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Introduction
Binary + 1-valued Golay — Rudin — Shapiro sequences
(2-GRSS) associated with the cyclic group Z; were in-

troduced independently by Golay [1, 2, 3] in 1949-1951,
Shapiro [4, 5] and Rudin [6] in 1951.M.J.E.Golay [2] in-
troduced the general concept of “complementary pairs" of
finite sequences all of whose entries are = 1. For building
the classical FGRST in bases of classical 2-GRSS the fol-
lowing actors are used: 1) Abelian group Z», 2) 2-point

Fourier transform />, and 3) complex field C, i.e., these
transforms are associated with the triple (Z,, 7>, C).

In previous papers [7, 8], we have shown a new uni-
fied approach to the GF(p) -, or Clifford-valued comple-
mentary sequences and Golay transforms. It was associ-

ated not with the triple (Z,, 7>, C), but with triples
(ZZ > {CSZI ((Pl , 0, yl)a CSZZ ((pZ > 02,72 )5 RaE)

CSH(@n 072} 5 AlR)
and  (Z,,CS(9,0.,7), Alg), where {CS}(or,0u,71),

CSZZ((pz,ocz,yZ),...,C&}((p,,,oc,,,y,,)} is a set of arbitrary
unitary(2x2) -transforms of type

€' cos @y et sin @y

CSZ((pkaalmyk)z i . Lia >

et sme, —e ' cosQ;
k=1,..n,

and CS, (p,a,y) is a single transform, Alg is an algebra

(for example, Clifford algebra).

In this work, we develop a new unified approach to
the so-called generalized —multi-parameter m—
complementary sequences. This construction has a rich
algebraic structure. It is associated not with the triple

(Z,,7%.,C), but with
D (Z,,U,,Alg), 2)(Z,.{U,,U},.., U}, Alg),
3) (Gr,,.{U,. 1. U, | Alg),

m> m

4) ({Gr),Grz,...Gr; },{U},, Uz, Us |, Alg).

where {Gr,L,Gr,ﬁ,...,Gr,,’;} is a set of arbitrary finite

groups of given order m Here {Ulm,Uﬁl,...,U’;ﬂ} is a set of

arbitrary unitary (mxm) — transforms represented in the
many-parameter Jacobi-Euler form [9—10]:

m=1 —m

U, = UL (0h, 0l 0) = UL (@}) = [ TTT J(6h),

r=1 s=r+l

m—1 m
U2 = U2 (03,97 92) = UZ(@2) = [ T [ ] (92

r=1 s=r+l

m=1 —m

U = U5 (05,9 @) =Un (@) =[] I(02)s

r=l s=r+l

r s
1 0 0i--- 0
0 o) o s@ | 0
J((pr,S)I : N . Y
s |0 S((Pr,S) _C((Pr,S) - 0
0 - 0!- 0l 1

is the Jacobi orthonormal rotation with reflection,
05 = (96, P1s-s @y )5 @G = (@5, 9., 9) are the Jacobi
parameters, ¢g=C2=m(m—1)/2, c(¢r,s)=cos(9y,s),
§(9r,5) =sin(@r. s).

The rest of the paper is organized as follows: in Sec-
tion 2, the object of the study (Golay — Rudin — Shapiro
m-ary sequences) is described. In Section 3 we propose
method based on new generalized iteration rule with n
unitary (mxm)-transforms U}, UZ,...,Us and single
group Z,,. Then we generalize the previously method on
n unitary (mxm)-transforms U},,UZ,...,U% and on n fi-
nite groups {Gr,L,Gr,ﬁ,...,Gr,,’;}. In Section 5 we derive
fast algorithms for binary Golay transforms.
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The object of the study.
New iteration construction for original Golay sequences

We begin by describing the original Golay m-
complementary sequences.

Definition 1. A generalization of the Golay comple-
mentary pair, known as the Golay m-Complementary m-
element Set (m-GCS) of complex-valued sequences [11]

comy() = (co(0). co(l), o co(m—1)),
LGOS = com (1) = (¢(0), (), ..., a(m-1),
com,,; () = (-1 (0), ¢, 1(1) sCua(m—1))

m=1

is defined by ZCORk(r) m-8(7), Z|COM (2) =

where {CORk (r)}k:; are the periodic autocorrelation

functions of {comk (t)}zl:1 and COM,(z) = Z{comk (t)}
are their Z — transforms.

We use two symbols o,e[0,m"'-1]=Z.» and
tne[0, m*'-1]=Zmn for numeration of Golay sequences
and discrete time, respectively. For integer a,<[0, m™'—
11=Zm and t,e[0,m"'-1]=Zm we shall use m-
arycodes a, =(ou,0,....0, ), &, = (f,%2,....1, ), where
aitie{0,1,...,m-1}=Zy,1=1,2,...,n

Let @, =(ou,0,....,0,) and t,=(t,0,...,1,) be m-

ary codes, then define
n

= (_in = zanﬂ#lmiil: and tn =
i=1

n

— n—i

- ztnﬂ#lm
i=1

as integers whose m-ary codes are @, =(ou,0s,..., 0L, )
and t, =(,0,....1, ), where a, 11 are less significant bits
(LSB) and au,t, are most significant bits (MSB) of
d, =(a,as,..,a,)and €, =(£,5,...,1, ), respectively.
Obviously,

o =(w)eZ,,
da,=(0,,a,)€Z,xZ, =72,
d; =(0,,05) €22 xZ,, = Z},,

o =0 EZm,
(als(XZ) eZm XZm:
(0,,05)€Z, . xZ,,

a0 —(o -1 —
a, _(anflaan) € Z:‘n XZm _ZZn

f:(tl)eZm, tt=tel,,
i :(tl’tZ)EZmXZm _ana (tl,tz)EZmXZm,
i :(tz,t3)€Z XZ _Zi,l, (tz,t3)€Zmz XZm,

€ =(tnt,) €2y X2, =2, (t,1t,) €L, XZ,.

Let {com["+1 (t,,H)} be m""!-element set of m com-
plementary  sequences (of length m”""!), where
Out1, tr1 =0, 1,..,m"™1—1 They form rows of a (m™!xm"*")
-matrix G} [com ”“](t,m)J o

m-Golay matrix. Here index [n+1] shows that Golay ma-
trix have been obtained on the n+1 iteration step. We are
going to group these rows (sequences) as

, that is called the

i1 5t =

comi ) (t,.1)

m™ -1 m"—1 m—1 ol (1]
com .1 (t +1)
Gyl = Heom{i () = H [Bﬂcomﬂ:ﬁm(tm) -H (1)

@,41=0 @, =0 \ 01=0

a,=0

00m<l”m H(ta)

Let us to select the more fine structure of the m-Golay matrix:

[n+1]
comg, ;o) (€s41)
+1 +1 [n+1]
comE:; o (tr) com{y™ - (t,.1) com{;™ | (t,.1)
i [n+1 -l 1 [n+1] -1y
n+l [n+1] Com(a,, 1)(t"+1) r o Com(u,, 1 a,,l)(tlHl) T
= (t )= = = )
mn+1 (.701’1’1(u YL = — Com[n+1] (t ) )
0,41=0 @, =0 | crereeeereseeseseeees Uy 1=0| 0p=0|  crreeerereeeeeeseeeess @ 1=0 (a1, 1,m—1) (Lt
[n+1] [n+1]
Com(ﬂu m— 1)(t"+1) Com(a,, 1,0 m— 1)(tn+1)

Example 1. For n=1 and n=2 we have, respectively,

com(::l] 0 0)(tn+1)

[n+1]
com,, o 1)(tn+1)

[n+1]
COl’l’l(u” 1,0,m— 1)(tn+1)

[n+1]
Com(uﬂ 1,m—1,0) (tnﬂ)

[n+1]
come, o, 11)(tn+1)

C‘Ol’n(’lJrl (tn+l)

a,_,m—Im-1)
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comg) (t,)
[comul (t) Jl EBcom (t,) =] comy(t)) |,
com{y) (t,)
comigly (t,)
Com%?l) (t2)
comigh (t,)
com? [(t)) | |coml (t,)
2 (.02 w0 (L2

2 _ 2]
G —Hﬂ comy, , (t;)

=0 2
“=1 comly) , (t,)

=|com{} (t,) |. O
Comg,]z) (t>)
comy (t,)

comp) (t,)

_Com(z,z)(tz )_
The matrix G/ is constructed by an iteration con-

struction. The initial matrix GU! is formed by starting

with an arbitrary unitary (mxm)-matrix (in many-
parameter form or not)
comy’(t,)
y _ | comi’(t)

U, =[4.(0)]:=G" = =

coml! (t))

m—1

[ 40) A0 4Q) Ay(m—=1) |
40) 40 42 A(m—-1)
=| 4(0) A, (1) 4,(2) A, (m=1) |,
| 4,0(0) 4,0 (D) 4,.(2) Ay (m=1) |
where 4, (1) € Alg,
com! (£) = (A4, (0), 4, (1), ..., A, (m=1)).

Example 2. The initial matrix G!| can be the Fourier
transform on Abelian group Z,:
_com%” )]
com!" (t,)

G =| coml! (t,) |=

| com, ), (t,)

r (3)
1 1 1 1
1 gl g2 ghm-1
=1 &2 g2 g2 (m-1
1 8(mfl)-l 8(mfl)-Z 8(,,,71).(,,,,1)
where ¢, = T/I e Alg, cgmk (t) = ( '2’”.’8k-(m—1))’
(k=0,1,...,m—1) are characters Z,,. o

It is easy to check that
(oM () +|com, ) +..+[cOM,., ()f ) =m.

4=t

Indeed,

§|COMk @\ =§‘: COM, (z)COM' (Z) =

> (Za (t)z'j[i@(s)?}

k=1 \_1=0
m=1m=1{ m-1 m—=1 m-1 m—1 2
= ( a, (Da, (S)]Z z$ —Z 0,.,2'Z =Z|Z| ,
5=0 =0 \ k=0 5=0 =0 t=0
m=1
since Z“k (H)a(s)=9,_, is true for an arbitrary unitary
k=0

(orthogonal) matrix. Hence,
m—1 m—1
(Z|COMk (z)|2j = [Z|z|2’j =m
k=l RIS |zi=1

and initial sequences in the form of rows of an unitary
matrix (in particular case, in the form of characters
comy(t))=(1,&"!, k2., ekt Dy of cyclic group Z,) are
the Golay m-complementary sequences.

Methods

The matrix G/ is constructed by an iteration con-

m!

struction

Gl (U, )—>G[2 U, U )—) —>GZ§} (G-, U, Uy, (4)
where
unﬂ = {Uma U:‘naUnH} {unannH}a

U, ={U,....Up} .

U (@;) =[4:(e193)]" | € SU(Alg,m)

(s=1,2,...,n) are a sequence of unitary many-parameter
(mxm) -transforms, belonging to the special unitary group

SU(Alg,m), where s=1,2,...,n+1 and A4;(t|¢;) are

Alg-valued many-parameter sequences.

Here

Let us assume that we have m-Golay matrix
G(U,,..,U,)=GU)(U,) (depending on n previous
transforms Ul,,...,U% ). We need to construct the next m-
Golay matrix GU/!(U},,...,Us") = G H(U,,,) using
only G (),

m-Golay matrix G)(U4,) the same structure as in (1):

..,Upn)and Ux'. We are going to use for

m" -1

Gl (U, =HH comly) ¢, |U,) =

a,=0

COmEZ] ) (t,, |Z/{n) (5)

_ﬁj comiz) (| Uy)

Com n] (tﬂ | Z/lﬂ)

(0 ,m—1)

For constructing G/ 1(U,.,;) from GV (U,) we take

m! m"

each complementary set in the form
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comly) o (t,|U,)

com t, un
m-GCS" (U, ) = (o (C | Uy)

comE:;]n ey (6 T U)

and construct m shifted versa of their components
m- GC SL (Z/l)1+l )7

m-GCS (U,) > " -GCS;L (Unn )

m- GCS(:”] (Z/[nﬂ )5

where

T -
m-GCS (Uy) =Uy | B | Py |x

N

t,

(6)
comly o (t, |U,) comly™ (tyur | Uyr)
Com&] G 1)(tn |U,) Com(ii“l)(tm | Unir)

Com(z],, 1,m=1) (tﬂ | Z/{ ) Com(lﬂm 1) (tlHl | "+1)

Here o, =0,1,...,
operator on o, positions (modulo ), T™ is the shift op-

P, is

m—1, Pg is the cyclic permutation
erator on m”s positions T,"" f(t,) = f(t, +m"s),

transposed matrix of P,,.
According to (1) we obtain

ComE:iH(])) (tn+l | Z/l)1+l)

G[n+1 (Z/{ ) g Com(z+11]>(tn+1|1/ln+1) _
g n+l -

@, 0|  eereereesreesessenn
1]
Com[’H m— 1)(tn+1 | unH)
I,
Tl-m"

= HHU"H P - t ) .f)’gn

a, =

x (7)

T(mfl)m"

t,

Com(a,, 1,0) (tn | Z/ln)
comly) (t,|U,)

ComEzl 1,m—1) (tn | uﬂ)

and, consequently,

ComEZ:lu Oy Oi1) (t"+1 | u"“) -

m—1
= Z ay’ (BT e comm oo (G [ Uy).
B0

Since t,+1=(t4, t:+1), then believing ¢,., =a, S, , we

obtain:

COHIE:;:II s q,,ﬂ)(tnﬂ | Z/{VHI) =Co [:;:1] (I ql’+l)(t)17tn+1 | Z/l)1+l) -

[] _
- Z A (0, @1, com) e, (6 [U) = (8)

=0
= Z A;“ (0( ®tn+l)Tm o COI'nw” 150 ®tn+l)(t +m" Lt | Z/[ )
1y11=0
So,
ComEZHl o, um)(tn:tnﬂ | Z/{nﬂ) -

n+l [n] (9)
= AO!M (OL" ? t"“) : Com(ﬂufl#u Dtys1) (t” | Z/[” )
It 1is finally recurrent relation between m-

complementary sequences of G [Z/I,,H] and GV [Z/{n].

From (9) we obtain expression for com"(t,., |U,.):

comy ), (t, 1) = HAQ?I@,Q (0, ®t,1), 0,12 =0.(10)
In particular, for matrices in the form of the Fourier
transform U!, = U2 =...=U” =[¢¥] we have
[n+1]

_ [n+1] _
Com(anq,un,um)(t"“) =comy,, ., um)(t" ’t"“) -

(11

Z(Ot\ ®t\+1 )(Ot\+1 ®fv+2)
p— 8‘ 1 .
Where oy, t,2=0. New sequences in (9) are orthogonal
and m-complementary sequences.

Generalizations

In this section, we introduce generalized m-
complementary sequences. It is based on using new per-
mutation matrices P in (7). The mappings g: X—X of
a set X into (or onto) itself are of particular importance.
They form the following set XX: = {g|lg: X—>X }.

Definition 2. One-to-one map from a set X to itself
g X—>X, x'=g(x)=gox is called a transformation of the
set X.

If X is finite and consists of m elements (for example,
X=1{0,1,2,...,m}) then a transformation of the set X is
called a permutation. As is well known, the set of all
permutations of X forms a group S, =Sum{X} in which
the product on of a pair of permutations o, 7 is defined
by (om)ox: = Go(ox).

If X contains more than two elements, S,, is not com-
mutative. Any subgroup of S, is called a permutation
group on X, or a group of permutations of X. We shall
say that the permutations in Sym(X) act or operate on the
elements of X.

Definition 3. A homomorphism of a group on a set
h: Gr—>Sym{X} is called a permutation representation
(or realization) of .

The image / (Gr)c Sym{X} is a permutation group and
the elements of are represented as permutations of . A
permutation representation is equivalent to an action of
on the set : To specify an action, we need to define for
element geGr the corresponding permutation h(g) of ,

that is, A(g)ox for any xeX. We are going to write /(g)ox

Computer Optics, 2018, Vol. 42(6)
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That is, acts on by permuting the standard basis vec-
tors {en}nexe.Alg™ such that

P(g)en = egun =¢, € {e"}nex s
where P(g)'s are the operators in Alg” which define the

in the short form gox and to call the group of transfor-

mations of . The pair () is called a space with transfor-
mation group the elements xeX are called points of the
space .

Definition 4. If is a permutation group of degree ,
then the permutation representation of is the linear per-

mutation representation of : P:Gr—>GL,(Alg) which

above mentioned /inear representation.

Example 3. Let
X=[0,1,...m~1], Gr=7Z, = <{0,1,...,m—1},@>

be the cyclic group of order m. Then

maps to the corresponding permutation matrix P(g), .

1 | [ [ 1 ] [ 1]
1 1 1
P(0)= , P()= , P(2)= e P(m=1) =
1 1

L 1] R 1 ] ]

In particular, for m=2 and m=3we have
1 Co1]
P(O){ 1} P(1)=_1 }
1 1 1
P(0)= 1 |, P)= 1, PQ)=|1 .o
1
In expression (7) was used /inear permutation representation P(g) of only one group . However, we can use others
finite groups of given order m. Let Gr =Gr,, = { gu} be a group of given order m and {P( 24) }” . Then

COmEZ ,0) (t | Z/{)Hl ’ Grm)

com, ,(t,|U,.,;Gr,
G (U156, = Bﬂ et s Gr)

comly) . (t, |U,.1;Gr,)

12)
It,, Com[n -1,0) (t | Z/{n > Grm)
1-m" [n]
‘HHU"“ P(g)| Bag,) || e (b1 UG
T‘(’"”*U'”’” COm(:;] 1,m—1) (tn | Z/{n s Grm)

is the Golay matrix associated with triple (Grm,{UL,,Ufﬂ .., Unit } ,Alg) .

Example 4. For m=4 we have two groups: Zs= {0, 1,2,3} and Z,xZ,= {(0,0),(0, 1), (1,0),(1, 1)}. For both groups we
have the following permutation representations:

1 1 1 1

P(0) = L B() = L PQ) = PG = | ,

P(0,0) = , P(0,1)= : , P(1,0) = , P(L,1) =

1 1 1 | 1
D (2..{U},, U2, Ui}, Alg),
2) (2,x2,,{U},,U3,... U}, Alg),

Hence, we can construct two different set of Golay
matrices associated with two triples

1078 Computer Optics, 2018, Vol. 42(6)
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respectively. o can use on each k™iteration permutation representations
Let G, = {Gl'i”Grﬁ,---,Gl'»Z,Gl‘ﬁ“} ={ s 1‘"“} be {Ph(gu, )}mi1 for Grt. In this case, we obtain the fol-
. k=0
a set of arbltrary groups  of 1 given  order lowing Golay transform
. 1 _ [0 V" el _ [ o1 "
m: Gr) = { gal} L, Grl = { gl }WI - Then we
com(:;] ,0) (t | un+1a gn+1)
m'" -1 .
n com u,,,1)(tn | Z/l)1+l:gn+l)
GG =HH =
pryper OO
ComE’;}”mfl) (tn | Z/{VHI 5 gn+l) (1 3)
I‘,. Com(u -1,0) (tn | Z/ln:g )
T - com) |\ (t,|U,;G,
- Hﬂ U e, | B (g, 4t | 8rih)
o | T e T T e
LN comi, . (t, | U3 G,)
It is associated with triple Comx+}1>(tn+1) = Comm}l],a,,,%.)(tna tist) =
Gr!,Gr2,...,Gr: 'V (U U2, U Alg). @t ., (14)
({ } { } ) = Z (- 1)( ) OmEa]n ) an@%m)( nt 2" b )’
11=0
Fast Golay transforms e ( )
. . X n oy ®t,,+ [ "
Let us consider expressions (8) and (9) for m=2 (i.e, | comly', . (t,,t,.)=(D"""" com{l) @, @n) X
expressions (6) and (7) from our work [7]): v s - (15)
x(t,) = (D (et conly) o, (8)
and find matrix representations of these expressions. We introduce the following c-parametrized (2"%2")-matrix:
P p go0-p
n_ [n]
ogu! :éﬂ[l } comg, (t,) _
G éﬂlpo Comm Lo(t) s 1] com;) (t,)
= (t,) ot
a,=0 SRR AN IG["] _ $|: 1:| COm a0 I
il comy;! | (t,)
2.1 [n] 2"-1 [n]
oGl = HHPO Mg, .0 (t,) _ oGl — Hﬂ comy, o (t,) _
n 2 n on n s s
? a,=0 ComEuL,l) (tn) _ a,=0 Com(u],, 1,1) (t )
- f [n] B 21 [n]
. EHPI comg, ,(t,) B Gl :EB comly) | (t,) |
n - o n ] s
? comy; )| oo comg,! ) (t,)
and construct the direct sum of introduced matrices
! G ( - ®P? )G n]
n+l @ n] 2" —
2n+l zu 1 [n] [n]
D reld ; (1. ®P}GL
on-1_1 [n]
comy, , ) (t,) (16)
[n]
ool COMG, 1 () ;
= T ot n
5 i com(alll)(t,, +2M)
; e com(u Lo (6, +2")
From (16) we see that GU':! represents coml @) ( o2 -t,,ﬂ) in (14). It is easy to see, that
I:I ® Po:l | G["] !
~ on-1 2 0o n n
Gyl = | o | = [82), (6) [ @ P ] ]x [ LOGY =PI [L @G |,
[ om])" ket
where

Computer Optics, 2018, Vol. 42(6)
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(L, ®P]

x
i

| A [651211 (%1)[12"‘ ® P, ﬂ - 5 [Iz"*‘ ®le]

i

[n+1]

is the permutation matrix with controlling digit {#,+1}. According to (15) the Golay matrix G,

is the product of three
matrices

[zn:” — {( 1)t }|: 52 ) ( 1)t +1:| 2nrll] — {(_1)(1”(1,,“ }|: 52 ) ( 1)t :|’

7
(62, () [T @R ][ LOGY | = Af(-tyme }[87) (e [P [LOGY |,
Where A{(-1)on+1} = diag {(—1*“+1} is diagonal matrix, and [6‘(,22 (—1)“%'”*'} has the following structure
. 1 1 1] 1
B (—l)“”‘””*']=[lzn @H I, @[_J =[L, |12,,]®[1 ‘ _J:
tn+1:0 I tn+1:1
o,,=0 [1 1 1
OL,,H:I 1 -1
1 1 an+1=0 1 1 (18)
s ") - _ _ o
_{[Sumpm [au”,tn]ca{_lﬂ_ Gy =1 L L[N
o, =0 : :
a‘n+1:1
o, =0 1 1
OL,,H:I L 1 —1_
Here ® is new tensor product:
NI 1 il
(L, L, ]® RN LS N N
From recurrent relation (17) we obtain
G :(H[Iz,,k ®A, N, .P;;“]j.[lw. ®GY |= {IW ®[A{(=Dme ] [820,, (<1 |-
k=2 k=2 (19)
{82 @)[1. @ Py ]]} (10 @GY .
This expression represents the fast algorithm for the Golay transform.
Example 5.
comigy (t,) 1 1 1 -1 1 1 1 1 11
P OO R U D N W N T B - 1 1 -1 _
? | com{}} (t,) 1 -1 1 1 1 1 1 1 11
com? (t,) | |-1 1 1 1 -1 1 -1 1 1 -1
:I:Izo ®A22 'sz 'P2{£2}:|'|:121 ®G[21|]:|
fcomPot)] [ 11 1 -1 1 1 -1 1] [1 171 1 1
comity, (t,) 11 1 =1/-1 -1 1 -1 1 1 -1
coml,) (t,) 11 -1 1.1 1 1 -1 1 1 1
ol comfpy,(6)| |1 -1 1 -1/ 1 1 1 -1f -1 | -1 §
* | com, (t,) 1 -1 1 1/-1 1 1 1 1 1 1
comfl), (t,) 1 -1 1 1} 1 -1 -1 -1 1 1 -1
comilyt)| [-1 1 1 1,1 -1 1 1 -1 1 1
Lcomi, )| [ 1 -1 -1 -1) 1 -1 1 1] | 1| 1 -1
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1 1 1 1 -1 1
1 1 1 -1 1 1
1 1 -1 1 1 1
1 -1 1 -1 1 -1
X = X
1 1 1 1 -1 1
1 1 1 -1 1 1
1 1 -1 1 1 -1
i I -1 1 1 1| 1
1 1 111 111 ]
1 -1 1 1
1 1 1 1
1 -1 1 -1
X X
1 1 1 1
1 -1 1 1
1 1 1 1
i 1 -1] | I -1
1 1 1[1 171 1 ]
1 -1 1 1 -1
1 1 1 1 1
1 -1 1 1 -1
y -
1 1 1 1 1
1 -1 1 1 -1
1 1 1 1 1
1 -1 I 1 —1]

:_[120 ® Ay Ny PPV ®A22_ -1_\122 P {1, ®GY].

Conclusion and future researches

In this paper, we have shown a new unified approach
to the so-called generalized multi-parameter m—
complementary sequences. The approach is based on a
new iteration generating construction. This construction
has a rich algebraic structure. It is associated not with the

triple (Z, >, C), but with

1) (Zn, Un, Alg),

2) (2,.{U},, U3,....Us |, Alg),

3) (Gr,,{U},,U2,..., Uz}, Alg) or with

4) ({Gry,Grz,...Gr;},{UL,, U2, Us |, Alg),

where {Ul,,,Ufn,..., U:’,,} is a set of arbitrary unitary (mxm)

-transforms and {Gr,L,Gr,ﬁ,...,Gr,,’;} is a set of arbitrary

groups of given order m. Furthermore, we have derived
demonstrated fast algorithms for Golay transforms.

We are going to use generalized multi-parameter m-
complementary sequences as subcarriers of Intelligent
OFDM telecommunication system. Most of the data
transmission systems nowadays use orthogonal frequency
division  multiplexing  telecommunication  system
(OFDM-TCS) based on the discrete Fourier transform

]

(DFT) Fn. The conventional OFDM will be denoted by

the symbol Fy-OFDM. Conventional OFDM-TCS makes

use of signal orthogonality of the multiple sub-carriers
@* /N (complex exponential harmonics). Sub-carriers

{subck(n)}j::ol:{efz“""”v}::01 form matrix of DFT

N-1

fN = [Subck (n)]kN;l:o = [ejann/N]
At the time, the idea of using the fast algorithm of dif-

k,n=0"

ferent orthogonal transforms U, = [subck (n)] for a

N-1

k,n=0
software-based implementation of the OFDM’s modulator
and demodulator, transformed this technique from an at-
tractive, but difficult to implement idea, into an incredibly
successful story of the data transmission. OFDM-TCS,

based on arbitrary orthogonal (unitary) transform Uy will
be denoted as Uy-OFDM. The idea which links Fy-
OFDM and Uy-OFDM is that, in the same manner that the

complex exponentials {ef 2mkn/N }kN;Ol are orthogonal to each-
other, the members of a family of Uy-sub-carriers
{subc, (n)}ito1 (rows of the matrix U, ) will satisfy the
same property. The Uy-OFDM reshapes the multi-carrier

.. . . N-1 .
transmission concept, by using carriers {subck (n)} 4o 1D
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