Scaling Readiness in Action Module 1: Fundamentals Murat SARTAS Innovation Delivery Scientist m.sartas@cgiar.org How Scaling Occurs in Livelihood Systems? Story of What were the innovations? Which steps Penicillin followed until it was scaled? ## What are innovations in Agricultural Systems? (1) An Agronomy Practice (2) A Machine (5) Packing Material (6) Policy (3) Crop Varieties (4) A Phone or Tablet (7) A market (8) A partnership Source: CGIAR ### How to scale innovations? "A good gulp of hot whiskey at bedtime—it's not very scientific, but it helps." ## Alexander Fleming The inventor of Penicillin "If Lincoln thinks that a barrel will scale the war success, maybe it can help with scaling agricultural innovations!" Murat Sartas Whisky Loving Scaling Scientist "Tell me what brand of whiskey that (General Ulysses) Grant drinks. I would like to send a barrel of it to my other generals." Abraham Lincoln 16th US President ## What is Scaling Readiness? An Approach to - Enhance scaling performance of R4D initiatives - 2. Optimize scaling investments - Provide Evidence for Science of Scaling ## **Scaling Readiness Concepts** Stave: Component Core Complementary Hoop: Innovation Package ## Scaling Readiness in Action Module 2: Building Innovation Package Murat SARTAS Innovation Delivery Scientist ## How to Develop A Strategy (Theory) of Scaling? What were the steps? 1. Preparing the wood (Early development of the core component) 2. Preparing the barrel pins (Identifying complementary components) 3. Combining the staves (Building the innovation package) ### Let's Construct the Barrel! - Project based groups supported by Murat, Marc and Seerp, 1 hour #### **TASKS** - 1. Identifying complementary components - a. What products, services, processes or organizational models necessary to scale the core component? - 2. Building the innovation package - a. List the innovation components using a spreadsheet # Scaling Readiness in Action Module 3: Readiness and Use of Components Murat SARTAS Innovation Delivery Scientist m.sartas@cgiar.org ## **Scaling Readiness Concepts** Bar (Stave): Component Core Complementary Metal Piece (Hoop): Innovation Package Scaling Readiness Bar Length : Readiness Bar Width : Use **Barrel Capacity: Scaling Readiness** ## Component Readiness - Does the component do what is supposed to do? - Every innovation starts from an idea, being experimented and becomes ready - Based on technological readiness concept developed by NASA #### Readiness Score #### **Readiness Level** - 0 Idea - 1 Hypothesis - 2 Basic Research - 3 Basic Model - 4 Formulating Working Model - 5 Working Model - 6 Working Application - 7 Proof of Application - 8 Incubation - 9 Ready Component Use - 1. Does high adoption during the intervention imply higher scalability? - 2. Does high adoption during the intervention imply that intervention worked? How to ensure scalability and attribution to intervention? ## Scaling readiness Ready 9 Incubation 8 **Proof of Application** 7 Working Application 6 Working Model 5 Formulating Working Model 4 Basic Model 3 Basic Research 2 Hypothesis 1 0 Idea ## Scaling readiness Ready 9 Incubation 8 **Proof of Application** 7 Working Application 6 Working Model 5 Formulating Working Model 4 Basic Model 3 Basic Research 2 Hypothesis 1 Idea 0 ## Scaling Readiness of Your Project - Project based groups supported by Murat, Marc and Seerp, 1 hour #### **TASKS** - 1. Identifying complementary components - a. Free Brainstorming (What products, services, processes or organizational models necessary to scale the core component?) - 2. Building the innovation package - a. List the innovation components using a spreadsheet - 3. Identifying the scaling readiness level - a. Add four columns to the spreadsheet: component readiness, component use, critical component and scaling readiness - b. Discuss and determine readiness and use for each component using the scales - c. Identify the (critical) components with minimum readiness and use - d. Calculate the scaling readiness level ## Readiness Scale | Ready | 9 | Validation of the capacity of the component to meet specific objectives in natural /real /uncontrolled conditions without support from an R4D initiative | |------------------------------|---|--| | Incubation | 8 | Testing the capacity of the component to meet specific objectives in natural/real/uncontrolled conditions with support from an R4D initiative | | Proof of Application | 7 | Validation of the capacity of the component to meet specific objectives in controlled environments | | Working Application | 6 | Testing of the capacity of the component to meet specific objectives in controlled environments | | Working Model | 5 | Validation of the capacity of the component to meet specific objectives using existing applied-sciences-evidence | | Formulating Working
Model | 4 | Researching the capacity of the component to meet specific objectives using existing applied-sciences-evidence | | Basic Model | 3 | Validation of principles that component can meet specific objectives using existing basic-sciences-evidence | | Basic Research | 2 | Validation of principles that component can meet specific objectives using existing basic-sciences-evidence | | Hypothesis | 1 | Validation of the idea that component can meet specific objectives. Development of the key hypothesis about the elements of the initial concept (e.g. objectives, functions, intended users) | | Idea | 0 | Genesis of the idea. Formulating an idea that a component can meet specific objective. | ## Use Scale | Livelihood System
(Common) | 9 | Component has been commonly used by the stakeholders who are not involved in developing the component | |-------------------------------|---|--| | Livelihood System (Some) | 8 | Component has been used by some of the stakeholders who are not involved in developing the component | | Livelihood System (Rare) | 7 | Component started to be used by few stakeholders who are not involved in developing the component | | Innovation System (Common) | 6 | Component has been commonly used by the stakeholders who work in developing the innovation but not directly connected to the intervention partners | | Innovation System (Some) | 5 | Component has been used by some of the stakeholders who work in developing the innovation but not directly connected to the intervention partners | | Innovation System (Rare) | 4 | Component started to be used by the stakeholders who work in developing the innovation but not directly connected to the intervention partner | | Innovation Network (Common) | 3 | Component has been commonly used by the stakeholders who are not involved in the project but are connected to project partners | | Innovation Network (Some) | 2 | Component has been used by some of the stakeholders who are not involved in the project but are connected to project partners | | Innovation Network (Rare) | 1 | Component started to be used by the stakeholders who are not involved in the project but are connected to project partners | | Project Partners | 0 | Component is only used by project partners | ## Scaling Readiness in Action Module 3: Developing Scaling Strategies (Theory of Scaling) Murat SARTAS Innovation Delivery Scientist m.sartas@cgiar.org @SartasM @ScalingReady @LES4ARD Enhancing Scaling Readiness of Livelihood Innovations ### Scaling Readiness Concepts Scaling strategy: Objective : Achieve maximum scaling readiness given resources Targets : Define readiness and use level targets for each critical component Components: Innovation Development (How to reach to targets?) Stakeholder Engagement (Whom can contribute to reach the targets?) ## Innovation Development Strategy #### Strategic component development options - Is **substitution** with higher readiness and use component possible? - If not can it be outsourced to other better positioned projects? - If not, can the intervention **improve** the readiness and use of the component? - If not, where is the best place to **relocate**? - If relocation is not possible, can the innovation package serve another goal? #### Scaling Readiness Target - An intervention has limited resource and can't achieve all - Then what is realistic readiness and use targets ## Develop your innovation development strategy - Project based groups supported by Murat, Marc and Seerp, 40 Min - 3. Identifying the scaling readiness level - a. Add three columns to the spreadsheet: component readiness, component use and scaling readiness - b. Discuss and determine readiness and use for each component using the scales - c. Identify the (critical) components with minimum readiness and use - d. Calculate the scaling readiness level #### 4. Develop component development strategy - a. Add 8 columns: substitution, outsourcing, development, best option, target readiness, target use relocate, new goal and target - b. Discuss and determine substitution, outsourcing and development possibilities for each option for each critical component - c. Identify the best option for each component. - d. Discuss readiness and use targets - e. If there is no best option, it relocation feasible? - f. If relocation not feasible, refine goals and start the process again ## Stakeholder Engagement Strategy Which stakeholders to Engage? The more specific the better How to engage with them? What is the best engagement option? ## Develop your innovation development strategy - Project based groups supported by Murat, Marc and Seerp, 20 Min - 4. Develop component development strategy - 5. Develop stakeholder engagement strategy - a. Add one column to the spreadsheet and specify which stakeholders can contribute to pursuing the best option - b. List each stakeholder - c. For each stakeholder add a pair of columns. Add the name of the stakeholder and the best engagement means (Workshop, publication, periodic visits etc) NOW YOU CAN READY TO WRITE DRAFT SCALING ACTION PLAN USING THE **SPREADSHEET** ## Scaling Readiness in Action Module 4: Introduction to Evidence Based Scaling Murat SARTAS Innovation Delivery Scientist m.sartas@cgiar.org #### EVIDENCE BASED SCALING #### Draft scaling action plan is ready but - Has key stakeholders been represented? - Is it certain that innovation package is complete? - Are the readiness and use assessment unbiased? - Are innovation development options realistic? - Are stakeholder lists complete and engagement means realistic? - Is it enough to plan only once? IF NOT ALL ANSWERS YES, THEN A MORE STRUCTURE APPROACH IS BETTER! SCALING READINESS USING LES4RD!