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Abstract. The purpose of this paper is to introduce new cryptosystems based on linear Reed-
Solomon (RC) and Bose-Chaudhuri-Hocquenghem (BCH) codes over finite Cayley-Dickson 
and finite Clifford algebras with fast code and encode procedures based on fast Fourier-
Clifford-Galois transforms 

1. Introduction
The idea of public key cryptography (PKC) was introduced by Diffie and Hellman [1] in 1976. Today,
most successful PKC-schemes are based on the perceived difficulty of certain problems in particular
large finite commutative rings. For example, the difficulty of solving the integer factoring problem
(IFP) defined over the ring mZ  (where m  is the product of two large primes) forms the ground of the 
basic RSA cryptosystem [2-11]. The extended multi-dimension RSA cryptosystem [3], which can 
efficiently resist low exponent attacks, is also defined over the commutative ring [ ]m XZ .  

Currently there are many attempts to develop alternative PKC based on different kinds of problems 
on noncommutative algebraic structures. The most researchers use non-commutative groups as a good 
alternative platform for constructing public-key cryptosystems: braid groups [12-15], polycyclic 
groups [12,16], Thompson’s groups [16-18]. 

In this paper, we would like to propose a new method for designing public key cryptosystems 
based on  RS and BCH codes over finite Cayley-Dickson and finite Clifford algebras. The key idea of 
our proposal is that for a given non-commutative algebra, we can define polynomials and take them as 
the underlying work structure in order to do decoding as NP-hard for the family of Reed-Solomon 
codes over noncommutative algebras.  

The rest of the paper is organized as follows: in Section 2, the object of the study (Reed-Solomon 
and Bose-Chaudhuri-Hocquenghem codes) is described. In Section 3, the proposed method based on 
noncommutative algebras is explained. 

2. The object of the study.  Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes
The Bose, Chaudhuri and Hocquenghem (BCH) codes are sub class of cyclic codes. Binary BCH
codes were discovered by Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960.

http://creativecommons.org/licenses/by/3.0


The IV International Conference on Information Technology and Nanotechnology

IOP Conf. Series: Journal of Physics: Conf. Series 1096 (2018) 012098

IOP Publishing

doi:10.1088/1742-6596/1096/1/012098

2

The Reed-Solomon (RS) Code is an important subset of the non-binary BCH Codes. In 1960, Irving 
Reed and Gus Solomon published a paper in the Journal of the Society for Industrial and Applied 
Mathematics [19]. This paper described a new class of error-correcting codes that are now called 
Reed-Solomon (R-S) codes. These codes have great power and utility, and are today found in many 
applications in the intelligent communication systems, cognitive radio systems and in various 
technical communication standards like the Consultative Committee for Space Data Systems (CCSDS) 
Telemetry channel coding standard, the Digital Video Broadcasting (DVB) standards as well as in the 
Digital Subscriber Line (DSL) standard. Historically, RS codes were introduced by Reed and Solomon 
as valuation codes. In the 1960s and 1970s, RS and BCH codes were primarily studied as cyclic codes. 
The transform approach was popularized by Blahut in the early 1980s.  

In order to understand the encoding and decoding principles of Reed-Solomon (R-S) codes, it is 
necessary to venture into the area of finite fields known as Galois Fields (GF). For any prime number
p , there exists a finite field denoted GF( )p  that contains p elements. It is possible to extend ( )pGF  

to a field of mp  elements, called an extension field of ( )pGF , and denoted by ( ) : ( )mq p=GF GF , 
where m  is a nonzero positive integer. Note that commutative Galois field ( )mpGF  contains as a 
subset the elements of ( )pGF . Symbols from the extension field ( )mpGF  are used in the construction 
of classical Reed-Solomon (R-S) codes.  

An ( , )n k  linear code ( , | ( ))Cod n k qGF  is k D subspace of the vector space ( )n qGF   of all n -
tuples 0 1 1( , ,..., )nc c cc −=  over ( )qGF , i.e., ( , | ( )) ( )nCod n k q q⊂GF GF and 

{ }Dim ( , | ( ))Cod n k q k=GF . Any k  linearly independent codewords 0 1 1( , ,..., )ng g g − generate 
( , | ( ))Cod n k qGF , in the sense that 

1
( , | ( )) ( ) .

k

j j j
j

Cod n k q a a q
=

  = ∀ ∈ 
  
∑GF g GF

Thus ( , | ( ))Cod n k qGF  has kq  distinct codewords. 
Reed-Solomon (RS) codes are nonbinary cyclic codes with symbols made up of m -bit sequences, 

where m is any positive integer having a value greater 2 . RS( , )n k  codes on m -bit symbols exist for 

all n  and k  for which 0 2  2,mk n< < < + where k  is the number of data symbols being encoded, and 
n  is the total number of code symbols in the encoded block. For the most conventional RS( , )n k code,
( , ) (2 1,2 1 2 ),m mn k t= − − −  where t  is the symbol-error correcting capability of the code, an 2n k t− =  
is the number of parity symbols. Reed-Solomon codes achieve the largest possible code minimum 
distance for any linear code with the same encoder input and output block lengths. For Reed- Solomon 
codes, the code minimum distance is given by [2] min 1 2 1d n k t= − + = + . 

The most natural definition of RS code is in terms of a certain evaluation map from the subspace 
( )k qGF  of all n -tuples 0 1 1( , ,..., )km m m −=m  (information symbols (massage)) over  ( )qGF  to the set 

of codewords ( , | ) ( )nCod n k q⊂GF(q) GF : 

0 1 1 0 1 1( , ,..., ) ( , ,..., ),          ( ) ( )k n
k nm m m c c c q q− −= = →m c GF GF (1) 

Definition 1. Let ( )qGF  be a finite field and ( )[ ]q XGF denote the ( )qGF -space of univariate 
polynomials where all the coefficients of X  are from ( )qGF . Pick { }0 1 1, ,..., nD β β β −= n  different 
elements of  ( )qGF  arranged in some arbitrary order and choose n  and k  such that 1k n q≤ ≤ − . The 
most convenient arrangement is 1 1

0 1 1, ,..., ,...,b b b i b n
i nβ ε β ε β ε β ε+ + + −

−= = = =  for a some integer 
2,b k q+ ≤ −  where ε  is a primitive element of ( )qGF . We define an encoding function for Reed-

Solomon code as  RS: ( ) ( )k nq q→GF GF  in the following form. A message 0 1 1( , ,..., )km m m −=m  
with ( )im q∈GF  is mapped to a degree 1k −  polynomial (it is called the information polynomial in 
the indeterminate X ): 
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1
0 1 1

0 1 1
0

( ) ... .
k

k j
k j

j
f X m X m X m X m X

−
−

−
=

= + + + =∑m

(2) 
Obviously, ( )f Xm  is one of the kq  polynomials over ( )qGF  of degree less than k . The 

information polynomial ( )f Xm  is then mapped into the n -tuple ( )0 1 1( ), ( ),..., ( )nf f fm m mβ β β − , i.e., 

( )0 1 1 0 1 1( , ,..., ) ( ) ( ), ( ),..., ( ),..., ( ) ,k i nm m m f X f f f fm m m m mm β β β β− −= → →  
whose components ( )if βm are equal to the evaluations of the polynomials ( )f Xm  at each field 
element ( )i p∈GFβ : 

1
0 1 1

0 1 1
0

( ) ... ,    0 1,
k

k j
i i i k i j i

j
f m m m m i n

−
−

−
=

= + + + = ≤ ≤ −∑m β β β β β
(3) 

or 
( ) ( ) ( ) ( )

1
0 1 ( 1)

0 1 1
0

( ) ( ) ... ,    0 2,
k

b i b i b i k b i jb i
i k j

j
f f m m m m i q

−
+ + + − ++

−
=

= = + + + = ≤ ≤ −∑m mβ ε ε ε ε ε
 (4) 

for a common special case 1 2
0 1 1, ,..., ,...,b b b i b n

i nβ ε β ε β ε β ε+ + + −
−= = = = and 1n q= − . The code 

generators may thus as polynomials 
( )
( )
( )

( 0) 1 ( 0) 2 ( 0) ( 1)
0

( 1) 1 ( 1) 2 ( 1) ( 1)
1

( 2) 1 ( 2) 2 ( 2) ( 1)
2

1

1,  ,  ,   ...,   ,

1,  ,   ,  ...,   ,

1,  ,  ,   ...,   ,

... .................................................,

1,

b b b n

b b b n

b b b n

k

+ ⋅ + ⋅ + ⋅ −

+ ⋅ + ⋅ + ⋅ −

+ ⋅ + ⋅ + ⋅ −

−

=

=

=

=

g

g

g

g

ε ε ε

ε ε ε

ε ε ε

ε( )( 1) 1 ( 1) 2 ( 1) ( 1), ,..., .b k b k b k n+ − ⋅ + − ⋅ + − ⋅ −ε ε

Hence, generator matrix for RS codes is the Van Der Monde matrix with n k×  size 

1 ( 0) 1 ( 1) 1 ( 1)

( 1) ( 0) ( 1) ( 1) ( 1) ( 1)

1 1 ... 1
...

... ... ... ...
...

b b b k

n b n b n b k

⋅ + ⋅ + ⋅ + −

− ⋅ + − ⋅ + − ⋅ + −

 
 
 
 
 
 

ε ε ε

ε ε ε  
and encoding a message block 0 1 1( , ,..., )km m mm −=  via the evaluation map in (4) is equivalent to 
computing the Fourier-Galois Transform of the n -tuple 0 1 1(0,...,0, , ,..., ,0,...,0) :b b b km m m+ + + −  

0
11 1 ( 0) 1 ( 1) 1 ( 1) 1 ( ) 1 ( 1)

1
2 1 2 ( 0) 2 ( 1) 2 ( 1) 2 ( ) 2 ( 1)

2

2

1

1 1 ... 1 1 ... 1 1 ... 1
1 ... ... ...
1 ... ... ...

... ... ... ... ..

...

...

...

b b b k b k n

b b b k b k n

i

n

n

c
c
c

c

c
c

ε ε ε ε ε ε
ε ε ε ε ε ε

⋅ ⋅ + ⋅ + ⋅ + − ⋅ + ⋅ −

⋅ ⋅ + ⋅ + ⋅ + − ⋅ + ⋅ −

−

−

 
 
 
 
 
 
 
  =
 
 
 
 
 
 
  

1 ( 0) ( 1) ( 1) ( ) ( 1)

( 2) 1 ( 2) ( 0) ( 2)

. ... ... ... ... ... ...
... ... ... ... .... ... ... ... ... ....
1 ... ... ...
... ... ... ... ... ... .... ... ... ...
... .... ... ... ... ... .... ... ... ...
1 ...

i i b i b i b k i b k i n

n n b n

ε ε ε ε ε ε

ε ε ε

⋅ ⋅ + ⋅ + ⋅ + − ⋅ + ⋅ −

− ⋅ − ⋅ + −

0

1

1

( 1) ( 2) ( 1) ( 2) ( ) ( 2) ( 1)

( 1) 1 ( 1) ( 0) ( 1) ( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( 1)

0
...
0

0
... ...

1 ... ... ... 0

b

b

b k

b n b k n b k n n

n n b n b n b k n b k n n

m
m

m

ε ε ε
ε ε ε ε ε ε

+

+

+ −

⋅ + − ⋅ + − − ⋅ + − ⋅ −

− ⋅ − ⋅ + − ⋅ + − ⋅ + − − ⋅ + − ⋅ −

  
  
  
  
  
  
  
  

⋅ ⋅ ⋅  
  
 
 
  ⋅ ⋅ ⋅ 
   












 
 
 
 
 

A codewords has a zero symbols in the coordinate corresponding to iβ   if and only if ( ) 0ifm β = ; 
i.e., if and only if iβ  is a root of equation ( ) 0f X =m . By the fundamental theorem of algebra if 

{ }deg ( ) 1f X km ≤ −  then equation ( ) 0f Xm =  can have at most 1k −  roots in ( )qGF . 
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3. Methods
In this section, we describe a construction technique of BCH and RS codes over finite
noncommutative algebras in order to prove that maximum-likelihood decoding is NP-hard for the
family of Reed-Solomon codes over noncommutative algebras. There are noncommutative extensions
of GF( )p  in the form of Clifford or Cayley-Dickson algebras of mp  elements

{ }1 2( ) , ,..., | ( ) ,m m sCl p ClifAlg i i i pGF= { }1 2( ) , ,..., | ( )m m sCD p CayDicAlg i i i pGF= . 
Let us denote ( ) ( ),  ( )m m mAlg p Cl p CD p= , where sm q=  for any prime number q  and a nonzero 

positive integer s . Symbols from the Clifford or Cayley-Dickson algebras ( )mAlg p   (instead of 
symbols from the field ( )mpGF ) we are going to use in the construction of generalized Reed-
Solomon codes. Let X  be a formal noncommutative variable with respect to elements

2
( )ma Alg p∈ , 

i.e., aX Xa≠ . We introduce two noncommutative products with one key  ↓ κ

[ ] : ,   0,1,...,i i

i i

i

a X X X X X X X a X X X a X i
↓

↓ −

− −

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ =


   


κ
κ κ κ

κ κ κ κ

κ

Obviously, [ 0] [ ],    i i i i ia X a X a X X a↓ ↓= ⋅ = ⋅  are the left and right multiplications, respectively. 
We now define a special set of polynomials 

[ ] ( ) ( )
1 1

0 0
: ( ) &i i i

n n
ii i i

i i i i i
i i

Alg X f X a X X a X a Alg a X X a
− −

     ↓ ↓ ↓ −     

= =

 
= = = ∈ ≠ 
 

∑ ∑κ κ κ κ κ

 
with a bunch of keys ( )0 1 1 1 2 1, ,..., ...n n− −   ↓ = ↓ ∈ × × ×   κ Z Z Zκ κ κ . For example,

{ } ( )
{ }

( ) ( )
{ }

( )

0 0
0 1

1 2

0 11 1 1 1

2 3

0 2 2

1) 0 ,  it is trivial case: ;

2) 0,1 ,  in this case we have two variants:  

     ,  ;

3) 0,1,2 ,  in this case we have three variants:  

     

a X a

a X aX a X X a

a X aX

 ↓ 

   ↓ ↓   

 ↓ 

∈ = ≡

∈ =

= =

∈ =

=

Z

Z

Z

κ

κ

κ

( ) ( )
{ }

( ) ( ) ( ) ( )

1 22 1 1 2 2

3 4

0 1 2 33 3 3 1 2 3 2 1 3 3

,  ,  ;

4) 0,1,2,3 ,  for this case we obtain four variants 

     ,  ,  ,  .

a X X aX a X X a

a X aX a X X aX a X X aX a X X a

   ↓ ↓   

       ↑ ↓ ↓ ↓       

= =

∈ =

= = = =

Zκ

There are ! 1 2 3n n= ⋅ ⋅ ⋅ ⋅ ⋅  similar bunch of keys ( )0 1 1, ,..., n−   ↓ = ↓   κ κ κ κ .

Example 1. For (0,0,...,0)   ↓ = ↓   κ  and ( )(0,1,2,..., 1)n ↓ = ↓ − κ  we obtain right- and left-
side polynomials 

( ) ( )
( ) ( )

1 1
0,0,...,0 0

0 0
1 1

0,1,2,..., 1 [ ]

0 0

( ) ( ) ,

( ) ( ) .

n n
l i i

i i
i i

n n
n r i i i

i i
i i

f X f X a X a X

f X f X a X X a

− −
   ↓ ↓   

= =

− −
 ↓ − ↓ 

= =

= = = ⋅

= = = ⋅

∑ ∑

∑ ∑

Let [ ]Alg X ↓ κ by the ring of univariate polynomials over 
2

( )mAlg p  with a bunch of keys 

( )0 1 1, ,..., n−   ↓ = ↓   κ κ κ κ .

Reed-Solomon codes with the bunch of keys ( )0 1 1, ,..., n−   ↓ = ↓   κ κ κ κ   are obtained by

evaluating certain subspaces of [ ]Alg X ↓ κ  in set of points  { }0 1 1, ,..., nD x x x −=  which are subsets of
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2
( )mAlg p .  Specifically, a Reed-Solomon codes [ ]{ }2

, | ( ), ( )mCode D k f X Alg pσ  of length n  and 

dimension k  over 
2

( )mAlg p  are defined as follows: 

{ }
( ) ( ) { }( ){ }

( )
2

0 1 1 2

, | ( ), ( ) :

( ), ( ),..., ( ) | ( ) ( )[ ] & d

 

eg ( ) 1 .

m

m

l

n

Code D k f X Alg p

f x f x f x f X Alg p X f X k

 ↓ 

           ↓ ↓ ↓ ↓ ↓ ↓           
−

=

= ∈ < −

κ

κ κ κ κ κ κ

Thus a Reed-Solomon code is completely specified in terms of its evaluation set { }1 2, ,..., nD x x x=
and its dimension k . 

We assume that if a codeword { }2
, | ( ), ( )mCode D k f X Alg p ↓ ∈ κs  of is transmitted and the vector

2
( )m

nAlg p∈y  is received, the maximum-likelihood decoding task consists of computing a codeword 

{ }2
, | ( ), ( )mCode D k f X Alg p ↓ ∈ κv   that minimizes ( , )d s v , where ( , )d ⋅ ⋅  denotes the Hamming 

distance. The corresponding decision problem can be formally stated as follows. We let iс  be the 
codeword symbols, where i  runs from 0  to 1n − , i.e., 

( ) ( )0 1 1 0 1 1, ,..., ( ), ( ),..., ( )n nc c c f x f x f x     ↓ ↓ ↓     
− −= κ κ κ

(5) 
and let im  be the information symbols, where i  runs from 0 to 1k − . An RS coding procedures can 
then be defined by relating jс  to im  according to 

1 1
[ ]

0 0
( ) i i i

k k
ii

j j i j j i j
i i

c f x m x x m x
− −

 ↓ ↓ − 

= =

= = = ⋅∑ ∑κ κ κ κ

(6) 
or in matrix form 

( )

( )

( )

0 1 1

0 1 1

0 1 1

1

, ,...,10 1
0 0 0 0 0

, ,...,10 1
1 11 1 1

, ,...,10 1
1 1 1 1 1

10
0 0 0

...

...
... ...... ... ... ...

( ) ( )

k

k

k

k

k

k
n n n n k

c x x x m
c mx x x

c x x x m

x x x

−

−

−

 ↓−  

 ↓−  

 ↓−  
− − − − −

   
   
   

= =   
   
   
      

⋅ ⋅ 

κ κ κ

κ κ κ

κ κ κ

κ 1 11

1 11 1

1 11 1

00 0
10

11 1 1 1 1

10
11 1 1 1 1

... ( )
( ) ( ) ... ( )

.
...... ... ... ...

( ) ( ) ... ( )

k k

k k

k k

k

k

k
kn n n n n

mx x
mx x x x x

mx x x x x

− −

− −

− −

−−

−−

−−
−− − − − −

   ⋅ ⋅
   ⋅ ⋅ ⋅ ⋅   
   
   

⋅ ⋅ ⋅ ⋅      



  

  

κ κκ

κ κκ κ

κ κκ κ

(7) 
where the symbol ( )  in 1( )j j

i ix x −⋅ ⋅κ κ  means the place for jm . These generator matrices have forms 
of discrete Vandermonde-Clifford-Galois transform (if 

2 2
( ) ( )m mAlg p Cl p= ) or Vandermonde -Caley-

Dickson-Galois (if 
2 2

( ) ( )m mAlg p CD p= )  transform with a bunch of keys ( )0 1 1, ,..., n−   ↓ = ↓   κ κ κ κ .

If we define 
2

( )mAlg pε ∈  to be a primitive element of power n  (i.e., the powers of jε , where j  runs 

from 1 to 1n − , are all different from each other), then RS codes for 1  ( 1,2,..., )j
jx j nε −= =  can then 

be defined as 
( )0 1 1

1

1
, ,..., ( 1) ( )( 1)1

1
( ) ( ) ,k i i

j
j

k
j i jj

j j i
x i

c f x f m−

−

−
   ↓ ↓ − − −−   

= =

= = = ⋅ ⋅∑κ κ κ κ κ κ

ε
ε ε ε

(8) 
This has the form of discrete Fourier-Clifford-Galois or Fourier-Caley-Dickson-Galois transforms 

with a bunch of keys ( )0 1 1, ,..., n−   ↓ = ↓   κ κ κ κ  (DFCGTs or DFCDGTs) over 
2

( )mAlg p , where the 



The IV International Conference on Information Technology and Nanotechnology

IOP Conf. Series: Journal of Physics: Conf. Series 1096 (2018) 012098

IOP Publishing

doi:10.1088/1742-6596/1096/1/012098

6

k “frequency” components (from d until 1d k+ − ) are given by the information symbols 0 1 1, ,..., ku u u − ,
and the other n k−  frequency components are fixed to zero [5]. 

Example 2. For ( )0,0,...,0   ↓ = ↓   κ  and ( )0,1,2,3,..., 1n   ↓ = ↓ −   κ  we have right- and left-
side transforms 

1 1
( ) ( 1) ( ) ( 1)

1 1
( ) ,   ( ) .

k k
r i j l i j

j j j i j j i j
i i

c f x m c f x m
− −

− −

= =

= = ⋅ = = ⋅∑ ∑ε ε
(9) 

These transforms can be viewed as polynomial evaluations (5). Since evaluating a polynomial at 
multiple points can be implemented as a DFT, DFTs can be used to reduce the encode computational 
complexity, if a bunch of keys is known. When 2ln = , the Cooley-Tukey algorithm can be carried 
out. 

4. Quaternization of classical codes and Fourier-Galois transforms
In this section we going to consider a Reed-Solomon codes { }2

, | ( ), ( )mCode D k f X Alg p ↓ κ over 

quaternion algebras. 

4.1. Quaternions 
The quaternions, denoted by ( )RH , were first invented by W. R. Hamilton in 1843 as an extension of 
the complex numbers into four dimensions [20]. 

Definition 2. The Hamilton Quaternion Algebra over the set of the real numbers R , denoted by 
( ),RH is the associative unital algebra given by the following representation: 

1) { } ( ) ( ){ }( ) :   , , ,   , ;a bi cj dk a b c d a bi c di j a bi c di= = + + + ∈ = = + + + + + ∈R R Cα αH
2) 1 is the multiplicative unit;
3) 2 2 2 1;i j k= = = −
4) ,  ,  ij ij k ik ki j jk kj i= − = = − = = − = .
If   ( )a bi cj dk= + + + ∈ Rα H  then its scalar part is 0( )Sc a= = ∈Rα α  and its vector part is 

3{ }Vec bi cj dk= = + + ∈Rα α . Hence,   .a bi cj dk a= + + + = +
α α  We can write the product of two 

quaternions in terms of these three representations in the following ways: 
( )( )

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

1 2 1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 1 1 1 2 2 2 2

1)   

;

2)  

a b i c j d k a b i c j d k

a a b b c c d d a b b a c d d c i

a b b a d b b d j a d d a b c c b k

a b i c d i j a b i c d i j

= + + + + + + =

= − − − + + + − +

+ + − − + + + −

=  + + +   + + +  =   

α α

α α

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( ) [ ]

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 2

;

3)  , .

a b i a b i c d i c d i

c d i a b i a b i c d i j

a a a a a a

 = + + − + + + 
 + + + + + + 

= + + =  −  + + + × 
       α α α α α α α α α α  

The commutative property of multiplication does not hold for quaternion numbers. However, if the 
vector parts of quaternion numbers are parallel to each other, then their product is commutative.  

Definition 3. Let   ( )a bi cj dk= + + + ∈ Rα H  be a quaternion ( , , ,a b c d ∈R ). Then 
  ( ) ( )a bi cj dk a bi cj dk= − − − = − + + ∈ Rα H  

is the conjugate of α , and 2 2 2 2 2( )N a b c d= + + + = =α αα αα is the norm of α , and 
( ) 2tr a= = +α α α  is the trace of α .  

Therefore 2 2( ) ( ) 0.tr N− + =α α α α  We define the special elements 1,    .
2

i j ki j k + + +
= + + =σi  
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Proposition 1. We have =αβ βα   and ( ) ( ) ( )N N N=αβ α β  for every , ( )∈ Rα β H . We have 
( ) 1N =σ  and 2 2

1 13,  1.= − = −σ σi  

4.2. Arithmetic of quaternion integers 
Now we look at the number theory of integral quaternions. More information which is related with the 
arithmetic properties of ( )ZH can be found in [21,22]. 

Definition 4. Quaternions of the form   ,      , , ,a bi cj dk a b c d= + + + ∈Zα σ  are called integral 
quaternions, or Hurwitz integral quaternions (they form a ring ( , )ZσH ) and quaternions of the form

  ,      , , ,a bi cj dk a b c d= + + + ∈Zα  shall be called quaternions with integer coefficients, or Lipschitz 
integral quaternions (they  form subring ( ) ( , )⊂Z ZσH H ).  

We shall be working exclusively in the ring ( , )RσH  of Hurwitz integral quaternions, and use the 
divisibility symbol “|” to denote divisibility on the left in ( , )RσH .  

Proposition 2. A quaternion   a bi cj dk= + + +α σ  is Hurwitz if and only if either , , ,a b c d  are 
all integers, or all of them is the half of an odd integer. If α  is such, then 2 ( ),  ( )N trα α  are integers.  

Proposition 3. An integral quaternion is a unit (that is, divides every element of ( , )ZσH on the 

left) if and only if its norm is 1. These are exactly the 24 elements 11,  ,  ,  ,  
2

i j iki j k ± ± ± ±
± ± ± ± , 

which form a group under multiplication. 
Definition 4. Two quaternions , ' ( , )∈ Zα α σH  are associate if there exist unit quaternions 

, ' ( , )∈ Zε ε σH  such that ' '=α εαε  
Theorem 1. The ring ( , )ZσH  is right Euclidean: for every , ( , )∈ Zα β σH  with 0≠β  there exist 

, ( , )∈ Zω ρ σH  such that  
= +α βω ρ  (10) 

and ( ) ( )N N<ρ ω .  
Definition 5. A quaternion ( , )∈ Zβ σH  is a right-hand divisor of ( , )∈ Zα σH  if there is 

( , )∈ Zω σH  such that .=α βω  
Remark 1. The ring ( , )ZσH  is also left Euclidean. In fact, →α α  is an isomorphism between 

( , )ZσH and its dual ( , )ZσH , so every assertion that we prove for ( , )ZσH  holds also if we replace 
“left” with “right” and vice versa. 

Definition 6. A quaternion ( , )∈ Zπ σH  is prime (irreducible) if α  is not a unit in ( , )ZσH , and if, 
whenever =π βγ  in ( , )ZσH , the either β  or γ  is a unit. 

Theorem 2. Suppose that ( , )∈ Zα σH  and p∈Z  is a prime such that | ( )p N α  but p  does not 
divide α . Then α  can be written as πω ,  where ( )N p=π , and this π  is uniquely determined up to 
right association.  

Theorem 3. For every odd, rational prime p∈N , there exists a prime ( )∈ Zπ H , such that 
( ) .N p= =π ππ  In particular, p∈N  is not prime in ( )ZH . 
Theorem 4. An integral quaternion is irreducible in the ring ( , )ZσH  if and only if its norm is a 

prime in Z . The only elements of ( , )ZσH whose norm is 2 are 1 i= +λ  and its left associates. If 
2p >  is a prime in Z , then there exist exactly 24( 1)p +  integral quaternions whose norm is p . 

As ( , )ZσH  is left Euclidean, every element can be written as a product of irreducible quaternions. 
This decomposition is unique in the following certain sense.  

Theorem 5. For any primitive Hurwitz integer α  and any factorization of 2 ( )N α  into a product 

0 1 kp p p⋅ ⋅ ⋅  of ordinary prime numbers, there is a factorization 
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0 1 k= ⋅⋅ ⋅α π π π  (11) 
of α  into a product of Hurwitz primes with 2 2( ) .i iN p=π  Moreover, given any factorization with this 
property, all the other factorizations with this property are of the form 

( )( ) ( )1 1
0 1 1 1 2 ,k kU U U U− −= ⋅ ⋅ ⋅α π π π

(12) 
where the iU  are Hurwitz integers of norm 1|of which there are precisely 24, as we shall soon see. 
Conway and Smith call this `uniqueness up to unit-migration' [23]. 

4.3. Modular arithmetic of quaternion integers 
More information which is related with the modular arithmetic ( , )ZσH can be found in [24]. 

Definition 7. Let 0≠π  be a quaternion integer. If there exist ( , )∈ Zω σH  such that − =α β ωπ  
then , ( , )∈ Zα β σH ) are right congruent modulo π  and it is denoted as ( )mod=α β π . 

Let ( , )Zπ σH be residue class of ( , )ZσH  modulo π , where π  is prime quaternion integer. The set 
obtained from the elements of ( , )Zπ σH  obtains the elements which by the remainders from right 
dividing (or left dividing) the elements of ( , )ZσH by the element π . Thus, the quotient ring of the 
quaternion integers modulo this equivalence is denoted as ( , ) ( , ) / ( , )=Z Z Zπ σ σ σ πH H H . 

Theorem 6. Let ( , )∈ Zπ σH ). Then ( , )Zπ σH  has 2 ( )N π  element. 

Define ( , )ZH i  as follows: { }( , ) :   ( ) ,a b i j k a b= = + + + ∈Z ZαH i  which is a subset of quaternion 
integers. The commutative property of multiplication holds over ( , )ZH i , i.e,. for 1 2, ( , )∈ Zα α H i  

1 2 2 1,=α α α α but if 1 ( , )∈ Zα H i  and 2 ( ) \ ( , )∈ Z Zα H H i  then 1 2 2 1.≠α α α α  Indeed, 

[ ][ ] ( ) ( )

[ ][ ] ( ) ( )

1 2 1 1 2 2 1 2 1 1 2 2 2

2 1 2 2 1 1 1 2 1 1 2 2

  ( ) , ( ) ,

  ( ) , ( )

a b i j k a a a i j k a a i j k i j k

a a b i j k a a i j k a a i j k i j k

   = + + + + = − + + + + + + + + + ×  
 = + + + + = − + + + + + + − + + 

    

    

α α α α α α

α α α α α 2 . × 
 α

Obviously, ( , ) [ ]iZ ZH i  and it is the ring of Gaussian integers. 
Theorem 7. If a  and b  are relatively prime integers then ( , ) / ( )a b i j k+ + +ZH i  is isomorphic 

to 2 23a b+
Z  [24]. 

Theorem 8. Let ( , ) / mZ πH i be the residue class of ( , )ZH i  modulo kπ , where k  is any 
positive integer and ( )∈ Zπ H  is a prime quaternion integer. According to the modulo function 

: ( , ) /m
m

p
→Z Zρ π: H i  defined by 

( )mod mgg g g  → = −   


π π π
ππ (13) 

( , ) / mZ πH i  is isomorphic to mp
Z , where p =ππ  and p  is an odd prime. 

The symbol of ] [⋅  in (13) is rounding to the closest integer. The rounding of Gaussian integer can 
be done by rounding the real and imaginary parts separately to the closest integer. 

4.4. Quaternion codes  
There are two cases. In the first case we have ( )pGF -valued massage 0 1 1( , ,..., ) ( )km m m p−= ∈m GF  - 

k -tuples of information symbols over ( )k pGF  and quaternion Fourier-Galois transform. In this case 

we use procedure (13) for embedding m  into ( , ) / :k Z πH i { }( ) ( , ) / ,k kp →GF Zρ π: H i  i.e.,     

( )0 1 1 0 1 1 0 1 1( , ,..., ) ( ), ( ),..., ( ) ( , ,..., ) .k n km m m m m m m m m− − −= = =m  ρ ρ ρ ρ  
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Let ε  be an element of ( , )σ ZH  such that 1 1p− =ε  and let p  be a prime in Z , where π  is a 

quaternion prime number and ( ) .N pπ ππ= =  Then 
2

, 0

pkn

k n

−

−
 =  εF  is the quaternion Fourier-

Hamilton-Galois transform. The most natural definition of quaternion RS code is in terms of such 
transform with a bunch of keys ( )0 1 1, ,..., :n−   ↓ = ↓   κ κ κ κ  

1
( 1) ( )( 1)

1
.i i

k
j i j

i
i

m
−

 ↓ − − − 

=

= = ⋅ ⋅∑κc m κ κε εF
(14) 

As result we obtain RS code with the bunch of keys ( )0 1 1, ,..., .n−   ↓ = ↓   κ κ κ κ  

In the second case we have ( , )ZσH -valued massage 0 1 1( , ,..., ) ( , )km m m −= ∈m ZσH  - k -tuples of 

information symbols over quaternion ring ( , )σ ZH  and Fourier-Galois transform 
2

, 0

pkn

k n

−

−
 =  εF  over 

( )pGF , where ε  be an element of ( )pGF  such that 1 1 (mod )p p− =ε . In this case we use procedure 
(13) for quaternization of Fourier-Galois transform

( ) ( )
2 2

, 0, 0
 .

p pkn kn

k nk n

− −

−−
   = = =  

ρ ρ ε εF F
(15) 

A quaternion RS with a bunch of keys ( )0 1 1, ,..., n−   ↓ = ↓   κ κ κ κ  is defined as the following
transform 

1
( 1) ( )( 1)

1
.i i

k
j i j

i
i

m
−

 ↓ − − − 

=

= = ⋅ ⋅∑κc m  κ κε εF
(16) 

The quaternion Fourier-Hamilton-Galois transform 
2 1

2 , 0

n

n
kn

k n

−

−
 =  εF is represented as a weakly 

filled matrices product: 

( )1

1 1
2

2 2 2 2
1

1 1
,

1 1
j

n j j n j

n

j

I I I
−

− − −

=

   = ⊗∆ ⋅ ⊗ ⊗    −  
∏ εF

(17) 
where ( ) ( )1 1 1 12 1 2 2 2 (2 1) 2diag 1, , ,..., .

j j j n j j− − − − −⋅ ⋅ − ⋅∆ =ε ε ε ε  Then 

( )1

1 1
2

2 2 2 2
1

1 1
.

1 1
j

n j j n j

n

j

I I I
−

− − −

=

   = = ⊗∆ ⋅ ⊗ ⊗    −  
∏c m mεF

(18) 
All variables in (18) are assumed to be ( )pGF -valued variables, obeying the arithmetic laws of a 

Galois field ( )pGF . From (18) for 1
2
j
kc + and 1

2 1
j
kc +
+  we have 

11

1 1

2 21 2 2
2 2 12 2

(2 1) 2 (2 1) 21
2 2 12 1 2 1

( )1 1

1 1 ( )

jj

j j

k j jj jk
k kk k

k k j jj j
k kk k

c cc c

c cc c

−−

− −

⋅+ ⋅
+

+ ⋅ + ⋅+
++ +

       ⋅ +
   =   =  
       − ⋅ +        

εε

ε ε
(19) 

Engineers often represent this transformation as a picture and call it the “butterfly operation”. 

For quaternion Fourier-Hamilton-Galois transform 
2n

 ↓ κF  with a bunch of keys  ↓ κ  we use the
following expression 

( )( )1

1 1
2

2 2 2 2
1

1 1
1 1

j
j j

n j j n j

n

j

I I I
  −↓ 

− − −

−

=

   = = ⊗∆ ⋅ ⊗ ⊗     −  
∏

κ

c m m
κ κε εF

(20) 
From (20) for 1

2
j
kc + and 1

2 1
j
kc +
+  we have 
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( )
( )

11

1 1

2 21 2 2
2 2 2 12

(2 1) 2 (2 1) 21
2 1 2 1 2 2 1

( )1 1 .
1 1 ( )

jj
j jj j

j j
j j j j

kj j jj k
k k kk

k kj j j j
k k k k

c c cc

c c c c

−−

− −

⋅ −+ ⋅ −
+

+ ⋅ − + ⋅ −+
+ + +

        ⋅ + ⋅
        = =
        − ⋅ + ⋅       





κ κκ κ

κ κ κ κ

ε εε ε

ε ε ε ε
 (21) 

Obviously, it is the “butterfly operation” with key j ↓ κ . Fast quaternion Fourier-Hamilton-Galois

transform contain  12nn −  “butterfly blocks” and every block can has unique key. 

5. Conclusion
According to Berlekamp, McEliece, and van Tilborg maximum-likelihood decoding of linear codes is
NP-complete over all finite fields ( )pGF . In this paper, we have shown a new unified approach to the
Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes over finite noncommutative algebras. The
approach is based on a bunch of keys for discrete Fourier-Clifford-Galois or Fourier-Caley-Dickson-
Galois transforms. Cardinality of the set of bunch of keys is equal to !k  for ( ),n k -code.
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