design

Balanced Incomplete
Block Design (BIBD)

Partially Balanced
Incomplete Block
Design (PBIBD)

Lattice Designs

Augmented Designs

Balanced Treat-
ment Incomplete
Block Design or
Reinforced BIBD

Row-Column
Designs

Nested Block
Designs

All the experimental units are considered as a homogeneous group; no blocking is
required. Generally used in laboratory experiments.

Homogeneous groups of experimental units (blocks) made according to a single criteria
(i.e. one source direction of variation among experimental units is controlled) and block
size (i.e. number of experimental units or plots per block) equals to number of
treatments. Common design for field experiments.

Controlling (eliminating) two sources of variation; number of treatments and replications
are equal.

Suitable for factorial experiments where large plots are required for applications of
different levels of one factor. An appropriate design is selected for these treatments
and then each large plot is split into small plots (sub-plots) and randomly allocated
the levels of the other factor (or combination of two or more factors), that require
only smaller plots.

Instead of randomly allocating treatments within plots of large size, the levels of strip-
factor is imposed in a similar way in all plots within a block. In other words, the block
is split and each split receives one level of the strip-factor.

When there are many treatments, all treatments may not be accommodated in a block,
i.e. the number of units in a block is less than the number of treatments. This lead
to incomplete blocks or blocks that do not have complete set of treatments.

As in RCBD, all treatment differences have equal standard error. Often a large number
of experimental units is required for BIBD. There is also a restriction that the number
of blocks cannot be less than the number of treatments.

Instead of equal standard error for all treatment comparison in PBIBD, two sets of
treatment comparisons involved two different standard errors. The number of replications
is less compared to BIBD. This design is also used for selection of sample of crosses
in a partial diallel experiment.

Special case of PBIBDs; useful when number of treatments
v = n? or n(n-1), where n is any natural number.

For testing new accessions (which are usually limited in units and therefore, can only
have less number of replication) with existing or released varieties (checks or local
control, which can have any number of replications).

The test treatment is compared with more than one check; test treatment having more
number of replications. Only treatment vs. check comparisons have same standard
error, but comparison between checks is not considered.

Controlling two sources of variation (LSD is a special case of row-column design);
special cases are lattice square; Youden square, etc.

Variability within a block is controlled.

Note: The details of these experimental designs (except the last three in table 6.2) are discussed
in chapters 7, 8 and 9.
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Considerations for planning of coconut trials

In this section, we discuss some general considerations regarding coconut variety
and hybrid trials. The information is based on earlier published results from coconut
experiments and has been recommended for coconut research workers as guidelines
in conducting uniform breeding trials (Santos et al. 1996).

Characterization of accessions in field genebank
When planning for germplasm collection trials we should consider the optimum
plot size, replication, planting of guard rows, and planting of control or check.

Population size

The recommended sample size for each population or variety in a coconut field
genebank ranges from 72 to 96 palms for a heterogeneous Tall population. Though
reduction in variance can be achieved by means of suitable transformation of data
at the time of analysis, large population size is recommended from the point of
utilization of the population in breeding programmes as well as for the production
of seed nuts. Lower sample size could be used for homogeneous Dwarfs, but
maintaining the same number is advantageous.

Experimental design

Large size plots (e.g. six rows of five palms) are suggested for evaluation of
accessions, as assessment of genetic variability is also an objective of such trial,
besides the standard characterization of the accessions. Single-row design should
be discarded because it is subject to a lot of errors due to absence of ‘guard rows’.
As large plot size reduces ‘between plot variability’” within a block, a simple
randomized complete block design can be used with three replications. In case of
large number of accessions, and/or reduced plot size, BIBDs may be used. In cases
where population size is less, Augmented Block Design is recommended.

Check cultivars or control population

A proper evaluation of cultivars in a coconut collection is conducted in relation
to a well-known or standard population used as a control. A Dwarf (D) control
should be used for the Dwarf ecotypes while a Tall (T) population should serve
as a check for Tall varieties.

The frequency of the control cultivars depends on the experimental design
chosen. If it is a randomized complete block design, the control(s) are also to be
included as treatment(s) and will appear in all the blocks.

In the case of augmented design, the control will usually have more number
of replications than the new or introduced accessions under evaluation. In this case,
the growth and development of the entries are compared against the control. At
the Marc DELORME Coconut Research Station in Cote d’Ivoire, the Malayan Yellow
Dwarf (MYD) is the control for the Dwarfs while the West African Tall (WAT)
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is used for the Talls. On the other hand, at the PCA Zamboanga Research Centre,
MYD is also used for the Dwarfs while the local cultivar Baybay (BAY) is used
as the Tall control for the Talls. The West Coast Tall (WCT) serves as varietal control
at Central Plantation Crop Research Institute, India.

Planting density

The optimum planting density for Dwarfs is 180 palms/ha (8 m triangular); for
the Tall, a density of 143 palms/ha (9 m triangular) is suggested. This density
could be increased up to a maximum of 210 palms/ha (7.5 m triangular) for Dwarf
ecotypes with small crowns, or when the land is a limiting factor.

Management conditions for accurate germplasm characterization
and evaluation

Any source of heterogeneity, which can increase experimental error and reduce
accuracy, must be avoided to allow a better evaluation of the germplasm. This
requires efficient management of the field genebank through an effective
interdisciplinary collaboration among breeders, agronomists and plant protection
specialists.

Labelling and sampling

To facilitate the evaluation, the labelling system by field number, row and rank
of the palm in the row should be adopted. The sample palms for the evaluation
of the different varieties should have a specific mark. The use of aluminium labels
where marks are embossed and the use of copper wire as tying material ensure
that the tag is durable for many years in the nursery and in the field. In areas
where field workers are not highly qualified, a very simple labelling method is
more appropriate. Simple labels are generally preferred since size for studying
morphological traits and fruit component analysis (FCA) is large, i.e. 30 palms per
variety.

A regular harvesting method (monthly - for the Dwarfs and D x D hybrids;
and bimonthly - for D x T and T x T hybrids, and Tall ones) should be followed
when collecting yield data. For the fruit component analysis, the frequency is
bimonthly which is described in greater detail in Santos et al. (1996).

Comparison of populations/hybrids

Optimum population size

When comparing populations or hybrids, the optimum size is the same as in the
case of comparing accessions, i.e. 72 to 96 palms per population/hybrid. Production
of sufficient number of seedlings is the most important activity in the planning
stage. In the case of population or hybrid trials, 24 male parents crossed with a
sufficient number of female parents (minimum of 48 palms) within a period of
three months would be enough to produce sufficient number of seed nuts (144).
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Given a selection rate of about 67% at the seedbed nursery stage, these seed nuts
will give 96 seedlings. These estimates may vary depending on growing conditions.

Experimental design

The choice of a design will depends on the objective of the trial, the genetic structure
of the test material, the number of entries and homogeneity of the experimental
field. Randomized complete blocks, the Latin squares, and balanced incomplete
block designs are often used by the coconut breeders. The number of replications
could be three or more depending upon the design. Multi-location trials could also
be adopted for increasing the number of replications. The suggested planting
density for Tall (T) x Tall (T), Dwarf (D) x Dwarf (D) and Tall (T) x Dwarf (D)
are 143, 180, and 160 palms/ha, respectively.

Plot size

While deciding plot size, the xenia effect (influence of the pollen genotype on the
albumen of the nut) and the high degree of out-crossing, which occurs in most
of the Tall and hybrid materials should be considered, which necessitate large plots.
In the inter ecotype tests with high heterogeneity, a plot size of 24 palms (4 x
6) is suggested while, for the performance test between half sib families, a total
of 16 palms (4 x 4) are adequate.

Guard rows and palms

Two border rows (the first and the last) can serve as ‘guards’ to protect the
experimental area. Within the row, the first and the last palm are used as guards.
The guard rows should be planted with the same type of material as for the
experimental rows. Palms in guard rows should not be sampled to eliminate the
external or border effect in gathering data.

Control or check variety

A proper breeding trial requires the use of a locally adopted cultivar or a tested
and released hybrid as a control. The PB 121 (MYD x WAT), cultivated worldwide,
could be used as an international check for D x T hybrid yield tests; and the
WAT x RIT hybrid for T x T trials; in addition to another local hybrid.

Fertilizer application and disease control

Hybrids express their genetic potential better under optimum nutritional conditions.
Therefore, it is very important to monitor the nutritional status of the test materials
through foliar analysis. A standard rate of fertilizer recommended to the test site,
unless fertilizer is a treatment factor or a variable, should be applied on all the
treatments besides plant protection measures. When disease tolerance is the main
focus, the natural exposure to infection is of course necessary for screening the
test materials.
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Labelling

Coconut breeding is a long and tedious work, which requires special care in the
recording system to avoid errors that could occur at any stage of the experimentation;
from hybrid seed production, nursery management and field planting to evaluation.
Accession books giving information on the origin and pedigree of the tested
materials, the nursery records and the field designs must be kept. The palms should
be labelled following the system specified. Moreover, the sample palms should be
specifically marked. A file detailing the status of every palm in the trial (replacement,
producer, abnormal, dead, border) should be available and updated every year.

Sampling

The vegetative and reproductive characters are observed using 30 random palms
for every hybrid entry. For the yield components, the number of bunches and nuts
are counted on each individual palm during every harvest, which is conducted
bi-monthly (in the case of Tall, T x T, and D x T hybrids), or monthly (in the
case of Dwarfs and D x D hybrids). For the fruit component analysis, one nut
per palm will be taken and pooled samples analyzed on a per plot basis.

Data analysis
Several data files are required for the efficient management of data in coconut
breeding programs viz.,
1. Information on the palm’s status;
Origin and identity of the combinations tested in each trial;
Number of bunches and nuts;
Copra and oil content;
Data on fruit component; and
Other qualitative characters.

ARSIl

Agronomic trials

Agronomic trials are conducted to find out optimum production techniques for
a locally adopted cultivar or a tested/released hybrid. Compared to breeding trials,
the experimental material is expected to have less variation. However, it is important
to use coconut palms of uniform age and yield for agronomic trials.

Experimental design
According to the objective, appropriate design has to be chosen, refer to Table 6.2.

Plot size

The optimum plot size (refers to number of palms/plot) is summarized in Table
6.3. The size of the plot or number of palms may be modified to suit the shape
of the plot.
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Table 6.3. Optimum plot size suggested for agronomic trials

Type Optimum Country Reference
plot size
Local cultivar 18-20 palms Sri Lanka Joachim (1935);
Pieris and Salgado (1937)
West Coast Tall; 8 palms India Nambiar (1986 a, b)
Hybrids
Seedlings 12 seedlings Philippines Alforja et.al (1978)

Laboratory experiments

The availability of trained human resources (for initiating the cultures as well as
the periodic sub-culturing), laboratory space for maintaining cultures, infrastructure
for preparation of adequate culture media, etc. are the major factors that should
be considered when deciding the size of the experiment.

Experimental design

It is desired in a laboratory trial to control the variation to the extent possible.
A simple way is to repeatedly conduct the experiment so that each trial will be
a replication (Karun et al. 2003). Separate randomization of treatments is to be
followed in each trial. The variation due to technicians, equipment, etc. can also
be controlled by the use of appropriate design.

Replication size
Whenever the response of interest per experimental unit is binary (e.g. germinated
or not), 15 to 20 units are to be grouped to form a replication.
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Chapter 7: Basic experimental designs for coconut trials

In the previous chapter, a number of experimental designs are proposed principally
to reduce or control the experimental error. Among those, the most commonly used
designs in agricultural experiments are:

1. Completely Randomized Design (CRD),

2. Randomized Complete Block Design (RCBD), and

3. Latin Square Design (LSD).

These designs are also referred to as the basic designs as other types of modified
designs evolved subsequently from them. In this chapter we discuss these basic
designs in more detail and examine how the principles of experimentation (i.e.
randomization, replication and local control), described in the previous chapter,
are satisfied.

Completely Randomized Design (CRD)

The CRD is the simplest type of layout in which treatments are allotted to the
units entirely by chance and all the experimental units are assumed to be
homogeneous. In other words, the principle of local control of error does not find
a place in its layout. Provided that the experimental area is uniform, CRD gives
more precision for treatment comparisons than any other design.

The application of CRD is mainly for laboratory studies, pot culture experiments,
etc. where conditions are homogenous. In few cases, CRD layouts were found to
be employed for field experiments such as comparison of the control measures
for stem bleeding disease in coconut, studies on nutritional requirements, etc.,
where a single palm is taken as an experimental unit. The advantage of CRD is
that we can have different number of replications for different treatments although
equal number of replications is advantageous to ensure equal precision of estimates
of all the treatment effects.

Randomization

In CRD, the treatments are allotted at random to the experimental units as the
name suggests. First, serial numbers are assigned to the experimental units. According
to the number of replications required for a treatment, experimental units are
selected at random and assigned that treatment.

Example

Consider a field trial conducted for finding the best control measure against
stem bleeding disease of coconut. The four treatments compared were T1
(Carbendazim 2.5%), T2 (Tridemorph 4%), T3 (Chiseling and coal tar application)
and T4 (Control, i.e. no treatment applied). Each treatment was replicated six times.
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Observations on pre-treatment yield and post-treatment yield (in the fourth year)
were recorded. As an indication of effectiveness of control measures, the percent
increase (+) or decrease (-) in yield in the fourth year over pre-treatment yield
was determined.

Layout

The first step in laying out the experimental design was the selection of 24 palms
(for imposing the four treatments each having six replications). While selecting
palms, utmost care should be taken to assure homogeneity for disease intensity.
If variation for disease intensity noticed among the selected palms, CRD would
not be the ideal design to conduct the experiment. It is also desired to have
homogeneity for yield as well as age for the palms selected for the above mentioned
trial. After identification of 24 homogeneous palms for the experiment, they were
numbered from 1 to 24. Treatment 1 (T1) was then applied to six randomly selected
palms, using random number table. Other treatments (T2 to T4) were also applied
in the same way using random number table. The resulting layout of the experiment
is shown below (Fig. 7.1).

Palm Number 1 2 3 4 5 6 7 8 9 10 11 12
Treatment T4 T3 T T3 T2 T4 T2 T T2 T4 T T2
Palm Number 13 14 15 16 17 18 19 20 21 22 23 24
Treatment T3 T4 T4 T2 T T3 T T2 T3 T T4 T3

Figure 7.1. Field layout for coconut trials in CRD.

Model
The statistical model of CRD is:

Yij=u+‘ci+eij

Where,

Y, is the observation of j* experimental unit of treatment i
u is the general mean

T, is the effect of treatment i

e, is the residual variation or error

The error e is assumed to be normally distributed with mean 0 and variance ¢?,
Le, e, ~ N (0, G?).

Analysis

The observations from a CRD experiment consisting of ‘t" treatments replicated
‘" times can be arranged in a format as shown in Table 7.1. Unequal number of
replications (i.e. treatment T, has r, replication, treatment T, has r  replication, etc.)
for treatments will not make any difference in the preparation of the table. With
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regard to the experiment on control measures for stem bleeding disease, Table 7.2
shows the data on percentage difference in yield in the fourth year of experimentation
over pre-treatment yield.

Table 7.1. Tabulation of data from CRD experiment

Treatments Replications Treatment total
1 \® Y., Y, A\ T,

2 A\ Y, . Y, - Y, T,

i Y, Y, . YIJ Y, T,
t Y, Y- . Y .. Y, T

Grant total G = XYY, _ (= XT)

The estimate of the variance for the different sources of variation is obtained from
the analysis of variance (ANOVA) table as given in Table 7.3. Since the experimental
units are assumed to be homogeneous, only two sources of variation in the data
viz., between treatments and within treatments (i.e. error) were considered.

Table 7.2. Effect of stem bleeding disease control treatments as percent increase (+) or decrease (-)
in yield over pre-treatment yield

Treatments Replications Treatment Treatment
RI RIl Rl RIV RV RVI total mean
T1 30.3 28.6 26.6 33.4 34.4 29.7 183.0 30.5
T2 37.0 34.7 415 36.5 38.1 35.9 223.7 37.3
T3 -10.2 -5.3 -13.3 -6.8 -18.1 -22.1 -75.8 -12.6
T4 -45.3 -19.8 -9.6 -28.9 -49.6 -35.1 -188.3 -31.4
Grand Total 142.6

Table 7.3. Analysis of variance (ANOVA) for CRD

Sources of Degrees of Sum of Mean sum F-value

variation freedom squares of squares

Treatment (t-1) Treatment SS Treatment MS = weatment =
Treatment SS/(t-1) Treatment MS/

Error (N-1) Error SS Error MS Error MS
Error SS/(N-t)

Total (N-1) Total SS

The calculations of DF, SS and MS for the different sources of variation are described
and illustrated below:

Computational Procedures

Degrees of freedom (DF)

The degrees of freedom for a source of variability is 1 less the number of levels
of the source. Hence, the total df is 1 less than the total number of observations
(N-1); the treatment df, one less than the number of treatments (t-1) and experimental
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units within treatments, one less than the number of experimental units assigned

to a treatment, (ri-1) summed across all treatments,
t
Z(’}_l) or N-t.

i=1

DF for Total = N-1, where N = Xr. = Total number of observations in the experiment
(r,is the number of replications of i" treatment)

DF for Treatment= t-1, where t = number of treatments

DF for Error = N-t

With regard to the above example, N = 24 and t = 4

DF for Total =24 -1 =23,
DF for Treatment= 4 -1 = 3, and
DF for Error =24 -4 = 20.

Sum of squares (SS)

Total SS = XX Y;? - CF

where CF = (Grand Total)’?/N and is called the Correction Factor
= (142.6)%/24

Total SS = [(30.3)> + (28.6)* + ... + (-49.6)> + (-35.1)7] - (142.6)*/24
= 2222758 - 847.28
= 21380.30

Treatment SS = % (T?/r) - CF

= (183.02/6 + (223.7)2/6 + (-75.8)*/6 + (-188.3)2/6) - (142.6)%/24
= 20788.87 - 847.28

= 19941.59

Error SS = Total SS — Treatment SS
= 21380.30 - 19941.59
= 1438.71

Mean sum of squares (MS)
The mean sum of squares (MS), corresponding to the different sources of variation
are obtained by dividing the sums of squares with the associated degrees of freedom
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(DF), as indicated below. The error means sum of squares is used as an estimate
of the variance.

Treatment MS = Treatment SS/(t-1)
19941.59/3
6647.196

Error MS

Error SS/(N-t)
1438.71/20
71.935

Null hypothesis and test of significance

Null hypothesis, denoted by H is the statement, which the researcher wants to
disprove by experimentation. In terms of the model, the Null Hypothesis considers
that all treatments are equal. In the above example, the null hypothesis is that
the percentage change in yield is equal in all the four treatments under study.
In the ANOVA, this is tested against the alternative hypothesis that at least in
one treatment, the percentage change is different from the rest.

The tests of significance are carried out using F-test based on the ratio of the
mean squares. The error mean square is used as the denominator for this F-statistic
and the numerator will be the mean squares due to the source whose effects are
to be tested for their significance.

= Treatment MS/Error MS
6647.196/71.935
= 92.405

treatment

After these calculations, you may arrange these values in an ANOVA table,
as presented in Table 7.4.

Table 7.4. ANOVA for treatment effect depicted as percent change in yield

Sources of Degrees of Sum of Mean sum F-value F-Tabulated*
variation freedom squares of squares (0.05)
Treatment 3 19941.59 6647.196 92.405 3.10
Error 20 1438.71 71.935

Total 23 21380.30

*Tabulated value for F, . for numerator DF = 3 and denominator DF = 20 is 3.10

From the ANOVA table we observe that the calculated F value (92.405) for the
treatments is higher than the tabular F value of 3.10 (FO’05 with 3 and 20 DF). Hence,
the treatment differences are significant, i.e. the null hypothesis is rejected. It is
not implied here that all the treatment differences are significant but we are sure
that at least one treatment is different from the rest.
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Next, we compare the significance of individual treatments by calculating the
treatment means and comparing their differences for significance. The difference
between observed treatment means is the estimate of difference between the
corresponding population means.

The difference between two treatment means is considered as significant if it
exceeds the critical difference (CD), at the required level of significance. The formula
of CD (this is more populary known as LSD or Least Significant Difference) for
comparison of two treatments i and j is:

Where, r, and r,are the number of replications for treatments i and j’, respectively.
Usually the level of significance is taken as 5%.

In the example, the CD (at 5%) for comparison of any two treatments (both
are having equal number of replications 6) is obtained as:

CD =1, g5 94| 719355 x% =2.086x4.8968 =10.21

From Table 7.2, it may be seen that the largest difference was observed for
treatment T4 (control) followed by T3 (chiselling and coal tar application). These
two treatments are significantly different as the difference between their respective
means (18.8) is greater than the CD (10.21). Improvement in yield was observed
with the two chemical application treatments (T1 and T2). Even though the increase
in yield is higher in T2 (37.3%), it is not statistically significant from T1 (30.5%).

Conclusion

Since the F-test calculated value is greater than the tabular F value we conclude
that at least one treatment is different. To identify which treatments are different,
comparison of means was done and revealed that yield reduction is significantly
larger in the control than in the rest of the treatments. Improvement in yield was
observed with the two chemical control measures.

Randomized Complete Block Design (RCBD)

In many situations, the knowledge of the researcher regarding the experimental
material enables him/her to group the units in relatively homogeneous groups or
blocks, each equal in size to the number of treatments, before allotting the treatments.
This often helps in reducing the errors affecting the treatment comparisons. The
resulting design is called the Randomized Block Design (RBD) or Randomized
Complete Block Design (RCBD). It is the simplest experimental design that employs
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all the three basic principles of experimentation and perhaps the most commonly
used design in agricultural and biological investigations.

This design may be used when the experimental units are heterogenous but
can be grouped in such a way that the number of units in a group (block) is equal
to the number of treatments. This allows the complete set of treatments to be present
in each of the blocks thus the design, complete block. The objective of forming
blocks is to apportion the total variation of experimental units in such a manner
as to render the variation among the blocks as large as possible and thereby reduce
the variation among the units within a block to the maximum extent. Accordingly,
the characteristics chosen as criteria for grouping the experimental units into blocks
are those expected to be associated with the measure of the effect of the treatments.
This characteristic could be a qualitative or discrete such as vertical description
of stem, overall appearance/shape of crown, colour of petiole, leaf spiral direction,
etc., or a continuous one such as length of petiole, length of leaf bearing position,
length of spikelet, weight of fruit, weight of kernel, nut yield per palm, etc. In
the former case, the blocks are formed easily by grouping the units belonging to
the same class according to the chosen characteristic. In the latter case, the units
are arranged according to (descending or ascending) order of magnitude of the
characteristic and blocks of successive units equal in number to the treatments are
formed. In most of the field trials, contiguous plots with uniform fertility gradient
(as far as possible) form the block.

Randomization

In each block the treatments are allotted once each to the units at random. Since
in each of the blocks, all the treatments occur exactly once, the blocks are considered
complete. For randomly allocating the treatments, the plots will be conveniently
numbered first and then the treatments. Treatments are then assigned to the plots
at random within each block. For every block, separate randomization is to be
carried out.

Example

Consider an evaluation trial of nine coconut cultivars (AOT, AGT, PHOT, FMS,
SSG, FJT, CCT, JGT, LCT). The comparisons were made for average annual yield
based on four consecutive years.

Layout

Based on the slope and/or fertility gradient, the experimental area could be divided
to form three blocks. Blocking is done perpendicular to the direction of the variation
(i.e. the direction of fertility gradient) so that plots within a block will have similar
soil /fertility characteristics. Note that in this example, the plots are the experimental
units and each plot consists of nine palms. For RCBD, the block size is equal to
number of treatments (therefore, each block has a size of nine plots) and number
of replications is equal to the number of blocks. It may be noted that the total
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number of palms in a block is 81 resulting to a total of 243 experimental palms.
In addition, it will also have border palms and the observations from those palms
will not be considered for analysis. The following figure (Fig. 7.2) depicts the sample
field layout of the cultivar evaluation trial in RCBD (border palms are not shown
in the layout).

Block 1

CCT LCT FMS AGT FJT PHOT | AOT JGT SSG
Block 2

FJT JGT LCT PHOT | FMS AGT SSG AOT CCT
Block 3

JGT SSG CCT AOT LCT PHOT | FJT FMS AGT

Figure 7.2. Field layout for coconut hybrid evaluation trial in RCBD.

Model
The statistical model for RCBD is:

Vi = H+ T +po+oe

where,
p; denotes the j ™ replication or block effect and other symbols denote as in the
case of CRD.

Analysis

The analysis of RCBD with i treatments replicated j times and arranged in j blocks
is rather simple. The observations from a RCBD can be arranged in the form of
a two-way table as shown in Table 7.5.

It is important to note that, when a plot (experimental unit) has more than
one observation, only the average value is subjected for analysis of variance. For
example, in the cultivar evaluation trial mentioned above, the average yield of the
nine palms will be taken as the observation from a plot (experimental unit). The
data from the trial is shown in Table 7.6.

The estimate of the variance for the different sources of variation is obtained
from the analysis of variance (Table 7.7). Compared to CRD ANOVA, one additional
source of variation (i.e. between blocks) is included here.
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Table 7.5. Data tabulation in RCBD

Treatments Blocks Treatment
1 2 ... | r total

1 Y11 Y12 Y1j Y1r T1

Y21 Y22 Y2j Y2r T2

I Y|1 Yi2 ij er TI

t Y., Y, e Ylj e Y, T,

Block total B, B, ... Bi B, G = ZZYii
(=ZBj or XT)

Table 7.6. Average number of nuts per palm

Treatments Replications Treatment Treatment
1 1l n total mean
AOT 74.95 54.51 62.60 192.06 64.02
AGT 80.18 71.13 77.80 229.10 76.37
PHOT 70.91 61.45 68.80 201.16 67.05
FMS 65.49 55.63 58.70 179.82 59.94
SSG 93.80 77.65 82.60 254.05 84.68
FJT 69.26 51.01 61.70 181.97 60.66
CCT 90.83 78.75 85.80 255.38 85.13
JGT 71.11 80.13 74.60 225.84 75.28
LCT 120.51 79.80 98.70 299.01 99.67
Block total 737.04 610.05 671.30 2018.39
Block mean 81.89 67.78 74.59

Table 7.7. ANOVA for Randomised Complete Block Design (RCBD)

Sources of Degrees of Sum of Mean sum F-value
variation freedom squares of squares
Treatment (t-1) Treatment SS Treatment MS = Freament = Treatment MS/
Treatment SS/(t-1) Error MS
Block (r-1) Block SS Block MS = Foou = Block MS/
Block SS/(r-1) Error MS
Error (t-1)(r-1) Error SS Error MS =

Error SS/(t-1)(r-1)
Total (N-1) Total SS

The calculations of DF, SS and MS for the different sources of variation are described
and illustrated below:

Degrees of freedom (DF)

DF for Total = N-1, where N = t.r = total number of observations in the experiment
DF for Treatment = t-1, where t = total number of treatments

DF for Blocks = r-1, where r = total number of blocks (i.e. replications)

DF for Error = (t-1)(r-1)
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With regard to the above example, t = 9, r = 3; therefore N = 27,
DF for Total =27 -1 = 26

DF for Treatment = 9 -1 = 8

DF for Replication = 3 -1 = 2

DF for Error = 8x2 =16

Sum of squares (SS)

Total SS = > Yij2 - CF,

Where,

CF = (Grand Total)?/N

Total SS = (7495 + 54512 + ... + 79.802 + 98.70%) — (2018.39)2/27
= 156760.7 - 150885.1
= 5875.602

Treatment SS = 2 T?/r - CF
= (192.06> + 229.10> + 201.16> + 179.822 + 254.05> + 181.97% +

255.38% + 225.84% + 299.01%)/3 - (2018.38)?/27

= 465454.4/3 - 150885.1 = 155151.48 - 150885.1
= 4267.73

Block SS = Y B?/t - CF
= (737J.042 + 610.05? + 671.30%)/9 - (2018.38)?/27
= 1366019.18/9 - 150885.1
= 897.643

Error SS = Total SS — Treatment SS — Block SS
= 5875.602 - 4267.73 - 897.643
= 710.228

Mean squares (MS)

The mean squares (MS) corresponding to the different sources of variation are
obtained by dividing the sums of squares by the associated degrees of freedom
(DF), as indicated below. The error mean squares is used as an estimate of the
variance.

Treatment MS = Treatment SS/(t-1)
= 4267.73/8 = 533.466

Block MS = Block SS/(r-1)
= 897.643/2 = 448.821

Error MS = Error SS/(t-1) (r-1)
= 710.228/16 = 44.389
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Null hypothesis and test of significance

For the aforesaid experiment, the null hypothesis is that the average number of
nuts per palm for the nine coconut cultivars is the same. This null hypothesis is
tested against the alternative hypothesis that at least for one cultivar the average
number of nuts per palm is different from the rest. In terms of the model, the
null hypothesis will be that 1,’s are all equal.

The test of significance is carried out using F-test based on the ratio of the
mean squares. The error mean square is its denominator and the mean squares
due to the source whose effects are to be tested for their significance is the
numerator.

= Treatment MS/Error MS
= b533.466/44.389
= 12.018

treatment

Foa = Block MS/Error MS
= 448.821/44.389
= 10.111

Arrange the above calculated values in the ANOVA table, as given in Table 7.8.

Table 7.8. ANOVA of nuts per palm

Sources of Degrees of Sum of Mean sum F- F-
variation freedom squares of squares value Tabulated*
Treatment (cultivars) 8 4267.730 533.466 12.018 2.59
Block 2 897.643 448.821 10.111

Error 16 710.228 44.389

Total 26 5875.601

*Tabulated value for F . with 8 and 16 degrees of freedom

Since calculated F value (12.023) for the treatments is higher than the tabular F
value of 2.59 (F , with 8 and 16 DF), the null hypothesis is rejected. This implies
that the yield of at least one of the cultivars is different from the rest. To find
which cultivars are different from each other, comparison of means should be done.

CD (at significant level o for comparison of any two treatments is given by
the formula:

2

CD = Ly (1)) (;jMSE

In the example, tabulated t value is 2.12 (corresponding 16 DF at 5% level).
Then,
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CD:2.12,/2X‘;ﬂ ~11.53

From Table 7.6, it can be seen that the cultivar FMS has the lowest yield (59.94)
which is significantly lower than the cultivars yielding more than 59.94+11.53 =
7147 i.e. yield of FMS is significantly lower than the yield of JGT, AGT, SSG, CCT,
and LCT. Note that the yield of LCT is significantly higher than the yield of all
the other cultivars. To simplify the presentation of results, we arrange the treatment
means in ascending order and form (overlapping) groups of treatments that are
not significantly different. It can be seen from the following that the cultivars FMS,
FJT, AOT and PHOT are not significantly different. Similarly the AOT, PHOT and
JGT are on par and so on.

FMS FJT AOT PHOT JGT AGT SSG CCT LCT
59.94 60.66 64.02 67.05 75.28 76.37 84.68 85.13 99.67

The cultivars that are underlined together have insignificant yield differences.
This can be shown in another format using superscript, as shown below:

FMS?
FJT=
AQT?
PHOT?¢
JGT bed
AGT «
SSG ¢
CCT ¢
LCT e

The varieties with same alphabet as superscript are not significantly different from
each other.

Conclusion

Since the F-test is significant, we conclude that the treatment effects are significantly
different. Comparison of treatment means revealed that LCT yielded significantly
higher than the rest of the cultivars. The lowest yield was from FMS, which is
not significantly different from the yields of FJT, AOT and PHOT.

Latin Square Design (LSD)
We have seen that the RCBD is intended to reduce error with respect of one (set
of) factor(s) used for forming the blocks of experimental units like slope of land,
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fertility gradient, etc. When there are two (sets of) factors contributing to the
heterogeneity of experimental units, the experimental units are formed into groups
differently for the two (sets of) factors, such that ignoring one blocking factor, the
other would give a blocking system as in the case of RCBD. In other words, we
will be dealing with a two-way source of variation that needs to be taken care
of while forming the blocks. For example, in field trials there could be a fertility
gradient in two directions — both parallel and at right angles to the ploughed rows.
This may be attributed to the usual blocking and the other due to the residual
effects of the treatments applied earlier.

In the presence of two sources of variation, the label/serial number of the
experimental units can be arranged in rows and columns. Blocks to take care of
the variation in one direction constitute the rows and blocks to take care of the
other direction of variation constitute the columns. If blocks formed in either
direction are complete (i.e. all treatments occur only once in a block), the arrangement
will be a square consisting of equal number (say, ‘t’) of rows and columns. Under
such situation, by adopting a Latin Square Design (LSD) we can remove the variability
in both the sources of variation. A Latin square is an arrangement of ‘t’ symbols
in rows and columns such that every symbol occurs only once in each row and
once in each column. On replacing the ‘t” symbols in a Latin square with the
treatments, we get a Latin Square Design. The variability due to differences in rows
(one source of blocking factor) as well as columns (another source of blocking factor)
can be removed from the error SS.

The application of LSD in coconut field trials is limited as it requires large
number of replications and identification of exact direction of two sources of
variation in the field is difficult. Since the two sources of variations are removed,
the available DF for error will also be less making it less attractive for field trials.
Hence, LSD is not appropriate when there are several number of treatments and
the experimental area and test materials are limited.

Randomization

The randomization procedure for LSD is not straight forward. First step requires
selection of a standard Latin square of appropriate order, say t. A Latin square,
with its first row and first column elements in alphabetic order, is said to be in
a ‘standard form’. Sets of Latin squares in ‘standard form’ for different integers are
provided in Statistical Tables by Fisher and Yates (1963) and also the method of
selection of a square at random.

For the purpose of randomization, separately number the rows and columns of
the selected Latin square. Keeping the first row unaltered, rearrange the remaining
rows at random. Similarly, the columns are rearranged at random. To complete
the randomization, assign treatments at random to the letters of the Latin square.

Example
Consider a laboratory experiment in which germination of zygotic embryos of four
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coconut cultivars is tested. There are only two technicians to inoculate embryos.
A person can inoculate 20 embryos in the morning and 20 in the afternoon, i.e.
20 embryos each of the four cultivars can be inoculated in a day. Incidentally, a
‘plot size” of 20 is good enough to estimate the percentage germination. By using
a 4 x 4 Latin square arrangement, the variation due to technicians and time of
inoculation (this constitute variation of one direction) and variation between days
(the second source of variation) can be eliminated.

Note: It may be noted here that the adoption of LSD for this experiment may not be
the most appropriate as the DF for error is very little.

Layout

The Latin square of order 4 will have symbols A, B, C and D which were randomly
allocated to the treatments as A:WCT, B:PHOT, C:WAT and D:LCT. Hence, the
Latin square in the standard form (in treatment symbols) is as follows (Fig. 7.3):

WCT PHOT WAT LCT
PHOT WAT LCT WCT
WAT LCT WCT PHOT
LCT WCT PHOT WAT

Figure 7.3. Chosen Latin Square in standard form.

It may be seen that each treatment is appearing only once in a given row as
well as column. The next step is to randomize the arrangement. Randomly arrange
all the rows except the first row and then randomly arrange the columns. The
layout for LSD after randomization is presented in Table 7.9 along with the percent
germination of embryos.

Table 7.9. Percent germination of embryos in trial conducted using LSD

Person Day 1 Day 2 Day 3 Day 4
Technician-1 AM WCT WAT PHOT LCT
25 25 80 55
Technician-2 AM WAT WCT LCT PHOT
10 40 65 85
Technician-1 PM PHOT LCT WAT WCT
85 70 20 30
Technician-2 PM LCT PHOT WCT WAT
65 75 45 20

Model

The statistical model for LSD is:

Yig =R T+ 0+ X + &
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where,
P, and y, denote the effects of j row and k™ column effects, respectively. Other
symbols are as mentioned in the case of CRD.

Analysis

The SS due to rows and columns are obtained similar to the replication SS in RCBD;
first treating the rows as blocks and then columns as blocks. The total SS and
treatment SS are obtained as in the CRD (or RBD) and the error SS with DF
(t-1)(t-2) is obtained by subtracting the SS due to treatments, rows and columns
from the total SS. To work out the treatment, Technician (row) and day (column)
SS, first sum the relevant observation and arrange as shown in Table 7.10.

Table 7.10. Data summarized for rows, columns and treatments

Rows Sum Columns Sum Treatments Sum Mean
Technician-1 AM 185 Day1 185 WCT 140 35.00
Technician-2 AM 200 Day2 210 WAT 75 18.75
Technician-1 PM 205 Day3 210 PHOT 325 81.25
Technician-2 PM 205 Day4 190 LCT 255 63.75
Grant total 795 795 795

Correction Factor CF = (Grand Total)?/N

= (795/16 = 39501.56

Total SS = Yy Yij2 - CF
= 252+ 252+ ... + 65%- 39501.56 = 49525 - 39501.56
= 10023.44
Row (Technician) SS = X R?*/r — CF
= (185£ + ... + 205%/4 - 39501.56 = 39568.75 - 39501.56
= 67.19
Column (day) SS = 2 C%r-CF
= (185%* + ... + 290%)/4 - 39501.56 = 39631.25 - 39501.56
= 129.69
Treatment SS = Y T?/r - CF
= (140% +... + 255%)/4 - 39501.56 = 48968.75 -39501.56
= 9467.19
Error SS = Total SS — Row SS - Column SS — Treatment SS
= 10023.44 - 67.19 - 129.69 - 9467.19
= 359.37

From the above calculations, ANOVA is tabulated as shown in Table 7.11.
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Table 7.11. ANOVA for percent germinated embryos

Sources of Degrees of Sum of Mean sum F- F-
variation freedom squares of squares value Tabulated*
Rows (Technicians) 3 67.19 22.40 0.3739 4.76
Columns (Days) 3 129.69 43.23 0.7217

Treatments 3 9467.19 3155.73 52.6869

Error 6 359.37 59.90

Total 15 10023.44

*Tabulated value for F . with 3 and 6 degrees of freedom

From the ANOVA, it is obvious that only the treatment effects are significantly
different. Neither the technicians nor days seem to have influenced the germination
of embryos.

The comparison of cultivars for average germination can be made using CD.
As t-value for 6 DF at 5% is 2.447, the CD is obtained as 2.447 x V(2 x 59.90/
4) = 13.39. The treatment means in Table 7.10 can be compared based on this CD.

Conclusion

WAT had the lowest average percentage germination which was significantly less
compared to PHOT and LCT. The germination of PHOT is significantly higher
than WCT. There was no significant difference in germination between PHOT and
LCT.

Repeated Latin Squares

In case two or more Latin squares, say n in number, are used in an experiment,
the model will additionally include the parameters for effect of square and treatment
vs. square. Thus, the parameters in such case will be general mean, treatment effect,
effect of square, treatment vs. square interaction, rows within square, columns
within square and the error. The total sum of squares will then be accordingly
split. The total SS with (st*-1) DF and the treatment SS with (t-1 DF) are obtained
in the usual manner. The SS due to the squares with (s-1 DF) is then obtained
similar to that of treatment SS. The SS due to rows within squares and columns
within squares [(each with s(t-1) DF)] are obtained by subtracting the SS due to
squares, respectively from the rows SS and column SS each with st-1 DF as there
will be a total of st rows/columns, t from each of the s squares. The SS due to
treatments within the squares with s(t-1) DF is also calculated similarly from the
st treatment totals taken separately in each of the squares and subtracting the
treatments SS from it. The DF associated with the error will be (s-1)(t-1)(t-2). The
error SS is obtained by subtracting the SS due the squares, treatments, treatments
vs. squares, rows within squares and columns within squares from the total SS.

Reference
Fisher, R.A. and Yates, F. 1963. Statistical tables for biological, agricultural and
medical research, 6™ edition. Longman. 146p.
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Chapter 8: Experimental designs for coconut trials with modified
blocking

The usefulness of randomized complete block design is restricted to situations
where the block size is equal to the number of treatments. To overcome this,
incomplete block design was proposed in which the number of units or plots is
smaller than the number of treatments. Another situation is where sufficient
experimental units may not be available to replicate the treatments as in the case
of screening trials of newly introduced germplasm. If an incomplete block design
is ensuring equal precisions of the estimates to all pairs of treatment effects, it
is called Balanced Incomplete Block Design (BIBD). It was found that the Balanced
Incomplete Block Designs require large number of replications which is not possible
for certain situations. This led to the development of Partially Balanced Incomplete
Block Designs (PBIBD). For germplasm screening trials, the Augmented Block
Designs are commonly used. We discuss these designs in this Chapter.

Balanced Incomplete Block Design (BIBD)
Balanced Incomplete Block Design is an arrangement of ‘v’ treatments in ‘b’ blocks
of equal size 'k’ and satisfying the following conditions:

1. Block size is less than the number of treatments;

2. All the treatments in a block are distinct;

3. Each treatment appears in exactly ‘r" blocks; and

4. Each pair of distinct treatments appears together in A blocks.

The parameters necessary for defining a BIBD are therefore v, b, r, k and A. The
following parametric relationships holds good for a BIBD:

Total number of experimental units = v.r = bk
Further the following relationships hold good
r(k-1) = A(v-1), and

v<b

Because of the above relationships, BIB designs may not be applicable for certain
situations. However, for a large number of parametric combinations, the BIBD is
available and can be obtained either by the methods of construction as explained
in text books (Dey 1986) or using software such as SPBD (Statistical Package for
Block Designs) developed by the Indian Agricultural Statistics Research Institute,
New Delhi, India. The package also performs the ANOVA for a BIBD.

Randomization
On choosing BIBD arrangement with ‘v’ symbols, randomly assign the treatments
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to the symbols. Then arrange the blocks at random and finally allocate the treatments
within each block at random to the respective plots.

Example

Consider an experiment to test the skill of pollinators. There were nine pollinators
engaged for the production of hybrid seednuts. Obviously, the yield of a palm
influences the overall production of hybrid seednuts. Therefore, it is desirable to
group the mother palms as uniformly as possible for annual nut yield. In the present
study, the palms were grouped as those yielding between 30 to 35 nuts; 35 to 40
nuts and so on resulting into 12 separate groups. The group size varied between
3 and 6 palms.

Since the group size is less than the number of pollinators, it is not possible
to use a RCBD for this experiment. On the other hand, with block size 3 and number
of palm groups as 12, we can construct a BIBD involving 12 x 3 = 36 experimental
units (palms). The arrangement of the design using the symbols 1, 2, ..., 9 is shown
in Table 8.1. It may be verified from the table that each symbol is repeated in
r = bk/v =12 x 3/9 = 4 blocks. Every pair of symbols appear in A = r.(k-1)/
(v-1) = 4 x 2/8 = 1 number of blocks.

To obtain the layout of the experiment, first we randomly assign the treatments
to the symbols, e.g. symbol 1 to Pollinator-4 (P4), symbol 2 to P1, 3 to P8, 4 to
P9, 5 to P2; 6 to P7; 7 to P3; 8 to P5 and 9 to P6. The layout of the experiment
(after randomization) is shown in Table 8.1. The response variable is taken as
percentage of hybrid seedlings obtained and the values are also shown in the Table
8.1.

Table 8.1. Field layout of the BIBD (data generated) along with parameters (v=9, b=12, r=4, k=3, A=1)

BIBD FIELD LAYOUT Hybrid Block

arrangement Block Treatments within seedlings Total

block (%) (B)
1 2 3 1 P7 P5 P4 40 55 65 160
4 5 6 2 P3 P5 P6 72 58 25 155
7 8 9 3 P5 P2 P1 63 58 67 188
1 4 7 4 P9 P3 P4 41 80 61 182
2 5 8 5 P5 P8 P9 52 71 49 172
3 6 9 6 P8 P7 P6 78 46 33 157
1 6 8 7 P8 P3 P2 69 71 61 201
2 4 9 8 P9 P1 P6 38 70 36 144
3 5 7 9 P9 P7 P2 34 41 52 127
1 5 9 10 P2 P4 P6 58 68 41 167
2 6 7 11 P3 P7 P1 74 44 71 189
3 4 8 12 P8 P1 P4 77 61 68 206

Total 2048
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Model
The statistical model for BIBD is same as that of RCBD:

Vi = H+ T +p +oe

where,

Y, is the observation of of treatment i in j* block
u is the general mean

T, is the effect of treatment i

p, denotes the j™ block effect

e, is the residual variation or error

It may be noted here that unlike in RCBD, data from BIBD is not orthogonal.
This is because in BIBD, only a fraction of treatments appears in any block and
a difference of two block totals (with different sets of treatments) is therefore not
exactly equal to the true difference of those two block effects. In other words, in
the case of BIBD, partitioning the total variance into components such as ‘treatment’,
‘block” and ‘error’ is not as straight forward as in RCBD.

Analysis
The calculations of DF, SS and MS for the different sources of variation are described
and illustrated below:

Degrees of freedom (DF)

DF for Total = N-1, where N = v.r = Total number of observations
DF for Treatment = v-1, where v = Total number of treatments

DF for Blocks = b-1, where b = Total number of blocks

DF for Error =IN-1)-(v-1)-0b-1)

With regard to example mentioned in Table 8.1, v =9, b=12, r = 4, k = 3; therefore,
N = 36 and

DF for Total =36 -1 =35
DF for Treatment = 9 - 1 =38
DF for Blocks =12 -1 = 11, and
DF for Error =35-8-11=16

Sum of squares (SS)
From the table, obtain the total SS and block SS as in the case of RCBD

Total SS = 40° + 55 + ... + 682 - (2048)?/36
= 7673.556
Block SS = 1602/3 + 1552/3 + .... + (2062/3 - (2048)2/36

2037.556




118 BIOVERSITY TECHNICAL BULLETIN NO. 14

As indicated earlier, the Block SS obtained above cannot be considered as the
SS due to blocks exclusively owing to the non-orthogonal nature of data. Since
comparison of block effects is not the objective of the experiment, there is no need
to obtain an adjusted Block SS. However, it is necessary to obtain adjusted treatment
SS which is estimated as shown in Table 8.2.

Table 8.2. Computation of adjusted treatment sum of squares

Treatments Treatment Block Sum of block totals Adjusted
Total numbers in corresponding to the treatment

(T) which the block numbers of totals

it" treatment previous column* Q=

occurs (Bm,) T - [(Bj(i,)/k]

P1 269 3,8,11,12 727 26.667
P2 229 3,7,9,10 683 1.333
P3 297 2,4,7,11 727 54.667
P4 262 1,4,10,12 715 23.667
P5 228 1,2,3,5 675 3.000
P6 135 2,6,8,10 623 -72.667
pP7 171 1,6,9,11 633 -40.000
P8 295 5,6,7,12 736 49.667
P9 162 4,5,8,9 625 -46.333
Total 2048 0

*Corresponding to P1, the block totals 188, 144, 189, 206, and so on.

In the table, it may be verified that the sum of Q, equals to zero, which serve as
a check for arithmetic calculations. The Treatment SS (adjusted) is then obtained as:

(/W) £ Q. 2= (3/9) [26.6672 + 1.333* + ... + (-46.333)] = 5254.815

Null hypothesis and test of significance

In the aforesaid experiment, the null hypothesis is that the percentages of hybrid
seedlings produced by nine pollinators are the same. The tests of significance are
carried out using F-test based on the ratio of the mean sum of squares and
summarized in the ANOVA table as depicted in Table 8.3.

Treatment MS/Error MS
656.8519/23.82407
27.57093

treatment

Table 8.3. ANOVA table for percentage hybrid seedlings produced

Sources of Degrees of Sum of Mean sum F- F-
variation freedom squares of squares value Tabulated*
Treatment (adjusted) 8 5254.815 656.8519 27.57093 2.59
(Pollinators)

Block (Unadjusted) 11 2037.556 185.2323

Error 16 381.1852 23.82407

Total 35 7673.556

*Tabulated value for F,  with 8 and 16 degrees of freedom
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From the ANOVA table we can observe that the calculated F value (27.57093)
for the treatments is higher than the tabular F value of 2.59 (F . with 8 and 16
degrees of freedom). Hence, the treatment differences or the percentages of the
hybrid seedlings produced by the pollinators are significantly different. In other
words, the skill of the tested pollinators varied.

Following this we need to test the significance of difference between the
individual pollinators. For this purpose, we need the adjusted treatment means
and are obtained as follows:

Adjusted treatment mean = Overall mean + Adjusted treatment effect

Adjusted treatment effect is k Q,/v A,
Where, Q, is defined as in Table 8.2.
Accordingly, adjusted P1 mean = 2048/36 + 3 x 26.667/9
56.889 + 8.889 = 65.778

The adjusted treatment means are shown in Table 8.4.

The CD for comparison of two treatments is given by the expression
2kE
v

Where, t is the tabulated value t for error DF at 5% level and E is the error
mean square. The CD for comparison is thus 2.12 x V(2 x 3 x 23.82407/9) = 8.448.

CD =1,

Table 8.4. Adjusted treatment means

Treatments Adjusted mean
P6 32.6672
P9 41.445°
pP7 43.556°
p2 57.333°
P5 57.889°
P4 64.778°
P1 65.778°
P8 73.445°
P3 75.111¢

In Table 8.4, the treatment means bearing common superscripted alphabet are
not significantly different. For example, the means of P9 and P7 are having same
superscript ‘b” and are therefore, on par.

Conclusion

It may be observed that the skills of the pollinators P1, P8 and P3 are superior
and at par. The performance of pollinator P6 is the worst while P9 and P7 are
also not satisfactory.
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Partially Balanced Incomplete Block Designs (PBIBD)

Balanced Incomplete Block Designs are not available for every parametric
combination. Also in some cases, the number of replications required when a BIBD
used may be very large. These constraints led to the development of Partially
Balanced Incomplete Block Designs (PBIBD). While BIBD assures equal variance
to all the paired comparison of treatment effects, in the case of PBIBD, there will
be two groups of treatment comparisons but within group, the variance will be
equal. In other words, when a PBIBD is used, treatment comparisons are not made
with equal variance but with either of the two possible variances for treatment
comparisons. The formal definition of PBIBD and various methods of construction
are beyond the scope of this manual. Nevertheless, certain easily available PBIBD
will be described.

One special case of PBIBD is the lattice design that exists when number of
treatments is a perfect square (i.e. when there are 2, 4, 9, 16, 25, etc. treatments).
Such a design is called square lattice. The construction of square lattice designs
with three replications is very easy and illustrated with an example below.

Example

Let the number of treatments v = 9 = 3% Arrange the numbers 1 to 9 in a
3 x 3 square, in which each row represents a block. Another 3 blocks of the design
is obtained by treating the columns as blocks. Next, superimpose a Latin square
of order 3 on the 3 x 3 square arrangement and assign to blocks treatments
corresponding to the letters. If one more replication is required, a mutually orthogonal
Latin square may be superimposed and so on. The steps involved in the construction
are shown in Table 8.5.

Table 8.5. Construction of square lattice design (v=9; k=3; r=3)

Block First Block Second Latin square: Latin square Block First

replication replication Order-3  (Super-imposed) replication

| 1 2 3 \Y, 1 4 7 A B CcC Al B2 C3 Vi 1 6 8

I 4 5 6 Vv 2 5 8 B C A B4 C5 A6 VI 2 4 9

1l 7 8 9 Vi 3 6 9 C A B Cc7 A8 B9 X 3 5 7
Analysis

The analysis of variance of data from PBIBD is similar to BIBD but the calculation
of critical difference is slightly different. As mentioned earlier, in a PBIBD, there
will be two CDs for treatment comparisons.

For detailed analysis of data from PBIBD, readers may refer to Dey (1986).

Augmented Block Design

An Augmented Block Design is an essentially Incomplete Block Design in which
a portion of the treatments (called check treatments) are arranged as in a standard
block design (e.g. RCBD or BIBD) and to those blocks, the remaining treatments
having less number of replications (called test treatments) are added.
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An Augmented Block Design is useful for screening new treatments such as
genotypes, insecticides, herbicides, drugs, etc. The number of new treatments, 1,
may be very large or the experimenter can afford only one or two replications
of these new treatments. One such situation is the preliminary evaluation of new
crosses or newly collected germplasm. Often the amount of germplasm collected
from the exploration trips may not be adequate for a complete replicated trial.
Moreover, all the accessions may not be of promising types. Similarly, different
hybrid combinations need to be tested for their worthiness before laying down
a full-fledged evaluation trial. In these situations, we are interested to compare
the new (test) treatments (i.e. the new accessions, new hybrids, etc.) with that of
one or more check treatments (i.e. released hybrids, popular cultivars, etc.). In this
situation, we are not interested in determining the differences among paired
treatments but in testing the worthiness of test treatments over the check treatments.
In other words, we are interested only in a part of all possible paired comparisons
for which the variance balanced design are not efficient. The recommended design
for such situation is Augmented Block Design, which was proposed by Federer
(1956).

Randomization

The augmented design follows the standard randomization procedure for the
known design in control treatments or check varieties. Test treatments or new
varieties are randomly allotted to the remaining experimental units. The different
treatment entries are assigned to a block at random with the provision that no
treatment appears more than once in a block.

Example

A breeder wants to evaluate the performance of eight new hybrids in comparison
with three traditional hybrids (WCT x COD, COD x WCT and LCT x GBGD) and
a popular local cultivar (WCT). Thus, in this experiment, there are eight test
treatments (t) (denoted by H1, H2, ..., H8) and four check treatments (c). The
availability of new hybrid seedlings varied between 12 and 20. However, sufficient
number of check variety seedlings is available. Keeping in view of future requirement
for gap filling, it was decided to have a plot size of nine seedlings per test treatment.
In other words, seedlings are just sufficient to have only a single replication for
the test treatments. Also note that the breeder is interested only in comparing new
hybrids with the checks rather than the comparison among new hybrids or among
the checks. In other words, we are not interested in paired comparison among all
the 12 (8 + 4) treatments in this experiment.

Layout

The experimental area is divided into three blocks, each block can accommodate
seven treatments (with a plot size of 9 seedlings). Therefore, a RCBD was
chosen for the check treatments (number of treatments = 4 and number of
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replications = 3). Each block we can accommodate 7 - 4 = 3 test treatments, giving
the possibility to include 3 x 3 = 9 test treatments in this trial. As we have only
8 test treatments, it was decided to accommodate 3 test treatments each in the first
and third blocks and only 2 test treatments in the second block.

For random allocation of these treatments in the experiment:
1. Allocate the four check treatments to each block randomly; and
2. Allocate the eight new hybrids (test treatments) at random to the remaining
experimental units (3 each in first and third blocks and 2 in the second
block).

The layout of the experiment is shown in Fig. 8.1. During the first year of
planning, it was decided to generate some data on drought tolerance of the new
hybrids and therefore observations were made on epicutical wax content (microgram/
cm?). The average values were shown along with the treatments in Fig. 8.1. The
procedure of analysis is adopted from Federer (1956 and 1961).

LCT x WCT x | CODx
I i gegp |VY<T B cop |wcr |7
(74) (78) (78) (70) (83) (77) (75)
CODx |WCTx |LCTx No®
II WCT WCT COD GBGD HI HS5 g;(;enmentd]
91) (81) (79) (81) (79) (78)
LCT x | WCTx COD x
I Lok GBGD |cop |H?2 WCT lwer |B®
(96) (87) (92) (89) (81) (79) (82)

Figure 8.1. Layout of an augmented block design along with observations on epicutical
wax content (microgram/cm?).

Model
The statistical model for the Augmented Block Design is the same as that of a
Randomized Block Design.

Vi =B+ T P+

Where,

is the observation of treatment i in j* block
is the general mean

is the effect of treatment i

denotes the j™ block effect

is the residual variation or error

j

AT <

° o
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Analysis
The analysis is carried out as follows:

Stepl

Obtain the block totals, check treatment totals and means, grand total, grand total
of check treatments and block sum of the test treatments. For this, arrange the
data as shown in Tables 8.6a and b.

Table 8.6a. Block-wise arrangement of check treatments' values

Check treatments Blocks Total Mean
| Il 1

WCT x COD 83 79 92 254 84.67

COD x WCT 77 81 79 237 79.00

LCT X GBGD 78 81 87 246 82.00

WCT 78 91 81 250 83.33

Total 316 332 339 987 329.00

Table 8.6b. Block-wise arrangement of test treatments' values

Blocks Test treatments (Hybrids) Sum of test Sum of all
treatments treatments
H1 H2 H3 H4 H5 H6 H7 H8 in blocks in blocks
| 70 75 74 219 535
Il 79 78 157 489
1] 89 96 82 267 606
Step 2

Obtain the total SS and Block SS (unadjusted) as follows:

Grand total 535 + 489 + 606

= 1630

Total SS = T4 4+ 78 4.+ 79 + 822 - (1630)%/20
= 807.00

Block SS = 535%7 + 4892/6 + 6062/7 - (1630)2/20
= 360.0714

(254%+..4250%) /3 + (79%+892+75+742 ) - (1630)2/20
= 575.6667

Treatment SS

Step 3
Obtain the adjusted treatment SS which is computed based on adjusted block effects,
adjusted overall mean, adjusted check-treatment effects and adjusted test-treatment
effects.
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Calculation of adjusted block effects (Bj):

B

j

[[" block total - means of all check treatments — values of test treatments

appeared in the j® block]/Number of check treatments

o8,
Il

jos}
Il

(489 - 329 - 157)/4= 3/4
B, = (606 — 329 — 267)/4= 10/4 = 2.50

[535 — (84.67 + 79.00 + 82.00 + 83.33) — 70 — 75 — 74]/4
[535 — 329 — 219]/4 = -3.25

0.75

Note: The sum of block effects added to zero, which may be used for verifying the

calculations.

For calculations of adjusted overall mean (m) follow as described below:

Denoting the number of replications of i check treatment as r, and number

of test-treatments as t,

m = {grand total — X [(r, — 1) x i" check treatment mean]
- 2 [t x i" adjusted block effect]}/total number of treatments

{1630 — [2 x 84.67+...+2 x 83.33] = [3 x (-3.25) + 2 x 0.75 + 3 x 2.50]}/12
{1630 - 658 — (-0.75)}/12 = 81.0625

Calculation of adjusted check-treatment effects (C)):

= 84.67 —
= 79.00 -
= 82.00
= 83.33

nNoNO O
|

81.0625
81.0625
81.0625

81.0625 =

3.6042
-2.0625
0.9375
2.2708

= i" check treatment mean - adjusted overall mean

, and

Calculation of adjusted test treatment effects (i.e. H,):

Hk

H = 79 - 075 - 81.0625 =
H, = 89 - 250 - 81.0625 =
H, = 70 - (-3.25) - 81.0625 =
H, = 96 - 250 - 81.0625 =
H = 78 - 0.75 - 81.0625 =
H, = 82-250 - 81.0625 =
H = 75 - (-3.25) - 81.0625 =
H, = 74 - (-3.25) - 81.0625

= k™ test treatment value - corresponding block effect - m

-2.8125

5.4375
-7.8125
12.4375
-3.8125
-1.5625
-2.8125
-3.8125
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As in the case of block effects, the sum of all the treatment effects (i.e. check
and test treatment effects) equals to zero. This verifies the accuracy of computations.
Based on the above, we obtain the adjusted treatment SS as:

Adj. TSS = m x grand total + Z (B x j™ block total) +
Z (C, x i" check treatment total) + £ (H, x k™ test treatment
Value) — Block SS (without subtracting the correction factor)

= 81.0625 x 1630 + [(-3.25)535+...42.5 x 606] +
[(3.6042 x 254) + ... +2.2708 x 250] +
[-2.8125 x 79 +..+(-3.8125) x 74] — (535%/7 + 4892/6 + 6062/7)
= 285.0954

Error SS (SSE) = Total SS - Adj.TSS - Block SS
= 807.00 - 285.0954 - 360.0714 = 161.8332

The SS of check treatments (which are laid out as in a ‘standard design’, in
the present example, as RCBD), is obtained as usual. Denoting the total for i
treatment as T, and number of replications of i check treatment as r,

Check treatment SS = £ T_*r. — Corresponding Correction Factor
(The Correction Factor mentioned above is based on the check treatments alone)
Check treatment SS = (254°+...4250%)/3 - (987)*/12 = 52.9167

On subtracting check treatment SS from adjusted treatment SS, we get the
combined SS due to test treatments as well as check vs. test treatments as:

Adj. test and test vs. check SS = 285.0954 - 52.9167 = 232.1787

The aforesaid SS can be arranged in an ANOVA as shown in Table 8.7a. It
may be noted here that the SS due to test vs. check and adjusted test treatment
SS are combined in the ANOVA Table 8.7a. It is desired to separate these two
SS, but not necessary for making paired comparisons between check treatment and
test treatment. The estimate of error variance provided by the ANOVA is used
for the calculation of CD for such tests.

Table 8.7a. ANOVA (Part-1) of epicutical wax content

Sources of variation DF Sum of Mean sum F- F-
squares of squares value Tabulated*
Blocks (ignoring treatments) 2 360.0714 180.04
Treatments (Adjusted) 11 285.0954 25.92 0.961 4.03
Check treatments 3 52.9167 17.64 0.654 4.76
Test treatments and test 8 232.1787 29.02 1.076 4.15
vs. check
Error 6 161.8332 26.97

Total 19 870.0000
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It is evident from the ANOVA that there were no significant differences among
treatment effects. However, for demonstration, we discuss the computation of
critical difference for comparing different kinds of treatment effects. There are four
types of treatment comparisons in this kind of trials as indicated below:

1. Between test treatment and check treatment

2. Between two check treatments

3. Between two test treatments in the same block

4. Between two test treatments not belonging to the same block

The objective of augmented design is mainly reflected by critical difference
mentioned between test treatment and check. Comparison between two check
treatments is also important. The computations of these two critical differences are
described below.

The critical difference for comparison of test treatment and check treatments
are given by the following expression in which MSE is the error mean square,
t is the t-value against error DF, c is the number check treatments and r is the
number of blocks.
CD,., (5%)

test

t VMSE [1 + 1/r + 1/c + 1/(cr)]
= 2447 x V269722 x (1 + 1/3 + 1/4 + 1/12)
= 2447 x 6.70475 = 16.406

CD for comparison of two check treatments is,

CD, .. (6%)

t V(2 x MSE/r)

2.447 x V(2 x 26.9722/3)
= 2447 x 4.24

= 10.375

It may be noted here that, comparisons are to be made based on the adjusted
treatment effects. It is a practice to provide the treatment SS (ignoring blocks) along
with the ANOVA of augmented design. The following are the necessary steps for
its estimation:

Test treatment SS = 792+ 892 +... + 752 + 742 - (79 + 89 +... + 75 + 74)?/8 = 505.8750

Subtracting the test treatment SS and check treatment SS from the (unadjusted)
treatment SS, we get SS due to test treatment vs. check treatment as:

Test vs. check SS = 575.6667 - 505.8750 - 52.9167 = 16.875

The SS can be arranged as in Table 8.7b. One may note that there are no change
in error SS, etc. in this part. No test of relevance is provided by this second part
and may be skipped.
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Table 8.7b. ANOVA (Part-2) of epicutical wax content

Sources of variation DF Sum of Mean sum F- F-
squares of squares value Tabulated*
Treatments (ignoring blocks) 11 575.6667 52.333 1.940 4.03
Check treatments 3 52.9297 17.643 0.654 4.76
Test treatments 7 505.8750 72.268 2.679 4.21
Test treatments vs. controls 1 16.8750 16.875 0.626 5.99
Error 6 161.8332 26.972
Conclusion

In the example, treatment differences are not significantly different. However,
one limitation of the aforesaid experiment is the few DF for error which is an
outcome of the chosen RBD for the trial. Had we increased the replication to 4
the DF for error would have been more than 12. Situations of this kind should

be foreseen at the time of planning an experiment.
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Chapter 9: Experimental designs for multiple factors

Under natural conditions, different factors play concurrent roles in deciding the
overall outcome of an experiment. Thus, to study the realistic output of an experiment,
we need to consider multiple factors that play a concomitant coherent role rather
than the single independent factors. A factor refers to a group of treatments of
similar nature. In some experiments, the treatments are constituted by the combination
of different levels (categories) of two or more factors. For example, designated
treatments for different quantities of water used for irrigation can be grouped and
called as ‘levels’ of the ‘irrigation factor’. Similarly, different quantities of fertilizer
constitute the levels of the factor ‘fertilizer’. Combinations of different levels of
irrigation and fertilizer factors then constitute the treatments of a factorial experiment
involving these two factors. To illustrate, if irrigation has 3 levels and fertilizer
has 2 levels, then the factorial experiment will have a total of 3 x 2 = 6 treatments.
For conducting a factorial experiment, an appropriate design say, CRD, RCBD or
LSD may be used. In certain situations, the factorial experiments are conducted
using experimental units of different sizes depending on the requirement of the
factors. The split plot, strip plot designs and any combination or variation thereof
are examples of such experiments. Following a general description of factorial
experiments, the analysis for split plot and strip plot designs are described in this
Chapter.

Factorial experiments

Factorial experiments deal with simultaneous variations in more than one factor.
Following traditional procedure, one may investigate the problems one by one,
varying a single factor at a time in a simple experiment. The soundness of the
approach rests on the assumption that the responses to the factors, in the aforesaid
example, viz., different levels of water supply, different amounts of fertilizers, are
independent of one another. However, to make such an assumption, under all
situations, is not accurate. The factors may not have only independent or additive
effects, but may also interact with each other. In order to find from an experiment
whether the factors actually interact with each other or are independent in their
effects, one is required to investigate the effects of these factors together in one
and the same experiment. This will allow comparison of all the possible combinations
of the levels of the factors.

The factorial experiment alone can provide information regarding the interactions
between various factors under study. The factorial scheme provides
comprehensiveness of the conclusions drawn. It might appear that the increase in
comprehensiveness is achieved only at the cost of precision of the comparisons
relating to the response to individual factors. Far from it, there is an increase in
precision due to what is known as hidden replications in the experiment seen when
the levels of the other factors are ignored.




130 BIOVERSITY TECHNICAL BULLETIN NO. 14

Notations and terminologies

It is conventional to denote the name of a factor in upper case letter. For example,
the irrigation factor is denoted by ‘I'. Similarly, ‘F* denotes the factor fertilizer.
The levels of a factor is denoted by the numbers 0, 1, 2, etc. as subscript to the
symbol of the factor. As an illustration, let the three levels of the irrigation factor
be 25, 50 and 75 L/day/palm. Then I, denotes the treatment 25 L/day/palm; I,
denotes the treatment 50 L/day/palm; and I, denotes the treatment 75 L/day/
palm. Suppose the factor fertilizer also has 3 levels viz., F, F, and F,, then there
will be 3 x 3 = 9 treatments and the experiment is referred to as a 3* factorial.
If there are 4 factors each with 2 levels, we call it as 2* factorial. If all the factors
in an experiment are of equal number of levels, it is called symmetrical factorial
experiment while it is called asymmetrical factorial experiment if factors are of
different levels.

Keeping the levels of other factor(s) constant, the simple effect of a factor or
the difference of observation for two levels of a factor could be determined. If Y
is the observation of the treatment combination I F, then the simple effects of the
factor irrigation are:

YlO - Yoof Y11 - Ym' Yzo - YlO, etc.

The ‘main effect’ of a factor is the average of its simple effects over a variety
of conditions arising from the replications as well as the repetition of a particular
level of a factor with different levels of other factor(s).

When simple effects of a factor differ for different levels of the other factor(s),
there is said to be an interaction between the factors. Interaction between 2 factors
is called first order interactions or 2-factor interaction; interaction involving 3 factors
is called second order interaction or 3-factor interaction, and so on.

When block designs are used for laying out a factorial experiment, one can
see that the block size becomes very large when the number of levels and/or
number of factors increases. For example, an experiment with 5 factors each at
2 levels required a block size of 2° = 32. A large block size will result to higher
variability and hence, it is necessary to go for incomplete blocks. As observations
from all the treatments are utilized for defining the main effects as well as for
testing of interaction, neither blocks of arbitrary size nor assigning the treatments
at random (as in the case of incomplete block design) can be advocated. However,
a technique known as confounding is available to overcome this situation. Reduction
in block size is achieved by confounding certain interaction effects with the block
effects so that they become one and the same.

The construction of confounded factorial arrangements when the number of
levels of each factor is same and is a prime or prime power (i.e. number of levels
could be 2, 3, 4, 5, 7, 8, 9, etc.) is straight forward when the block size is a power
of number of levels. To illustrate, consider a 3* experiment. The number of levels
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of factor is 3, which is a prime number. For this experiment, confounded arrangements
can be constructed when the block size is 3, 3%, or 33. As block effect and the
confounding interaction effects become identical, we need to confound interaction(s)
having DF equal to block effects. It may be noted here that the treatment sum
of squares in a factorial experiment (factors having s levels each) can be split into
components having DF (s-1) each.

For example, consider a 3* experiment (four factors with 3 levels each). The
treatment DF is 3*1 = 80 and each of its components will have 3-1 = 2 DF. In
other words the treatment SS in this case can be split into 80/2 = 40 components
of 2 DF each. The method of constructing confounded factorial experiment use
this property to decide upon the number of interaction effects (more correctly the
‘components’) to be confounded.

If the number of blocks is b, then, the number of components to be confounded
is equal to (b-1)/(s-1). In the above example, if block size is 3* = 9, it is required
to confound (9-1)/(3-1) = 4 components. Since higher order interactions are difficult
to interpret, their components are generally confounded. Different methods of
construction of confounded designs are presented by Cochran and Cox (1957) and
Das and Giri (1986).

The confounding can be complete, in the sense that no information will be
available on the confounded interaction or it can be partial so as to provide
information on the confounded interaction but with less precision. Where only a
fraction of the total factorial combinations are used, it is known as fractional factorials
which can provide information on the main effects and lower order interactions
(Cochran and Cox 1957; Das and Giri 1986). These are useful, especially for initial
screening purposes, involving several factors at a time and/or the higher order
interactions, i.e. interactions involving many of the factors at the same time are
considered to be negligible or absent.

Example (Simple factorial experiment)

Consider an experiment to study simultaneously the effect of irrigation and fertilizer
on coconut yield. The experiment is a 3* factorial with irrigation levels as mentioned
earlier. The three fertilizer levels representing half, full and one and a half quantity
of fertilizers recommended for coconut are denoted as F, F, and F,, respectively.
The treatment combinations can be represented as [ F; Ion IF I1For LE; LE,; LE;
LF, and LF,. It is also a practice to represent the treatments by dropplng the symbols
and denoting the factor names as 00, 01, 02, 10, 11, 12, 20, 21 and 22.

Layout

The experiment was conducted in RCBD with three replications. Each treatment
plot has nine palms and border rows were provided in all the sides of the plots
to reduce the border effects of treatments. The layout of the experiment is shown
in Fig. 9.1.
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Bl I, F, [LFy ) ) IiFy ) LLF, LF, LF, IoF

60 55 64 63 53 71 66 65 64
gy | | LF LiF> IoF> | | LF; LFy | | IoF, IoFo LF) I Fo

58 71 58 65 53 54 52 58 59

LF, IoF> [>Fo LiF LiF, IoFo LLF, 1, Fo IoF)
B3 67 61 60 67 68 45 58 63 59

Figure 9.1. Field layout for factorial experiment along with plot means.

Model
The statistical model for a factorial experiment in RCBD is:

Y(uv)]. =n+p i+ £, + @f),, + € )

Where,

Y,y is the observation of treatment combination I F in j* block

u is the general mean

p, denotes the j* block effect

i is the main effect of u™ level of irrigation
f is the main effect of v level of fertilizer

(if) , is the interaction effect of u™ level of irrigation and v* level of fertilizer

(uv),

e jis the residual variation or error

Analysis

The computation of various SS is similar to that of RCBD except that the treatment
SS is partitioned here as SS due main effects and interactions. In the example, the
DF for treatments is 9 — 1 = 8. This can be partitioned for main effects and
interaction. DF for main effect of factor I = number of levels — 1 = 3 - 1 = 2; similarly
the DF for main effect of factor F = 3 - 1 = 2. DF of I x F interactions = 2 x 2
= 4. It may be verified that the sum of the DF of main effects and interaction
is equal to the treatment DF.

Step 1
Compute the SS as in the case of RCBD, regardless of the factorial arrangement
of the treatments.
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Correction factor = (60 + 55 + ... + 63 + 59)?/27 = 99250.7

Total SS =
Total of Block 1 =
Total of Block 2 = 528
Total of Block 3 = 548

Block SS

602+ 552+ ... + 63%+ 592 - 99250.7 = 996.2963
60 + 55 + ... + 65 + 64 = 561

[(561% + 5282 + 548%)/9] - 99250.7 = 61.40741

To obtain the treatment SS, prepare the following Table 9.1.

Table 9.1. Average coconut yield for different treatment combinations

Irrigation Fertilizer Total
F, F, F,
o 150 177 183 510
I, 185 191 199 575
l, 168 181 203 552
Total 503 549 585 1637
Treatment SS = [(150% + 177> + 1832+ 185% + ... + 1812+2032)/3] - 99250.7
99939.67 - 99250.7 = 688.963
Error SS = 996.2963 - 61.40741 - 688.963 = 245.9259
Step 2

Obtain the SS due to main effects

SS due to main effects of factor I

SS due to main effects of factor F

SS due to I x F interaction

The above calculated results are
Table 9.2.

and interaction effects as below:

(5102 + 575% + 5522)/( 3 x 3) - 99250.7
= 9949211 - 99250.7 = 241.4074

= (503 + 549° + 5852)/(3 x 3) - 99250.7
= 99626.11 - 99250.7 = 375.4074

= Treatment SS - Factor I SS - Factor F SS
688.963 - 241.4074 - 375.4074
= 72.14815

arranged in the ANOVA table as given in
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Table 9.2. ANOVA for average nut yield

Sources of Degrees of Sum of Mean sum F-value F-Tabulated
variation freedom squares of squares (0.05)
Blocks 2 61.4074 30.7037
Treatments 8 688.9630 86.1204
Irrigation 2 241.4074 120.7037 7.85301 3.63
Fertilizer 2 375.4074 187.7037 12.21205 3.63
Irrigation x Fertilizer 4 72.1481 18.0370 1.17349 3.01
Error 16 245.9259 15.3704
Total 26 996.2963
Conclusion

From the ANOVA, it can be seen that the main effects of Irrigation and Fertilizer
are significantly different. The interaction effect between these two factors is not
significantly different. The comparison of the different levels of the factors can be
made using appropriate CD.

Note: The interaction should be tested first and if this comes out to be significant only
then proceed for further analysis for individual components.

The CD (5%) for comparing Irrigation levels is obtained as:

CD=1, [EJMSE
r

CD= 2.12\/(ij><15.3704 =30918

3x3

Note: It may be noted that there are 3 x 3 = 9 replications for (3 blocks and 3 levels
of other factor) each level of Irrigation. The same CD wvalue can be used for comparing
the levels of Fertilizer factor. The number of replications for interaction effect will only
be three in this experiment and need to be remembered while calculating the CD for
comparison of interaction effects.

Analysis of factorial experiments with more than two factors
With three or more factors, besides first order interaction, the second-, third- etc.
order interaction also exist. The three-factor interaction SS is obtained from the
SS due to the three factor combinations by subtracting from it the SS due to all
the main effects and lower order interactions of all the factors involved. Similarly,
the four-factor interaction SS is obtained by first obtaining the SS due to the
combinations of the four factors and subtracting from it the SS due to all the main
effects and lower order interactions of all the involved factors.

In the above discussion, we have assumed that the design used is a Randomized
Complete Block Design with all the combinations of the levels of the factors as
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treatments. In the case of confounded experiments, the analysis is modified as
follows:

If certain interactions are completely confounded, the model will not include
the effects due to the confounded interaction. In case of partial confounding of
certain interactions, the SS due to partially confounded interaction is obtained
considering only the replications in which the interaction is not confounded and
calculating the SS due to the interaction from the data of these replications only.
The SS due to the lower interactions and the main effects to be subtracted for this
purpose are also to be calculated from these replications only.

Many times, the higher order interactions are considered as absent when the
factorial experiment involves several factors. In such a situation, the model will
not involve such interaction effects that are considered as absent and the SS due
to such interactions gets included as part of the error SS.

Split Plot Design

Split plot designs are a special kind of layout for conducting factorial experiments.
The levels of one factor use the lay out of a standard design (e.g. RCBD) and those
plots are referred as ‘whole plots’. Each whole plot is further divided into small
units (sub-plots) and the levels of other factor (or combination of levels of more
than one factor) are allocated. Thus, each whole plot becomes a ‘block’ (or replication)
for the subplot treatments.

When a factor requires larger plots to make it convenient for the organization
of a factorial experiment, split plot design is recommended. For example, it is
desired to have larger plot size for factors such as tractor operation or irrigation
than that for the other factors like manure. In planning a trial with such factors,
it is to be kept in mind that the precision of the sub-plot comparisons is better
compared than the main plot. The randomization is restricted within blocks in such
a manner that several levels of the second factor are assigned to contiguous plots

with a common level of the first factor instead of scattering them over the entire
block.

Example

To study the optimum fertilizer and water requirement for increased copra production
in palms, a factorial experiment was conducted using split plot design. The three
fertilizer levels are half, full, and one and a half quantities of recommended
fertilizers for coconut and are denoted as: F, F and F, respectively. The irrigation
interval is the second factor and are denoted as: I;: 1rr1gat10n applied once in nine
days, 1 : irrigation applied once in six days and L, irrigation applied once in three
days.

Layout
For convenience of irrigation and also to reduce the border effects, larger plots
were suggested for the irrigation treatments (main treatments). The irrigation
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treatments were laid out in a RCBD with three replications. Randomization is
performed as in the case of RCBD. Next, each of the whole plots is divided into
three sub-plots and the fertilizer levels are allotted at random (sub-treatments). The
layout of the design is given below (Fig. 9.2).

Once in six days (Iy) Once in three days (I») Once in nine days (Ip)

| /R | F | B | Fi | B | F | B | F | Fi |
Once in nine days (1) Once in three days (I») Once in six days (I;)
| B | F | B | B | F | F | Fi | B | B
Once in three days (I,) Once in six days (I;) Once in nine days (Ip)

| F [ Fh [ B |[[ R [ K | R ||[[ A [ Fb [ B |

Figure 9.2. Field layout for split-plot experiment.

The average copra yield per palm per year calculated for each sub-plot is shown
in Table 9.3.

Table 9.3. Average copra yield (kg/palm/year)

Block-1 Block-2 Block-3
I, 1, R I, 1, R I, 1, R
F, 15.9 14.8 8.1 15.2 14.0 7.2 13.8 15.0 9.4
F, 211 19.3 15.1 20.0 18.6 12.7 19.2 18.2 14.4
F, 18.0 17.3 15.8 19.7 15.8 12.3 171 18.5 16.0
Model

The model for split plot design is:

Vg = M+ P +1, + e, + £, + (if), + €

where,

Y, is the observation of v sub-plot treatment in u™ main plot treatment of j®
block;

p is the general mean

p, denotes the j* block effect

i is the main effect of u™ level of irrigation

f is the main effect of v level of fertilizer

(if), is the interaction effect of u™ level of irrigation and v™ level of fertilizer
e, and e, . are the error terms, error 1 and error 2, associated with the main plots

1uj

and the sub-plots, respectively.

In case of a factorial experiment, there will be only one error term in the model.
But in the split plot design, there are two error terms. This is because the responses
due to the sub-plot and the main-plot treatments are based on different number
of replications and thus have different variances.
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Analysis
The calculations of DF, SS and MS for the different sources of variation are described
and illustrated below:

Degrees of freedom (DF)
The number of replications (blocks) is denoted by ‘r’, number of main plot treatments
by ‘a’” and number of sub-plot treatments by ‘b’.

DF for Total = N-1,

Where, N = abr = Total number of observations in an experiment

DF for main plot treatments = a-l
DF for blocks = r-1
DF for error-1 = (a-1) x (r-1)
DF for sub-plot treatments = b-1
DF for interaction (main plot x sub-plot) = (a-1) x (b-1)
DF for error-2 = (b-1) x (r-1)

In the example, a = b =1 = 3.

The ANOVA of split plot design has two parts. The first part tests the significance
of main-plot treatments, whereas second part tests the significance of sub-plot
treatments and main-plot x sub-plot interaction. The sources of variation in the
first part are obtained from the ANOVA of the design (in this example, RCBD)
used for the main-plot treatments. The corresponding error SS is referred as error-
1 and corresponding mean SS is used as denominator for testing the significance
of the main-plot effects.

The Total SS and SS due to sub-plot treatments and the interaction between
the main-plot and sub-plot treatments are obtained as in the case of a factorial
experiment. Subtracting all the SS (including main-plot treatments, replications, and
error-1) from the total SS will provide the error-2 SS. Corresponding MS is used
as denominator to obtain the F-statistic for testing the significance of sub-plot
treatments and main-plot x sub-plot treatment interaction.

Step 1

Calculation of the Correction Factor and Total SS.

Correction factor = (159 + 14.8 + ...+ 185 + 16)?/27 = 6611.343
Total SS = 1592 + 14.82 + ... + 185% + 16*- 6611.343 = 321.6074

Step 2
Complete the main-plot analysis as organized in Table 9.4a.
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Table 9.4a. Tabulated data summary for main plot analysis

Block 1 Block 2 Block 3 Total

Iy 55.0 54.9 50.1 160.0

I1 51.4 48.4 51.7 151.5

I, 39.0 32.2 39.8 111.0

Total 145.4 135.5 141.6 422.5
Block SS = (145.4% + 135.5%* + 141.6* )/9 - 6611.343

= 6616.886 - 6611.343 = 5.542963

Irrigation SS= (160 + 151.5% + 111* )/9 - 6611.343
= 6763.694 - 6611.343 = 152.3519

Error-1 SS = Main treatment x block SS

(55% + 54.9% +... +32.22 + 39.87)/3 - 6611.343 - Block SS - Irrigation SS
(6782.77- 6611.343) - 5542963 - 152.3519

= 13.53259

Step 3
Find the SS due to sub-plot treatment and interaction, using Table 9.4b below:

Table 9.4b. Tabulated data summary for sub-plot analysis

1, 1, 1, Total
Fo 44.9 43.8 24.7 113.4
F, 60.3 56.1 42.2 158.6
F 54.8 51.6 441 150.5

2

SS due to Fertilizer (113.4*> + 158.6> + 150.5* )/9 - 6611.343

= 6740.419 - 6611.343 = 129.0763

Fertilizer x Irrigation SS= (44.9*% + 43.8* + .... + 44.1%)/3 - 6611.343 —
Fertilizer SS — Irrigation SS
= 6906.363 - 6611.343 - 129.0763 - 152.3519 = 13.59259

Error-2 SS = Total SS - Block SS - Irrigation SS - Error - 1 SS
— Fertilizer SS — Fertilizer x Irrigation SS
= 321.6074 - 5542963 - 152.3519 - 129.0763 - 13.59259
= 7511111

The next step is to prepare the ANOVA as given in Table 9.5. From the ANOVA,
it can be seen that main effects of irrigation and fertilizer levels as well as the
interaction effects are significantly different at 5% level.

The treatment means to be compared can be arranged in the form of a table,
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in which the colums represent the main plot treatments, and rows represent the
sub-plot treatments as presented in Table 9.6. In split-plot design, sub-plot treatments
within any given level of main plot treatment can also be made. Thus, there are
four types of comparisons among treatment effects. The expression for calculation
of CDs is illustrated below:

Table 9.5. ANOVA for copra yield (kg/palm/year)

Sources of Degrees of Sum of Mean sum F-value F-Tabulated
variation freedom squares of squares (0.05)
Blocks 2 5.542963 2.771482

Irrigation (Main plot) 2 152.3519 76.17595 22.5163 6.94
Error-1 4 13.53259 3.383148

Fertilizer (Sub-plot) 2 129.0763 64.53815 103.1083 4.75
Irrigation x Fertilizer 4 13.59259 3.398148 5.428994 3.26
Error-2 12 7.51111 0.625926

Total 26 321.6074

(a) Comparison between main plot treatments.

2
CD, :znfzbi
A

Where, t, is the table value of t distribution at 5% significant level corresponding
to the DF of error-1 sum of squares (s,*

With regard to the above example, there will be three average values
corresponding to the three levels of irrigation and the CD for comparison is,

CD, =2.776, /M = 2.406987

(b) Comparison between sub-plot treatments (Fertilizer levels)

2
CD, =1, %2
ar

Where, t, is the table value of t distribution at 5% significant level corresponding
to the DF of error-2 sum of squares (s))

CD, =2.179, /M =0.812667

(c) Comparison of interaction effects (i.e. main plot means at same or different
levels of sub-plots)
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CD is computed as follows:

First obtain the weighted t-value as:

_ 2 2
t:(b 1)t,52 +1,5] _ 2x2.179%x0.625926 +2.776x3.83148 1628979

(b-1)s2 +s? 2x0.625926+3.383148

Now CD for comparison of interaction effects is

_ 2 2
D, =1 \/2[(b 1)s3 +s71_ 2.628979\/2x(2x0.6259926+3.383148) 5654
r

(d) Comparison of sub-plot treatment means (Table 9.6) within a given level of
main plot

2
CD,,, = z”/zi =2.179, /M =1.40758
r

For this comparison, the average values of sub-plot treatments need to be
prepared separately for the three levels of irrigation, but not attempted here.

Table 9.6. Treatment means for irrigation and fertilizer experiment in split-plot

Sub-plot Main plot (Irrigation) Sub-plot
(Fertilizer) I, 1 1 means
F, 14.97 14.60 8.23 12.60
F, 20.10 18.70 14.07 17.62
F, 18.27 17.20 14.70 16.72
Main plot means 17.78 16.83 12.33
Conclusion

From Table 9.6, it can be seen that the copra yield of I, is significantly less than
the other two irrigation levels. The overall effects of fertilizer treatments are
significant and suggest that increase or decrease of fertilizer dose other than the
recommended dose will reduce the yield. The maximum yield is obtained from
the combination I F, (i.e. once in three days irrigation and recommended dose of
fertilizer), which is significantly better than any other treatment combinations.

Strip-Plot Design

Strip-plot design is also a kind of layout for conducting factorial experiments. In
strip-plot design, the levels of one factor are superimposed over the levels of other
factor at right angles. This is done first by laying out the trial with treatments
constituting the levels of first factor. Next divide the blocks again into plots which
are perpendicular to the plots made previously for the first factor. The plots made
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later are referred as strip-plots. The levels of second factor are now assigned to
the strip-plots in each block to complete the layout of the strip-plot design.

Strip-plot design is convenient in cultural management experiment involving,
for instance, factors like spacing and ploughing, where the use of small plots by
splitting larger plots is not feasible. A block may be divided into strips in one
direction to be allotted to one set of treatments, and into another set of strips,
in a direction at right angles to the first, to be allotted to the second set of treatments.
In such a trial, the comparison between the levels of each of the factors allotted
to the strips in the two different directions will be less precise compared to
interaction between the factors.

Example

Consider an experiment to find the fertilizer requirements for three coconut cultivar/
hybrids viz., WCT, WCT x COD and COD x WCT, represented by the symbols
C,, C, and C,. Three levels of fertilizers were tested (F, F, F.). Thus, there are
nine treatment combinations. It is also necessary to determine the fertilizer
requirement under two soil watering schemes viz., irrigated and rainfed. The total
number of treatment combinations in the experiment is therefore 18. Two limitations
arise when RCBD is used. First, the block size is large and second the random
arrangements of treatments in a block will result to scattering of irrigated plots
thereby making it difficult to carry out the trial. Also it requires large number
of border rows. An alternative is to choose a RCBD for the nine treatment
combinations arising from the factorial arrangement of fertilizer and cultivars. Then
consider the factor Irrigation as a strip factor and make the required number of
strips across each replication (two strips in this example). The levels of the strip
factor can then be randomly assigned independently in each replication.

Layout

First, the layout of the nine treatment combinations in RCBD is made. Six palms
constituted a plot. Next, divide each block perpendicular to the direction by which
plots were formed and randomly allocate the levels of the strip factor. In Fig. 9.3,
the shaded area represents the irrigated portion of the replication while the rainfed
area is the unshaded portion. The average number of nuts per plot (average of
3 palms) is shown in Table 9.7.

Model

For the reasons similar to those in the case of split-plot design, the model for strip-
plot design includes three error terms. These are e, for the strips to which the
first set of treatments are allotted, e, for the strips at right angles to the first ones
and e, . for the sub-plots formed at the cross sections of the strips in different

directions as indicated below:

Yuvj = “ + O('u + p] + eluj + Bv + e2vj + ((XB)UV + e3uvj
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C;F, CF CF GF GF GF GFE GEFE GF

Block

GF GF GF GF GF GFE GFE GF GBE

Block

CF GCF CF GF GF GF GCGF CF CF

Block
3

Figure 9.3. Field layout for strip-plot experiment.

Table 9.7. Data tabulated from the experiment as shown in Fig. 9.3

Fertilizer Cultivar/ Rainfed/ Block 1 Block 2 Block 3
Hybrids Irrigated
F, C, R 77 63 132
F, C, | 91 114 128
F, C, R 44 92 92
F, C, | 115 109 122
F, C, R 64 61 105
F1 C3 | 76 113 141
F, C, R 111 98 118
F, C, | 115 153 119
F, C, R 139 113 167
F, C, | 171 123 151
F, C, R 100 118 138
F2 C3 | 116 141 134
F, C, R 131 123 133
F, C, | 133 132 162
F3 02 R 178 114 144
F3 02 | 154 171 167
F, C, R 147 101 93
F, C, | 133 177 145

The effects 0, denote the effect of the u™ level of first set of treatments and the
effects B is the effect of the v level of second set of treatments. In the example,
the first set of treatments corresponds to the nine treatment combinations of
fertilizer and cultivars. The SS due to error-1, associated with the first set of
treatments is obtained as that of interaction between the replications and the first
set of treatments. The SS due to error-2 is the interaction between replications and
the second set of treatments. The SS due to first-, second- sets of treatments and
due to their interaction are obtained as in the case of split-plot design. The SS
due to the error-3 is obtained by subtracting all the other SS from the total SS.
The mean sums of squares due to the errors 1, 2 and 3 are used as denominator
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for the testing of the main effects of first set of treatments, main effects of the
second set of treatments and their interaction, respectively.

Analysis
The calculations of DF, SS and MS for the different sources of variation are described
and illustrated below:

Degrees of freedom (DF)
Denote the number of replications (blocks) by ‘r’, number of first set of treatments
by ‘a” and number of second set of treatments by ‘b’.

DF for Total = N-1

Where, N = abr = Total number of observations in an experiment

DF for first set of treatments = a-l

DF for blocks = r-1

DF for error-1 = (a-1) x (r-1)
DF for second set of treatments = b-1

DF for error-2 = (b-1) x (r-1)
DF for intrection between first- and second-set of treatments = (a-1) x (b-1)

DF for error-3 is obtained by subtraction.

In the above example, a = 9; b = 2; r = 3. The computations of SS are done as
follows:

The Total SS is obtained by squaring and adding the 54 observations and then
subtracting the correction factor; Total SS = 50104.375.

From the Block totals (each total is based on 18 observations), obtain the Block
SS.
Block SS (with 2 DF) = 3031.1527

Next, prepare the two-way table constituted by blocks as columns and the nine
treatment combinations of fertilizer and cultivars as rows. From Table 9.7, the SS
due to the treatments (with 8 DF) and block-by-treatment interaction can be
obtained. This interaction SS is the error-1 and has 16 DF (2 x 8 = 16).

22977.375
7912.8472

Treatment combination SS
Error-1 SS
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Following these estimates, prepare a two-way table for blocks vs. levels of strip
factor (irrigation and rainfed). Note that values in the cells of this table are based
on nine observations each. From this Table, obtain the SS due to strip factor
(DF = 1) and also the block-by-strip factor interaction SS. This interaction SS is
error 2 and has DF = 1 x 2 = 2.

6890.7453
1824.6991

SS due to irrigation (1 DF)
Error-2 SS

The interaction SS due to fertilizer-cultivar combination with irrigation is obtained
from the respective Table and have DF = 1 x 8 = 8. Note that the value of each
cell in this Table is based on three observations.

Treatment combination by irrigation SS = 1588.9212

The Error-3 is obtained by subtracting from the Total SS all other SS mentioned
above and has DF = 16.

Error-3 SS = 5878.6342.

Now, the ANOVA can be prepared as shown in Table 9.8.

Table 9.8. ANOVA for number of nuts per palm

Sources of Degrees of Sum of Mean sum F-value F-Tabulated
variation freedom squares of squares (0.05)
Blocks 2 3031.1527 1515.5763

Treatment combinations 8 22977.3750 2872.1718 5.81 4.46
Error-1 16 7912.8472 494.5529

Irrigation (Strip-plot) 1 6890.7453 6890.7453 7.55 18.50
Error-2 2 1824.6991 912.3495

Treatment-by-Irrigation 8 1588.9213 198.6151 0.54 2.59
Error-3 16 5878.6342 367.4146

Total 53 50104.3750

Conclusion

Based on the error term used for testing the effects in the ANOVA, the CD can
be calculated. CD for comparing the treatment combinations is obtained as 27.218.
Other effects are not significant in this experiment. This experiment has many
shortcomings which are reflected in the ANOVA. First, the error DF for testing
the factor Irrigation is only two against the requirement of 12 or more. It may
be seen from the ANOVA table that despite an F value of 7.55, the irrigation factor
is not significant. Also note that the plot size of three palms is too little to account
for the inherent variation among palms.
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Chapter 10: Analysis of multilocation trials

The performance of a variety at different locations is not the same. It can also
be seen that certain varieties yield satisfactorily even in adverse conditions, while
majority failed to perform. Similarly, even under good management conditions,
certain varieties may not perform to the expected level. This is because, the
performance or yield of a variety is not solely determined by its genetic makeup
and environment alone, but modified by the genotype x environment interaction.
There are several forms which genotype Xx environment interaction may take.
Varieties responding to better management or environment are not calling for much
attention. But a variety that withstanding adverse environment in which other
varieties performed very badly, need to be observed closely as it could assure
production under such conditions. Understanding the implication of genotype-by-
environment (GE) interaction structure is therefore an important consideration in
plant breeding programs.

A systematic method of generating data to meet this requirement is to conduct
multi-location trials in which a set of varieties (or cultivars or genotypes) are
evaluated using a standard experimental designs (often a RCBD) at various locations.
Each individual experiment is analyzed separately before the data are pooled. By
pooling the data from all the trials, it is possible to generate information on the
adaptation and yield stability of the cultivars. The methods used in this regard
are discussed in this chapter.

Only a few multi-location trials in coconut experimentation are being carried
out so far. In India, as part of the All India Coordinated Research Project on Palms,
hybrid/cultivar evaluation trials are laid out at different agroclimatic regions of
the country. A regional example is the COGENT trial involving six coconut hybrids
being tested in seven countries (Brazil, Jamaica, Mexico, Cote d’Ivoire, Benin,
Tanzania and Mozambique). In these trials, RCBD is being used.

Genotype and environment

With regard to comparison of varieties in a set of multi-location trials, the term
‘genotype’ refers to a cultivar and the term ‘environment’ relates to the set of
climatic, soil, biotic, and management conditions in a trial conducted at a particular
location (Annicchiarico 2002). In the absence of genotype x environment interaction,
a comparison of genotypes on the basis of average performance over different
environments will indicate the better performing genotype(s). However, if genotype
x environment interaction is significant, it is indicative that differences between
genotypes vary widely across the environments. To study the differential performance
of a set of genotypes tested at different locations, we use the concept of stability.
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Concept of stability

There are at least three different ways that stability can be defined (Lin et al. 1986),
among which, the type 2 or agronomic stability is of relevance in making
recommendations on a genotype. A genotype is considered to be stable if its
response to environments is parallel to the mean response of all genotypes in the
trial. This is also referred as the dynamic concept of stability (Becker and Leon
1988). The deviation of a genotype from the average performance of other genotypes
is considered here as a contribution to ‘instability’. Stability defined in this way
is clearly a measure, relative to the genotypes included in the test so its scope
of inferences is confined to the test genotypes. In other words, a genotype considered
to be stable across environments by this definition is true only with respect to
the other tested genotypes.

Note: Instability need not be a bad thing. If the breeders are looking for niche-specific
genotypes/cultivars, one that may be unstable, but performs well consistently over the years
can be recommended to be grown in that particular environment as against more stable
genotypes as stability may not be correlated with high yield.

Model
Let X, denote the yield in the k* replicate of the i" genotype in the j* location
(environment). We assume that the design is RCBD with ‘t’ replications and there
are ‘g’ genotypes tested in ‘s’ locations. The model will be:
Xijk SU AT g Y Pt ey
Where,
u is the general mean
T, is the effect of genotype i
g is the effect of environment j
Y;is the effect of genotype x environment interaction
P is the k™ block effect within location j
e, is the residual variation or error assumed to be normally distributed
with mean 0 and variance &2, [i.e. €y ~ N (0, ¢%)].

Testing of effects
The different sources of variation are obtained from the analysis of variance (ANOVA)
as shown in Table 10.1 (adopted from Annicchiarico, 2002).

The sum of squares due to blocks within a location and pooled error are
obtained by summing the relevant terms from individual analysis of variance
carried out for each location. ANOVA for RCBD is described in Chapter 7. To
obtain the sum of squares due to genotype, location and genotype x location, Table
10.2 may be used. Each cell of the Table 10.2 is the sum of r observations (i.e.,
Xi].). The marginal totals X, is the sum of s.r observations and X']. is the sum of
g.r observations.
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Table 10.1. Analysis of variance of multi-location trial

Sources of Degrees of Sum of Mean sum F-
variation freedom squares of squares value
Genotype g-1 (Computed from two-way Mg Mg/Me
Location s-1 table of genotype x M, M /M,
Genotype x (g-1) (s-1) location) Mgl Mgl M,
Location

Blocks within s (r-1) (Summing over individual M,

location RCBD analysis at each M,

Error s (g-1)(r-1) location)

Table 10.2. Data summary for genotypes and locations

Genotype Location Total
1 s

1 X1 1 X1 s X1 .

g Xg1 gs Xg-

Total X X X..

SS due to genotype is GSS
SS due to locations is LSS

= (X2 +Xg'2)/(s.r) - X.2/(g.s.1)
= (X, E - +X2)/(gr) - X.2/(g.s.1)

SS due genotype x location interaction = (XH2 + .+ X 7)/r- X.2/(g.sr) - GSS - LSS

Measures of stability

Once the genotype x location interaction is found to be significant, the most
adaptable or stable genotype needs to be identified. The most commonly followed
procedure is the joint linear regression modelling and complementary analysis
(Annicchiarico 2002). In this approach, the genotypes x environment interaction
effects are expressed in the form of a regression equation with the environmental
effect. There are two ways to form the regression equation:

(1) Y, = B@j +d ; (Perkins and Jinks 1968)

Where,

B, is the regression coefficient of the genotype i on environment

g is the effect of environment j, and

d  is the deviation from the regression.

(2) m, = a + bimj + d’ij (Finlay and Wilkinson 1963)

Where,

m, is the average value of i genotype in the j* environment (can be obtained
from Table 10.2 as m, Xij/ k)
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is the constant term in the regression equation

is the regression coefficient of the genotype i on average values of environments
is the average value for j™ environment [(mj = X‘j/ (gr)], and

_is the deviation

ag o

The regression coefficients in the above equations are equivalent as:
B, = b, - 1. The expression for b, is given below:

b =1+ Zj (Xij -m, - m + m)(mj - m)/Zj(mj - m)?
where, m = X /(s.r) and m = X../(g.s.r); and summation is over all environments.

The average regression coefficients for all genotypes (B, s) will be zero. Obviously,
the average value of b, is equal to 1. Large positive B values, if associated with
relatively high mean yield, will result in specific adaptation to high-yielding
locations. On the other hand, large negative B values associated with relatively
high mean yield result in specific adaptation to low-yielding (unfavourable) sites.
A value of B around zero indicates a lack of specific adaptation. A genotype with
zero B and high yield is considered suitable for all locations.

Consequent to the introduction of regression terms in the model, the SS due to
genotype x location as mentioned in the ANOVA (Table 10.1) can be partitioned
further as:

A. The location SS partitioned into:
1. Combined regression SS with 1 DF (by fitting a common regression of the
response variable (e.g. yield) on the environment index) with 1 DF; and

2. Residual SS (by subtracting the combined regression SS from the location
SS).

B. The genotype x location SS partitioned into:

1. Heterogeneity between regressions with (g-1) DF [by subtracting the combined
regression SS from the sum of individual regression SS (based on separate
regression analysis for each genotype)]; and

2. Residual SS (by subtracting the heterogeneity SS from genotype x location
SS) with (g-1)(s-2) DF.

The environment index is usually taken as the deviation of the location mean
from the overall mean (i.e. m. — m, and is denoted by zj). The computation of SS
is shown in Table 10.3.

lllustration
Consider a multilocation trial on coconut with six cultivars grown in four locations.

The design used was RCBD with four replications. The yield data is shown in
Table 10.4.
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Table 10.3. Partitioning of sum of squares according to combined regression analysis

Sources of Degrees of Sum of Mean sum F-value
variation freedom squares of squares
Genotype g-1 As in Table 11.2 Mg MQ/Me
Location
Combined 1 (Z‘,iZ‘,j miizj)2/2‘,i Zj zj? M, M,/M,
regression
Residual s-2 By subtracting the above M, M,/M,
SS from location SS
Genotype x Location
Heterogeneity of g-1 Y 16 mz 7% z7] - Mg M,y/M,
regressions combined regression SS
Reminder (g-1)(s-2) By subtracting the above Mg‘2 Mg‘z/Me
SS from G x L SS
Blocks within s (r-1) M,
location
Error s (g-1)(r-1) M

Table 10.4. Yield data from a multi-location trial of coconut (nuts/palm/year)

Location Cultivar Replications
1 2 3 4
Location-1 LCT 40.60 77.00 24.50 52.50
CCT 58.40 75.70 58.00 86.50
AOT 78.00 91.80 81.40 72.00
PHOT 90.00 105.00 86.90 99.50
FJT 92.00 123.90 61.10 97.20
JMT 25.90 50.40 46.90 22.00
Location-2 LCT 97.90 114.00 94.40 74.40
CCT 76.00 75.00 43.20 58.70
AOT 48.00 88.30 79.80 69.20
PHOT 94.00 55.60 87.30 77.90
FJT 80.90 77.90 88.00 73.00
JMT 44.70 28.30 47.00 39.20
Location-3 LCT 107.00 132.00 117.00 115.30
CCT 122.00 129.00 111.00 110.00
AOT 94.00 187.00 153.00 138.70
PHOT 96.70 132.00 105.00 121.20
FJT 98.20 106.00 115.00 95.80
JMT 73.00 97.00 124.00 118.80
Location-4 LCT 97.80 97.00 96.90 93.90
CCT 114.00 93.20 102.80 80.60
AOT 129.30 132.70 143.70 90.00
PHOT 100.70 81.20 123.50 80.20
FJT 82.70 64.00 76.20 84.40
JMT 102.60 110.30 108.80 92.10

The ANOVA as indicated in Table 10.1 was worked out and presented in Table
10.5. It can be seen that genotype x location effect was significant. Hence, the
cultivars were compared for stability for which we attempted the regression analysis.

In the regression analysis, we attempted the prediction of response of a genotype
in a location based on the environmental index of that location (which could be
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an independent measure or derived from the data as the deviation of the location
mean from the overall mean (i.e. m, - m). In this example, we used the later as
the environmental index. The regression analysis was done in two stages: For each
genotype regression coefficients were obtained separately (i.e. 6 regression analysis
in this example). The regression coefficients, regression SS and residual SS of
‘individual” regression analysis for the six cultivars are shown in Table 10.6.

Table 10.5. Analysis of variance for coconut yield

Sources of DF Sum of Mean sum F-value F-Tabulated
variation squares of squares (0.05)**
Genotype 5 10201.14 2040.227 9.8182** 3.34
Location 3 36220.33 12073.44 58.1011* 413
Genotype x Location 15 17279.46 1151.964 5.5436™ 2.35
Blocks within Location 12 7814.594 651.2162 3.1338 2.50
Error 60 12468.05 207.8008

**significant at 1%.

Table 10.6. Estimates of regression coefficients and corresponding regression sum of squares

Estimates Genotypes

AOT CCT FJT JMT LCT PHOT Total
Regression 1.51* 1.12* 0.24 1.59 0.99 0.54 6.00
coefficient
Regression SS 3451.00* 1914.80** 86.59 3824.34 1488.15 435.17  11200.05
Residual SS 83.94 25.78 380.87 442.63 1062.69 178.86 2174.77

*Significant at 5%; **Significant at 1%

Irrespective of cultivars, a single regression was obtained (i.e. the combined
regression coefficient, equal to 1 when environmental index is defined as a ‘deviation
from mean’ as in this example). The combined regression coefficient was obtained
as 1 and the corresponding SS as 9054.67 (with 1DF). The ANOVA is presented
in Table 10.7.

From Table 10.6, it can be seen that the regression coefficients of AOT and CCT
are significantly different and also the respective regression SS. The combined
regression SS and its deviation from the location SS (i.e. Residual SS as shown
in Table 10.7) are significant. Therefore, not all the cultivars are responding in
similar manner across environments. More specifically, a significant portion of
cultivar variability across locations is not predictable.

With regard to partitioning of the location x genotype interaction SS to
heterogeneity between regression and remainder, only the latter SS is found to be
significant. Thus, it further confirmed the non existence of simple linear relationship
between the genotype responses in an environment with respective index. Therefore,
no prediction of cultivar performance could be made by this approach. [Prediction
of cultivar performance is possible in a situation where the ‘heterogeneity SS” alone
is significant. If both the SS are significant, the practical usefulness of any prediction
will depend on the relative magnitudes of the two MSs (Perkins and Jinks 1968)].
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Table 10.7. ANOVA for regression analysis

Sources of DF Sum of Mean sum F-value
variation squares of squares
Genotype 5 10201.14 2040.23 9.82**
Location 3 36220.33 12073.44 58.101**
Combined regression 1 9054.67 9054.67 43.57
Residual 2 36220.33 - 9054.67 13582.83 65.36™*
= 27165.66
Genotype x Location 15 17279.46 1151.96 5.54**
Heterogeneity of 5 11200.05 - 9054.67 429.076 2.06
regressions = 2145.38
Reminder 10 17279.46 - 2145.48 1513.40 7.28**
= 15133.98
Blocks within location 12 7814.59 651.22 3.13*
Error 60 12468.05 207.80

**Significant at 1%
F ) tabulated values for DF (1,60); (2,60); (3,60); (5,60); (10,60); (12,60); and (15,60) are 7.08; 4.98; 4.13; 3.34;

(0.01
2.63; 2.5; and 2.35, respectively. F( ) tabulated value for DF (5,60) is 2.37.

Even if the heterogeneity SS is not significant, there could be few genotypes
having linear association with environmental values and reliable predictions can
be made for such varieties. Lin et al. (1986) suggested that the estimated variance
of genotype deviations from the regressions (s ?) [the ‘second stability measure of
Eberhart and Russell (1966)] may be used as an indicator of goodness of fit of
the (individual) regression model; a large s’ value indicates a poor fit. In such
situations, other measures of stability may be considered and the simplest being
Wricke’s (Wricke 1962) ecovalence (W.?) which is defined as:

S
W2 = Z (m. - m - m + m)?
1 j:l 1] 1 ]

Cultivars with low values of W are considered as more stable ones. The
aforesaid stability measures are shown in Table 10.8 along with mean yield of
cultivars.

Table 10.8. Estimates of stability parameters

Genotype AOT ccT FJT JMT LCT  PHOT
b, (Finlay and Wilkinson 1963) 1.51 1.13 0.24 1.59 0.99 0.54
b, (Perkins and Jinks 1968) 0.51 0.13 -0.76 0.59 -0.01 -0.46
s.2 (Eberhart and Russell 1966) 41.97 12.89 190.43 22131 53134  89.43
W2 (Wricke 1962) 47990 4990 125360  971.30 1062.80  502.40
Mean yield (nuts/palm/year) 104.80  87.10 88.50 70.70 89.50  96.00

With regard to regression coefficient across environment (b), genotypes are
considered to be stable for values close to one. In other words, when the absolute
difference of b, from unity (ie. | b, - 1|) increases, the genotype is considered
to be unstable. This is equivalent to saying that cultivars with value of B, near
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to zero are stable. Accordingly, from Table 10.8, it can be seen that the cultivars
LCT and CCT are more stable. However, the utility of regression coefficient as
a measure of stability for the cultivar LCT is questionable because of insignificant
regression coefficient and regression SS (Table 10.6). This is further evident from
the high value of s? (which is mean residual SS) for that cultivar. Under such
circumstances, the other stability measures need to be utilized for measuring
stability. The Wricke’s ecovalence (W?) for LCT is very high compared to that of
CCT (Table 10.8). Hence, we may conclude that among the six cultivars compared,
the most stable cultivar is CCT. However, the recommendation of a cultivar should
not be made solely on the basis of its stability. The yield performance of the cultivars
should be taken into account. As shown in Table 10.8, the cultivar CCT has
relatively less yield compared with the cultivars AOT and PHOT, which are also
relatively stable compared to other cultivars.

Due to its simplicity, the joint regression model has been the most popular
approach for analysis of adaptation (Becker and Léon 1988). However, the method
has certain limitations under situations where: (i) extreme values of site mean yield
are represented by just one location; (ii) non-linear genotype responses to environment
mean, etc. Hence many other approaches were proposed for genotype x environment
analysis. One of the approaches is to fit a multiplicative model for interaction
component (Y,), keeping the main effects additive as in the original model. This
is referred as AMMI (additive main effects and multiplicative interaction) model.
In AMMI analysis, first the main effects (i.e. genotype and environment) are
estimated based on the ANOVA, and then the deviations (Dij) are partitioned into:

Dy =2 honDikenn + €

. . N 2 2
Where, v, and éjn are eigenvectors (scaled as unit vectors, i.e. Zom = Zim =1)

of the genotype i and the environment j, respectively, and 1, and 1, are the
corresponding singular values (i.e. the square root of the latent root or eigen value)
for the principal component (PC) axis #; and e, is the deviation from the model.
Principal component analysis is explained in the next Chapter.

There are several possible AMMI models characterized by a number of significant
PC axes ranging from zero (AMMI-0, i.e. additive model) to a minimum between
(g - 1) and (I - 1), where ¢ = number of genotypes and | = number of locations.
The full model (AMMI-F), with the highest number of PC axes, provides a perfect
fit between expected and observed data. Models including one (AMMI-1) or two
(AMMI-2) PC axes are usually the most appropriate where there is significant GL
interaction. Due to their simplicity, they provide a notable reduction of dimensionality
for the adaptation patterns relative to observed data. While principal components
analysis is usually executed on the correlation matrix, for AMMI modelling it is
executed on the covariance matrix. Furthermore, two (not one) analyses are performed
simultaneously: in the analysis the genotypes are individuals (rows) and the
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locations original variables (columns); in the other, vice versa (Annicchiarico 2002).
Nlustration of AMMI analysis is beyond the scope of this manual.
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Chapter 11: Multivariate analysis and determination of genetic distance

Genetic distance estimates are mostly based on morphological, biochemical
(isoenzymes) and molecular markers, though more and more emphasis is on the
use of molecular markers as these seem to be less affected by environment and
thus the error due to G x E interactions can be minimized. Generally, analytical
methods include Mahalanobis” distance, genealogical distance, use of pedigree
information, multivariate distance, kinship coefficient (dos Santos Dias et al. 2004).
All these methods can be used irrespective of markers used, though when molecular
markers are used, simple clustering techniques can provide the required information
on genetic distance.

In the case when specific markers that can provide information on the presence
or absence of alleles are used, as in the case of most of the molecular markers
(in which case data would be binary in nature), then there are four popular genetic
distance measures: the D, distance (Nei et al. 1983), the chord distance, D.(Cavalli-
Sforza and Edwards 1967), the standard genetic distance of Nei, D, (Nei 1972, 1978)
and the Weir and Cokerham estimator of F_, 6 (Weir and Cokerham 1984). However,
we will be limiting our discussion in this Chapter to the use of mostly morphological
data, without much inference on the number of alleles involved. In addition, use
of molecular tools is of recent origin in coconut and most of accession descriptions
are morphological and quantitative in nature, D’ statistic will be quite adequate.
Readers who are interested in these genetic distance statistics are referred to the
citations given in this chapter.

In the previous chapters we discussed comparison of treatments based on a
single response variable. However, in many situations, the experimenter may wish
to make comparisons with more than one character (not necessary a gene or allele
as a single trait may be governed by more than one gene and may have several
alleles). For example, in germplasm evaluation trials, we would like to evaluate
accessions for different yield-related characters such as number of bunches, fruit
setting, copra content, total copra yield, different fruit components, etc. Obviously,
such characters are expected to have correlation between them and in such a
situation multivariate analysis methods are most appropriate. This is because, a
series of univariate analysis (a single variable at one time) carried out separately
on each variable may lead to incorrect conclusions as the correlations or
interdependence among the variables is ignored. On the other hand, the multivariate
techniques are concerned with the relationships of inter-related variables.

The multivariate techniques can be broadly grouped into: Dependence methods
and Interdependence methods. If variables of one set were the realization of certain
dependent or criterion measures, the appropriate techniques would be the dependence
methods. Important dependence methods include multiple regression, multivariate
analysis of variance, discriminant analysis, canonical analysis and logit analysis.
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If no distinction is made among the variables, we opt for interdependence methods
for the analysis that include principal components analysis, factor analysis, multi-
dimensional scaling and log linear models (Dillon and Goldstein 1984).

Among the dependence methods, the multiple regression procedure is already
discussed in Chapter 5. In this chapter we will discuss the multivariate analysis
of variance (MANOVA) which is an extension to ANOVA. Once the accessions
(treatments) are found to be significant based on MANOVA, the interests arise
on pair wise comparison between treatments and also forming of groups of
treatments or accessions that are similar in nature. Mahalanobis” generalized distance
is used for pair wise comparison and also used as a measure of dissimilarity for
cluster analysis to determine the genetic distance among accessions as described
in the subsequent sections of this chapter.

MANOVA

It is used for the simultaneous test of equality of sets of means as against individual
means specified in ANOVA. The data are assumed to be drawn from a multivariate
normal population with the same variance-covariance matrix in each group.

Null hypothesis

Analogous to that of ANOVA (which is used to test the hypothesis that the samples
came from populations having the same mean (i.e. u, = u, =... = 1), we formulate
the null hypothesis for test based on MANOVA. The mean of the characters is
represented in the form of a column vector and is denoted by p. for the i
population; same order is followed for each population. The null hypothesis is then:

H:p =np,=.. =n

Test statistic

There are many test statistics proposed for determining the equality of mean vectors
of populations following multivariate normal distribution. One commonly followed
test is Wilk’s lambda (A), which is the ratio of the determinants of the matrices
W and W+D; ie. A = |[W |//[W+D |

Where, W and D are the sum of products matrices due to ‘residual” and ‘deviation
from hypothesis’. The determinant of matrix is a scalar quantity and can be obtained
by using the MDETERM function of MSEXCEL or specific computer programmes
available elsewhere.

For example, in the case of one-way classified data, (from CRD), D represents the
‘between treatment” sum of products matrix and W is the matrix of sum of products
against the ‘error’ term. In the case of RCBD, the matrix D is again the ‘between
treatment’ sum of products matrix (for testing the significance of treatments) and
W, the corresponding error sum of products matrix (Johnson and Wichern 1992).
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Based on A, the test statistic is developed as a function of natural logarithm of
A as:
- m log, A.

Where, m = error DF - [(p+1) - hypothesis DF]/2;
p = number of variables.

Under null hypothesis, the above test statistic has a chi-square distribution
(approximately) with DF = p times the hypothesis DF.

In the case of CRD with k treatments and a total of n experimental units,
m =n -k - [p+l - (k-1)]/2
=n-1- (p+k)/2
and under the null hypothesis, the test statistic has a chi-square distribution with
DF = p(k-1).

Example

Data on four fruit characters of four palms each from five coconut accessions are
shown in Table 11.1. It is desired to test whether the accessions are significantly
different with respect to the fruit characters. [This data is being analyzed as a one-
way classified data (i.e., analogous to CRD].

Table 11.1. Fruit characters of five coconut accessions

Palms Accessions Fruit weight Fruit length Husk thickness Husk weight
(9) (cm) (cm) (9)

1 SSAT 984.50 26.875 2.250 245.8
2 SSAT 1040.00 32.500 2.725 329.0
3 SSAT 712.00 25.875 2.250 192.8
4 SSAT 1100.25 28.750 2.475 280.0
5 POLT 765.25 27.875 3.650 270.0
6 POLT 713.67 29.500 3.900 333.3
7 POLT 669.50 28.125 3.425 271.5
8 POLT 629.50 29.250 3.600 272.5
9 MVT 1591.67 33.833 3.167 373.3
10 MVT 1589.25 32.250 2.925 384.3
11 MVT 2372.50 35.250 4.225 893.5
12 MVT 1723.25 33.500 3.300 502.0
13 KKT 1407.50 32.250 2.600 401.8
14 KKT 1863.75 34.125 3.550 615.0
15 KKT 1069.50 29.375 2.875 328.3
16 KKT 1395.50 31.500 3.225 4755
17 NLAD 980.75 30.500 3.225 413.3
18 NLAD 963.50 31.250 3.062 432.5
19 NLAD 1047.25 31.500 2.925 410.8
20 NLAD 1056.50 31.375 3.362 472.3

Total 23675.59 615.458 62.716 7897.5
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The computations will involve the following steps:

Step 1

Analogous to the ‘between treatments’ (accessions) sum of squares in the case of
ANOVA, obtain the between sum of squares and sum of products matrix. In the
matrix, the diagonal elements are the sum of squares; only the upper or lower
portion of the matrix needs to be computed. For the sake of illustration, the
computations of one diagonal and one off-diagonal element of the matrix are
explained below.

Computation of the diagonal element corresponding to fruit weight

It is the equivalent to the various SS calculated for ANOVA for that character.
For example, the correction factor is obtained as 23675.59 x 23675.59/20 = 28026678.1.
The total SS, between accessions SS and error SS are then obtained as described
in Chapter 7 and are 3987563.3, 3142893.0 and 844670.3, respectively. Similarly, the
other diagonal elements against fruit length, etc. can be computed.

Computation of the off-diagonal elements corresponding to fruit weight
and fruit length

The correction factor to be subtracted while computing the various sum of products
(SP) between these two characters is: 23675.59 x 615.458/20 = 728566.6.

The Total SP = (984.50 x 26.875 + .... + 1056.50 x 31.375) - 728566.6 = 18363.5

To calculate the between accession SP of the fruit weight and fruit length, first
obtain the sum of values for each accession for the characters as shown below:

Accessions: SSAT POLT MVT KKT NLAD
Fruit weight 5736.25 7276.67 4048.00 2777.92 3836.75
Fruit length 127.25 134.83 124.63 114.75 114.00

The required SP is obtained as:
(56736.25 x 127.25/4 + 7276.67 x 134.83/4 + ...+
3836.75 x 114.00/4) - 728566.6 = 14361.2

The error SP is then obtained by subtracting the required SP (14361.2) from the
total SP (18363.5), giving the value 4002.3. In a similar manner the other elements
of the matrices can be obtained as shown in Table 11.2.

Step 2

Next step is to obtain the determinant of the matrices W and W+D by using function
MDETERM of MSEXCEL. The determinant of the error SSSP matrix (W) is obtained
as 242973699302.8. The determinant of the matrix sum W + D (i.e. the total SSSP
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matrix in this case) is obtained as 42999447542307.5. The A statistic is then the ratio
of these two determinants and is equal to 0.00565.

Step 3
To obtain the test statistic, compute:
m = n-1 - (p+k)/2
20 - 1 - (445)/2 = 145
-m log, A = - 145 x log_ 0.00565
= - 145 x -5.1761 = 75.05345

Table 11.2 Sum of squares and sum of products (SSSP) matrices of MANOVA

Matrix of Characters Fruit Fruit Husk Husk
weight length thickness weight

Correction Fruit weight 28026678.1 728566.6 74241.9 9348898.6
factor Fruit length 728566.6 18939.4 1930.0 243029.0
Husk thickness 74241.9 1930.0 196.7 24765.0

Husk weight 9348898.6 243029.0 24765.0 3118525.3

Total SSSP Fruit weight 3987563.3 18363.5 1247.4 1145876
Fruit length 18363.5 121.7 10.6 6056.5

Husk thickness 1247.4 10.6 5.3 897.6

Husk weight 1145876.1 6056.5 897.6 458294.6

Between Fruit weight 3142893.0 14361.2 248.0 730073.7
accessions Fruit length 14361.2 77.4 5.1 4101.9
SSSP Husk thickness 248.0 5.1 3.4 296.0
Husk weight 730073.7 4101.9 296.0 219795.2

Error SSSP Fruit weight 844670.3 4002.3 999.4 415802.4
Fruit length 4002.3 44.3 5.5 1954.6

Husk thickness 999.4 5.5 1.9 601.6

Husk weight 415802.4 1954.6 601.6 238499.4

Under the null hypothesis, the test statistic has approximate chi-square distribution
with
DF = p (k1)

Decision: Since .= 26.296 < 75.053, we reject the null hypothesis.

Conclusion
The accessions are significantly different with respect to the four fruit characters.

Grouping of accessions

Once the accessions are found to be different, the next step is to find out similar
groups. It is easy with regard to single character using the critical difference (CD).
Such an approach will not be practical while considering many characters
simultaneously because with respect to each character, different groups will be
obtained making the interpretation a difficult task. A solution to this problem is
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to group the accessions in terms of some similarity or dissimilarity coefficients
obtained based on the values of the characters. Obviously, the characters that do
not distinguish the accessions need not be considered while computing such
coefficients.

A most commonly used dissimilarity coefficient is the Euclidean distance, which
is the straight line distance between two points. Suppose the ordinates of the two
points, A and B in a plane are denoted as (a,, a,) and (b,, b,), then the Euclidean
distance is given by:

\/(a1 —b, )2 + (az —b, )2

In practice we will be having more than two characters, say p and the values
of two individuals (accessions) are represented as (a, a, ..., ap) and (b, b,
b ). Then the Euclidean distance between the individuals is computed as:

Z(ai —b, )2, in which the summation is for all the p characters.

The Euclidean distance is defined for situations where the axes are perpendicular
(un-correlated). This is not the case with biological observations where characters
are often correlated. In such cases, the Euclidean distances will not provide accurate
spatial relationships between the accessions. It is therefore necessary to eliminate
the correlation between variables before finding the Euclidean distance. The
Mahalanobis” generalized distance achieves this by means of transforming the
original (correlated) variable to uncorrelated variables (Rao 1952). Alternatively,
new set of independent variables can be created by means of principal component
analysis to allow the computation of the Euclidean distance. Obviously, the distance
obtained through these two approaches will not be the same.

Mahalanobis’ D?

Assuming that the covariance matrix (S) is the same for all populations (accessions),
the generalized distance D* between the two populations i and j is defined as:

Dzij = (pl - p]), 2_1(}11 - p])

When the population parameters are estimated by sample statistics, the estimate
of D? is obtained as:

d2ij = (x, —fj ) S(x, —)?j)
where,

X, is the vector of sample mean for i" population and S is the sample covariance
matrix.
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Example

With regard to data on fruit characters of five accessions (Table 11.1), we have
already worked out the error SSSP matrix. Dividing each element of the matrix
with error DF (15), we get the matrix S. Using the MINVERSE function of MSEXCEL
(or any other subroutines for finding out the inverse of a matrix), S* can be
obtained. From the example, the values for S are shown in Table 11.3.

Table 11.3. Elements of the inverse of matrix S (i.e., $7)

Characters Fruit Fruit Husk Husk

weight length thickness weight
Fruit weight 0.00015 -0.00376 0.02557 -0.0003
Fruit length -0.00376 0.63847 -1.43725 0.00495
Husk thickness 0.02557 -1.43725 44.66112 -0.14546
Husk weight -0.00030 0.00495 -0.14546 0.00092

The mean values of characters for the different accessions and the difference of
mean values for the accessions KKT and MVT are shown in Table 11.4.

Table 11.4. Average values for fruit characters

Accessions Fruit Fruit Husk Husk
weight length thickness weight

SSAT 959.188 28.500 2.425 261.900

POLT 694.480 28.688 3.644 286.825

MVT 1819.168 33.708 3.404 538.275

KKT 1434.063 31.813 3.063 455.150

NLAD 1012.000 31.156 3.144 432.225

Difference of means 264.708 -0.188 -1.219 -24.925

between SSAT and POLT

The next step is to work out the d* , .., as shown below:

(x, X, )’S* =

0.000154 -0.00376 0.025573  —-0.0003
—0.00376 0.638466 —1.43725 0.004954
0.025573 —1.43725 44.66112 -0.14546

—0.0003 0.004954 -0.14546 0.000917

[264.708 - 0.188-1.219 - 24.925]

= [0.01538276 0.599829 -49.071 0.090468]

2 — (¥ - VST - ¥
Therefore, d* AT, POLT = (x, - X, )S'(x, - xj)
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264.708

—0.188
-1.219

—24.925

[0.01538276 0.599829 -49.071 0.090468]

61.5098

In a similar manner, we can work out the distance between all the 5 x 4/2 = 10
pairs of accessions as shown in Table 11.5.

Table 11.5. Mahalanobis’ generalized distance between the five coconut accessions

SSAT POLT MVT KKT NLAD
SSAT 0
POLT 61.50979 0
MVT 31.60340 79.71975 0
KKT 6.90998 59.40381 10.3132 0
NLAD 13.54683 40.17097 54.6633 19.72299 0

Test of significance: With equal sample size r, the test statistic is

r(r — p) 2
P42 F,
2p(r _1) (p,r=p)

Note: In the above example, the number of observation per accession is four and therefore
r-p=4-4=0 and hence, the above mentioned test is not possible. To perform the
test of significance of the generalized distance, the condition r — 1 = p need to be hold
good. In other words to test the significance of D?, between two populations, the sample
size (for both the populations) must be greater than the number of characters. In practice
this condition seldom satisfies especially when there are many populations to be studied.
Nevertheless, the d* values can be computed for situations where the condition n-k > p
is satisfied and can be used as a measure of dissimilarity for clustering analysis. This
condition puts only a simple restriction that the total number of individuals (or units)
sampled from all the populations should be greater than the sum of number of characters
and number of populations. Reducing the number of populations in a study may not be
practical, but the investigator can chose the number of characters for computation of d’
to satisfy the restriction mentioned above.

Cluster analysis

Even if statistical tests of significance are not applied, the generalized distance
could be used for grouping the populations (accessions) by means of cluster
analysis. When number of populations is not very large (say, less than 50), hierarchical
classification is attempted and the results are summarized in the form of a
dendrogram. If the number of populations is more, the construction and
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representation of the dendrogram becomes tedious and in such situations non-
hierarchical cluster analysis may be attempted. Here we illustrate only the hierarchical
cluster analysis using UPGMA (Unweighted Pair-Group Method using Arithmetic
averages) clustering.

In Table 11.5 of Mahanalobis’ generalized distance between accessions, the
smallest distance 6.909978 is between KKT and SSAT. We thus construct a sub-
tree (of the dendrogram) by joining KKT and SSAT separated at a height 6.909978/
2 = 3.45. Treating these two accessions as a single entity (say, C-1), the distance
of other accessions with this will be worked out as follows:

Distance between C-1 and MVT = (distance between KKT and MVT + distance
between SSAT and MVT) = (10.31317+ 31.6034)/2 = 20.96. Similarly other distances
could be computed and new distance matrix is obtained (Table 11.6).

Table 11.6. Distance between cluster 1 (C-1) and other accessions

C-1 MVT NLAD POLT
C-1 0
MVT 20.95829 0
NLAD 16.63491 54.26509 0
POLT 60.4568 77.93759 36.2899 0

The smallest distance between accessions in Table 11.6 is 16.63 (between C-1
and NLAD). Hence, we amalgamate NLAD with C-1 at a height 16.63/2 = 8.31.
The group C-1 and NLAD will be considered now as a single entity (C-2) and
a new distance matrix is obtained. This process is continued until all the accessions
are grouped into a single group, as shown below.

Among the distance between C-2 and other accessions (i.e. MVT and POLT),
the smallest is between C-2 and MVT (37.61). Hence, MVT is amalgamated to
C-2 at a height 37.61/2 = 18.85 and the newly formed group is called C-3.

The last accession (POLT) has a distance 63.15 with C-3 and joins at a height
63.15/2 = 31.57. Formation of clusters with respective distance and the resulting
dendrogram is shown in Table 11.7 and Fig. 11.1.

Table 11.7. Formation of clusters and respective distances

Group Elements of Distance between
the group elements

C-1 (KKT, SSAT) 3.45
C-2 (C-1, NLAD) 8.31
C-3 (C-2, MVT) 18.85

C-4 (C-3, PLOT) 31.57
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NLAD
MVT
PLOT

Figure 11.1. Average distance of clusters depicted in the form of dendrogram.
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Appendix | Introduction to R and its use to perform statistical analysis
for data presented in this manual

Introduction

The objective of the appendices is to explain how the R statistical software can
be used to perform the analyses presented in the manual. R is a language and
environment for statistical computing and graphics. It is a GNU project which is
similar to the S language and environment which was developed at Bell Laboratories
(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R
is freely available at http://www.r-project.org/.

Data in the Tables of this manual have been copied into text files readable by
R. The contents of these text files are printed at the end of respective appendices.
A gray background is used for R commands and a frame with a white background
for the results returned by R. It is easy to test the R commands by copying the
text of the gray areas into the R console.

Before beginning the computations, some parameters of R have to be set.

Set working directory
| setwd (“d:/stat/R”)

This is only an example to input the path of the directory where the text files
containing the data have been copied. Note that “/” must be used instead of “\”
in the path.

Sometimes a command like this appears in the text:

| options (digits=9)

This is used to set the number of digits for output in order to obtain approximately
the same number of digits as in the computations in the corresponding chapter.

References
R Development Core Team. 2008. R : A language and environment for statistical

computing. R Foundation for statistical computing. Vienna, Austria. ISBN
3-900051-07-0, URL: http://www.r-project.org.
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Appendix I Sampling methods

lllustration of simple random sampling
Suppose we have to choose a sample of five coconut palms from a population size
of 80. The first step is to fill a vector (say coconuts) with numbers from 1 to 80.

| (coconuts <- 1:80)

[1] 123 45 67 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
[51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
[76] 76 77 78 79 80

Sampling without replacement

| sample (coconuts,5,replace=F) |

| [1] 80 32 7 18 23 |

Sampling with replacement

| sample (coconuts,5,replace=T) |

| [1] 59 79 40 47 79 |

Note that in that case “79” occurs twice.
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Appendix lll: Frequency distrioution of clbservations

Frequency distribution of qualitative data

Load and display data

| (fruit.shape <- read.table(“03-3-1-fruitshape.txt” header=T))

Class Frequency
1 Round 169
2 Egg-shaped 61
3 Pear-shaped 62
4 Elliptic 22

Percentages can be easily computed in order to obtain values of Table 3.1.

data.frame(fruit.shape Percentage=round(fruit.shape$Frequency/sum (fruit.shape$
Frequency)*100,2))

Class Frequency Percentage
1 Round 169 53.82
2 Egg-shaped 61 19.43
3 Pear-shaped 62 19.75
4 Elliptic 22 7.01

Plot pie chart and bar diagram

title <- “Fruit shape in coconut”
pie(fruit.shape$Frequency,labels=paste(fruit.shape$Class,’(* fruit.shape$Frequency,’)’),
main=title)
barplot(fruit.shape$Frequency,names.arg=as.character(fruit.shape$Class), main=title,
ylim=c(0,200),axis.lty=1)




170 BIOVERSITY TECHNICAL BULLETIN NO. 14

Fruit shape in coconut Fruit shape in coconut
209
Round
(169)
150
10g)
Elliptic
(22) 504
Eggigi?te)lped Pear-shaped i : =
(62) Reound Egg-shaped Pear-shaped Elliptic

Frequency distribution of quantitative data

Load and display data

| (stem.length <- scan(“03-3-2-stemlength.txt”))

Read 50 items

[1] 86 83 9.6 91104 63119 93 97 45 86 78 79 126 8.4
[16] 10.4 11.5 104 59 99 82 6.1 93 127 134 11.0 79 6.8 7.7 41
[31] 85 104 98 3.8 43 128 77 58 132 48 126 89 11.6 10.8 6.3
[46] 122 89 102 9.8 11.9

Frequency distribution and graphical representation

Although the class limits can be computed automatically by the hist function, in this
example they are passed in the vector breaks in order to obtain the same histogram
as in Figure 3.1.

breaks <- ¢(3.5,5.2,6.9,8.6,10.3,12,13.7)

stem.hist <- hist(stem.length breaks=breaks,right=F freq=T,col="lightgray”,
xaxt="n",main=NULL,xlab="Stem length (dm) - Class value”)

axis(side=1,at=stem.hist$mids,labels=stem.hist$mids)

box()
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Stem length (dm) - Class value

The values returned by hist in stem.hist can now be used in other functions. The
following commands compute the data of Table 3.3.

stem.cut <- cut(stem.length breaks=breaks,right=F)

df <- data.frame(
Class.interval=levels(stem.cut),
Class.value=stem.hist$mids,
Frequency=stem.hist$counts,
Cumul.freq=cumsum(stem.hist$counts),
Percent=stem.hist$counts/sum(stem.hist$counts)*100,
Cumul.percent=cumsum(stem.hist$counts) /sum(stem.hist$counts)*100)

df
Class Class  Frequency Cumul.  Percent Cumul.
interval value Frequency percent
1 [3.5,5.2) 4.35 5 5 10 10
2 [5.2,6.9) 6.05 6 11 12 22
3 [6.9,8.6) 7.75 9 20 18 40
4 [8.6,10.3) 9.45 13 33 26 66
5 [10.3,12) 11.15 10 43 20 86
6 [12,13.7) 12.85 7 50 14 100
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Upper limits of intervals are not included, so that these limits and the class values
are sligntly greater than in Table 3.3.

The following commands plot the frequency polygon of stem length. The plot
is similar to Figure 3.2.

plot(stem.hist$mids,stem.histScount,type="b",pch="",cex=3,lwd=2,
xlab="Stem length (dm) - Class value”,ylab="Frequency”,axes=F)
text(stem.hist$mids,stem.hist$count,label=stem.hist$count)
axis(1,at=stem.hist$mids, labels=stem.hist$mids)

axis(2,4:14)

box()

Frequency
© 3 2 B 3

oo
1

435 6.05 7.75 9.45 11.15 12.85
Stem length (dm) - Class value

Parameters of distributions

In the following we will consider only ungrouped data, since their management
is not a problem in modern software and computations are more precise than with
grouped data.

Measures of Central Tendency
| c(Mean=mean(stem.length) Median=median(stem.length))

Mean Median
9.052 9.200
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Measures of Dispersion
| range(stem.length)

| [1] 3.8 13.4

As there is no function for mean deviation, we have first to define it.

mean.dev <- function(x){ sum(abs(x-mean(x)))/length(x) }
mean.dev(stem.length)

[1] 2.04592

We will use parameters hl, h2, h3, h4 and ml, m2, m3, m4 as described in this
chapter. First we define the h function, then we call it to compute the parameters.

h <- function(x,n) { sum(x”n)/length(x) }
hl <- h(stem.length,1)

h2 <- h(stem.length,2)

h3 <- h(stem.length,3)

h4 <- h(stem.length,4)

ml <- hl

m2 <- h2-h1/2

m3 <- h3-3*h1*h2+2*h1/3

m4 <- h4-4*h1*h3+6*(h1/2)*h2-3*h1"4
c¢(m1,m2,m3,m4)

[1] 9.052000 6.373296 -4.446495 95.237575

We have now all the elements to compute the dispersion parameters.

result <- c(Mean=m1,Variance=m2,5tDev=sqrt(m2),CV=sqrt(m2)/m1*100,
Skewness=m3/m2/(3/2),Kurtosis=m4 /m2/2-3)

round(result,3)
Mean Variance StDev CvV Skewness Kurtosis
9.052 6.373 2.525 27.889 -0.276 -0.655

Normal distribution

Normal curve
In order to plot the normal curve, we first load into R the fill.area function which
will be called to fill some areas of the curve.
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filLarea <- function(x1,x2,FUN,...){
x <- seq(x1,x2length=100)

y <- FUN(x,...)

xx <- c(x[1],x,x[length(x)])

yy <- ¢(0y,0)
polygon(xx,yy,col="lightgray”)

}

We can now plot the normal curve with parameters mean and sd. Another parameter,
alpha, is such that the area shaded is alpha/2 for the left tail and for the right tail.
Parameters mean, sd, and alpha can be changed.

mean <- 10; sd <- 2; alpha <- 0.05

X <- seq(mean-3.5*sd,mean+3.5*sd,length=100)

y <- dnorm(x,mean=mean,sd=sd)

plot(x,y, type="1",main=paste(“Normal distribution”,”, mean =”,mean,”, sd =",sd,”,
alpha =",alpha))

abline(h=0,v=mean)

ql <- gnorm(alpha/2,mean=mean,sd=sd)

g2 <- gnorm(l-alpha/2,mean=mean,sd=sd)
fill.area(mean-3.5*sd,q1l,dnorm,mean,sd)
fill.area(q2,mean+3.5*sd,dnorm,mean,sd)

Normal distribution, mean = 10, sd = 2, alpha = 0.05

0.20

Y
0.10 0.15
L
~E

0.05

0.00
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As an example for a normal population of the stem length at 11 leaf scars of coconut
palms with mean value 9.05 dm and standard deviation 2.5 dm, the probability
of occurrence of stem lengths of 13.85 dm and above can be worked out as follows:

1-pnorm(13.85,mean=9.05,5sd=2.5)

[1] 0.02742895

Confidence interval

Consider the data in stem.length as a sample drawn from a normal population with
unknown mean and known standard deviation 2.5. The confidence interval of the
population mean is computed as follows:

alpha <- 0.05

m <- mean(stem.length)

sigman <- 2.5/sqrt(length(stem.length))
round(c(m+qnorm(alpha/2)*sigma.n,m+qnorm(1-alpha/2)*sigma.n),3)

[1] 8.359 9.745

Minimum sample size for estimating the mean
The optimal sample size according to CV (%) and desired CI  can be computed
with the following size function.

size <- function(cv,b,alpha){ ceiling((qnorm(1-alpha/2)*cv/b)"2) }
size(20,7.5,0.05)

[1] 28

The following function calls size to comput a table of optimal sample size according
to CV (%) and desired CI.

size.table <- function(cv,b,alpha){
m <- sapply(cv,sizeb,alpha)
colnames(m) <- cv
row.names(m) <- b

m

}

It is now easy to print the values of Table 3.9.

size.table(cv=seq(5,25,2.5),b=seq(5,15,2.5),alpha=0.05)
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5 7.5 10 125 15 17.5 20 225 25

5 4 9 16 25 35 48 62 78 97
7.5 2 4 7 11 16 21 28 35 43
10 1 3 4 7 9 12 16 20 25
12.5 1 2 3 4 6 8 10 13 16
15 1 1 2 3 4 6 7 9 11

Contents of files used in the above computations and readable by R are printed
below:

File 03-3-1-fruitshape.txt (data of Table 3.1)

Class Frequency
Round 169
Egg-shaped 61
Pear-shaped 62
Elliptic 22

File 03-3-2-stemlength.txt (data of Table 3.2)

86 83 96 91 104 63 119 93 9.7 4586 78 79 126 84 104 11.5
104 59 99 82 6.1 93 127134 11.7 79 68 7.7 41 85104 98 3.8
43 128 7.7 58 13.2 48 12.6 89 11.6 10.8 63122 89 102 9.8 11.9
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Appendix V. Estimation and tests of significance

Estimation, t-test for means

Load and display data

(wet <- scan(“04-wct.txt”))

Read 26 items

[1] 177.25 154.50 173.25 193.50 227.50 155.25 168.00 233.00 150.00 158.75
[11] 230.00 200.75 169.75 176.75 158.00 164.25 154.50 162.50 186.50 207.00
[21] 250.00 157.50 228.50 216.50 227.50 181.50

Compute mean, variance, t, one-tailed and two-tailed test

n <- length(wct)
c(mean=mean(wct),s2=sd(wct)"2,t=(mean(wct)-
172) /sd(wct)*sqrt(n),t1tail=qt(0.95,n-1),t2tail=qt(0.975n-1))

mean s2 t tltail t2tail
187.0192 945.3296 2.4908 1.7081 2.0595

One-tailed and two-tailed test can also be computed with the t.test function.

t.test(wct,mu=172)

One Sample t-test

data: wct

t = 24908, df = 25, p-value = 0.01975

alternative hypothesis: true mean is not equal to 172
95 percent confidence interval:

174.60 199.44

sample estimates:

mean of x

187.02

t.test(wct,mu=172,alternative="greater”)
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One Sample t-test

data: wct

t = 24908, df = 25, p-value = 0.009873

alternative hypothesis: true mean is greater than 172
95 percent confidence interval:

176.72 Inf

sample estimates:

mean of x

187.02

We reject the null hypothesis at level 0.02 for two-tailed test and 0.0099 for one-tailed
test.

Comparison of two sample means (independent samples)

Load and display data
(twopop <- read.table(“04-1-twopop.txt” header=T))

pop nuts
monocrop  16.30
monocrop  15.50
monocrop  27.30
monocrop  22.60
monocrop  12.20
monocrop  18.70
monocrop 7.25
monocrop  9.70
monocrop  21.30
10 monocrop  15.50
11  monocrop 22.20
12 monocrop 13.20
13 monocrop  19.00
14  monocrop 17.40
15 monocrop  28.80
16 monocrop 14.90
17 intercrop  21.40
18 intercrop 13.20
19 intercrop  26.80
20 intercrop  29.30
21  intercrop 17.40
22 intercrop 16.30
23 intercrop 12.10
24  intercrop 9.00

OO UT - WON -
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25 intercrop 20.80
26 intercrop 17.70
27 intercrop 19.40
28 intercrop 15.20
29 intercrop 18.30
30 intercrop  18.00
31 intercrop  25.40
32 intercrop 17.30
33 intercrop  18.80
34 intercrop 19.50

Two-tailed test

monocrop <- twopop$nuts[twopop$pop=="monocrop”]
intercrop <- twopop$nuts[twopop$pop=="intercrop”]
t.test(monocrop,intercrop,var.equal=T)

Two Sample t-test

data: monocrop and intercrop

t = -0.5598, df = 32, p-value = 0.5795

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-4.8494 2.7585

sample estimates:

mean of x mean of y

17.616 18.661

One-tailed test

t.test(monocrop,intercrop,var.equal=T,alternative="less”)

Two Sample t-test

data: monocrop and intercrop

t = -0.5598, df = 32, p-value = 0.2897

alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf 2.1178

sample estimates:

mean of x mean of y

17.616 18.661

In both cases, we do not reject the null hypothesis.
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Comparison of two related sample means (matched pairs)

Load and display data

(pairs <- read.table(“04-2-pairs.txt” header=T))

Pre.treatment Post.treatment

1 16.30 21.4
2 15.50 13.2
3 27.30 26.8
4 22.60 29.3
5 12.20 17.4
6 18.70 16.3
7 7.25 12.1
8 9.70 9.0
9 21.30 20.8
10 15.50 17.7
11 22.20 194
12 13.20 15.2
13 19.00 18.3
14 17.40 18.0
15 28.80 25.4
16 14.90 17.3

Compute t-test

t.test(pairs$Pre.treatment,pairs$Post.treatment,paired=T)

Paired t-test

data: pairs$Pre.treatment and pairs$Post.treatment

t = -1.2335, df = 15, p-value = 0.2364

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-2.68536 0.71661

sample estimates:

mean of the differences

-0.98437

F- test for equality of two variances

var.test(monocrop,intercrop)
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F test to compare two variances

data: monocrop and intercrop

F = 13764, num df = 15, denom df = 17, p-value = 0.5228
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:

0.50547 3.87155

sample estimates:

ratio of variances

1.3764

Chi-square test of significance for goodness of fit for frequency data
Load data
X <- c(46,47,48,48,48,49,52,52,54,54,55,57,65,65,66,67,69,72,73,76)

Load the fit.test function

fit.test <- function(x,nclass,alpha=0.05){

options(digits=4)

breaks <- c(min(x),qnorm((1:(nclass-1))/nclass,mean=60,sd=10), max(x))
observed <- hist(x,breaks=breaks,plot=F)$count

expected <- length(x)/(length(breaks)-1)
print(t(data.frame(observed,expected,row.names=levels(cut(x,breaks,include.
lowest= T)))))
c(chi2=sum(((observed-expected)”2)/expected),chi2.0=qchisq(1-
alpha,length(breaks)-2),df=length(breaks)-2)

}

Compute Chi-Square Test (4 classes)

fit.test(x,nclass=4)

[46,53.3] (53.3,60] (60,66.7] (66.7,76]

observed 8 4 3 5

expected 5 5 5 5
chi2 chi2.0 df
2.800 7.815 3.000

The null hypothesis is not rejected. However the test is very sensitive to the number
of classes, as shown in the next example.




182 BIOVERSITY TECHNICAL BULLETIN NO. 14

Compute Chi-Square Test (3 classes)

fit.test(x,nclass=3)
[46,55.7] (55.7,64.3] (64.3,76]
observed 11.000 1.000 8.000
expected 6.667 6.667 6.667
chi2 chi2.0 df
7.900 5.991 2.000

With 3 classes, the null hypothesis is rejected.
Chi-square test for independence

Load and display data

(embryos <- matrix(c(28,39,45,32,18,17) byrow=T,nrow=2))

[1] [.2] [,3]
[1,] 28 39 45
(2] 32 18 17

Compute Chi-Square Test

chisq.test(embryos)

Pearson’s Chi-squared test

data: embryos
X-squared = 9.966, df = 2, p-value = 0.006855

The null hypothesis is rejected.
Chi-square test for homogeneity of variances (Bartlett test)

Load and display data

(fourpop <- read.table(”04-5-fourpop.txt”,header=T))
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accession weight
438
449
453
518
564
608
610
651
680
700
1004
1018

O XTI UTk WD~

[ NG YR NG YRS Gy U G W G S

48 4 824
49 4 838

(See complete data below)

Compute Chi-Square Test

bartlett.test(weight~accession,data=fourpop)

Bartlett test for homogeneity of variances

data: weight by accession
Bartlett’s K-squared = 37.24, df = 3, p-value = 4.084e-08

The hypothesis of variance equality is rejected.

Contents of files used in the above computations and readable by R are printed
below:

File 04-wct.txt

177.25 154.50 173.25 193.50 227.50 155.25 168.00 233.00 150.00 158.75 230.00
200.75 169.75 176.75 158.00 164.25 154.50 162.50 186.50 207.00 250.00 157.50
228.50 216.50 227.50 181.50




File 04-1-twopop.txt (data of Table 4.1)
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pop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
monocrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop
intercrop

nuts
16.3
15.5
27.3
22.6
12.2
18.7
7.25
9.70
21.3
15.5
22.2
13.2
19.0
17.4
28.8
14.9
21.4
13.2
26.8
29.3
17.4
16.3
12.1
9.0
20.8
17.7
19.4
15.2
18.3
18.0
25.4
17.3
18.8
19.5
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File 04-2-pairs.txt (data of Table 4.2)

Pre.treatment Post.treatment
16.3 21.4
155 13.2
27.3 26.8
22.6 29.3
12.2 17.4
18.7 16.3
7.25 12.1

9.7 9.0
21.3 20.8
155 17.7
22.2 194
13.2 15.2
19.0 18.3
17.4 18.0
28.8 25.4
14.9 17.3

File 04-5-fourpop.txt (data of Table 4.3)

accession  weight
438
449
453
518
564
608
610
651
680
700
1004
1018
1019
1032
1045
1053
1056
1060
1068
1074

NNNNNRNRNNNNDE S e e e
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1087
1095
1116
1141
1270
1421
1425
1435
1445
1446
1461
1506
1526
1568
1610
1780
770
775
784
786
788
790
791
795
802
806
813
824
838
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Appendix V. Analysis of relationship between variables

Correlation

Load and display data

(fruits <- read.table(”05-2-fruits.txt” header=T))

FwW NW VvC KW CW

1 1216 662 180 346 172

2 1445 735 200 383 187

3 786 466 110 262 157

4 784 467 110 272 152

5 750 464 120 262 155

6 1004 638 190 305 194

7 838 505 140 279 170

8 892 560 180 264 165

9 1019 614 190 321 198

10 860 486 170 252 158

11 1060 701 230 362 224

12 928 569 180 305 194

13 1568 875 310 429 245

14 1461 868 300 414 250

15 1141 686 270 386 209

16 1170 722 230 400 206

17 960 548 140 275 162

18 712 437 120 240 144

19 1002 532 130 280 174

20 1183 555 110 286 164

Compute the correlation matrix

round(m <- cor(fruits),3)

FwW NW VvC KW CW

FW 1.000 0.929 0.769 0.888 0.772

NW 0.929 1.000 0.922 0.960 0.924

VC 0.769 0.922 1.000 0.896 0.929

KW 0.888 0.960 0.896 1.000 0.894

CW 0.772 0.924 0.929 0.894 1.000
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This matrix is identical to Table 5.4.

Testing the equality of two correlation coefficients
Since the statistic is (z, - z)/ Vvar(z, - z), a simple procedure is to compute the matrix
of z./ J(2var z).

z <- function(r) { 0.5*log((1+r)/(1-r)) }
(zm <- z(m)/sqrt(2/(nrow(fruits)-3)))

FW NW VC KW CW
FW Inf 4.823545 2.964272 4.114632 2.988287
NW 4.823545 Inf 4.673527 5.662620 4.705543
VC 2.964272 4.673527 Inf 4.231079 4.815294
KW 4.114632 5.662620 4.231079 Inf 4.206436
CW 2.988287 4.705543 4.815294 4.206436 Inf

The statistics are then the differences between appropriate values of this matrix.

Z,m[IINW”/”CW”]-Z.m[/lFW’,”’CW,’]

[1] 1.717256

Since this difference is lower than 1.96, we do not reject the null hypothesis at
5% level.

Simple linear regression

Compute the regression

(reg <- Im(NW~FW,data=fruits))

Call:
Im(formula = NW ~ FW, data = fruits)
Coefficients:
(Intercept) FW
94.1086 0.4913

Analysis of variance

anova(reg)
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Analysis of Variance Table

Response: NW

Df  Sum Sq Mean Sq F value Pr(>F)
FW 1 274619 274619 114.27 3.170e-09 ***
Residuals 18 43260 2403

Signif. codes: 0 “** 0.001 “** 0.01 * 0.05 ‘" 0.1 “ ‘1

We reject the null hypopthesis since the F value (114.27) is highly significant.

Plot the points and regression line

plot(fruitsFW, fruits$NW)
abline(reg)

800 -

700 -

fruits $ NW

600

500 -

T T
800 1000 1200 1400 1600
fruits $ FW

Multiple linear regression

Compute the regression and display the results

reg <- Im(CW~FW+NW+VC+KW,data=fruits)
summary(reg)
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Call:
Im(formula = CW ~ FW + NW + VC + KW, data = fruits)
Residuals:
Min 1Q Median 3Q Max
-17.139 -6.489 -1.573 6.736 13.498
Coefficients:

Estimate  Std. Error t value Pr(>|t])
(Intercept) 59.06062 17.55228 3.365 0.00425 **
FW -0.06129 0.03281 -1.868 0.08136
NW 0.26830 0.11631 2.307 0.03575 *
VC 0.11014 0.12429 0.886 0.38950
KW 0.02072 0.13922 0.149 0.88365

Signif. codes: 0 “*** 0.001 “** 0.01 * 0.05 “" 0.1 “ “ 1

Residual standard error: 10.12 on 15 degrees of freedom
Multiple R-Squared: 0.9134, Adjusted R-squared: 0.8903
F-statistic: 39.56 on 4 and 15 DF, p-value: 8.434e-08

The cofficients and tests are identical to those of table 5.5d.

Path-Coefficient Analysis
The path coefficients can be obtained by calling the path.coeff function, which has
to be loaded into R.

path.coeff <- function(model,data){
reg <- Im(model,data)
dim <- length(reg$coeff)-1
m.cor <- cor(reg$model[-1])
f <- function(i) reg$coeff[i+1]*sd(reg$model[,i+1]/sd(reg$model[,1]))
b <- sapply(1:dim,f)
t(m.cor*b)

Compute the path coefficients

path.coeff(CW~FW+NW+VC+KW,data=fruits)
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FW NW VC KW
FW -0.4908291 1.055459 0.1713247 0.03592978
NW -0.4562096 1.135553 0.2055627 0.03884139
VC -0.3772189 1.047116 0.2229240 0.03626035
KW -0.4357440 1.089805 0.1997264 0.04047188

This table is identical to Table 5.7.

Contents of files used in the above computations and readable by R are printed
below:

File 05-2-fruits.txt (data of Table 5.2)

FW NW \Y@ KW CW
1216 662 180 346 172
1445 735 200 383 187
786 466 110 262 157
784 467 110 272 152
750 464 120 262 155
1004 638 190 305 194
838 505 140 279 170
892 560 180 264 165
1019 614 190 321 198
860 486 170 252 158
1060 701 230 362 224
928 569 180 305 194
1568 875 310 429 245
1461 868 300 414 250
1141 686 270 386 209
1170 722 230 400 206
960 548 140 275 162
712 437 120 240 144
1002 532 130 280 174
1183 555 110 286 164
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Appendix VI Basic principles for planning and conducting coconut field
trials

Randomization

Consider an experiment having four treatments 1, 2, 3, and 4 that are to be randomly
allocated among 24 experimental units (say, trees) so that each treatment is replicated
six times.

Complete randomization of the treatments

sample(rep(1:4,each=6))

[11121414143132343422421233

The obtained sequence of treatments can be applied in this order to the experimental
units. Now we consider the same treatments applied to 24 experimental units
grouped in 6 blocks of 4 units.

Randomization of the treatments within blocks

sapply(1:6,function(i) sample(1:4))

[1] [2] [3] [4] [,5] 6]

1 1 2 1 4
3 3 3 1 3 3
4 4 4 3 2 1
1 2 2 4 4 2

Each column of the matrix corresponds to a block and contains the 4 treatments.




Data analysis manual for coconut researchers 193

Appendix VI Basic experimental designs for coconut trials

In the following, we use the function aov to perform the analyses of variance
because data are balanced for all the experiments. In case of unbalanced data, the
function Im would be appropriate.

Completely Randomized Design (CRD)
Load and display data

(crd <- read.table(”07-2-complete-random.txt”, header=T))

treatment percent
1 T1 30.3
2 T1 28.6
3 T1 26.6
4 T1 334
5 T1 344
6 T1 29.7
7 T2 37.0
8 T2 34.7
9 T2 415
10 T2 36.5
11 T2 38.1
12 T2 359
13 T3 -10.2
14 T3 -5.3
15 T3 -13.3
16 T3 -6.8
17 T3 -18.1
18 T3 -22.1
19 T4 -45.3
20 T4 -19.8
21 T4 -9.6
22 T4 -28.9
23 T4 -49.6
24 T4 -35.1
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Perform the analysis and display the analysis of variance table

options(digits=9)
crd.aov <- aov(percent~treatment,data=crd)
anova(crd.aov)

Analysis of Variance Table

Response: percent

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 3 19941.588 6647.196 92.40495 6.825e-12 ***
Residuals 20 1438.710 71.936

Signif. codes: 0 “** 0.001 “** 0.01 *" 0.05 ‘" 01 “ "1

The results are the same as in Table7.4. The p-value Pr(>F) is given directly,
showing that the treatment effects are highly significantly different, so that the
tabular F value is not needed. However, it is easy to obtain this value (F , with
3 and 20 df):

Compute the tabular F value

qf(0.95,3,20)

[1] 3.09839121

This value is the same as in Table 7.4.

Compute the means

model.tables(crd.aov,type="means”

Tables of means
Grand mean

5.94166667

treatment
treatment
T1 T2 T3 T4
30.50 37.28 -12.63 -31.38
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The means of the treatments are the same as in Table 7.2.

R provides several methods of multiple comparisons. One of them is based on
the Studentized range statistic, Tukey’s ‘Honest Significant Difference’” method.

Compute Tukey’s Honest Significant Difference

TukeyHSD(crd.aov)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = percent ~ treatment, data = crd)

$treatment

diff lwr upr
T2-T1 6.78333333 -6.92245426 20.48912093
T3-T1 -43.13333333 -56.83912093 -29.42754574
T4-T1 -61.88333333 -75.58912093 -48.17754574
T3-T2 -49.91666667 -63.62245426 -36.21087907
T4-T2 -68.66666667 -82.37245426 -54.96087907
T4-T3 -18.75000000 -32.45578759 -5.04421241

The results are the differences (diff) between means of treatments along with the
lower (lwr) and upper (upr) bounds. The difference is significant if the interval
[lwr,upr] does not overlap zero. Here all the differences are significant excepted
T2-T1, so that we can order the treatment means as follows:

T4 < T3 < T1 = T2

Randomized Complete Block Design (RCBD)

Load and display data

(rcbd <- read.table(”“07-6-random-block.txt”,header=T))
cultivar block nuts

1 AOT B1 74.95

2 AGT B1 80.18

3 PHOT B1 7091

4 FMS B1 65.49

5 SSG Bl 93.80

6 FJT B1 69.26

7 CCT B1 90.83
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8 JGT Bl
9 LCT Bl
10  AOT B2
11  AGT B2
12 PHOT B2
13 FMS B2
14 SSG B2
15  HT B2
16 CCT B2
17 JGT B2
18 LCT B2
19  AOT B3
20 AGT B3
21  PHOT B3
22 FMS B3
23 SSG B3
24  FT B3
25 CCT B3
26 JGT B3
27 LCT B3

71.11
120.51
54.51
71.13
61.45
55.63
77.65
51.01
78.75
80.13
79.80
62.60
77.80
68.80
58.70
82.60
61.70
85.80
74.60
98.70

Perform the analysis and display the analysis of variance table

rcbd.aov <- aov(nuts~cultivar+block,data=rcbd)
(rcbd.anova <- anova(rcbd.aov))

Analysis of Variance Table
Response: nuts

Df  Sum Sq
Cultivar 8 4267.762
Block 2 896.148
Residuals 16 710.196

Signif. codes:

Mean Sq F value
533.470 12.01855
448.074 10.09466

44.387

0 “** 0.001 “* 0.01 “* 0.05 ‘. 0.1 ‘1

Pr(>F)
1.8870e-05 ***
0.0014599 **

The results are the same as in Table7.8. The p-value Pr(>F) are given directly,
showing that the treatment and block effects are significantly different.

Compute the means

(rcbd.tables <- model.tables(rcbd.aov,type="means”))
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Tables of means
Grand mean

74.7555556

cultivar
cultivar
AGT AOT CCT FJT FMS JGT LCT PHOT SSG
76.37  64.02 85.13 60.66 5994 7528  99.67 67.05 84.68

block
block

B1 B2 B3
81.89 67.78 74.59

The means of the cultivars and of the blocks are the same as in Table 7.6.

Mean comparisons
We first compute the values necessary for comparing the means:

sigma?2 <- rcbd.anova[[3]][3]

r <- rcbd.anova$Df[2]+1 # Number of replicates
t0 <- qt(0.975,rcbd.aov$df.residual)

cd <- t0*sqrt(2*sigma2/r)
print(c(sigma2,r,t0,cd),digits=5)

[1] 44.3873 3.0000 2.1199 11.5319

As we have now the CD (11.5319) we could obtain the groups manually. However
we can load the following function into R in order to print them automatically:

groups <- function(x,cd){
X <- sort(x)
n <- length(x)
m <- sapply(l:nfunction(i) { j <- in ; max(j[x[jl<=x[i]+cd]) })
group.min <- sapply(split(1:n,m),min)
group.max <- as.numeric(names(group.min))
ngroup <- length(group.min)
group <- matrix(“ ”,nrow=n,ncol=ngroup)
for (j in l:ngroup) group[group.min[j]:group.max[jl,j] <- letters[j]
data.frame(x,groups=apply(group,1,paste,collapse=""))
)
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We can now easily print the groups:

print(groups(rcbd.tables$tables$cultivar,cd),digits=4)
X groups
FEMS 59.94 a
FJT 60.66 a
AOT 64.02 ab
PHOT 67.05 abc
JGT 75.28 bed
AGT 76.37 cd
SSG 84.68 d
CCT 85.13 d
LCT 99.67 e

Latin Square Design (LSD)
Load and display data

(Isd <- read.table(“07-9-latin-square.txt”, header=T))
person day cultivar percent
1 Technician-1-AM Day 1 WCT 25
2 Technician-2-AM Day 1 WAT 10
3  Technician-1-PM Day 1 PHOT 85
4 Technician-2-PM Day 1 LCT 65
5  Technician-1-AM Day 2 WAT 25
6  Technician-2-AM Day 2 WCT 40
7 Technician-1-PM Day 2 LCT 70
8 Technician-2-PM Day 2 PHOT 75
9  Technician-1-AM Day 3 PHOT 80
10  Technician-2-AM Day 3 LCT 65
11 Technician-1-PM Day 3 WAT 20
12 Technician-2-PM Day 3 WCT 45
13 Technician-1-AM Day 4 LCT 55
14 Technician-2-AM Day 4 PHOT 85
15  Technician-1-PM Day 4 WCT 30
16 Technician-2-PM Day 4 WAT 20

Perform the analysis and display the analysis of variance table

Isd.aov <- aov(percent~person+day+cultivar,data=Isd)
anova(lsd.aov)
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Analysis of Variance Table

Response: percent

Df Sum Sq Mean Sq F value Pr (>F)
Person 3 67.187 22.396 0.37391 0.77529716
Day 3 129.688 43.229 0.72174 0.57468252
Cultivar 3 9467.187 3155.729  52.68696 0.00010552 ***
Residuals 6 359.375 59.896

Signif. codes: 0 “** 0.001 “** 0.01 * 0.05 ‘" 01 ““ 1

The results are the same as in Table 7.11. The p-value Pr(>F) are given directly,
showing that only the cultivar effects are significantly different.

Compute the means

model.tables(Isd.aov,type="means”
Tables of means
Grand mean
49.6875
person
person
Technician-1-AM Technician-1-PM  Technician-2-AM  Technician-2-PM
46.25 51.25 50.00 51.25
day
day
Day 1 Day?2 Day 3 Day 4
46.25 52.50 52.50 47.50
cultivar
cultivar
LCT PHOT WAT WCT
63.75 81.25 18.75 35.00

The means are computed for person, day, and cultivar (in Table 7.10 either the
means or the sums are computed, according to the factor).




Compute Tukey’s Honest Significant Difference for cultivars
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TukeyHSD(Isd.aov,”cultivar”)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = percent ~ person + day +

cultivar, data = lsd)

$cultivar

diff Iwr upr
PHOT-LCT 17.50 -1.44410813 36.44410813
WAT-LCT -45.00 -63.94410813 -26.05589187
WCT-LCT -28.75 -47.69410813 -9.80589187
WAT-PHOT -62.50 -81.44410813 -43.55589187
WCT-PHOT -46.25 -65.19410813 -27.30589187
WCT-WAT 16.25 -2.69410813 35.19410813

According to theses results, the cultivars can be ordered as follows:

WAT = WCT < LCT = PHOT

Contents of files used in the previous computations and readable by R are printed
below:

File 07-2-complete-random.txt (data of Table 7.2)

treatment  percent
T1 30.3
T1 28.6
T1 26.6
T1 33.4
T1 34.4
T1 29.7
T2 37.0
T2 34.7
T2 41.5
T2 36.5
12 38.1
T2 35.9
T3 -10.2
T3 -5.3
T3 -13.3
T3 -6.8
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T3 -18.1
T3 -22.1
T4 -45.3
T4 -19.8
T4 -9.6
T4 -28.9
T4 -49.6
T4 -35.1

File 07-6-random-block.txt (data of Table 7.6)

cultivar block nuts
AQOT B1 74.95
AGT B1 80.18
PHOT B1 70.91
FMS B1 65.49
SSG Bl 93.80
FJT B1 69.26
CCT B1 90.83
JGT B1 71.11
LCT B1 120.51
AQOT B2 54.51
AGT B2 71.13
PHOT B2 61.45
FMS B2 55.63
SSG B2 77.65
FJT B2 51.01
CCT B2 78.75
JGT B2 80.13
LCT B2 79.80
AQOT B3 62.60
AGT B3 77.80
PHOT B3 68.80
FMS B3 58.70
SSG B3 82.60
FJT B3 61.70
CCT B3 85.80
JGT B3 74.60

LCT B3 98.70




File 07-9-latin-square.txt (data of Table 7.9)
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person

Technician-1-AM
Technician-2-AM
Technician-1-PM
Technician-2-PM
Technician-1-AM
Technician-2-AM
Technician-1-PM
Technician-2-PM
Technician-1-AM
Technician-2-AM
Technician-1-PM
Technician-2-PM
Technician-1-AM
Technician-2-AM
Technician-1-PM
Technician-2-PM

day

“Day 1”
“Day 1”
“Day 1”
“Day 1”
“Day 2”
“Day 2”
“Day 2”
“Day 2”
“Day 3”
“Day 3”
“Day 3”
“Day 3”
“Day 4”
“Day 4”
“Day 4”
“Day 4”

cultivar

WCT
WAT
PHOT
LCT
WAT
WCT
LCT
PHOT
PHOT
LCT
WAT
WCT
LCT
PHOT
WCT
WAT

percent

25
10
85
65
25
40
70
75
80
65
20
45
55
85
30
20
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Appendix VII: Experimental designs for coconut trials with modified
blocking

Balanced Incomplete Block Design (BIBD)
Load and display data

203

bibd <- read.table(“08-1-bibd.txt” header=T)

bibd$block <- as.factor(bibd$block)

bibd

block treatment seedlings

1 1 P7 40
2 1 P5 55
3 1 P4 65
4 2 P3 72
5 2 P5 58
6 2 P6 25
7 3 P5 63
8 3 P2 58
9 3 P1 67
10 4 P9 41
11 4 P3 80
12 4 P4 61
13 5 P5 52
14 5 P8 71
15 5 P9 49
16 6 P8 78
17 6 P7 46
18 6 P6 33
19 7 P8 69
20 7 P3 71
21 7 P2 61
22 8 P9 38
23 8 P1 70
24 8 P6 36
25 9 P9 34
26 9 P7 41
27 9 P2 52
28 10 P2 58
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29 10 P4 68
30 10 P6 41
31 11 P3 74
32 11 p7 44
33 11 P1 71
34 12 P8 77
35 12 P1 61
36 12 P4 68

Perform the analysis and display the analysis of variance table

The first line defines the contrasts necessary for the computation of the adjusted
means. Note that the order of the terms in the model seedlings~block+treatment is
important: the block sum of squares is computed first, then the adjusted treatment
sum of squares is computed. The model seedlings~ treatment+ block would give a
different analysis.

i

options(contrasts=c(“contr.sum”,”contr.poly”))
bibd.aov <- aov(seedlings~block+treatment,data=bibd)
(bibd.anova <- anova(bibd.aov))

Analysis of Variance Table

Response: seedlings

Df Sum Sq Mean Sq F value Pr(>F)
Block 11 2037.556 185.232 7.77501 0.00015680 ***
Treatment 8  5254.815 656.852 27.57093 5.9991e-08 ***
Residuals 16 381.185 23.824

Signif. codes: 0 “** 0.001 “** 0.01 *" 0.05 ‘" 01 ‘1

The results are the same as in Table 8.3. The p-value Pr(>F) is given directly,
showing that the treatment and block effects are highly significantly different.

Compute the adjusted means
The effects of the factors are stored in bibd.aov and can be easily recovered:

(co <- coef(bibd.aov))




Data analysis manual for coconut researchers

205

(Intercept) block1 block2 block3 block4
56.888888889  -2.074074074 -3.555555556 2.333333333 0.222222222
block5 blocké block?7 block8 block9
-0.259259259 2.444444444 -1.629629630 1.370370370 -5.111111111
block10 block11 treatmentl treatment?2 treatment3
4.074074074 1.518518519 8.888888889 0.444444444  18.222222222
treatment4 treatment5 treatment6 treatment? treatment8

7.888888889 1.000000000  -24.222222222 -13.333333333  16.555555556

Note that only 11 block effects and 8 treatment effects are computed. Because we
have defined the contrasts as “contr.sum”, the 9 treatment effects sum to 0 so that
the 9™ treatment effect is minus the sum of the first 8. The adjusted means can
then be computed as follows, adding the intercept co[1] to the treatment effects:

co.treatment <- co[bibd.aov$assign==2]
effects.treatment <- c(co.treatment,-sum(co.treatment))
adjusted.means <- co[l]+effects.treatment
names(adjusted.means) <- levels(bibd$treatment)
print(sort(adjusted.means),digits=5)

P6 P9 pP7 P2 P5 P4 P1 P8
32.667 41444  43.556 57.333 57.889 64.778 65.778 73.444

P3
75.111

The means of the treatments are the same as in Table 8.4.

Mean comparisons
We first compute the values necessary for comparing the means:

sigma2 <- bibd.anoval[3]][3]

b <- bibd.anova$Df[1]+1 # Number of blocks

v <- bibd.anova$Df[2]+1 # Number of treatments
r <- nrow(bibd)/v # Number of replicates

k <- nrow(bibd)/b

lambda <- r*(k-1)/(v-1) # Not necessarily 1

t0 <- qt(0.975,bibd.aov$df.residual)

cd <- t0*sqrt(2*k*sigma2/lambda/v)
print(c(sigma2,b,v,r,k,lambda,t0,cd),digits=5)

[1] 23.8241 12.0000 9.0000 4.0000 3.0000 1.0000 2.1199 8.4485
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As we have now the CD (8.4485) we could obtain the groups manually. However
we can load the following function into R in order to print them automatically:

groups <- function(x,cd){
X <- sort(x)
n <- length(x)
m <- sapply(linfunction(i) { j <- in ; max(j[x[j]<=x[i]+cd]) })
group.min <- sapply(split(1:n,m)min)
group.max <- as.numeric(names(group.min))
ngroup <- length(group.min)
group <- matrix(“ “,nrow=n,ncol=ngroup)
for (j in l:ngroup) group|[group.minfj]:group.max[jl,j] <- letters][j]
data.frame(x,groups=apply(group,1,paste,collapse=""))
)

We can now easily print the groups:

print(groups(adjusted.means,cd),digits=5)

X groups
Pe 32.667 a

P9 41.444 b

pP7 43.556 b

P2 57.333 c

P5 57.889 c

P4 64.778 c

P1 65.778 cd

P8 73.444 de

P3 75.111 e

Augmented Block Designs

Load and display data

augmented <- read.table(“08-1-augmented.txt” header=T)
augmented$block <- as.factor(augmented$block)
augmented

block treatment type wax
1 1 H8 test 74
2 1 LCT x GBGD check 78
3 1 WCT check 78
4 1 H3 test 70
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5 1 WCT x COD check 83
6 1 COD x WCT check 77
7 1 H7 test 75
8 2 WCT check 91
9 2 COD x WCT check 81
10 2 WCT x COD check 79
11 2 LCT x GBGD check 81
12 2 H1 test 79
13 2 H5 test 78
14 3 H4 test 96
15 3 LCT x GBGD check 87
16 3 WCT x COD check 92
17 3 H2 test 89
18 3 WCT check 81
19 3 COD x WCT check 79
20 3 Heé6 test 82

Note that a column type has been included in the data in order to distinguish
between test and check treatments.

In order to perform the analysis, we need that the check levels of the factor treatment
appear first in the list of levels. Unfortunately, the levels appear naturally in
alphabetical order:

levels (augmented$treatment)

[l] IICOD X WCTI/ IIHll/ IIH21/ IIH3/I IIH4/I
[6] IIH5/I IIH6I/ IIH7I/ IIH8/I IILCT X G‘BGD/I
[11] “WCT” “WCT x COD”

We can reorder the levels by the following method. First, we load the recode function
into R:

recode <- function(x,or){
new.x <- factor(match(as.numeric(x),or))
levels(new.x) <- levels(x)[or]
new.x

}
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Then we apply the recode function to the data:

checks <-
as.character(unique(augmented$treatment[augmented$type=="check”]))
or <- order(ifelse(levels(augmented$treatment)%in%checks,1,2))
augmented$treatment <- recode(augmentedS$treatment,or)

We can check that the levels are now reordered:

levels (augmented$treatment)

[1] “COD x WCT” “LCT x GBGD” “WCT” “WCT x COD” “H1”
[6] 1IH2// 1IH3// 1IH4// 1IH5// 1IH6/I
[11] /IH7/I IIH8I/

Perform the analysis and display the analysis of variance table
The first line defines the contrasts necessary to the analysis.

i

options(contrasts=c(“contr.helmert”,”contr.poly”))

augmented.aov <- aov(wax~block+treatment,data=augmented)

df.check <- length(checks)-1

df.treatment <- length(levels(augmented$treatment))-1
summary(augmented.aov,split=list(treatment=list(Check=1:df.check,”Test and test
vs. check”=(df.check+1):df.treatment)))

Df Sum Sq Mean Sq F value Pr(>F)

Block 2 360.0714 180.0357 6.67486 0.029815*
Treatment 11 285.0952  25.9177 0.96091 0.549918
Treatment: Check 3 529167 17.6389 0.65396 0.609172
Treatment: Test and test vs.check 8 232.1786  29.0223 1.07601 0.477925
Residuals 6 161.8333 26.9722

Signif. codes: 0 “*** 0.001 “** 0.01 * 0.05 " 0.1 “ “ 1

The results are the same as in Table 8.7a. The p-values Pr(>F) are given directly,
showing a block effect but no treatment effect.

Compute adjusted effects
Adjusted effects for both check treatments and test treatments are computed using

the same commands as for BIBD.
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anis

options(contrasts=c(“contr.sum”,”contr.poly”))

augmented.aov <- aov(wax~block+treatment,data=augmented)
co <- coef(augmented.aov)

co.treatment <- co[augmented.aov$assign==2]
effects.treatment <- c(co.treatment, -sum(co.treatment))
names(effects.treatment) <- levels(augmented$treatment)
print(data.frame(effects.treatment),digits=5)

effects.treatment

COD x WCT -2.0625
LCT x GBGD 0.9375
WCT 2.2708
WCT x COD 3.6042
H1 -2.8125
H2 5.4375
H3 -7.8125
H4 12.4375
H5 -3.8125
He6 -1.5625
H7 -2.8125
H8 -3.8125

The overall adjusted mean is in co[1]:

co[1]

(Intercept)
81.0625

Adjusted block effects are computed using similar commands:

co.block <- colaugmented.aov$assign==1]
effects.block <- c(co.block, -sum(co.block))
names(effects.block) <- levels(augmented$block)
print(data.frame(effects.block),digits=5)

effects.block
1 -3.25
2 0.75

3 2.50
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Mean comparisons
We first compute the values necessary for comparing the means:

augmented.anova <- anova(augmented.aov)

sigma2 <- augmented.anoval[3]][3]

r <- augmented.anova$Df[1]+1 # Number of blocks
¢ <- length(checks) # Number of check treatments
t0 <- qt(0.975,augmented.aov$df.residual)

cd.test <- t0*sqrt(sigma2*(1+1/r+1/c+1/r/c))
cd.check <- t0*sqrt(2*sigma2/r)
print(c(sigma2,r,c,t0,cd.test,cd.check),digits=4)

[1] 26.972 3.000 4.000 2.447 16.406 10.376

Means have not to be compared since F tests are not significant. However, for
demonstration, let us use the function groups
1) for check treatments

print(groups(co[1]+effects.treatment[1:(df.check+1)],cd.check),digits=5)

X groups
COD x WCT 79.000 a
LCT x GBGD 82.000 a
WCT 83.333 a
WCT x COD 84.667 a

2) for test treatements

print(groups(co[1]+effects.treatment[(df.check+2):(df.treatment+1)],cd.test),digits=5)

X groups

H3 73.25 a

H5 77.25 ab
H8 77.25 ab
H1 78.25 ab
H7 78.25 ab
Heé 79.50 ab
H2 86.50 ab

H4 93.50 b
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The 2 groups of test treatments are not to be considered since the F test is not
significant.

Compute the anova of treatments ignoring blocks
This anova requires a particular set of contrasts. The following function, which
has to be loaded into R, will be used to obtained the appropriate contrasts:

contr.augmented <- function(nl,n2){
ml <- contr.helmert(nl)
m2 <- contr.helmert(n2)
ml10 <- cbind(m1,matrix(0,nrow(m1),ncol(m2)))
m02 <- cbind(matrix(0,nrow(m2),ncol(m1)),m2)
rbind(m10,m02)

}

The analysis can now be easily computed:

contrasts(augmented$treatment) <- contr.augmented(df.check+1,df.treatment-
df.check)

augmented.aov <- aov(wax~treatment+block,data=augmented)
summary(augmented.aov,split=list(treatment=list(Check=1:df.check,
Test=(df.check+1):(df.treatment-1),”Test vs. check”=df.treatment)))

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 11 575.6667 52.3333 1.94027 0.21468
Treatment: Check 3 52.9167 17.6389 0.65396  0.60917
Treatment: Test 7  505.8750 72.2679 2.67934  0.12526
Treatment: Test vs. check 1 16.8750 16.8750 0.62564  0.45907

Block 2 69.5000 34.7500 1.28836 0.34236

Residuals 6 161.8333 26.9722

The results are the same as in Table 8.7b.

Contents of files used in the above computations and readable by R are printed
below:
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File 08-1-bibd.txt (data of Table 8.1)

block treatment seedlings
1 P7 40
1 P5 55
1 P4 65
2 P3 72
2 P5 58
2 P6 25
3 P5 63
3 P2 58
3 P1 67
4 P9 41
4 P3 80
4 P4 61
5 P5 52
5 P8 71
5 P9 49
6 P8 78
6 P7 46
6 P6 33
7 P8 69
7 P3 71
7 P2 61
8 P9 38
8 P1 70
8 P6 36
9 P9 34
9 P7 41
9 P2 52
10 P2 58
10 P4 68
10 P6 41
11 P3 74
11 P7 44
11 P1 71
12 P8 77
12 P1 61
12 P4 68
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File 08-1-augmented.txt (data of Figure 8.1)

block treatment type wax
1 “H8” test 74
1 “LCT x GBGD” check 78
1 “WCT” check 78
1 “H3” test 70
1 “WCT x COD” check 83
1 “COD x WCT” check 77
1 “H7” test 75
2 “WCT” check 91
2 “COD x WCT” check 81
2 “WCT x COD” check 79
2 “LCT x GBGD” check 81
2 “H1” test 79
2 “H5"” test 78
3 “H4” test 96
3 “LCT x GBGD” check 87
3 “WCT x COD” check 92
3 “H2” test 89
3 “WCT” check 81
3 “COD x WCT” check 79
3 “He6” test 82
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Appendix IX: Experimental designs for multiple factors

Factorial experiments

Load and display data

(factorial <- read.table(”“09-1-factorial.txt”, header=T))

block irrigation fertilizer yield

1 Bl I1 F2 60
2 Bl 12 FO 55
3 Bl 10 F2 64
4 B1 I1 FO 63
5 B1 10 FO 53
6 B1 12 F2 71
7 Bl I1 F1 66
8 Bl 12 F1 65
9 Bl 10 F1 64
10 B2 I1 F1 58
11 B2 I1 F2 71
12 B2 10 F2 58
13 B2 12 F2 65
14 B2 12 FO 53
15 B2 10 F1 54
16 B2 10 FO 52
17 B2 12 F1 58
18 B2 I1 FO 59
19 B3 12 F2 67
20 B3 10 F2 61
21 B3 12 FO 60
22 B3 I1 F1 67
23 B3 I1 F2 68
24 B3 10 FO 45
25 B3 12 F1 58
26 B3 I1 FO 63
27 B3 10 F1 59

Perform the analysis and display the analysis of variance table

factorial.aov <- aov(yield~block+irrigation*fertilizer,data=factorial)
(factorial.anova <- anova(factorial.aov))
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Response: yield

Df
Block 2
Irrigation 2
Fertilizer 2

Irrigation:fertilizer 4
Residuals 16

Signif. codes:

Analysis of Variance Table

Sum Sq
61.4074
241.4074
375.4074
72.1481
245.9259

Mean Sq F value
30.7037 1.99759
120.7037 7.85301
187.7037 12.21205
18.0370 1.17349
15.3704

0 “** 0.001 “* 0.01 “* 0.05 . 0.1 * ‘1

Pr(>F)
0.16809593
0.00420558 **
0.00060233 ***
0.35944206

The results are the same as in Table 9.2. The main effects of Irrigation and Fertilizer
are significantly different. The interaction between these two factors is not significant.

Compute the means

options(digits=4)

model.tables(factorial.aov,type="means”)$tables

$”Grand mean”

[1] 60.63
$block
block
Bl B2
62.33 58.67
$irrigation
irrigation
10 11
56.67 63.89
$fertilizer
fertilizer
Fo F1
55.89 61.00
$”irrigation:fertilizer”
fertilizer
irrigation FO F1
10 50.00 59.00
11 61.67 63.67
12 56.00 60.33

B3
60.89

12
61.33

F2
65.00

F2
61.00
66.33
67.67
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The means are computed for the blocks and for the different levels of irrigation,
fertilizer, and irrigation:fertilizer. These results correspond to Table 9.1, in which
only the totals are computed.

Compute the CD (5%) for comparing Irrigation levels
Some values stored in factorial.anova can be accessed by their position in the model
(1 for block, 3 for fertilizer, and 5 for error)

b <- factorial.anova$Df[1]+1 # Number of blocks

f <- factorial.anova$Df[3]+1 # Number of fertilizer levels
sigma2 <- factorial.anova$”Mean Sq”[5] # Error mean square
t0 <- qt(0.975 factorial.aov$df.residual)

cd <- t0*sqrt(2*sigma2/b/f)

c(t0,sigma2,b,f,cd)

[1] 2.120 15.370 3.000 3.000 3.918

Perform the analysis and display the analysis of variance table with
linear (L) and quadratic (Q) contrasts

As the levels of irrigation and fertilizer are quantitative, their effects can be
interpreted with contrasts. For example, consider the set of linear and quadratic
contrasts (polynomial contrasts).

options(digits=9)

contrasts(factorial$irrigation) <- contr.poly(3)
contrasts(factorial$fertilizer) <- contr.poly(3)

factorial.aov <- aov(yield~block+irrigation*fertilizer,data=factorial)
summary(factorial.aov,split=list(irrigation=list(L=1,Q=2),
fertilizer=list(L=1,Q=2)),expand.split=F)

Df Sum Sq Mean Sq F value Pr(>F)

Block 2 61.4074 30.7037 1.99759 0.16809593
Irrigation 2 241.4074 120.7037 7.85301 0.00420558 **

Irrigation: L 1 98.0000 98.0000 6.37590 0.02250901 *

Irrigation: Q 1 143.4074 143.4074 9.33012 0.00756683 **
Fertilizer 2 375.4074 187.7037 12.21205 0.00060233 ***

Fertilizer: L 1 373.5556 373.5556 24.30361 0.00015079 ***

Fertilizer: Q 1 1.8519 1.8519 0.12048 0.73303591
Irrigation:Fertilizer 4 72.1481 18.0370 1.17349 0.35944206
Residuals 16  245.9259 15.3704

Signif. codes: 0 “** 0.001 “** 0.01 * 0.05 ‘" 01 ‘1
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The 2 degrees of freedom of irrigation and fertilizer are split into a linear and
a quadratic component, both with 1 df. For irrigation, both linear and quadratic
effects are significant, indicating significant differences 12-10 and (I0+12)/2-I1. For
fertilizer, only the linear effect is significant, indicating a purely linear response
to fertilizer.

Split Plot Design
Load and display data

(splitplot <- read.table(“09-3-splitplot.txt”,header=T))

main block irrigation fertilizer yield

1 P1 B1 10 FO 15.9
2 P1 B1 10 F1 21.1
3 P1 B1 10 F2 18.0
4 P2 B1 11 FO 14.8
5 P2 B1 11 F1 19.3
6 P2 B1 11 F2 17.3
7 P3 B1 12 FO 8.1
8 P3 B1 12 F1 15.1
9 P3 B1 12 F2 15.8
10 P4 B2 10 FO 15.2
11 P4 B2 10 F1 20.0
12 P4 B2 10 F2 19.7
13 P5 B2 11 FO 14.0
14 P5 B2 I1 F1 18.6
15 P5 B2 I1 F2 15.8
16 P6 B2 12 FO 7.2
17 P6 B2 12 F1 12.7
18 P6 B2 12 F2 12.3
19 P7 B3 10 FO 13.8
20 pP7 B3 10 F1 19.2
21 pP7 B3 10 F2 17.1
22 P8 B3 I1 FO 15.0
23 P8 B3 11 F1 18.2
24 P8 B3 11 F2 18.5
25 P9 B3 12 FO 94
26 P9 B3 12 F1 14.4
27 P9 B3 12 F2 16.0

Note that a column main has been included in the data in order to identify the
main plots.
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Perform the analysis and display the analysis of variance table

splitplot.aov <-
aov(yield~block+fertilizer*irrigation+Error(main),data=splitplot)summary(splitplot.aov)

Error: main

Df Sum Sq Mean Sq F value Pr(>F)
Block 2 5.54296 2.77148 0.81920 0.503278
Irrigation 2 152.35185 76.17593  22.51628 0.006655 **
Residuals 4 13.53259 3.38315

Signif. codes: 0 “** 0.001 “** 0.01 * 0.05 ‘" 01 ‘1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
Fertilizer 2 129.07630 64.53815 103.10828 2.7654e-08 ***
Fertilizer:Irrigation 4 13.59259 3.39815 5.42899 0.009888 **
Residuals 12 751111 0.62593

Signif. codes: 0 “** 0.001 “** 0.01 * 0.05 ‘" 01 ‘1

The results are the same as in Table 9.5. The main effects of Irrigation and Fertilizer
are significantly different. The interaction between these two factors is also significant.

Compute the means

options(digits=4)
model.tables(splitplot.aov,type="means”)$tables
$”Grand mean”
[1] 15.65
$block
block
B1 B2 B3
16.16 15.06 15.73
Sfertilizer
fertilizer
FO F1 F2
12.60 17.62 16.72
$irrigation
irrigation
I0 I1 12
17.78 16.83 12.33
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$”fertilizer:irrigation”
irrigation
fertilizer 10 I1 12
FO 14.967 14.600 8.233
F1 20.100 18.700 14.067
F2 18.267 17.200 14.700

The means are computed for the blocks and for the different levels of irrigation,
fertilizer, and irrigation:fertilizer. These results correspond to Table 9.6.

In order to compute the CDs (5%), some values have to be extracted from main
plot and subplot anovas.

Extract values from main plot anova

splitplot.anova.main <- unlist(summary(splitplot.aov$main))

r <- splitplot.anova.main[“Df1”]+1 # Number of blocks

a <- splitplot.anova.main[“Df2”]+1 # Number of irrigation levels
df.main <- splitplot.anova.main[“Df3”] # df of main plot error
sigma2.main <- splitplot.anova.main[“Mean Sq3”] # main plot error
tl <- qt(0.975,df.main)

as.numeric(c(r,a,df main,sigma2.main,t1))

[1] 3.000 3.000 4.000 3.383 2.776

Extract values from subplot anova

splitplot.anova.subplot <- unlist(summary(splitplot.aov$Within))

b <- splitplot.anova.subplot[“Df1”]+1 # Number of fertilizer levels
df.subplot <- splitplot.anova.subplot[“Df3”] # df of subplot error
sigma2.subplot <- splitplot.anova.subplot[“Mean Sq3”] # subplot error
t2 <- qt(0.975,df.subplot)

as.numeric(c(b,df.subplot,sigma2.subplot,t2))

[1] 3.0000 12.0000 0.6259 2.1788
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Compute the CDs

cd.main <- tl*sqrt(2*sigma2.main/b/r)

cd.subplot <- t2*sqrt(2*sigma2.subplot/a/r)

t <- ((b-1)*t2*sigma2.subplot+t1*sigma2.main)/((b-1)*sigma2.subplot +sigma2.main)
cd.main.subplot <- t*sqrt(2*((b-1)*sigma2.subplot+sigma2.main)/b/r)
cd.subplot.main <- t2*sqrt(2*sigma2.subplot/r)
as.numeric(c(cd.main,cd.subplot,cd.main.subplot,cd.subplot.main))

[1] 2.4074 0.8126 2.6540 1.4075

Strip Plot Design

Load and display data

(stripplot <- read.table(“09-7-stripplot.txt” header=T))

mainl main2 fertilizer cultivar irrigation block nuts
1 P1 Q1 F1 C1 R B1 77
2 P1 Q2 F1 C1 I B1 91
3 P2 Q1 F1 C2 R B1 44
4 P2 Q2 F1 C2 I B1 115
5 P3 Q1 F1 C3 R B1 64
6 P3 Q2 F1 C3 I B1 76
7 P4 Q1 F2 C1 R B1 111
8 P4 Q2 F2 C1 I Bl 115
9 pP5 Q1 F2 C2 R Bl 139
10 P5 Q2 F2 C2 I Bl 171
11  Pe Q1 F2 C3 R Bl 100
12 Peé Q2 F2 C3 I Bl 116
13 P7 Q1 F3 C1 R Bl 131
14 P7 Q2 F3 C1 I Bl 133
15 P8 Q1 F3 C2 R Bl 178
16 P8 Q2 F3 C2 I Bl 154
17 P9 Q1 F3 C3 R Bl 147
18 P9 Q2 F3 C3 I Bl 133
19 P10 Q3 F1 C1 R B2 63
20 P10 Q4 F1 C1 I B2 114
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21 P11 Q3 F1 C2 R B2 92
22 Pl Q4 F1 C2 I B2 109
23 P12 Q3 F1 C3 R B2 61
24 P12 Q4 F1 C3 I B2 113
25 P13 Q3 F2 C1 R B2 98
26 P13 Q4 F2 C1 I B2 153
27 Pl4 Q3 F2 C2 R B2 113
28 Pl4 Q4 F2 C2 I B2 123
29 P15 Q3 F2 C3 R B2 118
30 P15 Q4 F2 C3 I B2 141
31 P16 Q3 F3 C1 R B2 123
32 P16 Q4 F3 C1 I B2 132
33 P17 Q3 F3 C2 R B2 114
34 P17 Q4 F3 C2 I B2 171
35 P18 Q3 F3 C3 R B2 101
36 P18 Q4 F3 C3 I B2 177
37 P19 Q5 F1 C1 R B3 132
38 P19 Q6 F1 C1 I B3 128
39 P20 Q5 F1 C2 R B3 92
40 P20 Q6 F1 C2 I B3 122
41 P21 Q5 F1 C3 R B3 105
42 P21 Q6 F1 C3 I B3 141
43 P22 Q5 F2 C1 R B3 118
44 P22 Q6 F2 C1 I B3 119
45 P23 Q5 F2 C2 R B3 167
46 P23 Q6 F2 C2 I B3 151
47 P24 Q5 F2 C3 R B3 138
48 P24 Q6 F2 C3 I B3 134
49 P25 Q5 F3 C1 R B3 133
50 P25 Q6 F3 C1 I B3 162
51 P26 Q5 F3 C2 R B3 144
52 P26 Q6 F3 C2 I B3 167
53 P27 Q5 F3 C3 R B3 93
54 P27 Q6 F3 C3 I B3 145

Note that two columns have been included in the data. The column mainl identifies
the main plots with same fertilizer x cultivar combinations within blocks; the column
main2 identifies the main plots with same irrigation levels within blocks.
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The analysis of variance is computed in 3 steps.

Step 1. Analysis of variance of treatment combinations

options(digits=9)

stripplot.aovl <-
aov(nuts~block+fertilizer:cultivar+Error(mainl),data=stripplot)
summary(stripplot.aov1)[[1]]

Df Sum Sq Mean Sq F value Pr(>F)
Block 2 3031.148 1515.574 3.06453  0.0746888 .
Fertilizer:Cultivar 8 22977370  2872.171 5.80761  0.0014138 **
Residuals 16 7912.852 494.553

Signif. codes: 0 “** 0.001 “** 0.01 * 0.05 ‘" 01 ‘1

Step 2. Analysis of variance of irrigation

stripplot.aov2 <- aov(nuts~block+irrigation+Error(main2),data=stripplot)
anova(stripplot.aov2[[2]])

Analysis of Variance Table

Response: nuts

Df  Sum Sq Mean Sq F value Pr(>F)
Irrigation 1 6890.741 6890.741 7.55272 0.11082
Residuals 2 1824.704 912.352

Step 3. Analysis of variance of treatment by irrigation

stripplot.aov3 <- aov(nuts~block+irrigation+fertilizer:cultivar +irrigation:fertilizer:
cultivar+block:irrigation+block:fertilizer:cultivar,data=stripplot)
anova(stripplot.aov3)[c(5,7),]

Analysis of Variance Table

Response: nuts

Df Sum Sq Mean Sq F value Pr(>F)
Irrigation:Fertilizer:Cultivar 8 1588.926  198.616 0.54058 0.80947
Residuals 16 5878.630 367.414
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The results of the 3 steps are the same as in Table 9.8.

Compute the means

223

options(digits=4)
model.tables(stripplot.aov3,type="means”)$tables[1:4]

$”Grand mean”

[1] 122.3
$block
block
Bl B2 B3
116.4 117.6 132.8
$irrigation
irrigation
I R
133.6 111.0
$”fertilizer:cultivar”
cultivar
fertilizer C1 C2 C3

F1 100.83 95.67 93.33
F2 119.00  144.00 124.50
F3 135.67  154.67  132.67

Compute the CD (5%) for treatment combinations

stripplot.anoval <- unlist(summary(stripplot.aov1)[[1]])

df.mainl <- stripplot.anoval[“Df3”] # df of mainl plot error
sigma2.mainl <- stripplot.anoval[“Mean Sq3”] # mainl plot error
tl <- qt(0.975,df.mainl)

stripplot.anova2 <- unlist(summary(stripplot.aov2)[[1]])

r <- stripplot.anova2[“Df1”]+1 # Number of blocks

b <- stripplot.anova2[“Df2”]+1 # Number of levels of irrigation
cd.mainl <- t1*sqrt(2*sigma2.mainl/r/b)
as.numeric(c(r,b,df.main1,sigma2.mainl,tl,cd.mainl))

[1] 3.00 200 16.00 49455 212 27.22
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Contents of files used in the above computations and readable by R are printed
below:

File 09-1-factorial.txt (data of Fig. 9.1)

block irrigation fertilizer yield
Bl 11 F2 60
Bl 12 FO 55
B1 10 F2 64
B1 I1 FO 63
B1 10 FO 53
Bl 12 F2 71
Bl 11 F1 66
Bl 12 F1 65
B1 10 F1 64
B2 I1 F1 58
B2 I1 F2 71
B2 10 F2 58
B2 12 F2 65
B2 12 FO 53
B2 I0 F1 54
B2 10 FO 52
B2 12 F1 58
B2 11 FO 59
B3 12 F2 67
B3 10 F2 61
B3 12 FO 60
B3 I1 F1 67
B3 I1 F2 68
B3 10 FO 45
B3 12 F1 58
B3 I1 FO 63
B3 10 F1 59
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File 09-3-splitplot.txt (data of Table 9.3)
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main block irrigation  fertilizer yield
P1 Bl 10 FO 15.9
P1 Bl 10 F1 211
P1 Bl 10 F2 18.0
P2 Bl I1 FO 14.8
P2 Bl I1 F1 19.3
P2 Bl I1 F2 17.3
P3 Bl 12 FO 8.1
P3 Bl 12 F1 15.1
P3 B1 12 F2 15.8
P4 B2 10 FO 15.2
P4 B2 10 F1 20.0
P4 B2 10 F2 19.7
P5 B2 I1 FO 14.0
P5 B2 I1 F1 18.6
P5 B2 I1 F2 15.8
pPé6 B2 12 FO 7.2
pPé6 B2 12 F1 12.7
pPé6 B2 12 F2 12.3
P7 B3 10 FO 13.8
p7 B3 I0 F1 19.2
p7 B3 I0 F2 17.1
P8 B3 I1 FO 15.0
P8 B3 I1 F1 18.2
P8 B3 I1 F2 18.5
P9 B3 12 FO 9.4
P9 B3 12 F1 14.4
P9 B3 2 F2 16.0
File 09-7-stripplot.txt (data of Table 9.3)
mainl  main2 fertilizer  cultivar irrigation block nuts
P1 Q1 F1 C1 R Bl 77
P1 Q2 F1 C1 I Bl 91
P2 Q1 F1 C2 R Bl 44
P2 Q2 F1 C2 I Bl 115
P3 Q1 F1 C3 R Bl 64
P3 Q2 F1 C3 I Bl 76
P4 Q1 F2 C1 R Bl 111
P4 Q2 F2 C1 I Bl 115
P5 Q1 F2 C2 R Bl 139
P5 Q2 F2 C2 I Bl 171
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pPé6

pPé6

P7

P7

P8

P8

P9

P9

P10
P10
P11
P11
P12
P12
P13
P13
P14
P14
P15
P15
P16
P16
P17
P17
P18
P18
P19
P19
P20
P20
P21
P21
P22
P22
P23
P23
P24
P24
P25
P25
P26
P26
P27
P27

Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q3
Q4
Q3
Q4
Q3
Q4
Q3
Q4
Q3
Q4
Q3
Q4
Q3
Q4
Q3
Q4
Q3
Q4
Q5
Q6
Q5
Q6
Q5
Qo6
Q5
Qo6
Q5
Q6
Q5
Q6
Q5
Q6
Q5
Q6
Q5
Qo6

F2
F2
F3
F3
F3
F3
F3
F3
F1
F1
F1
F1
F1
F1
F2
F2
F2
F2
F2
F2
F3
F3
F3
F3
F3
F3
F1
F1
F1
F1
F1
F1
F2
F2
F2
F2
F2
F2
F3
F3
F3
F3
F3
F3

C3
C3
C1
C1
C2
C2
C3
C3
C1
C1
C2
C2
C3
C3
C1
C1
C2
C2
C3
C3
C1
C1
C2
C2
C3
C3
C1
C1
C2
C2
C3
C3
C1
C1
C2
C2
C3
C3
C1
C1
C2
C2
C3
C3

AT AT AT AT AT AT AT AT AT AT R R RT AT AT RT AT AT AT RTRATR

B1
B1
B1
B1
B1
B1
B1
B1
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3
B3

100
116
131
133
178
154
147
133

63
114

92
109

61
113

98
153
113
123
118
141
123
132
114
171
101
177
132
128

92
122
105
141
118
119
167
151
138
134
133
162
144
167

93
145
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Appendix X: Analysis of multilocation trials

Read and display data

(multiloc <- read.table(“10-4-multiloc.txt”, header=T))

NOT = WD P-

91
92
93
94
95
96

location

Location-1
Location-1
Location-1
Location-1
Location-1
Location-1

Location-4
Location-4
Location-4
Location-4
Location-4
Location-4

genotype
LCT

LCT
LCT
LCT
CCT
CCT

FJT
FT

IMT
IMT
IMT
JMT

rep

rep-1
rep-2
rep-3
rep-4
rep-1
rep-2

rep-3
rep-4
rep-1
rep-2
rep-3
rep-4

yield
40.6
77.0
24.5
52.5
58.4
75.7

76.2
84.4
102.6
110.3
108.8
92.1

(See complete data below)

Analysis of variance

options(digits=9)

anova(multiloc.aov)

multiloc.aov <- aov(yield~genotype*location+rep%in%location,data=multiloc)

Response: yield

Df
Genotype 5
Location 3
Genotype:Location 15
Location:rep 12
Residuals 60

Signif. codes:

Analysis of Variance Table

Sum Sq
10201.14
36220.33
17279.46

7814.59
12468.05

Mean Sq
2040.23
12073.44
1151.96
651.22
207.80

F value
9.81819
58.10105
5.54360
3.13385

0 “* 0001 “* 0.01 “* 0.05 ‘" 0.1 ‘1

Pr(>F)
6.8345e-07 ***
< 2.22e-16***
7.2992e-07 ***

0.0016598 **

The results are the same as in Table 10.5.
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Estimates of regression coefficients and corresponding regression SS
The first step is to compute R objects containing m;, m, and m,

df.mij <-aggregate(multiloc$yield by=list(location=multiloc$location,
genotype=multiloc$genotype) FUN=mean)

df.mi <- aggregate(multiloc$yield by=list(genotype=multilocbgenotype),
FUN=mean)

df.mj <- aggregate(multiloc$yield by=list(location=multiloc$location),
FUN=mean)

df.mj.mij <- merge(df.mij,df.mjby="location”)

names(df.mj.mij)[3:4] <- c(“mij”,”m;j")

df.mi.mj.mij <- merge(df.mj.mij,df.mi,by="genotype”)

names(df.mi.mj.mij)[5] <- “mi”

multiloc.mi.mj.mij <- merge(multiloc,df.mi.mj.mij,

by=c(“genotype”,”location”))
multiloc.mi.mj.mij

genotype location rep yield mij mj mi
1 AOT Location-1 ~ rep-1 78.0  80.800 70.7166667 104.80625
2 AOT Location-1 ~ rep-2 91.8  80.800 70.7166667 104.80625
3 AOT Location-1 ~ rep-3 814  80.800 70.7166667 104.80625
4 AOT Location-1 rep-4 72.0  80.800 70.7166667 104.80625
5 AOT Location-2  rep-1 48.0  71.325 71.3625000 104.80625
6 AOT Location-2  rep-2 88.3  71.325 71.3625000 104.80625
91 PHOT Location-3  rep-3  105.0 113.725 116.6125000 96.04375
92 PHOT Location-3  rep-4 121.2 113.725 116.6125000 96.04375
93 PHOT Location-4  rep-1 100.7  96.400 99.1083333 96.04375
94 PHOT Location-4  rep-2 81.2  96.400 99.1083333 96.04375
95 PHOT Location-4  rep-3 1235  96.400 99.1083333 96.04375
96 PHOT Location-4  rep-4 80.2  96.400 99.1083333 96.04375

The regressions will be computed with the following function, which has to
be loaded into R

reg <- function(df){
res.Im <- Im(mij~mj,data=df)
res.anova <- anova(res.Im)
res <- c(res.Im$coeff[[2]]res.anova[[2]],res.anova[[5]][1])
names(res) <- c(“Regression coeff.”,”Regression SS”,”Residual SS”,”Pr(>F)”)
res
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We can now compute the regressions

df.mj.mij.split <- split(df.mj.mij,df.mj.mij$genotype)
round(x <- sapply(df.mj.mij.split,reg),3)

AOT CCT FJT JMT LCT PHOT
Regression coeff. 1.512 1.126 0.240 1.592 0.993 0.537
Regression SS 3451.035 1914.840  86.597 3824.349 1488.154 435.179
Residual SS 83.946 25.787 380.874 442.633 1062.689 178.862
Pr(>F) 0.012 0.007 0.570 0.053 0.236 0.158

These results are the same as in Table 10.6.

Anova for regression analysis

anova(res)

res <- lm(yield~genotype-+location+mi*mj+location:mi+genotype:mj
+genotype:location+rep%in%location,data=multiloc.mi.mj.mij)

Response: yield

<

Genotype
Location

mi:mj

Location:mi
Genotype:mj
Genotype:location
Location:rep
Residuals

ONOHBRDNRF WO

N =

Analysis of Variance Table

Sum Sq
10201.14
36220.33
327.16
950.58
8253.13
7748.59
7814.59
12468.05

Mean Sq
2040.23
12073.44
327.16
475.29
2063.28
968.57
651.22
207.80

F value
9.81819
58.10105
1.57438
2.28724
9.92914
4.66107
3.13385

Signif. codes: 0 “*** 0.001 “* 0.01 * 0.05 “” 0.1 * “ 1

Pr(>F)
6.8345e-07 ***
< 2.22e-16 ***
0.21443782
0.11033440
3.1171e-06 ***
0.00018159 ***
0.00165977 **

Contents of files used in the above computations and readable by R are printed

below:

File 10-4-multiloc.txt (data of Table 10.4)

location genotype
Location-1 LCT
Location-1 LCT
Location-1 LCT
Location-1 LCT

rep
rep-1
rep-2
rep-3
rep-4

yield
40.6
77.0
245
52.5
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Location-1 CCT rep-1 58.4
Location-1 CCT rep-2 75.7
Location-1 CCT rep-3 58.0
Location-1 CCT rep-4 86.5
Location-1 AOT rep-1 78.0
Location-1 AQOT rep-2 91.8
Location-1 AQOT rep-3 81.4
Location-1 AQOT rep-4 72.0
Location-1 PHOT rep-1 90.0
Location-1 PHOT rep-2 105.0
Location-1 PHOT rep-3 86.9
Location-1 PHOT rep-4 99.5
Location-1 FJT rep-1 92.0
Location-1 FJT rep-2 123.9
Location-1 FJT rep-3 61.1
Location-1 FJT rep-4 97.2
Location-1 JMT rep-1 259
Location-1 JMT rep-2 50.4
Location-1 JMT rep-3 46.9
Location-1 JMT rep-4 22.0
Location-2 LCT rep-1 97.9
Location-2 LCT rep-2 114.0
Location-2 LCT rep-3 94.4
Location-2 LCT rep-4 74.4
Location-2 CCT rep-1 76.0
Location-2 CCT rep-2 75.0
Location-2 CCT rep-3 43.2
Location-2 CCT rep-4 58.7
Location-2 AOT rep-1 48.0
Location-2 AOT rep-2 88.3
Location-2 AOT rep-3 79.8
Location-2 AQOT rep-4 69.2
Location-2 PHOT rep-1 94.0
Location-2 PHOT rep-2 55.6
Location-2 PHOT rep-3 87.3
Location-2 PHOT rep-4 77.9
Location-2 FJT rep-1 80.9
Location-2 FJT rep-2 77.9
Location-2 FJT rep-3 88.0
Location-2 FJT rep-4 73.0
Location-2 JMT rep-1 44.7
Location-2 JMT rep-2 28.3
Location-2 JMT rep-3 47.0
Location-2 JMT rep-4 39.2
Location-3 LCT rep-1 107.0
Location-3 LCT rep-2 132.0
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Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-3
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4
Location-4

LCT
LCT
CCT
CCT
CCT
CCT
AOT
AOT
AOT
AOT
PHOT
PHOT
PHOT
PHOT
FJT
FJT
FJT
FJT
JMT
JMT
IMT
IMT
LCT
LCT
LCT
LCT
CCT
CCT
CCT
CCT
AOT
AOT
AOT
AOT
PHOT
PHOT
PHOT
PHOT
FJT
FJT
FJT
FJT
IMT
IMT
IMT
JMT

117.0
115.3
122.0
129.0
111.0
110.0
94.0
187.0
153.0
138.7
96.7
132.0
105.0
121.2
98.2
106.0
115.0
95.8
73.0
97.0
124.0
118.8
97.8
97.0
96.9
93.9
114.0
93.2
102.8
80.6
129.3
132.7
143.7
90.0
100.7
81.2
123.5
80.2
82.7
64.0
76.2
84.4
102.6
110.3
108.8
921
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Appendix X Multivariate analysis and determination of genetic distance

Load data

coconuts <- read.table(”11-1-coconuts.txt” header=T)
variables <- as.matrix(coconuts[,-1])
accession <- coconuts$accession

Display data

coconuts

accession fruit.weight fruit.length husk.thickness husk.weight

1 SSAT 984.50 26.875 2.250 245.8
2 SSAT 1040.00 32.500 2.725 329.0
3 SSAT 712.00 25.875 2.250 192.8
4 SSAT 1100.25 28.750 2.475 280.0
5 POLT 765.25 27.875 3.650 270.0
6 POLT 713.67 29.500 3.900 333.3
7 POLT 669.50 28.125 3.425 2715
8 POLT 629.50 29.250 3.600 2725
9 MVT 1591.67 33.833 3.167 373.3
10 MVT 1589.25 32.250 2.925 384.3
11 MVT 2372.50 35.250 4.225 893.5
12 MVT 1723.25 33.500 3.300 502.0
13 KKT 1407.50 32.250 2.600 401.8
14 KKT 1863.75 34.125 3.550 615.0
15 KKT 1069.50 29.375 2.875 328.3
16 KKT 1395.50 31.500 3.225 475.5
17 NLAD 980.75 30.500 3.225 413.3
18 NLAD 963.50 31.250 3.062 432.5
19 NLAD 1047.25 31.500 2.925 410.8
20 NLAD 1056.50 31.375 3.362 472.3
variables

fruit.weight fruit.length husk.thickness = husk.weight

1 984.50 26.875 2.250 245.8
2 1040.00 32.500 2.725 329.0
3 712.00 25.875 2.250 192.8
4 1100.25 28.750 2475 280.0
5 765.25 27.875 3.650 270.0
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6 713.67 29.500 3.900 333.3
7 669.50 28.125 3.425 271.5
8 629.50 29.250 3.600 272.5
9 1591.67 33.833 3.167 373.3
10 1589.25 32.250 2.925 384.3
11 2372.50 35.250 4.225 893.5
12 1723.25 33.500 3.300 502.0
13 1407.50 32.250 2.600 401.8
14 1863.75 34.125 3.550 615.0
15 1069.50 29.375 2.875 328.3
16 1395.50 31.500 3.225 475.5
17 980.75 30.500 3.225 413.3
18 963.50 31.250 3.062 432.5
19 1047.25 31.500 2.925 410.8
20 1056.50 31.375 3.362 472.3
accession
[1] SSAT SSAT SSAT SSAT POLT POLT POLT POLT MVT MVT MVT MVT KKT KKT KKT
[16] KKT NLAD NLAD NLAD NLAD
Levels: KKT MVT NLAD POLT SSAT

Compute manova and Wilks’ statistic (with F test)

options(digits=7)
fit <- manova(variables~accession)
(result <- summary(fit,test="Wilks"))

Df Wilks  approx F num Df den Df Pr(>F)
Accession 4.000  0.0052  10.7164 16.000 37.298  1.813e-09***
Residuals 15.000

Signif. codes: 0 “*** 0.001 “** 0.01 * 0.05 “" 0.1 © * 1

The value of Wilks’ statistic (0.0052) differs slightly from the value obtained
previously in this chapter (0.00565) because the SSSP matrices had only one decimal
digit, but has 4 decimal digits in R. It is easy to check that if we keep only one
decimal digit in R the results are the same. The slight differences observed in the
other results have the same origin. Here the Wilks’ statistic is tested with an F
test, which provides a better approximation than chi square (Rao 1951). However
it is possible to compute the chi square test (see below).
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Compute D = Between Accessions SSSP matrix and W = Error SSSP
matrix

(D <- result$SS$accession)

fruitweight  fruitlength husk.thickness  husk.weight

fruit.weight 3142893.0177 14361.156142 248.007100 730073.6595
fruit.length 14361.1561 77.435890 5.084169 4101.9022
husk.thickness 248.0071 5.084169 3.362990 295.9992
husk.weight 730073.6595  4101.902200 295.999200 219795.2450

(W <- result$SS$Residuals)

fruitweight  fruitlength husk.thickness  husk.weight

fruit.weight 844670.3352  4002.328957 999.374667 415802.411
fruit.length 4002.3290 44.292886 5.456996 1954.641
husk.thickness 999.3747 5.456996 1.861579 601.559
husk.weight 415802.4113  1954.641450 601.559000 238499.392

D and W are equal (with more digits) to the corresponding matrices in Table 11.2.
The chi square test of Wilks’ statistic is not necessary since we already have the
F test, but it can be computed as follows, with the same symbols as previously
in this chapter.

Compute chi square test for Wilks’ statistic

lambda <- det(W)/det(D+W)
n <- nrow(variables)

p <- ncol(variables)

k <- fit$rank

m <- n-1-(p+k)/2

v <- -m*log(lambda)

df <- p*(k-1)
c(n,p,k,m,v,df,qchisq(0.95,df))

[1] 20.00000 4.00000 5.00000 14.50000 76.29241 16.00000 26.29623

We reject the null hypothesis since 26.29623 < 76.29241 (26.296 < 75.053 previously).

Compute X = matrix of average values

X <- aggregate(variables,by=list(accession), FUN=mean)
rownames(X) <- X[,1]

X <= X[-1]

X
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fruit.weight fruit.length husk.thickness husk.weight
KKT 1434.0625 31.81250 3.06250 455.150
MVT 1819.1675 33.70825 3.40425 538.275
NLAD 1012.0000 31.15625 3.14350 432.225
POLT 694.4800 28.68750 3.64375 286.825
SSAT 959.1875 28.50000 2.42500 261.900

The values are identical to the values in Table 11.4.

Compute D2 = Mahalanobis’ generalized distance matrix

S <- W/fit$df.residual
D2 <- as.dist(apply(X,1,function(u) mahalanobis(X,u,S)))
D2

KKT MVT NLAD POLT
MVT 10.313171
NLAD 19.722993  54.663303
POLT 59.403815 79.719746  40.170966
SSAT 6.909978 31.603402 13.546829 61.509788

The distances are identical to those in Table 11.5 (but the orders or rows and
columns are different).

Compute dendrogram
As R does not divide the distance by 2 we have to do this in line 2 in order to
obtain the same result as previously

hc <- hclust(D2,method="mcquitty”)
hc$height <- hc$height/2

dend <- as.dendrogram(hc)
str(dend)

—[dendrogram w/2 branches and 5 members at h = 32.5]
| —leaf “POLT”
‘—[dendrogram w/2 branches and 4 members at h = 18.9]
| —leaf “MVT”
‘—[dendrogram w/2 branches and 3 members at h = 8.32]
| —leaf “NLAD”
‘—[dendrogram w/2 branches and 2 members at h = 3.45]
| —leaf “KKT”
‘—leaf “SSAT”
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This output corresponds to Table 11.7. The distance between POLT and group C-
3 is 32.5 instead of 31.57 previously. The reason is that with the McQuitty method
used in R, the distance between a leaf and a complex group is half the sum of
the distances between the leaf and the 2 sub-groups of the group.

Plot dendrogram (examples of 4 methods)

op <- par(mfrow=c(2,2))

plot(dend)

plot(dend,horiz=T)

plot(dend,nodePar=list(pch=c(1,NA)),type="t",center=TRUE)

nP <- list(col=3:2,cex=c(2.0,0.75),pch= 21:22,bg=c(“light blue”,”pink”),
lab.col="tomato”)

plot(dend,nodePar=nP,edgePar=list(col="gray” lwd=2),horiz=T)

par(op)
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Contents of files used in the above computations and readable by R are printed
below:

File 11-1-coconuts.txt (data of Table 11.1)

accession fruit.weight fruitlength  husk.thickness husk.weight
SSAT 984.502 6.875 2.250 245.8
SSAT 1040.00 32.500 2.725 329.0
SSAT 712.00 25.875 2.250 192.8
SSAT 1100.25 28.750 2.475 280.0
POLT 765.25 27.875 3.650 270.0
POLT 713.67 29.500 3.900 333.3
POLT 669.50 28.125 3.425 271.5
POLT 629.50 29.250 3.600 272.5
MVT 1591.67 33.833 3.167 373.3
MVT 1589.25 32.250 2.925 384.3
MVT 2372.50 35.250 4.225 893.5
MVT 1723.25 33.500 3.300 502.0
KKT 1407.50 32.250 2.600 401.8
KKT 1863.75 34.125 3.550 615.0
KKT 1069.50 29.375 2.875 328.3
KKT 1395.50 31.500 3.225 475.5
NLAD 980.75 30.500 3.225 413.3
NLAD 963.50 31.250 3.062 432.5
NLAD 1047.25 31.500 2.925 410.8
NLAD 1056.50 31.375 3.362 472.3
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Subject Index

A

Arithmetic mean, 22
Augmented Block Design, 93, 115, 120
Auxiliary variable, 87

B

Balanced Incomplete Block Design
(BIBD), 92, 95, 115

Biased sampling, 12
Blocking, 87

C

Chi-Square (x2) Test, 52, 159, 161
Cluster analysis, 14, 158, 164
Cluster sampling, 8

Coarse grid sampling method, 12
Coefficient of correlation, 59, 60
Coefficient of variation, 26, 30, 39

Completely Randomized
Design (CRD), 92, 99

Confidence coefficient, 39
Confidence interval, 4, 39
Confidence limits, 39
Confounding, 130
Continuous variable, 2
Correlation matrix, 63
Covariance, 59

Critical Difference (CD), 5, 89

D

Dependence methods, 157
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E

Estimator of mean, 38
Estimator of variance, 38
Euclidean distance, 162
Experimental error, 86
Experimental unit, 86

F

Factorial experiments, 92, 129
F-distribution, 51

Fractional factorials, 131

Frequency curve, 21, 36

Frequency distribution, 4, 17, 18, 20
F-test, 44, 51

G

Grouping of accessions, 161
Guard rows, 93, 95

H
Heterogeneity, 94, 95, 111, 150

I

Incomplete Block Design, 92, 95, 115
Interdependence methods, 157
Interval estimate, 4

K

Kurtosis, 22, 31, 34
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Q

Latin Square Design (LSD), 92, 99, 110  Qualitative character, 2, 17

Least significant difference, 89, 104
Linear regression, 66, 70, 149
Local control, 99

M

Mahalanobis” generalized distance,
157, 162

MDETERM function, 158

Mean deviation, 27

Measures of central tendency, 1, 22
Measures of dispersion, 22, 26
Median, 22, 25

Mode, 19

Multi-stage random sampling, 11
Multiple linear regression, 70

Multivariate analysis of variance
(MANOVA), 158

N

Normal distribution, 17, 34, 36, 38
Null hypothesis, 5

o
Outright collecting, 12
P

Partial correlation, 65

Partially Balanced Incomplete Block
Designs (PBIBD), 92, 115, 120

Path-coefficient analysis, 59, 76, 77
Point estimate, 4

Population, 1, 2, 3, 4

Probability, 8

Quantitative character, 2, 17, 18
R

Random number, 8, 89, 90
Random sampling, 4, 7, 8, 10
Randomization, 73, 86

Randomized Complete Block Design
(RCBD), 92, 99, 104, 106

Regression coefficient, 66, 67, 68, 70,
71, 72, 77, 78, 149, 150, 152

Repeated Latin Squares, 114
Replication, 85, 88

S

Sample, 3

Sample mean, 9, 36, 39, 47
Sample size, 8, 30, 39

Sampling designs, 11

Sampling with replacement, 9
Sampling without replacement, 8
Simple linear regression, 66
Skewness, 22, 31, 32

Split-plot design, 92, 135
Stability, 147, 148

Standard deviation, 9, 26, 28, 30, 31
Standard error, 9, 11

Strata, 9

Stratified sampling, 9, 10
Strip-Plot Design, 92, 129, 140
Sub-plots, 92, 135, 136
Sub-sampling, 9

Systematic sampling, 11
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T A%

Test of significance, 5, 41, 43, 86, 103 Variable, 2
t-test, 44, 51 Variance, 9, 26, 28
Type I error, 43 Variate, 5

Type II error, 43
yp W

U
Weighted mean, 24

Univariate analysis, 157
UPGMA, 165
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