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                                                 Abstract 

 
Traditionally farmers use diverse crops, trees and wild plant species, livestock and aquatic species 

to sustain/enhance their livelihood. The use of diverse species and varieties enhances their 
adaptability and resilience capacity to changing environmental and economic conditions. Genetic 

diversity is a key element in farmers‟ livelihood strategies particularly in areas under high 

ecological, climatic and economic stresses and risks. Global food security has become increasingly 

dependent on a limited number of varieties of a few major crops and in the wake of climate 

change, such a situation makes farmers more vulnerable with regard to their nutrition and income 

security. This paper aims to discuss the conceptual framework of on-farm/in situ conservation in 

adapting and mitigating climate change through an integrated system of diversified food 

production and land use. The role of on-farm/in situ conservation of crops is discussed along with 

its complementary advantages over ex situ conservation. Empowerment of farming communities 

is essential for effective in situ/on-farm conservation as the process encourages local level 

decision making on management of genetic resources. The paper also highlights community-based 
biodiversity management as a methodology to realize in situ/on-farm conservation through 

strengthening farmer seed systems, and promoting climate resilient integrated home garden 

production systems, especially underutilized crop species and carbon rich farming that support 

climate change actions. Implementation of biodiversity management approaches will require 

conducive policy environment in order to be truly effective and sustainable. Some relevant 

recommendations on how to best proceed towards a viable in situ/on - farm conservation system 

are also proposed.      

 

Key words: In situ conservation, on-farm conservation, agrobiodiversity, underutilized crops, 

climate change,  farmers‟ seed system, community based biodiversity management, integrated 

farming system. 

 

 

Introduction 

 

The Convention on Biological Diversity (CBD) within its broader framework defines two 

conservation strategies: ex situ conservation and in situ conservation. UNEP (1992) defined in 

situ conservation as “the conservation of ecosystems and natural habitats and the maintenance 

and recovery of viable populations of species in their natural surroundings and, in the case of 

domesticated and cultivated species, in the surroundings where they have developed their 

distinctive properties”. These definitions and related strategies applied to the field of agricultural 

biodiversity require their blending with the use dimension in order to be translated into practices 
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and realize the effective linking of conservation with farmers‟ livelihoods. In situ/on farm 

conservation (often just referred to as „on farm conservation‟) refers to the maintenance of 

cultivated plants (often in association with their wild relatives that may be present in the same 

field) which are conserved in the very place where they developed their present-day 

characteristics (Altieri and Merrick, 1987; Brush, 1995; Jarvis and Hodgkin, 2000) and where 

they continue to evolve thanks to the work of farmers (Frankel et al., 1995). On-farm 

conservation is thus a highly dynamic form of plant genetic resources (PGR) management, which 

allows the processes of both natural and human selection to continue to act in the production 

system. On-farm conservation is therefore generally used to describe the dynamic management 

process by which farmers maintain traditional crop varieties that were developed in their local 

conditions and that they continue to modify thanks to their management practices and crop 

selection efforts. Thus, the conservation of specific genotypes becomes a secondary objective to 

the continuation of the processes that allow the material to evolve and change over time (Jarvis 

and Hodgkin, 2000).  

 

The potential threat that the loss of genetic diversity poses to the world‟s food fuelled the so 

called PGR conservation movement which started in the early 1970s with the establishment of 

IBPGR (now Bioversity International) and which has led insofar to the creation of 1740 ex situ 

storage collections (called also gene banks) around the world (Pistorius 1997, Fowler and 

Hodgkin 2004, Bioversity 2009; FAO 2010). While this form of conservation remains no doubt 

practical and useful, especially for immediate use in plant breeding, it has major drawbacks in 

terms of effectiveness with regard to the use of stored material (not easily accessible by farmers). 

Serious concerns are also arising from the fact that they freeze the natural evolutionary process 

and in so doing limit the adaptive capacities of genetic resources to climate change. Furthermore, 

ex situ collections are more vulnerable to mismanagement (e.g. cases of genetic shifts, genetic 

drifts during rejuvenation activities or the spread of seed-borne pathogens due to poor plant 

quarantine practices). But ex situ conservation is also an expensive endeavor whether we are 

dealing with seed (orthodox seed crops) in cold stores or with vegetative material (field 

genebanks necessary for crops with recalcitrant seeds and clonally propagated species). With 

regard to on farm conservation, apart from allowing evolution to continue, this method 

contributes as well to the conservation of diversity at all levels (landscape, ecosystem, among 

and within species) and it is therefore highly strategic. It does also contribute to empower the 

farmers to better exercise control over their crop genetic resources, major biological and 

livelihood assets.  Another major advantage of on farm conservation is related to its 

conduciveness in safeguarding the traditional knowledge associated to biodiversity which is an 

integral part of peoples‟ social and cultural identity (CUBIC,2000), and which is fundamental for 

celebrating and appreciating crop diversity today and in the future.  Lastly, on farm conservation 

is a powerful instrument to allow the implementation of benefit sharing as recommended by the 

CBD which has in fact recognized the continued maintenance of traditional varieties on-farm as 

an essential component of sustainable agricultural development (UNEP 1992).  

 

Challenges 

 

Since the time that the Convention on Biological Diversity provided a general framework for ex 

situ and in situ conservation strategies, most agencies dealing with plant genetic resources 

conservation have been facing the dilemma of how to implement in practical terms in situ 
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conservation of agricultural biodiversity. The major challenges faced to achieve this end are 

centered around the following:  

i) lack of a clear understanding of the scientific basis of in situ conservation of 

agricultural biodiversity and how it can be practically implemented on the ground,  

ii) difficulty in changing  the mindset of current PGR institutional set up to work closer 

with farmers and communities,  

iii) rationale of identifying the least cost conservation areas 

iv) difficulties in identifying sustainable incentive mechanisms to support on farm 

conservation and  

v) obstacles when trying to canvass policy support to empower the communities in 

diversity rich areas for community based management of agricultural biodiversity.  

 

What makes these challenges particularly complex is the fact that they are highly interlinked and 

dependent upon a mix of socio-cultural, economic and political factors, making on- farm 

conservation not a purely technical intervention (as  is the case in ex situ conservation) but a 

much more complex social and collective-action type of endeavour.  

 

Central to these issues, is the recognition that if crop genetic resources (including landraces) are 

to be conserved successfully and sustainably on-farm, such an outcome should be the result of 

farmers‟ production activities directed to improve his/her livelihood (“conservation through 

use”). This means that on-farm conservation efforts must be carried out within the framework of 

farmers‟ livelihood needs, and for that reasons, the mobilization of support to on farm 

conservation need to be conceived and designed within the broader objective of creating a more 

enabling environment for agricultural development in its various aspects. So far, rich local crop 

diversity is maintained in those regions where the private value of local landraces and public 

value of genetic diversity are high (Smale et al., 2004). Given the current globalization trends 

and market environments, it would be difficult to maintain valuable local crop genetic resources 

unless these are made economically attractive and competitive in the market through consistent 

interventions along the value chain from the selection of improved varieties, to enhanced 

cultivation practices, value addition and marketing as well as socio-cultural, educational and 

public awareness efforts.  

 

One of the often-cited disadvantages of on-farm conservation is the difficulty experienced by 

plant breeders in accessing material that is maintained by farmers. This is mainly because the on-

farm conservation efforts to date have not been mainstreamed or linked to national PGR efforts. 

Although ex situ and in situ/on- farm conservation methods are highly complementary measures, 

their interdependency has only very rarely been put into practice. Depending upon the available 

resources and government commitment, selection of on-farm conservation sites should consider 

two broad guidelines: a) identification of the least cost conservation site, and b) potentiality of 

“win-win” situation in terms of livelihood gains and ecological costs for the site. The least cost 

on-farm conservation will occur in those sites that are most highly ranked in terms of public 

benefits (richness and evenness of genetic diversity) and where the private benefit that farmers 

obtain from growing genetically diverse varieties is the greatest. The economic concept that 

farmers‟ varieties embodies both (i) „private‟ values in the harvest the farmer enjoys, either 

directly as food or feed, or indirectly through the cash obtained by selling the seed/grain and 

purchasing other items, and (ii) „public‟ values in its contribution to the genetic diversity from 
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which future generations of farmers and consumers will also benefit (Smale et al., 2004). The 

crop genetic resources which have both low farmer utility (current private value) and public 

value will be difficult to conserve on-farm unless public interventions are made for adding 

benefits. 

 

Those crop genetic resources important zones (CGR-IZs) which have both high private value 

(direct use) and high public value (rich genetic diversity of CGR) are considered potential sites 

for on-farm conservation of agricultural biodiversity. Since there is a trade-off between 

livelihood gains and ecological costs, on-farm conservation programmes should aim to achieve 

“win-win” situation by balancing livelihood gains with conservation costs (Umashaankar et al., 

2004). This requires community based approaches that empower farmers and rural institutions in 

better appreciating the value of on-farm conservation, take greatest advantage of genetic 

resources maintained on- farm and play a leading role in decision making in  the management of 

this biodiversity at the local level. The actions such as public awareness, education, participatory 

plant breeding, value addition of local products and policy support through local institutions are 

very important for realizing on-farm conservation in a sustainable manner. Two options can be 

considered in providing benefits; the first through participatory plant breeding, and the second 

through public awareness, better marketing, and policy incentives (Gauchan et al., 2003). The 

first option is to seek improved quality, disease resistance, high yield, better taste, and other 

preferred traits through breeding, seed networks and modified farming systems. The second 

option includes adding value to local crop genetic resources so that the demand for the material 

or some derived products may be increased. These diverse options will emerge when the 

communities, researchers, and developmental institutions are directly involved in the 

management of traditional knowledge and genetic resources for biodiversity-based livelihood 

and income generation. This is only possible if the local capacity of farming communities and 

institutions are strengthened for making appropriate decisions and for being able to take up 

effectively also important tasks including the documentation and monitoring of local crop 

diversity (Sthapit et al., 2008). 

 

To date, the organizations engaged in the promotion of conservation of plant genetic resources 

for food and agriculture (PGRFA) are facing the dilemma of how to strengthen capacity of 

communities and rural institutions for best implementing in situ conservation on-farm. Since the 

farmers and their social networks play a key role in maintaining dynamic process of evolution, 

selection and adaptation of useful diversity in the changing climate, it is important to understand 

that on-farm conservation is a constantly changing complex system of relations between people, 

plants, animals, other organisms and the environment, continuously challenged by new 

problems. In such a condition, the broader is the diversity employed on- farm, the more resilient 

will be the production system (Jarvis et al., 2007). And this statement is particularly meaningful 

within a climate changing context. To that respect, therefore, the deployment of in situ/on- farm 

sustainable conservation and use of neglected and underutilized species (NUS) represent a very 

strategic component of community-based adaptation strategies (Padulosi et al. 2009). Functional 

partnerships between multi-sectoral institutions and community based organizations will be then 

fundamental to pursue such a strategy (Rojas et al. 2009). 

 

In response to these challenges,  Bioversity International (formerly known as International Plant 

Genetic Resources Institute (IPGRI) and its national partners launched an international research 
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effort, „Strengthening the scientific basis of on-farm conservation of agricultural biodiversity on-

farm‟ in eight countries in 1995 to understand four basic questions (Jarvis et al., 2004, 2007): 

 What is the amount and distribution of the genetic diversity maintained by farmers over 

space and time? 

 What are the processes/methods used, consciously or unconsciously, to maintain the 

genetic diversity on-farm? 

 Who maintains genetic diversity within a community and how? 

 What factors influence farmers‟ decisions on maintaining traditional varieties? 

 

Understanding the above mentioned questions provides the scientific knowledge needed not only 

to manage crop genetic resources on-farm, but also to develop options for better livelihoods and 

income that provide incentive for conservation efforts.  

 

Impact of climate change in agriculture and livelihoods 

 

The Fourth Assessment (AR4) of the Intergovernmental Panel on Climate Change (IPCC) 

provides an overview of recent scientific understanding on climate change (IPCC, 2007). 

Climate models are only predictable means to predict global future climate. Although 21 global 

climate models (GCM) give different scenarios based upon atmospheric science, chemistry, 

physics, biology and astrology. In general, as per the IPCC predictions, the global temperatures 

are likely to increase by 1.1 - 6.4ºC from 1990 to 2100 though the speed at which the 

temperature will rise is still debated (IPCC, 2001; 2002). The water availability in humid tropics 

and high latitude areas will increase due to  20-30% increase predicted in annual precipitation  

whereas in sub-tropical regions, the water availability will decrease as the region will receive 

less rain and/or untimely rains and therefore will be subjected to more frequent droughts. Sea 

levels are likely to rise in the range of 22-34 cm between 1990 and  2080s, thereby affecting 

lives of communities in coastal countries. The IPCC also predicted that Hindu Kush Himalayan 

climate will undergo an increase of 5-6ºC in atmospheric temperature as well as 20-30 % 

increase in precipitation. This coupled with glacial retreat and loss of snow cover on mountains 

will lead to unpredictability of seasons and monsoons in South Asia. Suitability for grain 

production will decrease more rapidly in regions with sandy soils than in regions with clay or 

medium soils, as the temperature increases (Zullo Junior et al., 2006). Furthermore, there is  

likelihood of higher frequency of extreme events such as cyclones, typhoons and hurricanes, 

floods and landslides, prolonged drought, etc.  

 

Although there are lots of debates and disagreements in these predictions, the scientific 

community agree on the following common understanding: 1) climate change is already 

happening and will happen in future, 2) some regions will get hotter, some places dryer and 

others wetter, 3) there will be more variability and therefore, great uncertainties in agriculture, 4) 

the suitability of species/genotypes changes in both positive and negative directions, and finally 

5) lack of knowledge on what will happen in some regions due to lack of data and information 

(Jarvis et al., 2008ab).  

 

In spite of what has been published in the abundant recent literature on this topic, the 

implications of climate change in agriculture are still a bit vague as these are based upon 

modeling and predictions. Lobell et al. (2008) carried out an analysis of climate risks for crops in 
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12 food insecure regions to identify adaptation priorities, based upon statistical crop models and 

climate projections for 2030 from 20 GCM models. The results indicated that South Asia and 

Southern Africa are the two regions that, without sufficient adaptation measures, are likely to 

suffer with negative impacts on several crops that are important to large food insecure human 

populations. Using the A2 scenario of the IPCC‟s NCAR and CSIRO models, International Food 

Policy Research Institute (IFPRI) studied the impact of climate change in agriculture in the time 

frame of 2000 - 2050. The report also suggests that South Asia will be particularly hard hit by 

climate change as the crop productivity of almost all crops is predicted to face the greatest 

decline in that region (IPCC, 2007). Higher temperatures eventually reduce yields of desirable 

crops while encouraging weed and pest proliferation. Although there will be gains in some crops 

in some regions of the world, particularly in developed countries in the North, the overall 

impacts of climate change on agriculture are expected to be negative, thereby threatening the 

global food security.  

 

There is established evidence that climate change is already affecting biodiversity and will 

continue to do so. The Millennium Ecosystem Assessment (2005) report estimated that by the 

end of this century, the climate change will be the driver of biodiversity loss. IPCC reports 

predicted that many species will be extinct from the ecosystems which will have profound 

impact on ecosystem functioning and services (i.e. provisioning, regulating, supporting and 

cultural) because of increase in global average temperature. There will also be an adverse effect 

on the species component of biodiversity (Rao, 2009) which include: i) changes in distribution 

pattern (Jarvis et al., 2008), ii) increased extinction rates, iii) changes in reproduction timings, iv) 

changes in length of growing seasons for plants, v) changes in plant community composition, 

and vi) changes in ecosystems. These factors will result in significant changes in farming 

practices and genetic resources that are currently being used. Coping with these new realities will 

involve the use of agricultural biodiversity in innovative ways to provide adaptability and 

resilience in the face of changing and variable environments.  

 

Role of in situ conservation on-farm in the context of climate change 

 

In the debate on climate change and agriculture, the role of in situ conservation and on-farm 

management of agricultural biodiversity is seldom discussed with the attention it deserves. The 

various climate change predictions made it clear that many regions around the globe are going to 

witness the change in various ways. In such a situation, it is important to consider whether such 

changes will affect on-farm management of cultivated landraces and their wild relatives. Jarvis  

et al.(2008ab) used current and projected future climate data for ~2055, and a climate envelope 

species distribution model to predict the impact of climate change on the wild relatives of 

groundnut (Arachis hypogea), potato (Solanum tuberosum) and cowpea (Vigna unguiculata). 

They reported that wild groundnuts were the most affected group, with 24 -31 (depending on the 

migration scenario) of 51 species projected to go extinct and their distribution area, on an 

average, expected to be reduced by 85-94 %, depending on the migration scenario, over the next 

50 years. In terms of species extinction, cowpea appeared to be the least affected by the climate 

projections on these three crops studied, although, according to other studies almost half of the 

natural distribution area of wild Vigna species (that is, not just wild Vigna unguiculata) is also expected 

to be lost by the middle of this century due to climate change (Anonymous 2007). These results suggest 

that there is an urgent need to identify and effectively conserve crop wild relatives that are at risk 

due to  climate change. On the other hand, there are many reports indicating that the new strains 
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of pathogens and pests (e.g. Ug99 strain of stem rust in wheat; bacterial fire blight in apples; new 

strain rice blast, etc.) are emerging which need landraces and wild relatives as sources of 

resistance genes (Qualset and Shands, 2005). Due to climate change, it is difficult to predict 

which new pest or pathogen will develop or how will be the rainfall next year, but  agricultural 

biodiversity can be used - as always farmers do-to have a set of crop varieties in farming systems 

to increase the options to buffer against unpredictable changes (Holger et al., 2004). This 

requires access to a wide range of portfolio of local crop diversity at the hand of community for 

countering these threats. This explains why on-farm conservation can play critical role in future 

as well to solve emerging problems. 

 

Genetic diversity which is currently underutilized may become more attractive to farmers as a 

result of climate change. Many neglected and underutilized species which are currently 

maintained through in situ conservation on-farm could be the important crops for the future. 

Their adaptability, plasticity and resilience to stresses provide farmers with needed coping 

strategies to confront with climate changes. Because of changes in shift in rainfall pattern and 

temperature deviations from normal, community based management of a wide portfolio of plant 

and animal genetic diversity is required to allow adaptive capacity. The suitability of current 

crop genotypes to local conditions will change in both positive and negative ways, depending 

upon the crop and region, but will affect many production systems. The processes of in situ/on-

farm management of agricultural biodiversity carried out by millions of farmers in the world 

have developed a range of genetic diversity that helps to diversifying incomes and livelihoods of 

people in such changing situations. On-farm management of genetic diversity has traditionally 

allowed farmers to cope with adversity and this process will continue to serve that function in 

future too. 

 

Climate variability and risk has always been a part of agriculture, and farmers have developed 

many ways of managing that risk. From farmers perspective, climate change is not seen in terms 

of major disasters such as floods or drought or hurricanes, but rather as increased uncertainty 

such as shift in onset of rain at planting time or end of rain at harvesting time; some years bring 

excessive rainfall while others are very dry, with a greater irregularity within and between two 

annual rainy seasons. Such uncertain weather is directly affecting crop production and income of 

farmers. It is difficult to assume that current research system has capacity to develop a set of 

technologies and suitable varieties that match the needs of changing climate scenario.  

 

The maintenance and use of a wide diversity of crops, trees and livestock are the livelihoods and 

survival strategies of rural farming communities throughout the world but the speed of climate 

change is reported to be much higher than that required for landraces to evolve and adapt for 

changing climatic environments. Hence, the plasticity of genetic resources will remain important 

for such situations. Pigliucci (2001) defines phenotypic plasticity as a “property of a genotype to 

produce different phenotypes” as a response to different environments. There is already a lot of 

debate in the scientific community (Scheiner, 1993; Via, 1993; Via et al., 1995; Pigliucci, 1996, 

1998) about whether phenotypic plasticity (phenotypic variation due to environment) is an evolving 

trait, which can be adaptive, neutral or maladaptive (Alpert and Simms, 2002), or a by-product 

variation due to other plant responses. Regardless of the debate, it can be agreed that phenotypic 

plasticity can be a useful paradigm or framework to understand the interactions of genetics, 

development, ecology and evolution (DeWitt and Scheiner, 2004).  
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In order to understand the role of in situ/on-farm conservation of agricultural biodiversity in the 

wake of climate change, it is also important to understand how communities have been using 

diverse types of plants and animals in integrated production systems to adapt and cope with 

climate change effects. There are two ways: first, seed selection by farmers over seasons exerts  

selection pressure on populations of genotypes through the criteria used by the farmers to select 

the seeds and through the environment (Harlan, 1992). Second, new genetic diversity is 

introduced into the farmer‟s seed system through the introduction of new varieties or new 

selection and introgression of genes from hybridization with wild species or varieties. New 

varieties enter the farmer seed system through social seed network and exchange of seeds with 

other farmers, seed from local markets or from the project or commercial enterprises (Sthapit and 

Rao, 2009; Almekinders & Louwaars, 2002). This system is very dynamic and integrated to cope 

with all kinds of pressures. The common strategies used by farmers and communities to manage 

vulnerability caused by climate change are listed in following points: 

 

 Maximize the use of NUS as genetic resource base (buffer) for managing adversity and to 

cope up with changing climate scenario 

 Capitalize/ maximize the use of diversity-ecosystems‟, and species diversity integrated 

farming system (home gardens, livestock, aquaculture, perennials, bee keeping etc) 

 Maintain intra-specific diversity to cope with environmental and economic adversity (e.g. 

maintain richness in staple crops to cope with vulnerability) 

 Adopt  farmer-to-farmer seed/planting materials exchange system (informal seed system) as 

a social seed networks to ensure local level community based adaptation strategies and 

enhance access to locally adapted genetic resources for unpredictable climatic situations 

 Farmer selection from available or introduced or introgressed diversity to adapt local 

situation 

 

Neglected and underutilized species as a buffer for climate change 
Another interesting traditional practice is that indigenous farming  communities in the  most 

vulnerable areas such as Sub-Sahara Sahelian regions, Andean mountains, Himalayan high 

mountain ecosystem,  maintain portfolios of species of neglected and underutilized species, 

animal breeds and farm trees as risk aversion or adversity management practices. Mixed farming 

and mixed cropping are common practices to address such uncertainties. In home gardens of East 

Java, a portfolio of emergency root crops (e.g. Amorphophallus campanulatus,  Colocacia spp,  

Dioscorea spp, Manihot spp. etc.) is found to buffer food supply chain during climatic adversity.  

Many such examples were also reported in Chepang indigenous community of Nepal (Sthapit et 

al., 2008; Aryal et al. 2009). Although policy makers and the media highlight the impact of 

extreme events such as hurricane, floods and drought, the farmers are worried from rainfall and 

temperature patterns moving outside the regular variability ranges. The impact of such local 

variation and uncertainty is the low farm productivity and income of farmers and there are not 

immediate technological solutions available to farmers as the speed of these changes is difficult 

to be controlled with the current research and development system.  

 

Despite the general notion that NUS are neglected for specific socioeconomic reasons, the role of 

these species traditionally used by indigenous farming communities, becomes extremely 

important to reduce risks and adapt to adversities caused by  climate changes. The neglected and 

underutilized crop genetic resources are very vital for sustainable agriculture (Eyzaguirre et al. 
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1999; Bhag Mal, 2007). Traditionally, these species contribute significantly to the well being and 

livelihoods of the rural households. Many of these species are well adapted to stress conditions 

of extreme environments and hence form part of the sustenance farming systems. Many 

underutilized species occupy important niches, adapted to risky and fragile conditions of rural 

communities and have a comparative advantage in marginal lands as they can withstand stress. 

They also contribute to the diversity and stability of agro-ecosystems and are potential crops for 

the diversification of agriculture. These species often play a strategic role in fragile ecosystems 

such as those of arid and semi-arid lands, mountains, steppes and tropical forests. Most of the 

these crops do not require high inputs and can be successfully grown in marginal, degraded and 

wastelands with minimal inputs and at the same time can contribute to increased agricultural 

production, enhanced crop diversification and improved environment and have the potential to 

contribute useful genes to breed better varieties capable of withstanding and sustain the climate 

change scenario (Bhag Mal and Joshi, 1991; Bhag Mal, 1993, 1994, 2007, Padulosi et al. 2009).  

 

The genetic resources of many of these important species are being lost through rapid destruction 

of natural habitats especially in the tropics. The State of the World Report II on PGRFA (FAO 

2009) depicted a very worrying situation with regard to conservation and use of agricultural 

biodiversity and highlighted that very limited efforts are on record to curb the genetic and 

cultural erosion taking place on-farm and severely affecting the sustenance of local crops and 

varieties. Furthermore, the international policy instruments such as the Global Crop Diversity 

Trust are currently focusing on crops of Annex. 1 of the International Treaty on Plant Genetic 

resources, thus excluding de facto a large number of other important species including potential 

underutilized crops from being properly safeguarded, conserved and promoted for effective use. 

Hence, more and concerted efforts are needed to support in situ/on-farm conservation and 

sustainable use of neglected and underutilized species. 

 

An integrated faming system to climate change adaptation   
It is a fact that agricultural biodiversity is an important part of the climate change management 

strategies being developed by indigenous people and rural communities but is not adequately 

recognized and the knowledge of how, when and what agricultural biodiversity has been used to 

cope with climate change is scattered and not well documented. Most rural areas have always 

experienced climate variability, and farmers have always had to cope with a degree of 

uncertainty in relation to the local weather. They maximize the wide range of ecosystem 

available in the landscape they live, their production systems are integrated with crops, animals, 

fisheries, perennial fruits and trees around homestead or at the vicinity to rivers, lakes and forests 

and maintain portfolios of varieties of staple crops for managing adversity. There is 

interdependence within the system which is designed to spread risk and vulnerability to 

stochastic events. In the past, the production system with greater diversity, or which was 

successfully integrated with livestock or orchard, was often less vulnerable to sudden changes, 

and showed higher levels of resilience. Farming systems with perennial fruit trees for example, 

coconut, mango, mangosteen, durian, jackfruit, etc. not only provide options for household food 

supply but also  constantly maintain and develop their root and biomass and associated carbon 

(Scherr and Sthapit, 2009) while providing vegetative cover for soils whereas livestock provide 

cash to meet emergency needs. Livestock was never really mentioned in the climate change 

debate until 2007, when FAO reported that livestock  produces 14.5% of all greenhouse gases. If 

the livestock are effectively integrated into ecological farming by small holder farmers, they 
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have potential to mitigate some of the adverse effects of climate change and also offer options 

for coping strategies to farmers. 
 

Similar to carbon credits, agrobiodiversity conservation credits (ACC) could be awarded to 

farmers who nurture wild and cultivated agrobiodiversity in their fields, who adopt 

agrobiodiversity or carbon friendly farming practices, such as no-tillage, using higher residue 

cover crops and rotations, decrease the use of fossil based fertilizer or pesticides, convert  

marginal crop land to trees or grass residue management, high-biomass crop rotation and cover 

crops or integrated home garden system, perennial grasses for pastures, rotational grazing, etc. In 

order to meet the restrictions on greenhouse gas emissions, industries need to buy “carbon 

credits,” essentially paying another for storing carbon to offset the excess it is releasing to the air. 

This requires strong policy support to implement such incentives. 

 

Similar to the concept of reducing emissions from deforestation (REDD) and Avoided 

Deforestation (AD) for developing countries, agrobiodiversity conservation could potentially 

seek to be compensated through agrobiodiversity conservation credits (ACC) for saving genetic 

diversity for current and future food security and for providing valuable ecosystem services. 

Potentially, it can be used both as an adaptation and mitigation tool that will earn back money for 

the people who nurture and care for it. 

 

Agrobiodiversity conservation credits might be just the answer to addressing pressing 

conservation challenges faced by farmers and scientists alike. The concept of agrobiodiversity 

conservation credits (ACC) has to demonstrate the full costs and benefits of the maintenance and 

use of agrobiodiversity in agricultural landscapes to the different stakeholders involved. This 

valuation must go beyond the present and future financial benefits of the marketable products of 

biological resources to include those of the ecosystem services that they provide. These credits 

could be traded or paid for maintenance. 

 

 

Farmer seed system 

The traditional knowledge/practices and local genetic resources play a key role in farmers and 

community‟s capacity to adapt to climate change. Farmers‟ ability to cope with impact of climate 

change will be strengthened if the research and development institutions can build upon the 

traditional knowledge and practices of farmer seed and germplasm management systems. This 

requires strengthening their social seed networks and policy supports that promote farmer-to-

farmer seed exchange system. Traditional or social or informal seed systems are maintained 

through the interactions of economic, social and cultural institutions that ensure availability of 

planting materials. Individual farmers search, select and keep their own locally adapted seeds 

and breeding stocks but practice social forms of exchange, including gifts, barter and sales that 

deploy agricultural biodiversity across landscapes and communities. In the context of climate 

variability and risk of crop failure in a local condition, communities with strong social seed 

networks are better equipped to cope with the effect of climate change compared to communities 

with weak and disturbed social seed networks (Subedi et al., 2003; Paudel et al., 2008). In many 

traditionally managed agro-ecosystems, local populations of domesticated crops maintain a high 

level of genetic diversity by the function of migration and re-colonization (sink-source) of meta-

populations (van Dusen, 2003, Hastings and Harrison, 1994). It was observed that local varieties 

suffered from climate variability can re-colonize their populations (in terms of area and number 
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of growers) by simple way of seed/planting materials flow that takes place from farmer to farmer 

networks. Commercially and centrally planned seed companies and government institutions have 

difficulty to predict climatic unpredictability and plan for seed provision that needed for diverse 

types of small farmers. In fact, on-farm conservation/management of wide range of crops, trees 

and animals play key role to buffer such situation and provide access to locally adaptive 

materials and sustain livelihoods. Farmer seed system allows the dynamic change that 

characterized crop landrace systems-open, decentralized genetic systems that are constantly 

evolving to fit farmers‟ needs and environmental changes-could help in coping with the 

uncertainty generated by climate change in agriculture (Bellon, 2010). 

 

 

Strengthening farmers’ capacity through R&D to cope with climate change  

 

In order to strengthen the capacity of farmers,  it is essential to consolidate the roles of farmers as  

conservers, promoters of diversity and dynamic innovators by enabling policy environment for 

on-farm management, farmer innovation and strengthening farmers‟ seed systems coupled with 

scientific capacity building of these communities. The community biodiversity management 

(CBM) approach integrates knowledge and practices with social systems; local rules of 

institutions drive it (Sthapit et al., 2006; Sthapit et al., 2008ab). This approach can be realized by 

empowering communities and their institutions from the outset, building upon an analysis of 

sustainable livelihood assets for reducing poverty and social injustice. The key element is to 

institutionalize local level decision-making. As an integrated conservation and development 

approach, CBM reinforces the capacity of farming or user communities and their institutions. 

The focus is on increasing decision-making power and securing community access to and control 

over the resources required for community biodiversity management. The key elements of CBM 

include: (i) knowledge about biodiversity and associated landscapes, (ii) social systems 

facilitating maintenance and exchange of their genetic resources, (iii) local institutions that 

support and govern local management and access to biodiversity, (iv) technologies, processes 

and practices that add value to local genetic resources, (v) local financial resources such as group 

savings and credits to ensure continuity, and (vi) necessary linkages to appropriate institutions 

which will sustain the access to livelihood assets. 

 

CBM is a process-led approach and builds on farming/user communities‟ existing capacities and 

committed policy support. Empowerment of farmer communities is a precondition for effective 

in situ conservation of PGRFA. The experiences under Bioversity‟s global on-farm project  

amply demonstrated that community based biodiversity management facilitates the process of 

community empowerment and local decision making for collective action and therefore, the 

process that supports farmers decision making in management of genetic diversity is considered 

as a proxy methodology to realize in situ/on-farm conservation of PGRFA and this can be 

achieved  by consolidating the role and capacity of farmers and their rural institutions. This 

approach is not easy for those people who work in genebank as they are used to control all 

decisions as per the need of ex situ  system. In contrast, this mindset has to be changed in case of 

implementing on-farm work and many researchers find this challenging for current PGR 

conservation organizations as the institutions have to develop new kind of partnership with key 

and legitimate actors of on-farm management. PGR institutions that worked with community 

based organizations had been able to do this effectively by defining clear roles and 
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responsibilities of different actors. During CBM process, all actors can find their respective role 

to cultivate partnership in research and development.  

 

CBM is a methodology comprised of a number of steps and a set of practices that suit to the 

particular context (Sthapit et al., 2006). These include: i) enhancing community awareness, ii) 

understanding local biodiversity, social networks and institutions, iii) capacity building of 

community institutions, iv) setting up of institutional working modalities, v) consolidating 

community roles in planning and implementation, vi) establishing a CBM Trust Fund (payment 

system for community conservation efforts), vii) community monitoring and evaluation, and viii) 

social learning and scaling up for community collective action 

 

This process allows farmers to gain scientific insights of knowledge related to climate change 

scenarios, access to new varieties and technologies and blend or integrate into their own 

traditional knowledge and farming system to cope with new problems and always finding new 

ways to deal with them. This allows the communities to be prepared against unpredictable nature 

of climate and socioeconomic environments. 

 

Conclusion 

Climate change represents a major threat to agrobiodiversity. However, agricultural biodiversity 

should be a key component of climate change adaptation strategies. One of the ways in which 

climate change negatively affects agriculture is to change the growing conditions and thus 

making the current practices and varieties ill-suited in the changed context.  

 

Farmers may not have the capacity and facility to predict climatic variability before crop seasons 

or which new pest or pathogen will develop or how the rain will fall during the crop season. 

However, they can and do use a set of crop varieties in agricultural production systems to 

increase options to buffer against an unpredictable change. In this context, agricultural 

biodiversity has the potential to provide immediate cropping alternatives as well as genetic 

materials for the further development of stress tolerant varieties. The role of NUS as a buffer for 

climate change should be further strengthened and promoted. Crop diversification integrated 

with livestock/fisheries/forestry in a landscape for carbon rich farming and to cope with 

livelihood vulnerability needs to be also adequately supported.     

 

Strengthening farmer seed systems of ranges of neglected crop species and other associated 

biodiversity promote open, dynamic and integrated genetic system to cope with climate change 

at the local level through: i) Community based conservation actions (e.g. seed fairs, diversity 

kits, community based register (CBR), community seed banks, community based seed 

production schemes) to improve access of materials and knowledge and their exchange, and ii) 

grassroots breeding, participatory variety selection and participatory plant breeding to develop 

farmer‟s skill and capacity in selection in the  changing context. This is only possible if farmer‟s 

role as conserver and promoter of diversity and dynamic innovator is consolidated by 

strengthening farmer‟s seed system and agronomic practices and compensated/rewarded for the 

services of conservation.  

 

Farmer‟s ability to search for new adaptive diversity, selection of new traits and exchange of 

selected materials with friends and relatives are key adaptive strategies for climatic adversity. 
While the international community is responding to climate change threat by lending increased support to 
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ex situ conservation, very little is done to support evolutionary breeding process i.e. on-farm /in situ 

conservation where the largest amount of the world‟s local crop diversity  is maintained for immediate 

use. Therefore, it is extremely important to understand the (very poorly known) situation 

regarding the in situ/on farm conservation of agrobiodiversity (including NUS), mapping out 

species distribution and their threats, documenting who maintains/ exchanges both diversity and 

associated traditional knowledge and how these materials and knowledge flows from farmer-to-

farmer. All these data will be essential to guide local institutions and governments to develop 

suitable strategies for monitoring the impact of climate change over time and act in time to 

reduce negative impact on agrobiodiversity and livelihood of the people depending on it. It is 

therefore of utmost importance that greater research thrust is given on:  

 

• Strengthening capacity of the community to maximize use of genetic diversity to adapt to 

climate change 

• Integrating diverse crops, trees, livestock and aquatic species (including NUS) to enhance 

adaptability and resilience capacity to changing environmental conditions 

• Establish monitoring and early warning systems for NUS in the context of greater 

interventions in support of in situ/on- farm conservation of local biodiversity (including 

the introduction of „Red Lists‟ for cultivated crops);   

• Promote greater access and exchange of diversity of underutilized (including expansion 

of Annex I list of the Treaty on PGRFA) as a critical element in support of crop 

diversification strategies. 
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