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We shall not cease from exploration, and the end of all our exploring will be to
arrive where we started and know the place for the first time.

- Thomas Stearns Eliot (Poet, 1888-1965) -
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Abstract

The integrative analysis of epigenomics and transcriptomics data is an active re-
search field in Bioinformatics. New methods are required to interpret and process
large omics data sets, as generated within consortia such as the International Human
Epigenomics Consortium. In this thesis, we present several approaches illustrating
how combined epigenomics and transcriptomics datasets, e.g. for differential or
time series analysis, can be used to derive new biological insights on transcriptional
regulation. In this work we focus on regulatory proteins called transcription factors
(TFs), which are essential for orchestrating cellular processes.
In our novel approaches, we combine epigenomics data, such as DNaseI-seq, pre-

dicted TF binding scores and gene-expression measurements in interpretable ma-
chine learning models. In joint work with our collaborators within and outside
IHEC, we have shown that our methods lead to biological meaningful results, which
could be validated with wet-lab experiments.
Aside from providing the community with new tools to perform integrative anal-

ysis of epigenomics and transcriptomics data, we have studied the characteristics
of chromatin accessibility data and its relation to gene-expression in detail to bet-
ter understand the implications of both computational processing and of different
experimental methods on data interpretation.
Overall, we provide easy to use tools to enable researchers to benefit from the era

of Biological Data Science.
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Kurzfassung

Die integrative Analyse von Epigenetischen- und Genexpressionsdaten ist ein ak-
tives Forschungsfeld in der Bioinformatik. Neue Methoden sind nötig, um die um-
fangreichen omics Datensätze, wie sie in Konsortien wie dem International Human
Epigenome Consortium generiert werden, sinnvoll interpretieren zu können.
In dieser Dissertation stellen wir mehrere Ansätze vor, um die häufigsten omics

Daten, wie beispielsweise differentielle Datensätze oder auch Zeitreihen zu verwen-
den, um neue Erkenntnisse über Genregulation auf transkriptioneller Ebene gewin-
nen zu können. Dabei haben wir uns insbesondere auf sogenannte Transkriptions-
faktoren konzentriert. Dies sind Proteine, die essentiell für die Steuerung regula-
torischer Prozesse in der Zelle sind. In unseren neuen Methoden kombinieren wir
epigenetische Daten, zum Beispiel DNaseI-seq oder ATAC-seq Daten, vorhergesagte
Transkriptionsfaktorbindestellen und Genexpressionsdaten in interpretierbaren Mod-
ellen des maschinellen Lernens. Zusammen mit unseren Kooperationspartnern
haben wir gezeigt, dass unsere Methoden zu biologisch bedeutsamen Ergebnissen
führen, die exemplarisch im Labor validiert werden konnten.
Ferner haben wir im Detail Zusammenhänge zwischen der Struktur des Chro-

matins und der Genexpression untersucht. Dies ist von immenser Bedeutung, um
den Einfluss von experimentellen Charakteristika aber auch von der Modellierung
der Daten auf die biologische Interpretation zu vermeiden.
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1
Introduction

The human body is composed of approximately 37.2 trillion cells [B+13a]. There
are about 200 different cell types [A+05] that is cells with different purpose and
morphology. Despite this diversity, almost all cells do share the same DNA sequence.
This raises the question how cellular diversity is orchestrated and maintained on
the molecular level.
To address this, Conrad Waddington introduced the term epigenetics which he

derived from the Greek word epigenesis coined by Aristotle in his book Generation
of Animals [AP15]. Waddington defines epigenetics as "the branch of biology which
studies the causal interactions between genes and their products which bring the
phenotype into being" [Wad08]. According to Robin Holiday, who has extended
the definition, epigenetics accounts for gene-expression changes not only during
development but also in the adult stage. His definition furthermore includes the
possibility to transfer epigenetic information from one generation to another [Hol94].
Nowadays, epigenetics is defined as "the study of changes in gene function that are
mitotically and/or meiotically heritable and that do not entail a change in DNA
sequence" [WM01]. Mitotic and/or meiotic heritability refers to heritable traits
between cells and between generations. The latter is known as transgenerational
heritage. To describe the dynamics of cellular development, Waddington suggested
the concept of the "epigenetic landscape" (Figure 1.1) [Wad57].
He compares cellular development to a marble rolling down from the top of a hill

ending up in one of several valleys. Traversing down the landscape is a metaphor
for a cell transitioning from a pluripotent , to a multipotent , to a fully differentiated
state. The landscape itself can be interpreted as the result of the interplay of
genes guiding cellular development. While the original theory of the landscape did
not foresee that cells could leave a differentiated state, it was shown in 2006 that
cells can be triggered to turn into pluripotent cells. Figuratively speaking, the
cells are leaving the valley by travelling up the ridges [L+08]. Additionally, it was
shown that cells are able to directly turn into another fully differentiated cell type,
without a prior conversion into a pluripotent or multipotent state [K+14a]. For
example, fibroblasts have been directly transformed to cardiomyocytes [I+10]. These
transitions are induced by DNA-binding proteins, so called transcription factors
(TF), which bind the DNA with high sequence specificity [V+09a]. Yamanaka et
al. proposed a set of four TFs (Oct3/4, Sox2, c-Myc, Klf4) that are sufficient to
convert fibroblasts to pluripotent cells, so called induced pluripotent stem cells
(iPS) [L+08]. TFs are closely linked to the epigenetic landscape of a cell, i.e.
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1 INTRODUCTION

Figure 1.1: The epigenetic landscape as proposed by Waddington. He proposed
that the landscape is shaped by interactions among genes, shown as
strings and pegs below the landscape, respectively. The marble at
the top represents a pluripotent cell. Traversing down the hill is a
metaphor for the cells differentiation. Branching points indicate regu-
latory events affecting a cells faith. Figure adapted from Ghaffarizadeh
et al. [G+14a] obtained under licence CC BY 3.0.

the binding of TFs to the DNA is influenced by epigenetic mechanisms [HL17].
Concurrently, especially pioneer TFs have the potential to trigger alterations of a
cell’s epigenetic state [MD18].
To initiate transcription, TFs bind the DNA in distinct regions, mostly in so

called promoters, which are located around a gene’s Transcription Start Site (TSS)
and enhancers [Y+15]. Via epigenetic mechanisms, the accessibility of these
sites is controlled and thereby gene-expression is regulated [HT17]. Especially
the TF binding to enhancers has been associated with the regulation of cellu-
lar development [B+14b]. However, epigenetics is not only essential for cellular
development, but, as pointed out by Robin Holiday, also to account for gene-
expression variation in adult cells, which can be influenced by external factors
[Hol94]. For instance, it was shown that changes in a person’s diet can influ-
ence several epigenetic marks at promoters and enhancers and thereby affect gene-
expression [CF10, HT11]. In a more concrete example, chronic alcohol consumption
can lead to a global hypomethylation of DNA by an inhibition of DNA methyltrans-
ferases (DNMTs) [Zak13, L+00b].
Furthermore, alterations of enhancers on the molecular level have also been linked

to several diseases. For example, genomic deletions of enhancers at the β-globin
locus have been reported to be underlying β-thalassemia [K+83]. Another exam-
ple is the deletion of a TAD boundary enabling the LMNB1 promoter to interact
with forebrain-specific enhancers. This is linked to the occurrence of ADLD, a
neurological disorder [G+15a].
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In addition to effects caused by genomic rearrangements and deletions, also the
occurrence of single nucleotide polymorphisms (SNPs) in enhancers is also linked
to diseases. Emison et al. showed that a mutation in an intergenic enhancer of the
RET gene has a significant contribution to the susceptibility of Hirschsprung’s dis-
ease [E+05]. In prostate cancer, several SNPs have been reported to be overlapping
with known enhancer regions, thereby affecting TF binding [H+14b]. Epigenetic
changes in enhancers have also been reported for colon cancer [AZ+12]. Maurano
et al. performed a systematic analysis of disease-associated variations that hamper
TF binding and showed that these are enriched in enhancer like sites identified
using DNaseI Hypersensitive Sites (DHS) [M+12a].

Due to the apparent connection between enhancers, epigenetics and disease, re-
searchers pursue the development of drugs targeting epigenetic mechanisms. Ex-
amples of FDA-approved drugs to treat cancer are Vorinostat and Vidaza [H+14e].
Vorinostat is an histone deacetylase (HDAC) inhibitor approved for treatment of
advanced primary cutaneous T-cell lymphoma [M+07]. The drug leads to apopto-
sis, increases the sensitivity of tumors for cell death processes and makes them more
susceptible for other drugs via an hyperacetylation of histones [H+14e]. Vidaza re-
duces DNA methylation genome-wide by causing degradation of the enzyme DNA
cytosine-5-methyltransferase 1 (DNMT1) and it is used to treat myelodysplastic
syndrome (MDS) [K+05].
These examples show that a better understanding of TFs, enhancers and epi-

genetics is of general importance to decipher not only cellular differentiation, but
also to elucidate the molecular cause of diseases and to understand the impact of
external factors on a beings health.
To advance in these fields of research, several national and international efforts

such as DEEP [Con18], Blueprint [A+12], Roadmap [K+15] and ENCODE [D+12b],
pursue the epigenetic characterization of primary cells and tissues generating pub-
licly available epigenomics data for hundreds of samples. While these consortia
are dealing with bulk data, recent advances in single-cell profiling allow the joint
profiling of chromatin accessibility and gene-expression in single-cells, providing
detailed information on a cells regulatory landscape [C+18a, B+18b]. Those ad-
vances are enabling efforts like the Human Cell Atlas to fulfill the ambitious goal
of characterizing all human cells [R+17b] on the molecular level.

Computational biology is facing the challenge to process and to systematically
analyze the generated data sets in an integrative way in order to derive new hy-
potheses on biological function and mechanisms. With our research, we want to
provide not only new tools for data analysis and data exploration, but also try to
gain new insights on characteristics of epigenomics data itself to help researchers in
leveraging essential and truthful biological information. While data production has
been addressed by many groups in international efforts, analyzing and understand-
ing all data sets together is an ongoing endeavour that is still in its infancy. We
aim at filling some gaps in understanding, integrating and utilizing various omics
data types from the perspective of improving our knowledge on transcriptional reg-
ulation. Although many methods have been published to elucidate transcriptional
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regulation, the wealth of epigenomics data that has been produced recently paired
with advances in machine learning opens new possibilities, which have not been
fully explored before.

Scope and outline of the thesis

In this thesis, we pursue the development of innovative bioinformatics approaches
to facilitate the analysis and interpretation of large scale biological data sets as gen-
erated by the aforementioned consortia. We focus especially on integrative methods
elucidating transcriptional regulation using gene-expression, chromatin accessibil-
ity and/or TF binding information. Essential background information on biology,
maths and computer science is provided in Chapter 2.
In Chapter 3, we describe the Tepic framework which was designed in the scope

of the DEEP project to help biologists in jointly interpreting chromatin accessibil-
ity and gene-expression data with predicted TF binding information, generated for
various primary cell types such as primary human hepatocytes and T-cells. Tepic
offers machine learning methods to infer key transcriptional regulators both within
(Section 3.5) and between samples (Chapter 4). Additionally, as described in Sec-
tion 3.4.3, we characterize potential confounding variables influencing such models,
even if TF binding information is not predicted, but experimentally derived from
TF ChIP-seq data.
The functionality of Tepic is complemented with the support for the analysis of

time-series data, a sub module termed Epic-Drem, described in Chapter 5. Epic-
Drem was used to infer novel, subsequently experimentally validated regulators of
mesenchymal stem cell differentiation to both osteoblasts and adipocytes.
As Tepic is relying on chromatin accessibility data to predict TF binding, we

systematically compared established experimental methods to assess chromatin ac-
cessibility: DNaseI-seq, ATAC-seq and NOMe-seq. Such a comparative study is
essential to unravel potential assay specific biases that might affect further down-
stream analysis. As delineated in the 6th chapter, such biases do exist and it is
essential for the community to be aware of them because chromatin accessibility
screens are among the default assays in epigenomic profiling. Particularly in the
light of single-cell analysis it is important to understand potential confounders due
to the sparsity of the data.
Another potential bias that can hamper integrative analysis are batch effects

arising, for instance, from varying experimental protocols used by different labs.
Although there are several existing methods to adjust for batch effects, we noticed
a need for a measure that allows an objective comparison of batch effect adjustment
methods. To this end, we suggest an ontology based similarity score, explained in
Chapter 7 that can be applied even to heterogeneous data sets with low replicate
numbers. In light of ongoing integrative analyses in the International Human Epige-
nomics Consortium (IHEC) such a method is needed to reliably merge data sets
across different consortia.
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Our contributions are concluded by a novel method called StitchIt which identifies
candidate regulatory regions for a distinct gene utilizing a dynamic programming
algorithm optimizing a score based on the Minimum Description Length (MDL)
principle, applied to large epigenomic and transcriptomic data sets. We believe
that this method, described in Chapter 8, can contribute to a better understanding
of transcriptional regulation on the level of single genes. StitchIt provides a rich
and unique resource of candidate regulatory regions for more than 30, 000 distinct
genes.
In Chapter 9, we provide a discussion of our contributions, describe (future)

challenges in the analysis of omics data with a focus on epigenomics and present
an hypothesis how the field of research on transcriptional regulation might evolve
in the future. At the end of the Chapters 3 to 8, we provide a section detailing the
contributions of all researchers involved in the presented projects.
Throughout this thesis, terms written in italic font are briefly explained in the

Glossary. Following the HGNC guidlines for gene and protein nomenclature, gene
names of human genes are written with capital letters in italic font (CTCF ), gene
names of mouse genes are written in italic font with only the first letter in upper-case
(Ctcf ) and protein names are written in normal font in capital letters independent
of the species (CTCF) [W+02].
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2
Background

Biological (Section 2.1), mathematical and computational background knowledge
(Section 2.2) that is of general relevance for the understanding of this thesis is
provided within this chapter.
The data used throughout this work has been obtained from the International

Human Epigenomics Consortium (IHEC). To adequately credit the contribution
of the researchers generating the data, Section 2.3 contains an overview of the
consortia providing epigenomics and transcriptomics data for the community.

2.1 Biological Background

This section provides a brief overview of the composition of DNA and RNA, on
the structure and diversity of proteins, on the central dogma of molecular biology,
on DNA sequencing and on transcription and translation. Further, we review the
structure and composition of chromatin, provide an overview of the regulatory
function of TFs, characterize established epigenetic modifications and introduce
the notion of enhancers and repressors. For reasons of completeness, we also sketch
regulatory mechanisms aside from transcriptional regulation through TFs. Note
that this chapter is not meant to introduce the full spectrum of the covered topics,
but should merely be seen as an introduction sufficient for a basic understanding
of the following chapters.

2.1.1 DNA, RNA, Proteins and the definition of genes

Deoxyribonucleic acid (DNA)

DNA is a macromolecule containing the genetic information composing an organism.
The basic building block of DNA is called nucleotide. A nucleotide is composed
of the monosaccharide 2-deoxyribose, a phosphate group and a nitrogen containing
base, which is either Adenine(A), Thymine(T), Cytosine(C), or Guanine(G). The
phosphate is connected to the ribose with an ester bond to the C ′5 atom, the base
is connected to the C ′1 atom via a N-glycosidic bond [Kni06, p.10].
An alternating sequence of monosaccharides and phosphate molecules form a

chain, called DNA backbone. The chain is established by phosphate bridges between
the C ′5 atom of one and the C ′3 atom of another nucleotide [Kni06, p.10]. The
phosphates cause the DNA backbone to be negatively charged and hydrophilic.
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2 BACKGROUND

There are two antiparallel DNA-strands. The backbone of one strand is oriented in
5′−3′ direction, while the other one is oriented in 3′−5′ direction. The two strands
form a double helix structure, discovered by Watson and Crick in 1953 [WC53].
The connection between the strands in the helix is established by hydrogen bonds

between the bases. Adenin interacts with thymin via 2 hydrogen bonds and cytosin
interacts with guanin via 3 hydrogen bonds. The helix is further stabilized by
hydrophobic bonds between neighbouring bases, a phenomenon referred to as base
stacking [Kni06, p.12].
The not-symmetric arrangement of the DNA strands in the helix gives rise to two

differently sized empty spaces between the strands, a larger region referred to as
major groove and a smaller region, referred to as minor groove, shown in Figure 2.1a.
The size of the grooves depends on the sequence context [O+10]. It was shown that
proteins which bind DNA at specific sequences predominantly bind in the major
groove, while the minor groove is associated with non-specific DNA binding events
and is especially bound by factors affecting DNA conformation [B+98, S+10].
X-ray experiments have revealed that in most living cells DNA exists as so called

B-DNA, which is a right-handed helix with 10.4 to 10.5 base pairs per helix twist, an
approximate distance of 0.34nm between two base pairs and a 90° angle between the
bases and the main helix axis [Kni06, p.13]. Due to the flexibility of the glycosidic
bonds, the bases are able to rotate, which gives rise to various conformations;
namely Propeller twist, Twist, Roll and Tilt [Kni06, p.13], illustrated in Figure 2.1b.
Knowledge of these local shapes has been shown to be important to describe the
behaviour of DNA-binding proteins [A+15a, M+16b].
Aside from B-DNA, there is another right-handed helix structure called A-DNA.

In A-DNA, there are about 11 base pairs per helix twist, the distance between base
pairs is reduced to 0.26nm and the angle between the base pairs and the helix-axis
changed from 90° in B-DNA to 71°-77° [Kni06, p.13]. While the biological relevance
of A-DNA is being debated, a study in 2014 showed that B-DNA can be reversibly
converted to A-DNA in prokaryotes [W+14].
Yet another form of DNA is Z-DNA, a left-handed double helix with about 12

base pairs per helix twist and a distance of 0.38nm between base pairs [R+84]. In
Z-DNA, the backbone is oriented in a zigzag manner. The precise role of Z-DNA
in vivo is still unclear, but Z-DNA has been observed together with B-DNA at the
promoters of transcribed genes [W+91, H+05].

In Section 2.1.8 we detail how DNA can be compactly packed in the nucleus of a
cell. Further information which is not required for the general understanding of this
thesis, e.g. details on DNA-replication or DNA repair mechanisms are provided in
the textbooks Molekulare Genetik [Kni06] and in The molecular biology
of the cell [A+05].

Ribonucleic acid (RNA)

Ribonucleic acid is a chain of ribonucleotides connected via phosphodiester bonds
between the 3′-hydroxy and 5′-hydroxy group of ribose molecules. In RNA, thymin
is replaced with uracil [Kni06, p.50]. There are several RNA subtypes, classified
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(a)

major groove

minor groove
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3‘ 5‘

(b)

Propeller twist

Roll Tilt

Twist

Figure 2.1: (a) Schematic of two antiparallel DNA strands forming a right-handed
double helix with a major and minor groove between the DNA back-
bone. (b) Illustration of how nucleotides are oriented towards each
other in terms of Propeller twist, Twist, Roll and Tilt. The figure is
designed by the author of this thesis.

according to structure and function of the RNA molecules. An extensive overview
is provided in Cech et al. [CS14]. In the scope of this thesis, only messenger
RNAs (mRNAs) are relevant. They are described in detail below in the context of
transcription.

Proteins

Proteins are macromolecules, just like DNA and RNA. Due to the diversity of
functions carried out by proteins, Lodish et al. refer to them as the "Molecules
of life" [L+00a]. For example, collagen provides structure to cells [SR09]. En-
zymes are catalyzing an uncountable number of reactions [Aga06]. For instance,
the DNA-polymerase is an enzyme that is replicating DNA [Kni06, 177]. Further-
more, regulatory proteins such as TBP are inadmissible for gene regulation [Pug00].
Another example for protein function is their role in signaling cascades for inter-
and intracellular communication [Hun00], for instance, insulin in the regulation of
the glucose concentration in blood [Wil05]. Also, proteins are involved in transport,
for instance, as hemoglobin in erythrocytes.
The function of a protein is reflected by a proteins three dimensional (3D) struc-

ture [Kni06, p.37]. One distinguishes several levels of structure in context of pro-
teins. The primary structure of a protein refers to the sequence of amino acids
composing a protein. Amino acids are small organic molecules with an amino
group, a carboxyl group and a specific residue, also referred to as side chain, which
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defines the type of amino acid (Figure 2.2a). The human genome codes for 20
different amino acids. These are connected via peptide bonds to form a directed
chain of amino acids (Figure 2.2b) [Kni06, p.37,38]. The chain is directed from
the N-terminal end that is the amino acid with an unbound amino group, to the
C-terminal end that is an amino acid with an unbound carboxyl group. Amino
acids are abbreviated using either a one or three letter code [A+05, p.130].

The formation of hydrogen bonds between every fourth peptide gives rise to the
so called α-helix, depicted in Figure 2.2c. The α-helix is a common secondary
structure of proteins containing 3.6 amino acids within one helix twist [Kni06,
pg.41]. Another secondary structure is the β-sheet, shown in Figure 2.2d. In
contrast to the α-helix, in the beta-sheet hydrogen bonds are established between
more distal parts of the entire amino acid chain that are oriented next to each
other in close spatial proximity. If the chains are oriented in the same directions,
one refers to the β-sheet as parallel, otherwise as antiparallel [A+05, p.143].

(a) (b)
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Figure 2.2: (a) Basic structure of an amino acid. The central carbon Cα is con-
nected to the amino group, the carboxyl group, an amino acid specific
side chain R and a hydrogen atom. (b) Primary structure of a pro-
tein with 11 amino acids. (c) Visualization of the secondary structure
for the α helix. (d) Illustration of an antiparallel β sheet. Hydrogen
bonds are shown by dotted lines in (c) and (d). Figures (c) and (d)
after Figure 3 from [MK96] obtained under Springer Nature license
4501220300134.

The tertiary structure of a protein describes the entire 3D structure of one amino
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acid chain, including all secondary structures. While the secondary structure is
independent of interactions of the amino acid side-chains, these are essential for the
formation of the tertiary structure. For example, side chains that are hydrophobic
are typically oriented to the inner area of the structure, while hydrophilic chains
are placed at the outside [Kni06, p.40]. The quaternary structure refers to protein
complexes composed of several protein chains [A+05, p.144].
For a detailed overview of proteins we refer the reader to the textbook "Intro-

duction to Proteins: Structure, Function and Motion" by Amid Kessel
and Nir Ben-Tal [Dav11].

The definitions of the terms gene and genome

The term gene has been coined by Wilhelm Johannsen, a Danish botanist in 1909,
who defined a gene as a unit of inheritance [Joh09]. The definition of gene has
been evolving ever since. A detailed overview is provided for example by Portin
and Wilkins [PW17].
In other words, a gene is a not necessarily continuous region of the DNA that is

interacting with other genes. A gene’s product, which is either a (non)coding RNA
molecule or a protein, can affect other genes and may have a phenotypic effect.

The term genome is closely linked to gene. Following NIHs definition, "a genome
is an organism’s complete set of DNA, including all of its genes. Each genome
contains all of the information needed to build and maintain that organism" [NIH18].
The human genome consists of about 3 billion base pairs [Kni06, p.19]. About 1% of
those are coding for proteins, while 99% of DNA is non-coding [Zha12]. However,
being non-coding does not imply being non-functional. About 10% of the genome
is estimated to be functional, i.e. in terms of regulation [PH11].

2.1.2 The genetic code and DNA sequence alterations

Within a gene’s open reading frame, the coding part of a protein coding gene,
three consecutive base pairs, called triplets or codons, represent a distinct amino
acid. As the genetic code is redundant, one amino acid can be referred to by
several different triplets [Kni06, p.79-81]. The code is often explained in a circular
table, c.f. Figure 2.3, which should be read from the inside out to determine the
codons representing a distinct amino acid [BH72]. The circular representation nicely
illustrates that the third base is often less important then the first two. Therefore,
Francis Crick named the third base "Wobble base", as changes in this base do not
necessarily have an influence on the resulting amino-acid [Cri66]. On the level of
DNA, a protein coding gene always starts with the codon ATG, coding for the
amino acid methionine. The coding sequence always terminates with one of three
stop codons (TAA, TAG, or TGA) [Kni06, p.79-81].
Alterations of DNA such as mutations, insertions, or deletions occurring within

the open reading frame of a protein coding gene can have several affects. Due to the
Wobble base affect, the mutation might not translate to the resulting protein at all,
in which case the mutation is a silent mutation. If the mutation transforms a codon
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Figure 2.3: Circular representation of the genetic code. As indicated by the ar-
rows, the representation should be read from the inside out to see
which codon represents which amino acid. This figure is freely avail-
able in the public domain [Com18].

to a stop codon that will artificially terminate protein synthesis, the mutation is
a nonsene mutation. If the amino acid represented by the triplet is changed, one
refers to the mutation as a missense mutation [Kni06, p.249].
DNA sequence variations can also arise outside protein coding genes, in fact there

are numerous known mutations in the non-coding part of the genome, as curated for
example in the Cosmic database [F+17a]. These mutations might affect the binding
behaviour of DNA binding proteins by interfering with the sequence specificity of
their binding profile [Z+17]. An important class of variations at the resolution of a
distinct base pair are single nucleotide polymorphisms (SNPs). These are heritable
sequence variations existing in at least 1% of the population [Edu14]. As SNPs
are heritable, they occur both in somatic and in germline cells. In contrast to that
single nucleotide variations (SNV) occur only in somatic cells and are not subject
to population based thresholding.

2.1.3 The central dogma of molecular biology

The central dogma of molecular biology has been postulated by Francis Crick in
1958 [Cri70]. It describes possible ways how information can be exchanged between
DNA, RNA and proteins. In the version published in 1970, shown in Figure 2.4,
the following directions are listed: DNA to RNA, a process we refer to as tran-
scription, RNA to protein, known as translation and DNA to DNA, known as DNA
replication. Nowadays, it is known that also the information flow from RNA to
RNA [Ahl02], from RNA to DNA [Bal70, TM70] and from DNA to protein [U+02],
the latter albeit in an artificial system, do occur as well. Nevertheless, it is still
true that information flow starting from the protein does not occur.
The central dogma is of importance, as it highlights that changes on the level of
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Protein

DNA

RNA

Figure 2.4: The central dogma of molecular biology as published by Francis Crick
in 1970 illustrating the exchange of information between DNA, RNA
and proteins. Solid arrows have been known to exist at the date of
publication, dotted lines were hypothetical. Figure based on Figure 2
from [Cri70] obtained under Springer Nature licence 4487700933705.

DNA and RNA, as well as external effects during transcription and translation, can
influence the resulting proteins. In the context of this thesis, epigenetic modifica-
tions of the DNA as well as effects on transcription are of special interest, therefore
transcription is further detailed in the next section. For reasons of completeness,
also translation is briefly described.

2.1.4 Transcription

In order for a gene to be expressed, i.e. to observe a phenotypic effect, the first step
is to generate a RNA copy of a gene’s DNA sequence, a so called transcript [A+05,
p.246]. If the expression of genes is assessed, this typically refers to a quantitative
measurement of the abundance of their transcripts. A brief overview of the most
common experimental methods for this task is provided in Section 2.1.7.
In eukaryotes, the enzyme RNA-polymerase II (RNA-PolII) is responsible for the

synthesis of mRNA. In order to transcribe the mRNA molecule, the enzyme needs
to bind to the promoter region of the respective gene. The promoter is positioned
several base pairs upstream of the first coding nucleotid and among other molecu-
lar signatures is often characterized by the presence of CpG islands and presence
of the TATA box [BK02]. To guide RNA-PolII to the promoter, a repertoire of
TFs is required. These are called general transcription factors (TFIIA to TFIIH).
Together, these factors give rise to the transcription preinitiation complex [Kni06,
p.344]. Formation of the preinitation complex starts with TFIID, a factor con-
taining TBP, the TATA binding protein, which binds to a gene’s promoter. The
binding of TFIID to the DNA is further stabilized by TFIIA. TFIIB supports the
attachment of RNA-PolII and also pinpoints the enzyme to the TSS. TFIIF guides
the polymerase to the promoter and also binds the preinitiation complex. Finally
TFIIE guides TFIIH to the promoter. The latter is required to unwind the DNA
double helix at the start site and to trigger RNA-PolII to leave the preinitiation
complex via phosphorylation [Kni06, p.344ff]. However, TFIIH alone is not suf-
ficient to reliably initiate transcription. The mediator complex is a large protein
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complex that interacts with both the preinitation complex and other TFs bound
to enhancers, regulatory regions controlling tissue specific gene-expression [AT15].
Therefore, understanding the interactions of TFs with enhancers is essential to un-
ravel tissue specific regulation of transcription.
Upon successful transcription initiation, the RNA polymerase is supported by a

set of elongation factors such as p-TEFb and ELL ensuring a steady generation of
the RNA [Kni06, p.350]. The polymerase slides along the DNA in 3′-5′ direction.
Thus the synthesized RNA is created in 5′-3′ orientation. The generated RNA
sequence is exactly complementary to the unbound DNA strand, except for the
replacement of thymine with uracil. Nucleotides are present in phosphorylated form
to provide the energy necessary for the polymerization. Transcription terminates
once the polymerase encounters a stop codon [A+05, p.247ff].

The resulting RNA product is called precursor-mRNA (pre-mRNA). At this
stage, both introns and exons are part of the sequence. Unlike exons, introns do
not code for a protein, they are intervening sequences surrounding coding regions in
eukaryotic genes [A+05, p.252]. Introns are removed by a complex machinery, the
spliceosome, in a process called splicing [W+09]. Via alternative splicing that is the
exclusion of exons from the final mRNA, various proteins can be encoded by the
same gene. Alternative splicing is the reason why the transcript sequence can be dif-
ferent from the sequence obtained by linking all exons of the coding gene together.
Different transcripts arising from the same gene are called isoforms [B+10a].

At the 5′-end, the final mRNA molecule is attached to a five-prime cap, which
is a 7-methylguanosine bound via a triphosphate bridge to the first nucleotide of
the mRNA molecule [Sha76]. The cap structure is essential for the mRNA export
from the nucleus [LI97], in avoiding degradation [B+06a, G+00] and in terms of
translation initiation [R+16]. Adjacent to the cap-structure, there is a chain of 50
to 100 non-coding nucleotides. The protein coding part of a mRNA, known as open
reading frame (ORF), is framed by two distinct codons, the start codon, which is
usually AUG and one of the three stop codons UAG, UGA, or UAA. Following
the stop codon, another sequence of non-coding nucleotides is attached. A mRNA
is completed at the 3′-end by the so called Poly-A tail, which is a sequence of
up to 200 adenin nucleotides [Kni06, p.431]. The Poly-A tail is linked to mRNA
stability [And05]. The mRNA molecule is exported outside the nucleus to act as a
blueprint for protein synthesizes during translation [A+05, p.256].

2.1.5 Translation

Translation refers to the synthesis of a protein by ribosomes according to the
blueprint provided by the mRNA. Ribosomes consist of two major subunits, a small
subunit known as 40S subunit and a larger one known as 60S subunit. In simple
terms, the 40S unit slides along the codons on the mRNA while the 60S unit ac-
tively joins the amino acids to form the peptide [Kni06, p.441ff]. During initiation
of transcription, the 40S subunit is placed together with the amino acid methionine
(provided by a transferRNA (tRNA)) at the start codon of the mRNA via specific
TFs, so called eukaryotic initiation factors (eIF). Upon the correct positioning of
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the 40S subunit the 60S subunit is being attached as well, thereby complementing
the ribosome [Kni06, p.441ff]. A set of elongation factors is required to maintain
translation of the entire mRNA sequence into a protein. Translation terminates
once the ribosome encounters a stop codon which triggers the release of the peptid
chain and the disassembling of the ribosome [Kni06, p.441ff].
Further details on translation can be found in a Nature review series on Transla-

tion and protein quality control [Bio18]. Genuth and Barna provide an overview of
regulatory mechanisms of translation in [GB18]. As the projects introduced in this
thesis are focusing on transcriptional regulation, translational mechanisms are not
introduced.

2.1.6 An introduction to DNA sequencing

DNA sequencing technology underwent an extraordinary advancement. The initial
sequencing of the human genome was carried out by two competitors, the privately
funded Celera Genomics [V+01], with a budget of 300 million USD and the publicly
funded Human Genome Project [L+01] that finished with a total cost of 2.7 billion
USD. Both attempts took several years for completion.
In contrast to that, a current sequencing machine, like the Illumina HiSeq X Ten,

is able to sequence the entire human genome in less than three days for less than
1000 USD [Inc17]. While the initial projects used shotgun sequencing [And81] or
bacterial artificial chromosomes (BACs) [SKM01] together with Sanger sequenc-
ing machines [HC16] which deliver only low throughput, rapid advancements in
sequencing technology in the early 2000s led to the development of new sequencing
technologies, now known as second generation sequencing. Meanwhile, third gener-
ation sequencing has been introduced, which provide longer reads compared to the
second generation sequencing technologies, albeit at lower coverage [M+14].

Note that for reasons of brevity, the variety of sequencing technologies including
second and third generation sequencing are not introduced in detail here. We refer
the reader to "The sequence of sequencers: The history of sequencing
DNA" by Heather and Jain [HC16] and to "DNA sequencing at 40: past,
present and future" by Shendure et al. [S+17b] for a detailed overview. This
section focuses on short read sequencing using Illumina sequencers as such data is
predominantly used in this thesis. The sequencing process is depicted in Figure 2.5.
Similar to Sanger sequencing, the core concept of NGS is sequencing by synthesis.

As the name suggests a DNA double strand is synthesized and during the synthesis,
it’s sequence is captured using, for instance, fluorescent dyes attached to the newly
incorporated nucleotides. High throughput is achieved by conducting this reaction
for millions of fragments in parallel [Inc16].
To sequence a sample, its DNA (or cDNA, e.g. for RNA-seq) is fragmented and

adapters are ligated to the 5′ and 3′ ends. These fragments are subsequently am-
plified using a polymerase chain reaction (PCR) and purified in a gel electrophore-
sis, e.g. to remove not ligated adapters or fragments that are too large to be
sequenced [Sci19, Inc16]. The resulting set of fragments is called a library [Inc16].
In the next step, the library is brought onto a flow cell, a glass slide, where the
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Figure 2.5: Schematics of a next generation sequencing run as performed by Il-
lumina sequencers. Adapters are ligated to fragmented (c)DNA. The
resulting fragments are both amplified and purified. Subsequently,
they are attached to a flow cell and subject to bridge amplification
forming clusters of reads. The actual sequencing is performed fol-
lowing a sequencing by synthesis principle using fluorescent dNTPS.
These are added to the sequence in repeated synthesis cycles, infer-
ring the sequence composition nucleotide per nucleotide. The figure
is designed by the author of this thesis.

adapters attached to the DNA fragments are captured by complementary oligos
that is short DNA sequences between 15 and 30 base pairs in length, bound to the
surface of the flow-cell. In case of Illumina sequencing, the bound DNA fragments
are amplified using bridge amplification producing local clusters harboring identical,
single stranded DNA sequences.
Upon successful amplification, the sequences can be sequenced by adding "re-

versible terminator-bound dNTPs" [Inc16]. These bind to the present DNA frag-
ments one nucleotide per synthesis cycle. Via imaging, the fluorescent dye is cap-
tured and the added nucleotide is inferred per DNA fragment. This process is
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repeated until the double stranded DNA sequences are completed. The obtained
reads can either be aligned against a reference genome, or can be assembled de
novo.
NGS not only paved the way for affordable and fast whole genome sequencing, it

is also the foundation for other applications, e.g. RNA-seq, analysis of DNA methy-
lation, chromatin accessibility and for ChIP-seq analysis of histone modifications as
well as TF binding. These are detailed below. Further information on the sketched
sequencing method is available in [Inc16].

2.1.7 Experimental methods to measure gene-expression

As mentioned in the context of transcription, gene-expression is usually measured
in terms of mRNA abundance. This section provides a brief overview of the two
most common high-throughput methods to experimentally quantify in vivo gene-
expression: DNA microarrays and the more recent RNA-sequencing which is used
throughout the work in this thesis.

DNA microarrays

A DNA microarray is a surface containing single stranded DNA sequences that are
attached to the array in a grid like structure, where the position and sequence of each
DNA sequence is known. These so called probes bind to complementary, labelled
DNA sequences obtained from the sample to be analyzed. In case of gene-expression
analysis, cDNA (complementary DNA) is used, which is reversely transcribed from
extracted mRNA. These target sequences are tagged with fluorescent dyes. Upon
hybridization with complementary probes, the markers can be evaluated using laser
microscopy and the visual readout is transformed into an abundance measure. By
up-scaling the number of probes on a microarray, a large number of genes can
be screened at the same time [Bum13]. Nowadays, a single microarray, e.g. the
Affymetrix GeneChipTM Human Transcriptome Pico Assay 2.0 is sufficient to as-
sess the expression of all known human transcript isoforms [Sci18]. In addition
to the assessment of steady state gene-expression levels, also differential analysis
can be conducted by using two different dyes for two distinct samples representing
different conditions, e.g. healthy and diseased [T+07].

Roger Bumgarner provides a thorough overview of the history and the appli-
cations of DNA microarrays, which is not limited to gene-expression estimation
but also allows, for instance, protein binding analysis (c.f. Section 2.1.12) or the
screening for the presence of SNPs in target sequences [Bum13].

RNA-seq

With the advancement of (NGS) technologies an alternative way of quantifying
gene-expression emerged that is to sequence cDNA reversely transcribed from the
mRNA extracted from a sample. Compared to DNA microarray based quantifica-
tion, RNA-seq delivers "a more detailed and quantitative view of gene-expression,
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alternative splicing and allele-specific expression" [KM15]. Here, we briefly sketch
a RNA-seq workflow to quantify gene-expression from bulk data, visualized in Fig-
ure 2.6. In this thesis, single-cell gene-expression data has not been used, therefore
single-cell RNA-seq is not discussed. Hwang et al. provide an introduction into the
details of single-cell RNA-seq analysis [H+18c].
The first step of a RNA-seq experiment is to isolate RNA from the sample of

interest. Typically this is done for both technical and biological replicates to reduce
technical noise and biological variance, respectively. Secondly, a RNA-seq library is
created for sequencing. In gene-expression experiments, this involves an enrichment
for mRNA, e.g. via a selection of molecules with a poly-A tail, or by a depletion of
ribosomal RNA (rRNA). After purification, the RNA is reverse transcribed to cDNA
which is sequenced using NGS [KM15]. To adjust for a variety of technical biases
and confounders, spike-ins, which are DNA plasmids of varying length, are added to
the library and can be used to normalize the transcriptomics data [C+15a, KM15].
Upon the completion of the sequencing, the raw reads are aligned to the reference

genome, for instance, using TopHat [T+09]. Alternatively, transcripts can be
assembled de novo, which is necessary if no reference genome is available. This can
be performed e.g. with Oases [S+12c]. Using tools like Cufflinks [T+10], gene-
expression can be quantified from RNA-seq bam files, which contain the aligned
reads. Recently, methods such as Salmon [P+17a] and Kallisto [B+16d] have
emerged, which are avoiding a full alignment of the raw reads and use k-mer based
hashing against a reference index instead. While achieving a significant speedup
compared to alignment based approaches, these novel methods still achieve accurate
quantification results.
The aforementioned tools quantify gene or transcript expression in terms of reads

per kilobase of transcripts per million mapped reads (RPKM) (formula 2.1), frag-
ments per kilobase of transcript per million mapped reads (FPKM), or transcripts
per million (TPM) (formula 2.2). These metrics attempt to adjust for affects caused
by gene length and sequencing depth [C+16c].
The RPKM value for a distinct gene/transcript i can be computed as

RPKMi =
Ri
l(i)

106

TR
, (2.1)

where Ri is the number of reads aligned to gene/transcript i, TR is the total
number of obtained reads and l(i) denotes the length of gene/transcript i in kilo-
bases. FPKM is computed in the same way except that FPKM is designed for
paired-end data and ensures that paired reads are not counted twice.
TPM is computed differently as

TPMi =
Ri
l(i)

106

TRPK
, (2.2)

TRPK =
∑
i∈I

Ri
l(i)

, (2.3)
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where I is the set of all considered genes/transcripts. By construction, the
sum of TPM values between samples is identical, unlike the sum of RPKM and
FPKM values. This makes it easier to compare gene-expression across multiple
samples [Blo15].
Further details on RNA-seq can be found in A survey of best practices for

RNA-seq data analysis by Ana Conesa et al. [C+16c] as well as in RNA Se-
quencing and Analysis by Kimberly Kukurba and Stephen Montgomery [KM15].
RNA-seq has been the workhorse for gene-expression quantification in many projects
such as ENCODE [D+12b] and the Genotype-Tissue Expression (GTEx) project
[L+13d].
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Figure 2.6: Workflow of a RNA-seq experiment: RNA is extracted from a sample
of interest and, in case of gene-expression quantification, enriched for
mRNA. The latter is reversely transcribed to cDNA, which is being
sequenced using NGS. The obtained reads are either aligned against
a known reference or are assembled de novo. Gene-expression is typi-
cally quantified in terms of RPKM, FPKM, or TPM. Figure designed
after Figure 1 and 2 from [KM15] under permission and copyright of
Cold Spring Harbor Laboratory Press.

2.1.8 Chromatin organization

Eukaryotic DNA is systematically organized and packed. Essential for DNA packing
are histone proteins. The complex of DNA, histone proteins and other non-histone
DNA binding proteins is called chromatin.
In the cell, there are five different kinds of histone proteins: H1, H2A, H2B, H3

and H4. Histone proteins are the building blocks of nucleosomes, the basic unit of
chromatin organization. A nucleosome consists of eight histone proteins, two H2A,
two H2B, two H3 and two H4 proteins forming the histone octamer, as well as of
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a 146bp long stretch of double stranded DNA that is wrapped around the histone
octamer in 1.65 left-handed turns [A+05, p.195ff]. Each histone protein is composed
of three connected alpha helix structures and possesses a flexible N-terminal tail,
attached to the core protein. These tails are composed of mainly positively charged
amino acids. Therefore, they are attracted to the negatively charged DNA backbone
(Figure 2.7a). Histone tails are highly important for gene-expression regulation, as
detailed in Section 2.1.9 [E+14b, BK11].
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Figure 2.7: (a) Blueprint of nucleosomes. A nucleosome consists of four different
kinds of histone proteins forming the histone octamer; specifically two
H2A, two H2B, two H3, two H4 proteins as well as a stretch of double
stranded DNA of size 146bp. (b) Multiple nucleosomes can form a
chain, connected via so called linker DNA. The linker DNA can have
varying length, typically at most 80bp [A+05, p.195].

Pairs of nucleosomes can be connected by so called linker-DNA, which can be
up to 80bp in length, thereby forming a chain (Figure 2.7b). Literature refers to
a series of chained nucleosomes as beads-on-a-string [H+13b], shown in Figure 2.8.
At this stage of chromatin compaction, yet another histone protein, the H1 protein,
is getting involved. It is attached to the linker DNA between nucleosomes [Z+13a].
H1 is essential for further compaction of chromatin as well as for regulating acces-
sibility of the linker DNA [Z+13a]. As depicted in Figure 2.8, the 11nm structure
is further compacted into a 30nm fibre often described as either a solenoid or a
zigzag structure. However, we note that the occurrence of the 30nm structure in
vivo is still being debated [H+13b]. Looping of the 30nm structure leads to further
compaction, the 300nm structure. This is further compressed and tightly coiled,
thereby forming a section of the final chromosome. The length of the totally com-
pacted chromosome with a width of 1400nm is only 1

10.000 of the length of the not
compacted DNA [A+05, p.196f][Ann08].
A systematic organization of the chromatin is not only indispensable for chro-

matin packaging but also for gene regulation. Depending on the level of chromatin
condensation, chromatin can be divided into two classes.
Heterochromatin describes a fully condensed form, where the chromatin is highly

condensed. At this stage, transcription is generally not possible and due to the
presence of nucleosomes surrounding the DNA, the latter is inaccessible for DNA
binding proteins. Chromatin staying in heterochromatic state all the time forming
functional structures e.g. centromers and telomers is called constitutive heterochro-
matin. Chromatin that might change its heterochromatic state is named facultative
heterochromatin [Kni06, p.161].
Transcriptionally active chromatin that is accessible for other non-histone pro-
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Figure 2.8: Hierarchical overview of chromatin packaging. The DNA double helix
is wrapped around the histone octamer, forming nucleosomes. These
are connected forming the beads-on-a-string structure. The latter is
forming a 30nm fibre, mediated by the H1 protein. The 30nm fibre is
further condensed in two stages yielding the final compaction of the
chromatin. Figure provided by Fabian Mueller [Mue17].

teins due to the absence of tightly bound nuclesomes, is called euchromatin. It was
shown that euchromatin is not only closely linked to transcriptionally active genomic
regions, but also to regions of regulatory influence, e.g. TF binding sites [Kni06,
p.143]. Therefore, the genome-wide identification of nucleosome free regions (NFRs)
(also known as nucleosome depleted regions (NDRs)) is important for the elucida-
tion of transcriptional regulation. Several experimental methods that are commonly
used for this task are described in Section 2.1.10.
Whether chromatin is present as hetero or euchromatin is largely dependent on

the epigenome, specifically on modifications and cross-talk of the histone tails of
nucleosomes [BK11]. Especially modifications on the H4 tail have been shown to
be highly associated with chromatin state [D+03]. Depending on the nature of the
histone modifications (HMs), chromatin remodelling enzymes alter the position of
nucleosomes on a stretch of DNA or even disassemble the histone octamer, thereby
making the DNA accessible for other DNA binding factors [Kni06, p.401f].
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Figure 2.9: Chromatin can be either in a densely packed state, called heterochro-
matin, or in a lose state, known as euchromatin. The latter is generally
accessible for DNA binding proteins. Both states exhibit distinct his-
tone modification and DNA methylation signatures. Figure provided
by Fabian Mueller [Mue17].

In addition to HMs, methylation of cytosines in a CpG context has been associ-
ated with chromatin condensation as well [M+05]. These observations are illustrated
in Figure 2.9, further details on histone modifications and DNA methylation are
provided in Section 2.1.9.
Aside from chromatin condensation, chromatin structure fulfills yet another reg-

ulatory role. As mentioned above in the context of transcription, the mediator
complex allows interactions between the transcriptional machinery bound to the
promoter of a gene and DNA binding proteins bound to potentially distant reg-
ulatory elements, so called enhancers. These enhancers are brought into close
physical proximity by 3D loops of the chromatin, mediated by the cohesin com-
plex [H+17, HL13]. Such loops allow for a crosstalk between genomic regions that
are up to several mega bases away. Methods to assess 3D chromatin organization
are briefly described in Section 2.1.11.
Such approaches allow the cell type specific characterization of chromatin con-

tacts and revealed the presence of topologically associating domains (TADs) [S+16a,
D+16c]. TADs can be characterized as "two regions within a TAD associate on aver-
age more frequently with each other than with regions outside of the TAD" [D+16c].
TADs have been shown to be fairly cell type invariant, thus providing a scaffold for
potential cell type specific enhancer-promoter loops [D+16c].

2.1.9 Epigenetic modifications

As mentioned in Chapter 1, epigenetics defines "the study of changes in gene func-
tion that are mitotically and/or meiotically heritable and that do not entail a change
in DNA sequence" [WM01]. In the following, we describe two well established epi-
genetic marks: Histone Modifications (HMs) and the methylation of cytosines in
a CpG context, often referred to as DNA methylation. For reasons of brevity,
other epigenetic mechanisms, e.g. regulation through small RNA molecules, are
not detailed and are also not analyzed in the remainder of the thesis.
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Histone Modifications

As explained above in Section 2.1.8, histone proteins are composed of a conserved
inner core made up of three coiled alpha helices as well as of flexible amino acid
chains, known as histone tails, anchored at the inner core interacting with the DNA
wrapped around the histone octamer. These histone tails can be modified e.g. by
methylation, acetylation and/or phosphorylation [ZG15].
HMs are described using a distinct nomenclature: Initially, the histone protein

whose tail is modified is stated, followed by the one letter abbreviation of the
modified amino acid, its position in the histone tail and an abbreviation of the
modification. For instance, H3K18ac refers to an acetylation of the lysine at position
18 on the tail of histone H3 [Kni06, p.396].
The association of HMs to gene-expression and regulation are manifold. For ex-

ample, H3K4me3 has been associated with active promoters, whereas H3K36me3
has been associated with elongation of transcription. These effects are achieved
by various means. For instance, modifying the lysines with acetyl groups neutral-
izes the attractive force of the normally positively charged tails to the negatively
charged DNA backbone. Therefore, H3K27ac induces a looser connection between
histone tail and DNA, allowing DNA binding proteins to access the DNA enabling
chromatin remodellers to displace the entire nucleosome [BK11]. However, not all
HMs carry out their function via structural changes, e.g. H3K4me3 is detected by
TFIID mediating its binding to DNA [vI+08]. In Table 2.1, an overview of the most
commonly analyzed six HMs is provided. The occurrence of HMs in vivo can be
analyzed using ChIP-seq (chromatin immuno precipitation followed by sequencing)
experiments. The ChIP-seq assay is explained in the next section.
A machinery of enzymes is involved in maintaining and altering HMs. For in-

stance, acetylation marks are set by Histone-Acetyl-Transferases (HATs) and can
be removed by Histone-Deacetylases (HDACs) [LT03]. Histone Methyltransferases
(HMTase) on the other hand are responsible for adding methyl groups to amino
acids of the histone tails [Tri04]. HMs influence and depend on each other, a phe-
nomenon known as histone crosstalk [L+10a].

Abbreviation Type of modification Relation to gene-expression Reference

H3K4me3 Tri-methylation Active promoter [H+07]

H3K27ac Acetylation Active enhancer [C+10b]

H3K4me1 Mono-methylation Active and poised enhancers [C+10b]

H3K27me3 Tri-methylation Facultative heterochromatin [J+16b]

H3K36me3 Tri-methylation Elongation mark [WC12]

H3K9me3 Tri-methylation Constitutive heterochromatin [GS17]

Table 2.1: Overview of the six commonly analyzed HMs in genome-wide studies

During DNA replication, HMs are maintained by several means that are still
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under investigation and are not yet fully understood [B+13c]. Nevertheless several
insights have been gained already. For example, the repressive mark H3K9me3,
which is associated with heterochromatin, is re-established at the DNA replication
fork by a complex interplay of the TF heterochromatin protein 1 (HP1), the chap-
erone Chromatin Assembly Factor 1 (CAF-1), the protein proliferating cell nuclear
antigen (PCNA) and several small RNAs [Q+04, L+11].

In contrast to that, the active promoter mark H3K4me3 as well as the repressive
H3K27me3 mark have been reported to be enriched prior to S-phase and are main-
tained by dilution during DNA replication rather than by being set de novo [L+12a].
The transgenerational inheritance of HMs is subject to ongoing research and the

means are highly debated although several studies provide evidence that epigenetic
information is forwarded through generations [LB13, BM+18]. An overview of the
current state of research is provided in [C+14a].

ChIP-seq analysis

ChIP-seq is a genome-wide profiling technique utilizing antibodies for the local-
ization of specific proteins of interest such as TFs, RNA polymerases, or histones
bound to DNA [Mar07].
A ChIP-seq experiment consists of four major steps, depicted in Figure 2.10:

Firstly, DNA-binding proteins are crosslinked to the DNA using formaldehyde. Sec-
ondly, the DNA is fragmented via sonication or digestions using an endonuclease.
Next, the protein of interest is subject to immunoprecipitation using a specific an-
tibody that binds the assayed protein. The sample is purified and marked proteins
are pulled-down. The last experimental step is to reverse the crosslinks and to
sequence the DNA-fragments bound by the protein of interest.
The genomic locations of the assayed protein can be determined computationally

using an enrichment analysis. To account for potential sequencing biases, a control
experiment without an antibody is performed. The result of the control experiment
is also known as Input. It can be considered as a baseline in the enrichment analysis
of the protein of interest.
The results of a ChIP-seq experiment reflect a snapshot of the binding behavior

of a protein of interest across many cells at a specific time point. In recent years,
the ChIP-seq technique became prevalent in biology and has been used on a large
scale especially by ENCODE to characterize the binding behavior of TFs and to
characterize the landscape of several histone modifications in many diverse cell
types [D+12b]. In the meantime, the ChIP-seq protocol has been applied to the
single-cell level [R+15b].
However, the technique has some important limitations. First of all, not for

every target protein a reliable antibody is available. Also, antibody efficiency can
differ between different batches of antibodies compromising reproducibility [Vos14].
Secondly, the experiments are still expensive, labor-intensive and time consuming,
so it is impossible to chip all known proteins of interest in various species and cell
types. Another drawback is that, especially in case of TFs, it is not certain whether
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Figure 2.10: Schematic overview of a ChIP-seq experiment, after Figure 1 from
Mardis E.R. [Mar07] obtained under Springer Nature license
4499340794413.

the ChIP-seq experiment identifies direct DNA-binding events or indirect binding
events, e.g. a TF is bound to another protein but not directly to the DNA [Fur12].

Methylation of cytosines in CpG dinucleotides

A well characterized epigenetic mark is the naturally occurring methylation of cy-
tosines in CpG dinucleotides leading to 5-methylcytosine (Figure 2.11).
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Figure 2.11: Molecular structure of cytosin and 5-methylcytosine.

Genome wide studies suggest that DNA methylation is repressing retrotrans-
posons, is regulating monoallelic gene-expression of imprinted genes, is responsible
for X chromosome inactivation and is regulating the binding behaviour of TFs to
promoters, although 75% of human promoters are located within unmethylated
CpG islands [E+17].
DNA methylation is established and maintained by a group of specialized en-

zymes, so called DNA methyltransferases (DNMTs). A review on their regulation
and function is provided in The DNA methyltransferase family: a versatile
toolkit for epigenetic regulation [Lyk18]. By interactions of the DNMTs
with DNA during replication, DNA methylation can be efficiently maintained dur-
ing cell division [H+12c]. The removal of a methyl group requires a series of oxi-
dation reactions, delineated in [I+11, WZ14]. Importantly, 5-methylcytosines are
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less stable than cytosines and can undergo deamination, which converts them to a
thymin. This is a key process for the acquisition of mutations in eukaryotes [Kni06,
p.265f].
The presence of DNA methylation is profiled genome-wide using bisulfite con-

version of the genome, a process detailed in the next section. Although DNA
methylation in a CpG context is not considered for further analysis in this thesis,
it is important for another assay, NOMe-seq, introduced below.

Bisulfite conversion to characterize DNA methylation genome-wide

The bisulfite conversion was introduced in 1992 by Frommer et al. to analyse 5-
methyl-
cytosines in DNA sequences [F+92]. The bisulfite conversion affects non-methylated
cytosines such that they are converted to uracils, a base normally occurring in RNA
only. Methylated cytosines are not affected by the bisulfit treatment.
While bisulfit treated sample have been analyzed using PCR experiments in the

beginning, the development of NGS technologies allows a high-throughput charac-
terization of bisulfit converted reads [Z+13b]. Upon reverse transcription, the un-
methylated cytosines that have been replaced with uracils are amplified as thymines.
Note that the bisulfite conversion is not depending on the DNA sequence sur-

rounding (5-methyl)cytosines. Aligning the bisulfit reads against a reference genome
allows a quantitative characterization of DNA methylation. Further, we point out
that standard aligners should not be used to align bisulfit reads due to the reduced
alphabet and special nature of this bisulfit data [G+13].

2.1.10 Experimental Methods used to characterize the chromatin
accessibility landscape of a cell

There are several experimental approaches to study nucleosome occupancy, which is
in the remainder of this thesis also termed chromatin accessibility. The most preva-
lent methods to monitor chromatin organization are DNaseI-seq [W+79], ATAC-
seq [B+13d] and NOMe-seq [K+12]. The conceptual idea of these assays is detailed
in Figure 2.12 as well as in the following three sections.

DNaseI-seq

DNaseI is a endonuclease, which is a class of enzymes cleaving internal phosphodi-
ester bridges of both single and double stranded DNA [Kni06, p.24]. DNaseI has
already been used in 1979 by Wu et al. to analyze chromatin activity of the heat
shock protein in Drosophila melanogaster [W+79]. Due to advancements of the
DNaseI protocol [S+04] and the development of NGS technologies, analyzing chro-
matin accessibility using DNaseI at the genome wide level became possible [B+08].

The DNaseI enzyme cuts freely accessible DNA releasing small DNA fragments.
After digestion of a sample with DNaseI, these fragments are extracted via size-
selection and sequenced. DNaseI Hypersensitive Sites (DHSs) can be obtained
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Figure 2.12: Schematic workflow of three common assays to assess chromatin ac-
cessibility. In NOME-seq, the methyltransferase M.CviPI methylates
all accessible GpCs in the genome. DNA is extracted, purified and
bisulphite converted. Upon sequencing NOMe-seq provides informa-
tion on natural CpG methylation as well as on chromatin accessi-
bility deduced from GpC methylation. In DNaseI-seq, the endonu-
clease DNaseI cleaves the DNA at nucleosome free regions. Upon
digestion, the resulting DNA fragments are purified and enriched for
short DNA fragments, which are subject to sequencing. The rela-
tive enrichment of the fragments along the genome provides insights
on the accessibility of the chromatin. In ATAC-seq, the Tn5 trans-
posase is adding a transposable element to accessible parts of the
genome. After DNA purification and sequencing, the relative enrich-
ment of these elements provides details on chromatin accessibility on
the whole genome scale. Figure provided by Nina Gasparoni.

using peak calling algorithms such as MACS2 [Z+08a] or JAMM [I+15] applied to
the genome-wide DNaseI signal.
Large scale DNaseI studies by Blueprint, Roadmap and ENCODE [A+12, K+15,

D+12b] showed that this approach boosts the identification of regulatory elements
in different cell and tissue types [T+12]. Moreover, it was shown that numerous
genetic variants identified in genome-wide association studies (GWAS) overlap with
DHSs [S+12a] and DNaseI footprinting has been shown to be highly informative for
TF binding [G+14d] (see Section 2.1.12 for further details). These examples stress
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the importance of DHSs for gene regulation.
Although DNaseI-seq is a fairly old and established assay, it is still challenging

in several ways. First of all, the experiments require pre-testing to identify the
right incubation conditions, because both under- and over-digestion would greatly
influence the obtained results and lead to incorrect conclusions [H+14c]. This pre-
testing requires additional biological material, which, especially for primary cells,
can be limited. Nevertheless, DNaseI-seq protocol has been scaled down to the level
of single cells [J+15].

ATAC-seq

Another method to assess chromatin accessibility is ATAC-Seq, where ATAC is the
abbreviation for Assay for Transposase-Accessible Chromatin. ATAC-Seq has been
introduced in 2013 with the goal of finding a faster and less demanding method in
terms of cell material than DNaseI-seq [B+13d]. The assay uses a hyperactive Tn5
transposase, a prokaryotic transposase that cuts accessible DNA and simultaneously
inserts pre-loaded oligonucleotides into the sequence [B+15b]. Upon DNA isolation
and PCR-amplification, libraries can be prepared and sequenced. As for DNaseI,
peak calling can be used to determine regions of enrichment from the aligned reads.
There are several advantages of ATAC-seq over DNaseI-seq. The over-digestion
problem mentioned for DNaseI-seq is not a severe issue with ATAC-seq, as the
Tn5 reaction is an end-point reaction. Furthermore, ATAC-seq can be carried out
in less than 3 hours at low costs, making the method of choice for large scale
studies [C+18b]. Moreover, ATAC-seq can be more easily applied to the single-cell
level than DNaseI-seq [M+16c], therefore ATAC-seq might be gaining even more
importance in the future.

NOMe-seq

NOMe-seq is an alternative method to analyze chromatin accessibility pursuing
a completely different strategy than both DNaseI-seq and ATAC-seq. Instead of
using an endonuclease, NOMe-seq is based on a methyltransferase, specifically the
enzyme M.CviPI methylating cytosines in a GpC (not a CpG) context. The enzyme
M.CviPI was identified in 1998 in Chlorella virus NYs-1 and has been cloned into
both Escherichia coli and Saccharomyces cerevisiae [X+98].
NOMe-seq is a method to characterize both chromatin accessibility and DNA

methylation at CpGs and has been introduced by Kelly et al. in 2012 [K+12]. As
GpC methylation, unlike CpG methylation, does not occur in vivo, incubating cells
or isolated nuclei with the M.CviPI GpC methyltransferase will result in methylated
GpCs, if the corresponding sequence is not occupied by nucleosomes or other DNA
binding proteins. Upon incubation, the DNA is extracted, Bisulfit converted and
sequenced. Thereby, one obtains a readout of standard CpG methylation as well
as of GpC methylation from the same DNA molecules. GpC methylation can be
used to infer information on chromatin accessibility, for example using the findNDR
tool [T+14].
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Like ATAC-seq, NOMe-seq does not require a lot of input material and the methy-
lation is an endpoint reaction, therefore there is only a little risk of over-exposure.
A draw-back of NOME-seq is that the accessibility information depends on the
presence of GpCs in the genome, therefore the data will be sparse in GpC de-
pleted areas. Just like ATAC-seq, also NOMe-seq can be fairly easily applied to
single-cells [Pot17].

2.1.11 Experimental Methods used to characterize long range
chromatin contacts

There are several different techniques capturing the three-dimensional structure
of chromatin. In this thesis, only a subset of them have been used, specifically
Hi-C, Capture Hi-C and ChIA-PET. These are detailed in the following subsec-
tions. For a general overview of all available methods, we refer the reader to "C-
ing the genome: A compendium of chromosome conformation capture
methods to study higher-order chromatin organization" by Barutcu et
al. [B+16a].

3C based methods

The 3C (chromosome conformation capture) protocol was the first high-throughput
protocol to assess chromatin interactions in vivo. Hi-C and capture Hi-C used in
this thesis are based on the 3C technique, which is therefore briefly explained as
well.
The goal of a 3C experiment is to asses the interaction frequency of two loci based

on their spatial proximity in three-dimensional space, averaging out the effects of
many samples within a population. This is achieved by cross-linking the nucleus
with formaldehyde and subsequently fragmenting the chromatin using restriction
enzymes. The digested ends are ligated, purified and analyzed either via PCR or
sequencing. Note that the PCR requires primers designed for a set of regions of
interest. Thus 3C is often described as a "hypothesis driven" technique, i.e. it
can be used to validate hypothesized contacts, but it is not designed to discover
genome-wide contacts de novo [D+02, B+16a]. Hi-C can be seen as an up-scaled
version of the original 3C approach. It allows to measure interactions between any
pair of genomic regions resulting in genome-wide contact matrices. By amplifying
ligation products of the entire genome a broad coverage of all genomic regions can
be obtained [LA+09].

The entire Hi-C workflow is sketched in Figure 2.13. The major difference to the
3C approach is that during ligation of the sticky ends produced by the restriction
enzyme, biotin is added to mark the ligation sides. The generated products are
purified and again subjected to DNA shearing. Sequences marked with biotin are
pulled down using streptavidin beads and are analyzed using NGS. The resulting
reads can be aligned to a reference genome. Local signal enrichment’s provide
insights on chromatin interactions [LA+09]. These can be identified, e.g. with the
tool HiCCUPS [LA+09].
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Figure 2.13: Schematic workflow of a Hi-C experiment. DNA contacts are
fixed and crosslinked. DNA-strands are cut using a restriction en-
zyme. Ends of remaining DNA complexes are filled up and marked
with biotin and ligated. After purifying and shearing DNA, biotin
marked fragments are pulled down. Paired-end sequencing produces
reads of pulled down fragments, which are aligned to the reference
genome. Figure provided by Fabian Kern, designed after Figure 1A
from [LA+09] under Science license number 4498821444625.

While Hi-C provides genome-wide contact information, the resolution of this
information is at best in the range of 1kb to 40kb. Resolution refers to the size of
the interval in genomic space were an interaction was found. Although the achieved
resolution is sufficient to unravel sub-TAD structures, it might not be sufficient to
pinpoint the precise location of loops. To circumvent this limitation, researchers
developed capture Hi-C. Capture Hi-C follows the same experimental workflow as
a standard Hi-C experiment, with the difference that the library is enriched for a
distinct set of sequences prior to sequencing, e.g. promoter sequences or a set of
distinct genes of interest. This allows to sequence these regions at much greater
depth, thereby improving resolution [D+14].

ChIA-PET

While 3C based methods are solely based on deciphering interactions of DNA with
DNA, another goal is pursued by Fullwood et al. In 2009, they presented an ap-
proach to describe genome-wide interactions between DNA and a distinct protein,
called chromatin interaction analysis by paired-end tag sequencing (ChIA-PET).
In ChIA-PET, chromatin interactions are fixed by formaldehyde cross-linking. The
cross-linked molecules are subject to sonication and the DNA-protein complexes
are extracted using ChIP-seq. The DNA sequences contained in the extracted com-
plexes are ligated using proximity ligation and are sequenced using paired-end tags
(PET). Aligning the resulting reads to a reference genome provides insights about
(long range) chromatin interactions with the screened protein [F+09].
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2.1.12 Transcription Factors

Transcription Factors (TFs) are proteins essential for orchestrating gene function
and response to internal and external stimuli. TFs either bind directly to the
DNA according to a TF specific sequence preference or interact with already bound
factors via protein-protein interactions. Although the importance of TFs is ac-
knowledged by the field, only for about 30% of TFs, their regulatory function is
known [V+09a]. At the same time, deregulated TFs have been related to develop-
mental disorders [V+09a], TFs are also related to cancer [Cle04] and to autoimmune
diseases [vdVN07].
As mentioned in the context of transcription, a complex of so called general tran-

scription factors binds to the promoter of a gene and is essential to facilitate binding
of the RNA polymerase [Kni06, 344ff.]. While the assembly and interplay of these
TFs is highly conserved and thus similar between different genes and cell types, the
mediator complex links the transcriptional initiation machinery to distal regulatory
regions called enhancers and repressors acting as binding sites for additional TFs
required to drive cell type specific transcription [K+10a]. This interplay is graph-
ically shown in Figure 2.14, the importance of enhancers and repressors is further
detailed in Section 2.1.13.

Figure 2.14: Regulation of transcriptional initiation through an interplay of TFs
bound at the promoter and an enhancer. The enhancer is brought
into proximity of the Promoter via DNA looping, stabilized by Co-
hesin. Figure obtained from [AT15] under Springer Nature license
4500250091468.
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Aside from the role in initiating transcription, the fine tuning of cell type specific
expression is an important task, especially in light of cellular differentiation, cell
cycle control, intracellular signaling and response to external factors [F+17b, L+14a,
Fra08, O+13].
In any of these tasks, TFs can either function as an activator or as a repressor, i.e.

they influence gene-expression either positively or negatively. Activators influence
gene-expression e.g. by recruiting HATs or chromatin remodellers to make the
chromatin more accessible for the transcriptional machinery. Alternatively, they
might exert their function by modifying proteins, e.g. via phosphorylation. An
important class of TFs with activating function are pioneering TFs. These have been
shown to be able to bind even to heterochromatin and initiate the transformation
to euchromatin. Thereby, they are indispensable for cell fate decisions [IDZ16]. The
opposing function is carried out by repressors. These are interacting, for instance,
with HDACs to reduce chromatin accessibility.
We have illustrated that TFs are essential regulatory proteins, however, the ques-

tion arises how the activity of TFs can be influenced. Up till date, several different
mechanisms are known. For example, TFs are regulated by regulation of their own
transcription, e.g. TFs can regulate themselves via negative feedback loops. In a
negative feedback loop a TF binds to a regulatory region of its own gene, in this case
a repressor, thereby reducing its own transcription [B+14c]. As for other proteins,
TFs can also be post translationally modified, e.g. by phosphorylation [P+13d].
Also, they might depend on other TFs to function, as they act together in a pro-
tein complex [WH14]. We have already mentioned the importance of chromatin
accessibility for TF binding, so we stress again that regulating chromatin accessi-
bility is another way regulating TF activity by controlling their potential binding
sites [H+07].

Earlier in this chapter, we mentioned that translation occurs at ribosomes outside
the nucleus. Consequently, once the mRNA of TF has been translated into the
actual TF protein, the protein needs to be guided back into the nucleus to carry
out its regulatory function. As this transport is also relying on interactions with
other proteins, regulating a TF’s transit into the nucleus is yet another way of
regulating TF activity [KO00]. Similarly, membrane-bound transcription factors
are TFs anchored at the cellular membrane in a stand-by mode. They are being
activated and transported into the nucleus upon external stimuli [L+18b].
As mentioned above, TFs bind the DNA at distinct sequences. The preferred

binding sequences as well as the functionality of a TF is depending on its three
dimensional structure. The 3D structures involved in DNA binding are categorized
into several DNA-binding domains. The most common DNA-binding domains in
eukaryotes are the homeobox, the helix-loop-helix domain and the zinc finger do-
main. TFs sharing the same DNA-binding domain often exhibit very similar DNA
sequence preferences. This is a drawback for their accurate computational binding
prediction [P+08].
The homeobox domain consist of roughly 60 amino acids forming three α-helices.

The first two helices are oriented antiparallel to each other, connected with a loop.
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The third helix is placed at a right angle to the other two helices. Further, the
third helix is binding to the DNA by interacting with the DNAs major groove.
The family of Oct-factors involved for example in embryonic development contain
a homeo domain [BM17].
The helix-loop-helix domain is composed of two α-helices. One helix binds the

DNA at the major groove and is linked to the second, shorter helix via a loop.
Helix-loop-helix-domains tend to build dimers with proteins from the same protein
family. Often, these bind to the DNA at loci with a palindromic sequence. The
E12/E47 proteins regulating immunoglobin genes are known to hold a helix-loop-
helix domain [MM00].
Zinc finger domains are assembled of one or more copies of a roughly 30 amino

acid long sequence forming a loop. This loop is stabilized by a zinc ion, which is
fixed to cysteine- and histidine side chains. The participating amino acids form two
distinct secondary structures, a α-helix and a β-sheet. The α-helix is attached to
the major groove of the DNA and the β-sheet interacts with the DNAs backbone
to stabilize the binding of the entire factor. The TF Sp1, which is involved in cell
growth, apoptosis and chromatin remodeling, contains three zinc finger domains
and binds to TATA-box free promoters [N+97].

To elucidate the function and importance of TFs, their DNA binding preference
must be learned and their potential cell type specific binding sides throughout the
genome must be identified. In the next section, we sketch experimental approaches
how to determine the binding preference of TFs. The previously introduced ChIP-
seq experiments can be used to pinpoint the binding sites of TFs in a genome wide
manner, which has been done by ENCODE on a large scale for many TFs and
other proteins involved in transcriptional regulation such as RNA-Pol II [D+12b].
However due to experimental limitations, CHIP-seq experiments can not be carried
out for all TFs in all cell types. Computational methods predicting TF binding sites
attempt to fill this gap. An overview of such methods is provided in Section 3.1.
Due to the extraordinary importance of TFs in orchestrating cell type specific gene-
expression, a precise knowledge base of their binding, functionality and interplay is
essential for a better understanding of gene regulation.

Determining the sequence specificity of TFs

Several experimental methods have been suggested to infer the binding preference
of TFs. In addition to the already introduced ChIP-seq method [Bai11], also protein
binding microarrays (PBMs) [Bul07] and the SELEX assay (systematic evolution
of ligands by exponential enrichment) [ES90, J+10] can be used for this purpose.

TF binding motifs can be derived from TF ChIP-seq data using computational
methods, e.g. DREME or Dimond [Bai11, GPGK13].
PBMs are similar to DNA microarrays mentioned before. With PBMs a tagged

protein is bound to a microarray containing a set of predefined sequences. The
readout of the array provides information on the composition of the sequences that
were bound by the assayed TF [Bul07].
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The SELEX experiment is an iterative procedure, designed to identify oligonu-
cleotides binding to a tested protein with high affinity. The factor of interest is
brought together with a pool of candidate single stranded DNA oligos. After in-
cubation and washing of the unbound oligos, the bound ones are amplified and
slightly modified during subsequent PCR. After several SELEX cycles, the best
matching oligos are extracted and the binding preference of the factor can be de-
termined [ES90].

2.1.13 Enhancers and repressors

We have mentioned that TFs bind both to the promoter of genes which are in
close proximity to a gene’s transcription start site (TSS) and to enhancers, reg-
ulatory regions that can be located far way from the regulated gene in genomic
space [Y+15]. Since enhancers have been described for the first time in 1981 by
Banerji et al. [B+81], numerous studies shed light on their functional relevance.

For example, enhancers were shown to be essential in cell differentiation [LA+14].
Also, it has been reported that mutations occurring in enhancer regions, can not
only lead to changes in gene-expression [K+83] but can also increase the probability
to contract certain diseases, for instance Hirschsprung’s disease [E+05], Type 2
Diabetes [Lys08], or acute myeloid leukemia (AML) [G+14c]. These effects are
likely to be caused by an altered binding of TFs due to mutations occurring in
enhancer sequences [H+14f]. Ongoing research suggested that enhancers might be
therapeutic targets, e.g in case of sickle cell disease by reducing the expression of
the TF BCL11A via remodeling of one of its enhancers [Y+15, S+15].

While it is established in the community that enhancers drive transcription by
interactions with the transcripitional machinery, several other means of enhancer
function have been suggested. For example, it was discovered in 2010 that parts
of non-coding enhancer regions are actually being transcribed into long non-coding
RNAs (ncRNAs) so called enhancer RNAs (eRNA). Interestingly, eRNA expres-
sion has been shown to be correlated to the expression of the enhancers’ target
gene [K+10b]. However, a recent study using single cell RNA-seq data suggests
that eRNAs accumulation is not required to maintain the transcription of the en-
hancers’ target gene, illustrating that still only little is known about the role of
eRNAs [R+17a]. Another class of long ncRNAs has been described by Oron et
al. It is hypothesized that these ncRNAs serve as a scaffold for the assembly of
TFs required for transcription [OC11]. Yet another way of enhancer function was
described for several genes that require the presence of H3S10ph to initiate tran-
scription by releasing RNA-polymerase II from promoter-proximal pausing. The
release of RNA-Pol II is mediated via histone crosstalk between the respective en-
hancers and promoters [OC11].
To understand the function of enhancers further, putative enhancer regions need

to be identified and linked to their target genes. Recently, considerable progress
has been made in identifying putative enhancer regions utilizing epigenetics data,
especially H3K27ac and H3K4me1. These two marks have been used in several com-
putational approaches to suggest putative enhancer regions. These are introduced
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in Section 3.4.5. Furthermore, DHSs not located at promoter regions are also good
candidates for putative enhancer regions due to their enrichment for TF-binding
sites and their positive correlation to gene-expression [PR+11, R+15a].
However, it is still not fully understood how enhancers interact with their poten-

tially distantly located targets. The most prevalent hypothesis is that enhancers
are brought to close proximity to their target genes by chromosomal re-organization
and DNA-looping. This hypothesis is known as the looping model. It is opposing
the so-called scanning model stating that an enhancer is usually influencing only
the active promoter located most closely to the enhancer in genomic space [BK98].
Experimental evidence could be found for both models, hence it is likely that both
mechanisms are occurring in nature [Y+15].
For instance, long range enhancer-gene interactions, as proposed by the looping

model, have been experimentally determined using fluorescence in situ hybridiza-
tion (FISH), via enhancer RNAs (eRNAs) and their correlation to target genes, or
3C-based high-throughput methods such as Hi-C and Capture-Hi-C as introduced
before in Section 2.1.11 [M+15b]. Detailed analyses of individual genes, e.g. the
β-globin gene showed that multiple chromatin contacts occur simultaneously at
one genomic loci and also overlap with DHSs [dLG03]. Because of the tissue speci-
ficity of enhancers and their importance for tissue specific gene-expression the exact
knowledge of their location and their accurate linking to target genes is inadmissible
for a clear understanding of gene regulation.

2.1.14 CRISPR/Cas9 and viability screens

The Cas9 enzyme is a DNA-endonuclease. Unlike the already introduced DNaseI
endonuclease, which is cutting the DNA wherever it is accessible, the Cas9 enzyme
is a RNA-guided endonuclease. It cuts DNA at a sequence complementary to that of
the guide RNA (gRNA). Cas9 has been found in bacteria, where it is guided by clus-
tered regularly interspaced short palindromic repeats (CRISPR), DNA fragments
derived from viruses that have infected the bacteria before. The CRISPR/Cas9
machinery is playing a vital role in the immune response in prokaryotes by the
targeted degradation of pathogens [BM14].
Due to the high specificity and the relatively simple way of controlling Cas9, the

enzyme has been used for research purposes in several ways. Using the Cas9 en-
zyme in its wild-type form to induce breaks of the DNA-double strand are known
as CRISPR knockout screens (CRISPR-ko). The name arises from the observation
that the repair of the DNA double strand, causes insertions or deletions that might
affect TF binding sites and thereby influence gene-expression [S+14b]. Other appli-
cations include the usage of Cas9 to specifically alter DNA methylation or histone
modifications [C+16b, H+15a]. An overview of various other applications of Cas9
is presented in a review by John G. Doench [Doe18].
CRISPR/Cas9 allows to perform high throughput perturbation analysis of large

populations, e.g. viability screens. Viability screens attempt to highlight genes
affecting cell fitness as well as their regulatory elements. Millions of cells are trans-
duced with a distinct gRNA. In a positive selection, all cells are challenged, for
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instance, using a drug. Cells that could nevertheless proliferate and are thus en-
riched over time are subject to DNA sequencing. By comparing the gRNA to the
genomic sequence, the most likely target(s) of the used gRNAs can be determined
and thereby genes or putative regulatory sites involved in mediating resistance can
be determined [Doe18].

2.1.15 Looking beyond transcriptional regulation through TFs

In this thesis, we focus especially on the already introduced regulation through TFs
at promoter and enhancer regions. However, there are numerous other regulatory
mechanisms beyond those holding an important role in gene regulation. This sec-
tion attempts to provide an overview based on review articles on transcriptional
and translational regulation, as well as on post-translational protein modifications
[LY13, H+12b, Spo18].

In addition to the binding of TFs regulated by chromatin accessibility, DNA
methylation, HMs and several non coding RNA molecules are known to have regu-
latory function. For instance, long non coding RNAs (lncRNA) are associated with
several regulatory functions [B+16b]. They are involved in recruiting chromatin
remodellers [FT+09]. Also, they can interact with TFs or directly bind RNA-
PolII and thereby directly influence transcription [Z+08b, WB08]. Additionally,
lncRNAs have been implicated in monoallelic gene-expression and in affecting the
spliceosome [B+90, H+14d].
Diverse regulatory functions are carried out by antisense RNAs (asRNA). An

asRNA is a RNA molecule that is complementary to a mRNA. As delineated by
Pelechano et al., asRNAs can induce DNA methylation, lead to changes in HMs,
can slow down or terminate transcription. Besides, asRNAs can bind their mRNA
complements and thereby inhibit translation [PS13].
MicroRNAs (miRNA) have been shown to lead to transcript degradation and

are involved in translational repression [Shi06]. Similarly, short interfering RNAs
(siRNA) degrade mRNA by a process known as RNA interference (RNAi) [D+17].
We also remind the reader of the not yet fully understood function of eRNAs,
non-coding RNAs transcribed at active enhancers [K+10b].
Besides, the translated proteins can be subject to several post-translational mod-

ifications (PTMs), altering a proteins activity and live span in the cell [Spo18].
Proteins can undergo reversible chemical modifications, e.g. phosphorylation, acety-
lation, or methylation [Spo18]. Proteins can also be exposed to redox reactions, for
instance, via S-sulfenation that is the addition of an SOH group [Spo18].
Protein phosphorylation is a key PTM. It describes the addition of a phosphate

group to an amino acid, most frequently to serines. Phosphorylation is inadmissible
in regulating "protein synthesis, cell division, signal transduction, cell growth, de-
velopment and aging" [A+17b]. The well known tumor suppressor P53 is activated
via phosphorylation [A+17b].

Acetylation typically effects the N-terminal end of a protein or of lysine residues.
Acetylation has been implicated for example in hormone regulation, regulation of
blood pressure, stress response, cardiac rhythms, osteogenesis and haematopoiesis
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[D+16d]. Protein methylation, aside from the already discussed HMs, has also been
shown to affect other proteins, e.g. the methylation of HSP70 has been shown to
foster cancer proliferation. DNA methyltransferases themselves can be methylated,
which influences their activity [L+14b]. Protein sulfenation has been linked to
oxidative stress and aging as well as to neurodegeneration in the rat brain [Y+18].
In addition to such chemical modifications, the protein can be modified by the
reversible addition of polypeptides, e.g. ubiquitin. The addition of ubiquitin is
called ubiquitination [Spo18]. An ubiquitinated protein is targeted for degradation
by the 26S proteasome, therefore ubiquitin is essential to adjust the amount of
protein present in a cell [BS04]. Besides, a protein can be modified by the addition of
other complex molecules e.g. via ADP-ribosylation, which is implicated for example
in DNA repair and in chromatin decondensation [LY15, Spo18].
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2.2 Mathematical and Computational Background

Within this section, we provide a basic understanding of linear and logistic regres-
sion, introduce the concept of hypothesis testing, explain the methodology of peak
calling algorithms that are prevalent in the analysis of epigenetics data, introduce
dynamic programming and provide a brief introduction into information theory,
more specifically the minimum description length principle (MDL). We start with
a brief description of the concepts of statistical learning used in later chapters of
this thesis. For a thorough introduction, we refer to the book The Elements of
Statistical Learning [H+06].

2.2.1 Regression

In a regression problem, we consider an output variable Y with Y ∈ Rn and an input
matrix X ∈ Rn×m. The number of samples (sometimes referred to as observations),
is denoted by n, the number of predictors (also known as features) is denoted by
m. All features for a specific sample i are denoted with xi. A specific feature j for
a specific sample i is denoted with xi,j . The output variable for sample i is denoted
with yi. Note that the index i is often omitted in practice, that is x refers to an
individual sample contained in X and y refers to an individual observation in Y .
The joint probability distribution of X and Y is denoted with Pr(X,Y ). The aim
of regression is to find a function f(X) predicting Y using the input matrix X.
To find f(X), we define a loss function L(Y, f(X)) penalizing prediction errors, for
example the squared error loss L(Y, f(X)) = (Y − f(X))2. Thus, we get for the
estimated prediction error (EPE):

EPE(f) = E(Y − f(X))2 (2.4)

=

∫
[y − f(x)]2p(x, y)dxdy (2.5)

=

∫
[y − f(x)]2p(y|x)p(x)dxdy (2.6)

=

∫
x
(

∫
y
[y − f(x)]2p(y|x)dy)p(x)dx (2.7)

=

∫
x
(EY |X([y − f(x)]2|X)dx) (2.8)

= EXEY |X([y − f(x)]2|X). (2.9)

This form of the EPE shows that f(x) can be obtained by minimizing the EPE
point by point, i.e. per sample, yielding:

f(x) = argmincEY |X([Y − c]2|X = x), (2.10)

f(x) = E(Y |X = x), (2.11)

where equation (2.11) is known as the regression function, stating that, using
squared error loss, the best prediction of Y is obtained by the conditional mean

38



2.2 Mathematical and Computational Background

across all data points [H+06, p.18f]. This is utilized in the linear regression estimator
explained in the next section.

Linear regression

In linear regression, the regression function (2.11) is either linear in the input matrix
X or assumes that linearity is an adequate approximation. In a linear model, the
response Y is approximated by a linear combination of the feature vectors denoted
by Xj as:

f(X) = β0 +
m∑
j=1

(Xjβj), (2.12)

where β0 is the intercept and the βj ’s are the model coefficients. Using a quadratic
loss function as in (2.4), the least squares approach is used to determine the regres-
sion coefficients β by minimizing the residual sum of squares (RSS) as

RSS(β) =
n∑
i

(yi − f(xi)) (2.13)

=
n∑
i

(yi − β0 −
m∑
j=1

(xi,jβj)) using (2.12). (2.14)

Recall that xi,j denotes the value of feature j for sample i. Intuitively, RSS is
the sum of quadratic errors made by the linear model. With X ∈ Rn×2, this is
often visualized as fitting a hyper plane in the three dimensional space spanned by
X1, X2, and the response Y . Formula (2.14) can be more comprehensively written
in matrix notation as

RSS(β) = (Y −Xβ)T (Y −Xβ), (2.15)

with X being a n × (m + 1) matrix. The addition of one column holding 1′s is
required to account for the intercept captured by β0. As (2.15) is a differentiable
function, global extrema can be obtained by setting its first derivative RSS(β)′ to
zero:

RSS(β)′ = −2XT (Y −Xβ). (2.16)

Solving (2.16) for β yields

β̂ = (XTX)−1XTY, (2.17)

which is a global minima if XTX is positive definite as the second derivative of
(2.15) is positive in this case too [H+06, p.44ff]. The inferred model coefficients β̂
can be used to compute the estimated response, denoted by Ŷ .
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Model performance

Predicting the response Ŷ from the input X used for training as Ŷ = Xβ̂ allows to
quantify the training error in terms of the mean squared error measure (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)2. (2.18)

However, the training error does not provide good insights on the generalizability
of a model that is its performance on unseen data. Therefore, one typically applies
the model on unseen data, also known as test data, where X ′ denotes the features
of the test data and Y ′ denotes the response vector [H+06, p.24,46,219]. In addition
to the MSE, Pearson and Spearman correlation are used to assess the performance
of linear models in this thesis. The Pearson correlation between two variables A
and B is defined as

ρ(A,B) =
cov(A,B)

σAσB
, (2.19)

where cov(A,B) is the covariance between A and B and σ is the standard de-
viation. The value of ρ is in [−1, 1], where −1 and 1 are the extreme cases. The
closer the value of ρ is to 1, the more correlated A and B are, the closer the value
of ρ is to −1 the more anti-correlated A and B are. Values around 0 indicate that
there is no correlation between A and B. Pearson correlation has been shown to be
susceptible to outliers. Therefore, we also use the rank based Spearman correlation
rS , which is more robust in these cases [D+75].

rS(A,B) = ρ(g(A), g(B)) =
cov(g(A), g(B))

σg(A)σg(B)
, (2.20)

where g(A) and g(B) denote the rank converted variables A and B. Thus,
Spearman correlation is simply the computation of Pearson correlation between
two ranked input variables [Erl03, p.508]. Pearson and Spearman correlation can
both be used to assess the agreement of the measured response vector Y (Y ′) with
the predicted response vector Ŷ (Ŷ ′), on training (test) data.

Cross-validation for unbiased estimates

A commonly used methodology to obtain an unbiased estimate of the test error
is cross-validation. In a k-fold cross-validation, the entire available data set is
split into k equally sized, non-overlapping parts. A model is learned on the data
composed of k − 1 parts and the kth fraction of the data set is used to assess the
test error. The special case that k = n is known as leave-one-out-cross-validation.
Using the quadratic loss function as above, we can compute the cross-validated test
error CV (f̂) of the predictor f̂ as

CV (f̂) =
1

k

k∑
i=1

(Y i − f̂ iX(Xi))2, (2.21)
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where f̂ iX denotes a predictor trained on all but the ith fraction of X, Xi is the
ith fraction of the feature matrix X and Y i is the ith fraction of the response Y .
Cross-validation can also used for parameter tuning. In this instance, it is called
inner cross-validation. It partitions the training data into several parts and uses
those to optimize, for instance, a hyper-parameter and returns its value leading
to the minimal error achieved in the inner cross-validation. The final model is
fitted using the identified hyper-parameter on the entire data set used for the inner
cross-validation [H+06, p.241f].

A special form of cross-validation is Monte-Carlo cross-validation. In Monte-
Carlo cross-validation, the data set is not equally split into k non-overlapping parts.
The training and test set are randomly sampled from the entire data set k times.
Therefore, the same data points can occur multiple times in the test and the training
set [X+04].

Shrinkage methods for model selection

To achieve better model performance and to simplify model interpretation, it can
be beneficial to select only a subset of all possible features at hand. This is achieved
using model selection procedures [H+06, p.59]. In the context of this thesis, only
shrinkage methods have been used and are illustrated in the following. In Section 3.3
of [H+06], further details are provided on related approaches, e.g. subset selection.

Ridge regression adds a weighted quadratic penalty concerning the regression
coefficients to the objective function of the least squares minimization:

β̂ridge = argminβ


n∑
i=1

(yi − β0 −
m∑
j=1

xi,jβj)
2 + λ

m∑
j=1

β2
j

 , (2.22)

with λ controlling the amount of shrinkage. The penalization of the regression co-
efficients especially solves issues with correlated variables in the input. For instance,
in a not regularized linear regression problem two highly correlated variables could
be cancelling out each other by achieving a strongly positive and negative coeffi-
cient with similar magnitude. Due to the size restriction of the ridge penalization,
this can be avoided [H+06, p.63]. The problem shown in formula (2.22) can be as
easily solved as the ordinary least squares function from (2.17) exists as a closed
form solution:

β̂ridge = (XTX + λI)−1XT y, (2.23)

where I is a p× p identity matrix [H+06, p.64]. Intuitively, ridge regression can
been seen as a proportional shrinkage of all regression coefficients. Therefore, ridge
regression does not produce sparse models, i.e. no feature is completely removed
from the model. However, it might be assigned to an infinitesimally small regression
coefficient [H+06, p.69ff].
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Similar to ridge regression, lasso penalization adds an additive term to the pe-
nalization with regard to the magnitude of the regression coefficients:

β̂lasso = argminβ


n∑
i=1

(yi − β0 −
m∑
j=1

xi,jβj)
2 + λ

m∑
j=1

|βj |

 . (2.24)

As for ridge, the parameter λ acts as a weight for the penalty. There is no closed
form solution for (2.24), however the lasso solution can be efficiently computed, e.g.
using an adapted version of the Least Angle Regression (LAR) algorithm [E+04a]
(c.f. Algorithm 1) as delineated in [H+06, p.74]. The iterative LAR algorithm can
be seen as a modified version of the forward stepwise selection procedure where
the addition of features to the active set and the value of their regression coef-
ficient depend on the features correlation with the residual at each stage of the
algorithm [H+06, p.58, 74].

Algorithm 1 Least Angle Regression [H+06, p.74]
1: Standardize the feature matrix X to have mean zero and unit norm.
2: r ← Y − Ȳ
3: s← min(n− 1,m)
4: A ← {}
5: α = 10−4 {or user defined}
6: for all βi do
7: βi ← 0
8: end for
9: j ← argmaxj(cor(Xj , r))
10: A ← A∪ {j}
11: for i = 1 to s do
12: rk ← y −XAβA
13: δ ← (XT

AXA)−1XT
Ar

14: while @ l ∈ {1..p} \ A : cor(XA, r) <= cor(Xl, r) do
15: βA ← βA + αδ
16: if ∃j ∈ A : βj == 0 then
17: A ← A \ {j}
18: rk ← y −XAβA
19: δ ← (XT

AXA)−1XT
Ar

20: end if
21: end while
22: end for
23: return β

The lasso has the attractive property to set regression coefficients exactly to zero,
which is helpful for model interpretation if there are many features present in the
data set [H+06, p.72]. However, the lasso is not robust under certain conditions,
e.g. if there is multicollinearity in the data [SS18]. In such a case, lasso tends to
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single out only of the correlated features randomly, while the ridge penalty would
shrink all coefficients of those features together [HH05][H+06, p.662].
To combine the benefits of both the lasso and the ridge penalty that is model

sparsity and the retention of correlated yet predictive features in the model, Zou and
Hastie proposed the elastic net penalty as a combination of both techniques [HH05]:

β̂enet = argminβ


n∑
i=1

(yi − β0 −
m∑
j=1

xi,jβj)
2 + λ

m∑
j=1

(αβ2
j + (1− α)|βj |)

 .

(2.25)

As before, the total shrinkage is regulated by λ and α determines the ratio be-
tween the ridge and the lasso penalty. Just as λ, also the value of α can be de-
termined in cross-validation. By construction, "elastic net selects variables like the
lasso and shrinks together coefficients of correlated predictors like ridge" [H+06,
p.73]. The latter characteristic is known as the grouping effect. This renders elas-
tic net to be a favourable shrinkage technique when handling (epi)genomic data
sets [H+06, p.6620] [SS18]. As the elastic net optimization function can be rewrit-
ten into a lasso like structure, the already introduced LAR algorithm (c.f. algorithm
1) can be used in a slightly adapted version, delineated in [HH05].

2.2.2 Classification

In contrast to the quantitative response in regression, in classification we deal with
qualitative, sometimes also referred to as discrete, response variables [H+06, p.9].
There are several methods used in literature for classification, for instance, linear
discriminant analysis (LDA) [H+06, p.106] or logistic regression [H+06, p.119]. The
latter is explained here as it is used in this thesis.

Logistic regression

Logistic regression is a classification method using discriminant functions δk(x) for
each class k. Sample x is classified according to the class achieving the highest
value for δk(x). In logistic regression posterior probabilities Pr(G = k|X = x) are
used to model δk(x). The posterior probabilities for a model with K classes can be
denoted by

Pr(G = k|X = x) =
exp(βk0 + βTk x)

1 +
∑K−1

l=1 exp(βl0 + βTl x)
, (2.26)

Pr(G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βTl x)
, (2.27)

where the vector β holds the regression coefficients. In the general multi-class
definition of logistic regression, the probability for class K is often use as a normal-
ization factor in the logistic function, yielding:

log

(
Pr(G = k|X = x)

Pr(G = K|X = x)

)
= βk0 + βTk x, (2.28)
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with 1 ≤ k < K. The sum of all posterior probabilities equals one. In a binary
classification problem with two classes 1 and 2, we obtain a single linear function
using the logit (log[Pr(G = 1)/(1− Pr(G = 1))]) transformation [H+06, p.119]:

log

(
Pr(G = 1|X = x)

1− Pr(G = 1|X = x)

)
= β10 + βT1 x. (2.29)

Unlike the regression models presented in the previous section, logistic regression
models are trained using maximum likelihood. The log-likelihood l for an entire
data set with n samples, K classes and regression coefficients

β = {β10, β
T
1 , ..., β(k−1),0, β

T
K−1}

is computed as [H+06, p.120]:

l(θ) =

n∑
i=1

K∑
k=1

log(Pr(G = k|X = xi;β)). (2.30)

To exemplify this further, in a binary classification problem with the two classes
1 and 2 we define the probability terms pi1 = Pr(G = 1|X = xi;β) and pi2 =
1− Pr(G = 1|X = xi;β), leading to [H+06, p.120]:

l(β) =
n∑
i=1

{yi · log(pi1) + (1− yi)log(pi2)} , (2.31)

l(β) =
n∑
i=1

{yi · log(Pr(G = 1|X = xi;β)) + (1− yi)log(1− Pr(G = 1|X = xi;β))} ,

(2.32)

where yi encodes the class labels. It is yi = 1 for class 1 and yi = 0 for class
2 [H+06, p.120]. The likelihood function can be optimized by setting its derivative
to zero. In matrix notation the first and second derivative are [H+06, p.121]:

δl(β)

δβ
= XT (y − p), (2.33)

δ2l(β)

δβδβT
= −XTWX, (2.34)

with W being a n × n diagonal matrix with the ith diagonal element given as
Pr(G = 1|X = xi;β)/(1 − Pr(G = 1|X = xi;β)), y is a vector holding class
labels and p refers to the probabilities computed for each class and sample. The
optimization can be performed using Newton’s method [Wal85] that finds the x
satisfying f(x) = 0 in an iterative procedure. The general definition of Newton’s
method is

xi+1 = xi −
f(xi)

f ′(xi)
. (2.35)
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In case of logistic regression this gives us [H+06, p.121]:

βnew = βold − δ2l(β)

δβδβT

−1
δl(β)

δβ
(2.36)

= βold + (XTW oldX)−1XT (y − p), (2.37)

with W old defined as W replacing β with βold. The optimization can be started
using β = 0. Note that the algorithm is not guaranteed to converge [H+06, p.121].
As for linear regression, also logistic regression can be combined with regularization
such as lasso, ridge, or elastic net [F+10b]. As delineated in [H+06, p.121], Newton’s
method can be generalized for multi-class classification as well. For reasons of
brevity this is omitted here.

Quality measures for classification problems

The performance of a classifier can be measured in several ways. Typical measures
are accuracy (acc), which is especially used in binary classification problems, as well
as precision (pre) and recall (rec) defined as [HM15]

acc =
TP + TN

TP + FP + TN + FN
, (2.38)

pre =
TP

TP + FP
, (2.39)

rec =
TP

TP + FN
. (2.40)

Acc denotes the ratio of how many predictions have been made correctly related
to all data points. Note that formula (2.29) is representing the binary classification
problem. In this context true positives (TP ) are samples correctly assigned to the
positive class, true negatives (TN) are samples correctly assigned to the negative
class, false positives (FP ) are samples erroneously classified as positive and false
negatives (FN) are samples mistakenly assigned to the negative class. In multi-class
classification problems, acc can still be applied. In this case the nominator is the
sum of all diagonal elements of the confusion matrix of the classification problem
and the denominator represents the sum of all elements in the confusion matrix.
The acc for random data can be obtained by 1

#classes , where #classes indicates the
number of distinct class labels [HM15].
The formulas of pre and rec can be generally applied. Specifically, pre denotes

how many predictions for a distinct class have been made correctly, while rec states
how many of all samples belonging to a distinct class have been classified accurately.
All introduced measures acc, pre and rec have a value range between [0, 1], where
1 is the best value [HM15].
Also, the F1 measure, a combination of pre and rec, is frequently used. It is

defined as the harmonic mean of pre and rec [ZZ09]:

F1 = 2
pre · rec
pre+ rec

. (2.41)
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Another way of combining performance measures are receiver operating charac-
teristic curves (ROC-curve) as well as precision-recall curves. These are helpful if a
model provides soft labels, e.g. a score indicative for the class assignments of data
points [HM15, G+15c]. In a ROC-curve, rec is plotted against the false positive
rate (FPR) (FPR = FP

FP+TN ). The area under the ROC-curve is a quantitative
way of describing model performance. A value of 1.0 indicates that the curve has
perfect shape, i.e. the model is highly sensitive while a value of 0.5 indicates that
the model just performs as good as a random classifier.
It is known that the ROC measure is less suited for imbalanced data sets, as

model performance may be judged overly optimistic. In such a setting, precision-
recall curves should be used, as they are invariant to class imbalance. This is the
case because TN are not considered in neither pre nor rec, which are contrasted
in a precision-recall curve. As for ROC-curves, the area under the precision-recall
curve is a common quantitative assessment of the curves shape and of model per-
formance [G+15c]. Note that there is no distinct value indicating randomness for
the area under the precision-recall curve.

2.2.3 Principal Component Analysis (PCA)

PCA is a widely used method for the analysis of high-dimensional data sets. The
method tries to unravel non-obvious patterns in the data by projecting it into lower
dimensions, called principal components (PCs). The PCs are chosen such that they
maximize the variance of the data points and such that the PCs are uncorrelated
to each other. Thus, the first PC, PC1, can be seen as orienting the data points
by the main source of variance across all features. Consequently, PC2 will be the
projection with highest variance given PC1. In many applications, PCs other than
PC1 and PC2 are not considered as the proportion of variance explained by those
is often negligible [L+17b].

In mathematical terms, a PCA finds a matrix W such that

T = XW, (2.42)

where W holds the eigenvectors of XTX. A PCA can be computed using the
singular value decomposition (SVD) of the n×m data matrix X defined as [C+09,
p.65f]

X = UDV T . (2.43)

Here, U is n × n and V a m × m orthogonal matrix. Matrix D is an n × m
diagonal matrix with the property d1 ≥ d2 ≥ ... ≥ dp ≥ 0. The entries of D are
called singular values of X. X is called singular if there exists at least one diagonal
element di that equals zero. It holds that [C+09, p.65f]

XTX = V D2V T . (2.44)

As it was shown that W is equivalent to V , the ith principal component wi can be
computed according to [C+09, p.65f]:

wi = Xvi = uidi, (2.45)
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where ui is the ith column of U and vi is the ith column of V , respectively.
The maximum number of PCs is given by the minimum number of samples or

the number of features present in the data. Despite its popularity, PCA comes
with several limitations. For instance, as PCA is not scale invariant, differences
in scaling among different samples in a data set will make a difference, including
outliers or samples analyzed with a different normalization or processing methods.
Furthermore, PCA assumes that the data is linear and correlated sources of vari-
ance are difficult to resolve, because the PCs are uncorrelated by definition [L+17b].
An example for an alternative data visualization method unraveling non-linear as-
sociations in high-dimensions is the t-SNE approach [vdMH08].

2.2.4 Dynamic programming

Dynamic programming is a popular technique to solve optimization problems that
is finding an optimal solution to a problem. Intuitively, the dynamic program-
ming applies a divide-and-conquer methodology splitting the actual problems into
smaller overlapping subproblems. Instead of solving overlapping subproblems re-
peatedly, their solution is stored and retrieved when necessary. Hence, the speed-up
is obtained at the cost of using extra memory, an example for the time-memory
trade-off [C+09, 363ff].

In the textbook, Introduction To Algorithms, a "recipe" to apply dynamic
programming is provided [C+09, p.372f]:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

An optimization problem must have two properties to be solved with dynamic
programming. First of all, it must exhibit the optimal substructure property. That
means, any optimal solution of the problem contains optimal solutions of the sub-
problems [C+09, p.379f].
Secondly, it is required that the problem exhibits overlapping subproblems that

is a recursive algorithm designed to solve the problem needs to solve the same
subproblem multiple times [C+09, 384].

The number of subproblems directly effects the run time of the dynamic pro-
gramming method, together with the number of possible choices the problem at
hand allows for each subproblem [C+09, p.379f].
In Bioinformatics, dynamic programming is commonly used, e.g. to find the

longest common subsequence (LCS) among two sequences [C+09, p.391ff], or in the
Needleman-Wunsch algorithm for sequence alignment [NW70]. In the LCS problem
the goal is to identify the longest common subsequence with length c[i, j], where
c[i, j] is defined as the length of the longest common subsequence between the

47



2 BACKGROUND

prefixes s1[1, i] and s2[1, j]. The problem can be formulated in a recursive fashion
as

c[i, j] =


0 if i = 0 or j = 0,

c[i− 1, j − 1] + 1 if i, j > 0 and s1i = s2j ,

max(c[i, j − 1], c[i− 1, j]) if i, j > 0 and s1i 6= s2j .

(2.46)

The first case of (2.46) represents the base case of the recursion that is at the
beginning of the sequence, the common subsequence is obviously of length zero.
The second case describes the equality of s1 at position i and s2 at position j,
therefore one is added to the length of the previously longest subsequence at position
c[i−1, j−1]. The third case applies if s1i is not equal to s2j . In this case, the length
of the longest common substring is either contained in c[i− 1, j], c[i, j − 1] [C+09,
p.393]. While matrix C containing all values of c provides information on the length
of the LCS, the actual LCS can be retrieved from C either by backtracking or by
storing the information on the LCS along with its length in each entry of C.

2.2.5 Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs) are used to solve the following problem: "There is
a sequence of discrete or continuous observations generated by an unknown process.
Find a model that explains and characterizes the observed sequences" [RJ86]. More
formally, an HMM is a stochastic process. The stochastic processes is hidden and
can only be observed through observations of a second variable. The most frequently
used illustration for such a problem is the coin toss example: for each observation
of head or tail, it needs to be decided whether or not a fair coin was used for the
toss, an information not known to the observant [RJ86].
Mathematically, an HMM consists of several parts, introduced below using the

nomenclature from [RJ86]:

• t = length of the sequence of observations,

• n = number of hidden states,

• m = number of observation symbols,

• Q = {q1, q2, ..., qn} the set of hidden states,

• V = {v1, v2, ..., vm} the set of possible observations,

• A = {ai,j}, with ai,j = Pr(qj , t+ 1|qi, t) the transition probability from qi at
observational index t to qj at index t+ 1,

• B = {bj(k)}, with bj(k) = Pr(vk, t|qj , t) the production probability for ob-
servation vk at state qj ,

• Π = {πi}, with πi = Pr(qi, t = 1) the initial state distribution.
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The sets A,B and Π are sufficient to define an HMM, compactly written as a
triple λ = (A,B,Π).

Going back to the coin-toss example, we can ask that given a sequence of obser-
vations O (heads and tails), what is the optimal sequence of hidden states qi ∈ Q
(fair coin, unfair coin) that gave rise to O. If optimality is defined as singling out
the path with the highest probability given λ, i.e. Pr(O, I|λ), the Viterbi algorithm
finds the optimal state sequence using dynamic programming [RJ86, For73].
Fitting the parameter of an HMM λ = (A,B,Π) to a training data set to maxi-

mize Pr(O|λ) requires to solve a maximum likelihood problem. This can be done
in an iterative way using an expectation maximization method such as the the
Baum-Welch algorithm [RJ86].
In this thesis, we also use a modified version of HMMs called Input Output

Hidden Markov Model (IOHMM) [BF95]. In a standard HMM, the observation ot
at index t depends only on the hidden state qt. However, in an IOHMM, there is
an additional input layer directly influencing hidden state qt, the observed output
ot and the transition probabilities between the hidden states q. Formally, this can
be written as:

qt = f(qt−1, ut), (2.47)
ot = g(qt, ut), (2.48)

where ut is the additional input specified at index t, f is a function returning the
next hidden state and g returns the output ot [BF95]. Thus, the observed output
ot might also be directly converted to the provided input ut. Another fundamental
difference to HMMs is that IOHMMs are trained in a supervised fashion. Due to
brevity, we refer the reader to "An Input Output HMM Architecture" by
Bengio and Frasconi for further reading [BF95].

2.2.6 Hypothesis testing

Hypothesis testing is a method used to "testing a claim or hypothesis about a pa-
rameter in a population, using data measured in a sample. In this method, we test
some hypothesis by determining the likelihood that a sample statistic could have been
selected, if the hypothesis regarding the population parameter were true" [Pri17].

To illustrate the concept, we look at an example. We formulate the claim that
the average delay of any long distance train running in December 2018 in Germany
is at least five minutes. To test whether this hypothesis is true, we obtain the
publicly available information on train delays, covering only a small portion of all
connections. We call these observed data points samples. This name arises from
the notion that these observations are "sampled" from the entire population of
observations.
The first step in performing the hypothesis test is to formulate two hypothesis,

the null hypothesis (H0) and the alternative hypothesis (H1). The purpose of the
test is to see whether the statement in the null hypothesis is true, in other words,
we test H0, because we actually believe that it does not hold. The alternative
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hypothesis is the opposite of the null hypothesis, contradicting its meaning [Pri17].
For instance, in our train delay example we have:

• H0: = The average delay of any long distance train running in December 2018
in Germany is at least five minutes,

• H1: The average delay of any long distance train running in December 2018
in Germany is less than five minutes.

Next, we set a significance threshold α, which is typically 0.05, although stricter
cut-offs are debated [Pri17, B+17]. Subsequently, the actual test can be computed,
providing information how likely the observed samples are if H0 is true. There
are several different so called test statistics available in literature. Which statistic
should be used depends, among other things, on the hypothesis itself, on the distri-
bution of the data at hand and on data abundance. An helpful guide how to choose
the right test is provided, for instance, in [NH11]. Going back to the example, we
like to test the mean of the delay and we do not know the variance of the entire
population. Therefore, we can use the t-test in the computation, which is detailed
below.
Given the value from the test statistic, we decide whether or not to reject the null

hypothesis. The p-value "is the probability under a specified statistical model that a
statistical summary of the data (e.g., [the mean train delay]) would be equal to or
more extreme than its observed value" [WL16]. If the p-value is smaller or equal
than the previously selected significance threshold α, we reject H0, otherwise we
accept it [Pri17]. Geometrically, the p-value resembles the area under the tail(s) of
the test statistics distribution limited by the computed value of the test on the x-
axis. Similarly, for the significance threshold α, the critical value of the test-statistic
that is the value that just satisfies the significance threshold can be computed and
also visualized as the area under the curve.
In the following, we define different test statistics used in this thesis, illustrate

how to correct for multiple hypothesis testing, which is prevalent in computational
biology.

t-test

The t-test can be used to test whether the mean of a population equals a distinct
value µ0, known as the one-sample t-test, or to assess whether two groups have the
same mean (if their variance is identical), known as the two-sample t-test. Note
that unlike the Gauss test, the t-test can be used if variance of the data is not
known. However, the t-test assumes that the data follows a normal distribution.
If this is not the case, or uncertainty exists about it, the Wilcoxon-Mann-Whitney
test should be used [Zar10, p.130ff].
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The one sample t-test T can be computed as

T =
√
n
|X̄ − µ0|

S
, (2.49)

X̄ =
1

n

N∑
i=1

Xi, (2.50)

S =

√∑N
i=1(Xi − X̄)2

n− 1
, (2.51)

where Xi is the random variable representing the ith sample, X̄ is the sample
mean and S is the sample standard deviation [Zar10, p.99ff].
In the two sample t-test, one distinguishes between paired and unpaired samples.

Samples are paired, for instance, if the same patient has been tested twice, e.g.
before or after a treatment. In the applications in this thesis, only the unpaired
test with equal sample sizes has been used to test whether two groups exhibit the
same mean. The test is defined as [Zar10, p.99ff]:

T =
|X̄1 − X̄2|

S
√

2
n

, (2.52)

S =

√
S2

1 + S2
2

2
, (2.53)

S2
1 =

∑N
i=1(X1i − X̄1)2

n− 1
, (2.54)

S2
2 =

∑N
i=1(X2i − X̄2)2

n− 1
. (2.55)

To conclude the example from above, we use the one-sample t-test to test the H0

hypothesis that "the average delay of any long distance train running in December
2018 in Germany is at least five minutes", using delay information obtained for
N = 100 connections. Using the data points (data not shown), we obtain X̄ = 3.1
and S = 1. Thus, the test statistics evaluates to T = 19. The critical value t0 for
a t-test with 99 degrees of freedom and a one sided tail with a significance of 0.05
is t0 = 1.660391. Because t0 < T we reject H0.

Wilcoxon-Mann-Whitney test

TheWilcoxon-Mann-Whitney test is also known as the Mann-Whitney U test and as
the Wilcoxon rank-sum test. It is used to test for independent samples whether two
distributions are the same or not. More formally, given to random variables X, with
elements xi, and Y , with elements yi as well as two cumulative distribution functions
f(X) and g(Y ), respectively, we test the H0 hypothesis stating f(X) = g(Y ). In
the original form of the test, the H1 hypothesis states that X is stochastically
smaller than Y , meaning that ∀r ∈ R : f(X > r) ≤ g(Y > r) [MW47]. In
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practice, a different definition is used. For two variables X and Y , with distribution
functions f(X) and g(Y ), we assume that f(X) equals g(Y ) with respect to a shift
a: f(x) = g(Y − a). Thus, we define

• H0: a = 0,

• H1: a 6= 0.

The Mann-Whitney U test statistic U can be computed according to [WS10]:

U =

m∑
i=1

n∑
j=1

S(xi, yj), (2.56)

S(x, y) =

{
1, if y < x,

0, else,
(2.57)

wherem is the number of measurements of X and n is the number of observations
of Y , respectively. As this pairwise comparison can be computationally expensive
for large data sets, an alternative computational strategy has been proposed [Zar10,
p.162ff]:

U = min(Ux, Uy), (2.58)

Ux = mn+
m(m+ 1)

2
−Rx, (2.59)

Uy = mn+
n(n+ 1)

2
−Ry, (2.60)

with Rx and Ry being the sum of the group specific ranks from a joint ranking
of X and Y , respectively.

Correcting for multiple hypothesis testing

When many hypothesis test are performed, which is often the case in omics applica-
tions, the likelihood that we reject a null hypothesis simply by chance is increasing.
Multiple testing correction adjusts for this [Nob09]. A p-value corrected for multi-
ple hypothesis testing is also known as adjusted p-value, which can be computed,
for instance, using the Bonferroni or Benjamini-Hochberg procedure. The former
is a straight forward correction method that requires for a p-value to be significant
that it is smaller than the adjusted significance threshold given by α

n , where n is
the total number of performed tests [Hay13]. The latter is based on controlling the
false-discovery rate (FDR) rate [BH95].

2.2.7 Peak Calling

Peak calling throughout all projects described in this thesis was carried out with
MACS2 [Z+08a] and/or JAMM [I+15]. Both methods are briefly characterized
below.
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MACS is short for Model-based Analysis for ChIP-Seq. The name itself points to
the purpose of this tool, namely peak calling for ChIP-seq data [Z+08a]. However,
MACS and the successor MACS2 have both been used in literature for DNaseI-seq
and ATAC-seq peak calling as well [K+14b]. As there is no publication for the
MACS2 algorithm, here we delineate the functionality of MACS, which is extended
by MACS2.
In the first step, MACS removes all duplicated ChIP-seq reads that is reads oc-

curring more often than expected from a random read distribution. The remaining
reads can be modelled using a Poisson distribution.
Prior to the computation of the peaks, MACS shifts all ChIP-seq reads by d/2,

where d is determined using the distance of the peak summits obtained from the
bimodal ChIP-seq read enrichment patterns of 1000 high-quality peaks. These
are identified using a sliding window approach with a window size that equals the
sonication size and a significance test again a random distribution of reads. The
shift is performed to ensure a better agreement with the center of biological activity,
e.g. the binding site of the antibody-targeted protein of interest [Z+08a].
The shifted signal is used to find candidate peaks by shifting a window of size 2d

across the genome. A region is selected as a candidate peak if it shows a significant
enrichment according to the poisson distribution, using a p-value threshold of 10−5.
Overlapping candidate peaks are merged. The region with the highest read count
is called center, or summit [Z+08a].

Finally, MACS scores each candidate peak by comparing it to either the input
signal (the control experiment in ChIP-seq) or to a broader region around the peak
region if no input is available. The parameter λlocal represents the background
enrichment, it is determined as:

λlocal =

{
max(λbg, λ1kb, λ5kb, λ10kb) if there is an Input,
max(λbg, λ5kb, λ10kb) otherwise.

(2.61)

Here, λbg is the poisson parameter estimated from the entire genome and λxkb
the parameter fitted to xkb centered around the peak summit from either the input
(if applicable), or the actual sample. If a peak is still significant using λlocal and
passes a user defined p-value threshold, it is reported [Z+08a].
One of the major differences between MACS and MACS2 is that MACS2 uses
− log10 converted p-values to generate a score for candidate peaks and to perform
the final peak selection [Liu18].
In JAMM, a different methodology is pursued. First, JAMM identifies regions

of the genome that show a global enrichment for the used signal. This is achieved
by dividing the genome into bins (where the bin size is chosen specifically for each
chromosome according to a cost function, or it is defined by the user). The enrich-
ment test of a bin considers the read counts within the bin and a background bin as
well as the signal-to-noise ratio within a bin compared to the entire chromosome.
Neighbouring enriched bins are merged into enriched windows [I+15].
In the enriched windows, peaks are identified by fitting Gaussian mixture models

with either two or three components, depending on the type of the called peak using

53



2 BACKGROUND

an expectation maximization approach. Compared to MACS2, peaks produced
with JAMM are more pronounced and neighbouring peaks in peak dense regions
are identified with high resolution and not merged into one peak [I+15].

2.2.8 An introduction to minimum description length

The minimum description length (MDL) principle is the basis for several meth-
ods to conduct inductive inference. While the purpose of any statistical inference
method is to unravel hidden patterns in a data set, from a MDL perspective the
presence of a pattern, or regularity in the data, can be interpreted as the ability
to compress the data set [Gru07a, p.12, 22]. Thus MDL views "learning as data
compression" [Gru07a, p.12]. The idea is that for any "given set of hypotheses H
and data set D, we should try to find the hypothesis or combination of hypotheses
in H that compresses D most." [Gru07a, p.12].
In this section, we delineate some of the advantages of using MDL for model

selection and provide essential nomenclature. This section is based on part one of
the textbook The minimum description Length principle by Peter Grünwald,
which provides a wide and detailed introduction to the topic.
As stated above, MDL is based on compression. The idea is that any regular

pattern in the data allows for a shorter, more compact, yet unique description
D′ of the D. MDL refers to D′ also as an encoding, which can be used to fully
reconstruct the original data D. The encoding D′ utilizes a description method,
which converts an input sequence to a coding alphabet, which is typically a binary
alphabet B = {0, 1}. Using such a binary alphabet, any input sequence can be
translated to a bit sequence. In MDL, each description method needs to satisfy the
unique decodability property that is for any encoding D′, there can be at most one
D [Gru07a, p.6f].
Such a description method is the universal computer language (a language that

can implement a universal Turing machine), as suggested by Ray Solomonoff. The
idea is to find the shortest program in such a language (the actual choice of the
computer language is not essential for large sequences D) that returns the data D
and terminates. The length of the shortest program that prints D is denoted by
Kolmogorov complexity LUL(D). A small value of LUL(D) indicates that there is a
large amount of regularity in D that is picked up by the model, which in turn means
that the data can be represented in a very compact way. Unfortunately, Kolmogorov
complexity can not be computed and the choice of language does matter for smaller
sequences, which are more commonly occurring in practice. Therefore, compression
using the universal computer language is termed idealized MDL. MDL approaches
used in practice, known as practical MDL, use less general description languages
that are often chosen depending on the data at hand [Gru07a, p.9ff].
A commonly used framework for practical MDL is the so called crude two-part

MDL. It can be described as "Let H1,H2, ... be a list of candidate models [..], each
containing a set of point hypotheses [representing a distinct probability distribution].
The best point hypothesis H ∈ H to explain the data D is the one which minimizes
the sum L(H) + L(D|H), where L(H) is the length, in bits, of the description of
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the hypothesis and L(D|H) is the length, in bits, of the description of the data
when encoded with the help of the hypothesis." [Gru07a, p.14]. The outcome of
this procedure suffers from uncertainty as the choice of the encoding of H can
tremendously affect the results. Therefore codes that attempt to minimize, for
instance, the worst-case total description length over all possible inputs, known
as minimax codes, have been suggested. However, this requires that all possible
solutions to a problem need to be explored [Gru07a, p.16].
In refined MDL, where codes are always designed following the minimax principle,

"we associate a code for encoding D not with a single H ∈ H, but with the full model
H. Thus, given model H, we encode data not in two parts but we design a single
one-part code with length L̄(D|H). This code is designed such that whenever there
is a member of H that fits the data well, in the sense that L(D|H) is small, then
the codelength L̄(D|H) will also be small" [Gru07a, p.17].

Any approach following the MDL principle has several benefits that make its
usage very appealing. For instance, MDL approaches, by construction, do not
overfit and generalize well to unseen data. Further, they follow the spirit of Occam’s
razor that is they deliver a good trade-off between model complexity and goodness-
of-fit, which simplifies model interpretation [Gru07a, p. XXV].
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2.3 International efforts to characterize the (epi)genome
of primary cells and cell types

In this thesis, we use publicly available datasets from ENCODE, Blueprint, Roadmap
and the DEEP consortium.
The Encyclopedia of DNA Elements (ENCODE) project is funded by the NIH

since 2007. ENCODE’s mission is the characterization of regulatory elements in the
human genome using a variety of experimental methods including RNA-seq, ChIP-
seq of HMs and TFs and DNaseI-seq [D+12b]. In January 2019, the ENCODE
data portal (www.encodeproject.org) contained 9486 released samples, available for
download as raw data files and as uniformly processed analysis files, e.g. peak calls
or expression quantification. In addition to the data generation, also several com-
putational methods have been developed in the scope of the ENCODE project, e.g.
the widely used ChromHMM providing chromatin state segmentations [EK12].
The BLUEPRINT project, has been a large research project, involving 42 partic-

ipants, funded by the European Union for 5 years until September 2016. Blueprint
investigated epigenomic mechanisms of transcriptional regulation in diverse haema-
topoietic cell types covering both healthy and diseased cells. To do so, about 100
complete epigenomes have been generated from highly purified cells. The generated
data allowed the discovery and validation of novel epigenetic markers for leukemia
and Type 1 Diabetes [Stu18].
The NIH funded Roadmap Epigenomics Mapping Consortium started in 2008

with the characterization of DNA methylation, HMs, chromatin accessibility using
DNaseI-seq and gene-expression in stem cells and tissue samples selected to "rep-
resent the normal counterparts of tissues and organ systems frequently involved in
human disease" [B+10b]. The final Roadmap data release contains 111 reference
epigenomes, with each epigenome holding five histone marks (H3K4me3, H3K4me1,
H3K27me3, H3K9me3 and H3K36me3) [K+15].
Our group actively participated in the german epigenomics program (DEEP)

that concluded in 2017. In a collaborative effort between several german research
institutes and universities, DEEP provided epigenomic characterizations of cells
relevant for chronic metabolic and inflammatory diseases. These include hepato-
cytes of human and mouse, adipocytes, fibroblasts, CD4+ T-cells, macrophages and
monocytes. The estimated 70 epigenomes contain RNA-seq, chromatin accessibility
using either DNaseI-seq, ATAC-seq, or NOME-seq data, HM-ChIP-seq and DNA
methylation data [Con18].
The International Human Epigenomics Consortium (IHEC) is an international

consortium functioning as an umbrella coordinating epigenomic data production,
data quality and data standards all over the world. The goal of all IHEC members
is to generate at least 1000 full epigenomes. ENCODE, Blueprint, Roadmap and
DEEP contribute to IHEC. Hence, their epigenomic data is obtainable via the IHEC
data portal [B+16e].
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Inferring key TFs from epigenetics and

gene-expression data

A major focus of our work has been the elucidation of transcriptional regulation
through TFs. Here, we first introduce the reader to mathematical ways of denoting
the sequence preferences of TFs. Further, we discuss relevant models using sta-
tistical representations of TF binding to make genome wide Transcription Factor
Binding Site (TFBS) predictions. We conclude the TF binding prediction part with
the introduction of Tepic, a method proposed by us to predict TF binding and at
the same time generating TF scores on the gene level. Furthermore, we delineate
various means to systemically analyze TF binding scores using machine learning
approaches to improve our understanding of cell type specific transcriptional regu-
lation.
This chapter summarizes our work published in four different articles [S+17a,

K+17a, SS18, S+18b]. It also includes an extension of the Bachelor thesis by Fabian
Kern [Ker16], which has been presented in a talk at the German Conference on
Bioinformatics 2018 in Vienna.

3.1 Predicting TF binding in silico

This section delineates how to systematically describe the sequence preferences of
TFs and how to use these representations in predictive models of TF binding.

3.1.1 Systematic description of the sequence preference of TFs

In Section 2.1.12, we describe several experimental ways to characterize TF binding
preferences. Here, we illustrate how this information can be used to derive statistical
models describing the binding behaviour of TFs.

Position Weight Matrices (PWMs)

No matter which experimental method has been used to assess TF binding in vivo,
several statistical models require a multiple sequence alignment of all experimentally
determined binding sites. For many years, researchers used the consensus sequence
of this multiple sequence alignment X as a representation for a TF’s binding pref-
erence [DM92]. To account for variability within the aligned sequences, which is
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neglected by the consensus approach, a weighted matrix representationM has been
proposed by Garry Stormo in 1982 [S+82]. The idea behind the matrix represen-
tation is that the frequency of each nucleotide k in position i of the alignment is
considered [Sto00]:

Mk,j =
n∑
i=1

I(Xi,j = k),∀k ∈ {A,C,G, T},∀j ∈ {1, ..m}, (3.1)

where Xi,j refers to position j in the ith sequence in the alignment, n is the
number of all sequences in X, m is the length of X and I is the indicator function.
This formulation gives rise to the name Position specific Frequency Matrix (PFM)

M , as the frequencies of each nucleotide are stored. Instead of the frequency based
representation, PFMs are often transformed to Position specific Probability Matri-
ces (PPMs) P , where an entry Pk,j can be computed as

Pk,j =
Mk,j∑

k∈{A,C,G,T}Mk,j
, ∀j ∈ {1, ..m}. (3.2)

To account for different background probabilities of the individual nucleotides
bk and to assess the information content of each position in the matrix, P can be
transformed further to a so called Position Specific Scoring Matrix (PSSM), which
is also known as Position Specific Weight Matrix (PWM) W [S+86]:

Wk,j = Pk,j · log2

(
Pk,j
bk

)
. (3.3)

To rank a DNA-sequence s composed of m base pairs with a TF binding motif
of size m representing W , one computes the sum S of all respective scores in W as:

S =
m∑
i=1

Wsi,i. (3.4)

PWMs can be easily visualized in so called TF motifs [SS90], as exemplified in
Figure 3.1. The height hk,j of nucleotide k at position j is computed according to

hk,j = Pk,j ·Rj , (3.5)

Rj = 2−
∑

k∈{A,C,G,T}

(−Wk,j) + e(n), (3.6)

where e(n) is a correction factor if there are only a few samples n, available,
which can be computed as [S+86]:

e(n) =
3

2 · log(2) · n
. (3.7)

There are several open source databases such as Jaspar [K+18c], Hocomoco
[K+18d], Uniprobe [H+15b], or the commercial TRANSFAC service [M+06] pro-
viding PWMs for hundreds of TFs and different species. For instance, in the latest
release of our Tepic framework, we included PWMs for 30 species, including 561
non-redundant TF motifs for human, assembled from the aforementioned publicly
available databases.
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Figure 3.1: Binding motif for FOXA1, which has been obtained from the Jaspar
database (MA0148.3) [K+18c]. The x-axis denotes the position in
the motif, the information content at each position is shown on the
y-axis. The size of a character is proportional to its information value.

Alternative representations for the binding preference of TFs

However, the usage of PWMs has several drawbacks, where the most important
one is the simplifying assumption of independence between nucleotides at different
positions. For instance, Eggeling et al. showed that there is substantial dependency
between nucleotides in less conserved parts of the binding motif for CTCF [E+14a].
A straightforward way to address this issue is the usage of first-order Markov mod-
els, also known as Dinucleotide Weight Matrices (DWMs). These link the base
occurring at position i to the one at position i − 1 [Sid10]. However, Weihrauch
et al. showed that DWM models do not offer a big advantage over simple PWM
models in general, especially if the costs of a considerably larger parameter space
are taken into account [W+13c]. The only minor improvement might be due to the
still simplifying assumption of a first-order dependency between the nucleotides.
To model also more complex dependencies, several other approaches have been

suggested, for instance Slim models [KG15]. In Slim models, "the probability of
a nucleotide at a certain position of a binding site may depend on any nucleotide
observed at a preceding position" [KG15]. Grau et al. fit Slim models using sparse
local inhomogeneous mixture models, allowing for weighted dependencies between
nucleotides. Just like PWMs, Slim models can also be efficiently visualized, includ-
ing the modelled dependencies [KG15]. The advantages of Slim models are stressed
by the fact that one of the winning teams of the ENCODE DREAM challenge on
in vivo TF binding site prediction used Slim models as well [K+19]. Another mea-
sure, called BaMMs, was suggested by Siebert and Söeding. They proposed a
Bayesian method to learn inhomogeneous Markov models to capture higher-order
inter-dependencies without over fitting the model [SS16]. BaMMs can be seen as
a generalization of the DWMs.
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Although both Slim models and BaMMs show better accuracy in pinpointing
TF binding sites than simple PWMs, the latter are still dominantly used due to their
simplicity and interpretability. The most important advantage of PWMs however is
that they are available for many species and factors in the aforementioned databases.
As there are no well curated databases for Slim models nor BaMMs, these need to
be learned de-novo for instance from ChIP-seq or PBM data, making it cumbersome
and potentially, due to insufficient data, infeasible to apply these representations in
every day usage.

3.1.2 Hit or no hit? Binary classification versus probabilistic
modelling of TF binding

In Formula (3.4), we have already mentioned how a PWM W can be used to com-
pute a score S for a distinct sequence s. In the field, there are two general approaches
to assess from S whether the TF modelled by W would bind to s. In so called hit-
based approaches, the statistical significance of the score S obtained for W applied
to s is assessed compared against a background model, e.g. a zero-order null model
with randomly generated sequences as used in Fimo [G+11]. If S is significant the
site is reported, otherwise it will be discarded.
This "black and white" view of TF binding is very strict and does not reflect

several aspects of biological reality that is the competition of TFs over a genomic
location and the consideration of low-affinity binding sites [R+07]. Low affinity
binding sites are sequences that do not fully match the actual binding site of a TF,
but are still bound by the factor. It is a phenomenon that was shown to be highly
relevant in biology [Tan06, C+15d].
Berg and von Hippel proposed a score to compute the estimated number of

molecules bound to a distinct genomic location [BvH87], which was implemented
by Roider et al. in a method called Trap [R+07]. Compared to a hit-based classi-
fication, such affinity-based methods are well suited to rank different sequences in
their likelihood for being bound by a TF [R+09]. Also, they have been successfully
applied to analyse co-regulated genes [R+09], in assessing the effect of SNPs on
TFBS [TC+11] and in the analysis of TF co-occurrence within DHS regions [vB15].
Nevertheless, hit-based approaches are still dominating the literature.
In the next section, we detail Trap further, as it is widely used in this thesis. In

Section 3.1.5, we provide the reader with an overview of other methods for TFBS
prediction. Two of those are detailed in Sections 3.1.6 and 3.1.7. Later on, we
compare our own Tepic (Section 3.2) approach against those methods in several
instances.

3.1.3 Transcription Factor Affinity Prediction (TRAP)

Trap models the binding of TFs to any genomic region from a biophysical point
of view, computing the number of bound molecules per genomic location s. To
do so, the equilibrium between bound and unbound factors t at any site s can be
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computed according to [R+07]:

p(s) =
[t · s]

[s] + [t · s]
(3.8)

=
K(s) · [t]

1 +K(s) · [t]
(3.9)

=
K(s0)e−βE(s) · [t]

1 +K(s0)e−βE(s) · [t]
(3.10)

=
R0 · e−βE(s)

1 +R0 · e−βE(s)
. (3.11)

Here, K(s) is the equilibrium constant, specific for each site s. The concentra-
tion/activity of factor t and sequence s is denoted by squared brackets. The site
with the highest affinity s0, is assigned to the mismatch energy E(s0) = 0 that is
the site with the best match to a distinct factor t is used to calculate K(s). Con-
sequently the mismatch energy E(s) for any site s 6= s0 will be larger than 0. The
parameter β is defined as 1

β = kB · T , where kB refers to the Boltzmann constant
(kB = 1.3800649 · 10−23J/K) and T denotes temperature. The parameter R0 is
defined as R0 = K(s0) · [t].

According to Berg and von Hippel [BvH87], who laid the foundations for the
biophysical model used in Trap, the mismatch energy E(s) for a distinct factor t
can be computed utilizing a PFM M t for TF t according to [R+07]:

βE(λ, s,M t) =
1

λ

|Mt|∑
i=1

∑
k∈{A,C,G,T}

Ski log

(
M t
i,max

M t
i,k

bk

)
, (3.12)

Ski =

{
1, if si = k,

0, else,
(3.13)

where |M t| denotes the number of positions of the frequency matrix M t, M t
i,max

represents the most frequent nucleotide at each position, M t
i,k is the entry in M t

for nucleotide k at position i and bk denotes a background probability term.
Thus, with two parameters R0 and λ, the expected number of TF molecules N̄

bound to s can be computed as [R+07]:

N̄Mt,s,λ,R0
=

|s|−|Mt|∑
l=1

R0 · e−βE(λ,sl,M
t)

1 +R0 · e−βE(λ,sl,Mt)
, (3.14)

where |s| denotes the length of sequence s. Thus |s| − |M t| denotes all possible
positions for matrix M t in s. On the basis of ChIP-Chip data for yeast, Roider et
al. determined that a suitable value for λ is 0.7. For a fixed value of λ, the value
for R0 can be computed for each position frequency matrix M t using its length
m [R+07].
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3.1.4 Differences between TF ChIP-seq data and predicted TFBS

In practice, TF ChIP-seq data is often used as a gold-standard to assess computa-
tional TFBS predictions. While it is definitely desirable to achieve the performance
of the ChIP-seq experiments, we stress that some aspects of TF binding can not be
adequately modelled. This is due to the conceptional design of both TF ChIP-seq
and computational TFBS prediction methods as illustrated in Figure 3.2.

ChIP-seq

Peak calling

DNase1-seq

∑m,1

∑m,2
∑m,3

∑m,4

TRAP

M={M1, M2, M3, M4,M5, M6, M7 }

Figure 3.2: This figure depicts conceptual differences in detecting TFBS directly
using ChIP-seq experiments or indirectly using computational predic-
tions coupled with chromatin accessibility assays such as DNaseI-seq.
Here, the result of TFBS predictions using Trap for the indicated
PFM M t within DHSs are indicated by the colored bars. In contrast
to ChIP-seq experiments, motif based prediction approaches are not
able to model the activity of TFs in complexes, as TFs that bind in-
directly that is they bind to other proteins instead of the DNA, can
not be captured. This is illustrated by the orange TF, which can
be pinpointed using ChIP-seq experiments. However, its position re-
mains hidden using DNaseI-seq analysis. Another potential drawback
of motif based predictions is shown for the TFBS predictions of M1

in the fourth DHS. Although we do not see a ChIP-seq signal for the
corresponding factor, we do observe a non-zero affinity, which is due
to an confounding influence of the length of the DHS on the predicted
motif scores. With an increasing size of the DHS, the random chance
to observe a motif hit increases. Figure from Schmidt et al. [SS18].

Aside from the obvious advantage that ChIP-seq experiments generate a map of
in vivo TF binding events, ChIP-seq experiments can also be used to screen TFs
that bind indirectly that is instead of binding to the DNA, they bind to another TF
via protein-protein interactions. Therefore, ChIP-seq experiments are well suited to
study TF complexes as well. These can not be easily identified using computational
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tools [N+16, WM16] that are considering only TF motif information.
However, this situation can be reversed, for instance, a TF that is bound to the

DNA could be hidden from the antibody used for the ChIP-seq experiment, because
it is fully blocked by other proteins. In this case, a motif based approach might
find a motif for this TF, although no, or only a weak, ChIP-seq signal might be
detected.
Furthermore, in case of ChIP-seq data, the decision whether a region is bound by

a TF depends only the presence of a ChIP-seq peak. The intensity of a peak is not
necessarily considered. In predictive approaches considering chromatin accessibility
data, usually all possible sites within a candidate TFBS are used in computational
prediction tools, e.g. in Trap [R+07]. Therefore the length of a candidate region
might influence TF scores as larger peaks could obtain a higher score by chance, if
the size of the candidate regions is not taken into consideration.

3.1.5 Other computational approaches utilising PWMs

There are various approaches to predict TF binding in silico, which can be divided
into three categories:

1. Methods that are purely based on the TF sequence specificity.

2. Site-centric methods that filter hits from (1) using epigenetics data.

3. Segmentation based methods utilizing epigenetics data to find candidate sites
that are subsequently annotated using (1).

Predicting TFBS using only DNA sequence data

Jayaram et al. provide an extensive overview of the first class of methods that is
purely sequence based approaches [J+16c], e.g. Matrix-Scan [T+08], Clover
[F+04], the already mentioned Fimo [G+11], or PoSSuMsearch [B+06b].
Both Matrix-Scan and Clover compute a log ratio score per sequence compar-

ing the probability of a motif hit in a sequence s against a background model [T+08,
F+04]. In addition to that, Clover determines a p-value to assess the scores signif-
icance using permutation experiments and also corrects for multiple testing [F+04].
The widely used method Fimo computes a log-likelihood ratio score for each dis-
tinct sequence position against a zero-order background model and computes a
p-value per site using dynamic programming. By computing FDR, the p-values can
be corrected for multiple hypothesis testing [G+11]. PoSSuMsearch uses a suffix
array constructed for the considered sequence to reduce search time. Via dynamic
programming, motif specific thresholds based on a user defined p-value threshold
can be computed [B+06b].
All of these methods can be installed locally and some are additionally available

as a webserver, for instance Fimo [G+11]. Within the RegulatorTrail web-
server [K+17a], we offer TFBS prediction using Trap, which we have updated to
allow for parallel execution within our Tepic framework [S+18b].
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While the methods mentioned so far utilise already known PWMs, recent deep-
learning approaches, for instance DEEP-Bind [A+15b], attempt to infer the se-
quence specificity values of TFs de novo from large data sets. However, deep-
learning methods have not been applied to many TFs and their practical usage for
hands-on research is limited as they require a lot of data for a single TF and special
hardware to be trained efficiently.
An overview of these purely sequence based methods is provided in Table 3.1

[S+18b].

Method Availability Motif scoring Parallelized Maintained

MatrixScan [T+08]
Registration

required
Hit-based NA NA

Clover [F+04] Yes Hit-based No No

Fimo [G+11] Yes Hit-based No No

PoSSuMsearch [B+06b] Yes Hit-based Yes No

TRAP [R+07] Yes Affinity-based No No

TRAP(TEPIC) [S+17a] Yes Affinity-based Yes Yes

DEEP-Bind [A+15b] Yes NA Yes No

Table 3.1: Overview of purely sequence based TFBS prediction methods.

Methods utilizing epigenetics data to refine sequence based TFBS predictions

Applying TFBS prediction methods that consider only the sequence specificity of
TFs have been shown to generate many false-positive hits compared to TF ChIP-seq
experiments. By including epigenetics data into the TFBS predictions, the number
of false-positive predictions can be greatly reduced because the search for TFBS
is reduced to genomic sites of high regulatory activity, typically determined using
chromatin accessibility assays, or HM ChIP-seq data [PR+11, G+16a]. The high
agreement of in vivo TF binding as determined by TF ChIP-seq with DHSs is shown
in Figure 3.3. Table 3.2 provides an overview of methods utilizing epigenetics data
for TFBS prediction.
As mentioned before, in site-centric methods, genome wide TFBS predictions

based on sequence matches with PWMs are classified, using epigenetics data, to
be either truly bound or unbound. Many site-centric methods have been proposed,
which can not all be listed here. One of the first and best known methods is
Centipede [PR+11].

Centipede uses a hierarchical mixture model to predict bound TFBS incorporat-
ing chromatin accessibility data, histone modification ChIP-seq data, measurement
of genomic conservation as well as the distance of a putative TFBS to the closest
TSS [PR+11].

Another approach is taken by Cuellar-Partida et al. [CP+12], which we call Fimo-
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Figure 3.3: The figure illustrates the strong overlap of DHSs with TF ChIP-seq
data, aggregated for 45 TF ChIP-seq experiments from ENCODE,
obtained for the K562 cell line. Extracted from Figure 2 of Thurman
et al. [T+12], obtained under the Creative Commons Attribution-Non-
Commercial-Share Alike licence.

Prior. They compute an epigenetic prior using only DNaseI-seq signal and use this
prior to reevaluate sequence based TFBS predictions (Section 3.1.6). Interestingly,
although conceptually very simple, their approach was shown to perform on bar
with the more involved Centipede approach [CP+12]. Another frequently used
method in the field is PIQ (Section 3.1.7), which uses Bayesian inference to predict
true TFBS [S+14c].

While the aforementioned methods are unsupervised, several supervised methods
have been published, for instance MILLIPEDE [LH13] and BinDNase [KL15].
Both apply a binning strategy around candidate TFBS to learn characteristic
DNaseI-seq profiles for truly bound TFBS. One of the top performing methods in
the ENCODE-DREAM in vivo TFBS prediction challenge, called Catchitt also
utilizes a supervised, site-centric strategy in a logistic-regression like fashion [K+19].

Method Availability Motif scoring Parallelized Maintained

Centipede [PR+11] Yes Hit-based No No

Fimo-Prior [CP+12] Yes Hit-based No No

PIQ [S+14c] Yes Hit-based
Only using

gsub
No

Milipede [LH13] Yes Hit-based No No

BinDNase [KL15] No Hit-based NA No

DNase2TF [S+14d] Yes NA No No

Wellington [P+13c] Yes NA Yes Yes

HINT(BC) [G+16b, L+18a] Yes NA Yes Yes

TEPIC [S+17a] Yes Affinity-based Yes Yes

Catchitt [K+19] Yes
Hit-based incl.

Slim-models
Yes Yes

Table 3.2: Overview of site-centric and segmentation based methods for TFBS
prediction. Note that none of the footprinting methods have an inte-
grated TFBS prediction module.
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Many recently developed methods follow the segmentation-based strategy which
is to first highlight a set of candidate regions, which are subsequently annotated
with TFBS. Typically, segmentation based methods rely on TF footprints, which
are, informally speaking, dips in DHSs, or also in ATAC-seq peaks. The footprints
are most likely arising because the DNA is blocked at the occupied binding sites
and is thus inaccessible for the DNaseI and the Tn5 enzyme. As a consequence,
the DNaseI enzyme can not cut the DNA and the Tn5 enzyme can not insert the
transposable element [K+18a]. Examples for the signal distribution of DNaseI and
HMs at footprints are shown in Figure 3.4a. By considering only footprints in
the search of TFBS, the prediction task is greatly simplified as the search space is
considerably smaller and due to the assurance that sites are active, false positive
predictions are reduced.
A variety of methods has been suggested to identify footprints, e.g. DNase2TF

[S+14d], or Wellington, which uses a binomial test to identify footprints by
comparing the read count within a footprint to the flanking region [P+13c]. One
of the currently most sophisticated footprint callers is the HINT method [G+16b].
HINT is based on a HMM modelling DNaseI-seq and HM signal around foot-
prints. The HMM architecture of HINT is depicted in Figure 3.4b. The already
trained HMM can be obtained online and applied to unseen data. To reduce search
space, HINT is applied to sites of signal enrichment only, e.g. DHSs. One of
the advantages of HINT, is an integrated bias correction for DNaseI-seq cleavage
bias [K+13b, G+16b]. This version is named HINT-BC. Recently, an updated ver-
sion of HINT-BC was released that also accounts for an inherit sequence bias of
ATAC-seq data [Mad15, L+18a]. None of the listed footprint calling methods have
a built-in function to predict TFBS within the footprints.

(a) (b)

Figure 3.4: (a) Characteristic DNaseI and HM profile around TF-footprints: The
H3K4me3 mark is flanking the NFR, which shows DHSs. Footprints
are the sites with depleted DNaseI-seq signal within the DHS. (b)
Architecture of the HMM used within HINT to identify TF-footprints.
Figure following Figure 1 from Gusmao et al. [G+14d], obtained under
Oxford University Press license 4511401158801.

Importantly, we note that some TFs are known to cause only weakly pronounced
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footprints, because their residence time at the DNA is not sufficiently long to cre-
ate a strong footprint signature [S+14d]. For these TFs, purely peak-based models,
omitting the footprint calling step, might be a better choice. Furthermore, it was
shown that pioneering TFs have the ability to bind to the genome even at hete-
rochromatic sites. These are not straight forward to model using neither footprints
nor peaks.

We have noticed that none of the segmentation based strategies have been com-
bined with an affinity-based annotation of TFs, as offered by Trap. Furthermore,
the possibility of segmenting the genome based on peaks only, which are used for
footprint detection anyways, has not been systematically analysed either. We fol-
lowed up on these ideas and developed Tepic, a framework for TFBS prediction
using biophysical scores derived from Trap, which can be easily applied to both
peaks, derived from any chromatin accessibility assay, or to TF footprints [S+17a].
In addition to the TFBS prediction, Tepic offers the computation of TF scores on
the gene-level. Also, our framework includes several machine learning approaches
using TFBS predictions to derive information on key regulators [S+18b]. Further-
more, Tepic is included in the RegulatorTrail webserver [K+17a]. Before we
introduce Tepic in detail, we describe two related methods for TFBS prediction,
which we used to benchmark Tepic.

3.1.6 Epigenetic priors to compute TFBS predictions

To reduce the number of false positive TFBS predictions, Cuellar-Partida et al.
proposed a combination of PWM derived motif hits with an epigenetic prior com-
puted, for instance, from DNaseI-seq signal [CP+12]. They designed the prior to be
a linear function whose value summed over all genomic positions equals the number
of all TFs that are bound to any site in a tissue. The epigenomic signal is re-scaled
to be within the range of [0, 1], denoted by g(yi), where yi is the original epigenetic
signal at position i in the genome. Using g(yi), they define their prior function
f(yi) as [CP+12]:

f(yi) = β
g(yi)∑n
j=1 g(yj)

, (3.15)

where n denotes the size of the genome and β is "the total number of binding sites
of all TFs" [CP+12]. Thus, the final score Ŝ(si, yi) indicating whether region si is
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bound or not is given by:

S(si) =

m∑
j=1

Wsij ,j
, (3.16)

P (yi) = log

(
f(yi)

1− f(yi)

)
, (3.17)

Ŝ(si, yi) = S(si) + P (yi), (3.18)

Ŝ(si, yi) =

m∑
j=1

Wsij ,j
+ log

(
f(yi)

1− f(yi)

)
, (3.19)

where S(si) is a motif score based on a PFM W as defined above, m is the size
of the considered motif, P (yi) is the ratio of the prior function testing whether si
is bound or not according to the epigenetic signal yi and the final score Ŝ(si, yi) is
the sum of S(si) and P (yi).

3.1.7 Protein Interaction Quantification (PIQ)

The basic idea of PIQ is similar to that of Fimo-Prior. PWM based motif hits are
reevaluated using an epigenetic prior, which in case of PIQ is explicitly obtained
from DNaseI-seq data. In PIQ, reads are modeled from a Gaussian process, were
the per-base read count µi is defined as [S+14c]:

µi = N(µ0,Σ), (3.20)
Σ(i,j) = Cov(µi, µj) = σ0k|i−j|, (3.21)

where k|i−j| defines both the degree and the smoothness of the signal across the
genome. Details on parameter inference can be found in the Supplement of Sher-
wood et al. [S+14c]. The core assumption taken in PIQ is that the DNaseI-seq
profile around the center of a binding site yM , where a factor is bound, would be
different from a site where the factor is not bound. In other words, the assumption is
that each TF generates a distinct, strand specific, DNaseI-seq pattern (µ̂+

i , µ̂
−
i ) that

is different from the unbound one (µ+
i , µ

−
i ). The strand specific adapted binding

rate at position i can be computed according to [S+14c]:

µ̂+
i = µ+

i +

{
β+
i−j if |ym − j| ≤ |M | and IM = 1,

0 else.
(3.22)

Here, |M | denotes the length of the motif, yM is the center of the motif, IM is an
indicator function evaluating to 1 if the factor is bound to yM and to 0 otherwise.
The parameter β+ is the factor specific profile parameter. For the negative strand,
the formula is computed analogously [S+14c]. The strand specific scores are used
in a logistic function that returns a probability pj indicating whether a distinct
genomic site j is bound by a factor. This probability is combined with two prior
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functions f and g representing the PWM score and the overall DNaseI-seq counts
for a distinct region j, respectively, to the final likelihood Lj by [S+14c]:

Lj = fj + gj + logit(pj). (3.23)

Intuitively, the three components of the PIQ score reflect the sequence specificity
of TF binding (fj), the general accessibility of the chromatin (gj) as well as the
factor specific DNase1-seq profile, modelled by logit(pj). Further details on how
logit(pj) is computed are provided in the Supplement of Sherwood et al. [S+14c].

3.2 TEPIC for fast and accurate TFBS prediction

3.2.1 Usage of TEPIC for TFBS prediction

One of the fundamental features of our Tepic framework is the ability to com-
pute TFBS predictions. Within Tepic we exploit the advantages of a biophysical
scoring as provided by Trap (Section 3.1.3) and integrate it into a segmentation
based scoring method that takes a bed -file as input containing candidate binding
sites obtained from either peak or footprint calling. Importantly, we do impose par-
ticular restrictions on the type of the assay used to find the candidate sites. Thus,
the candidate regions could be, for instance, derived from either DNaseI-seq data,
NOMe-seq data, or ChIP-seq of HMs. Tepic annotates all sequences contained in
the bed-file with TF affinities for each factor a TF motif is available for. Within the
Tepic repository (www.github.com/Schulzlab/TEPIC), we provide a maintained
collection of TF motifs for various species obtained from Jaspar [K+18c], Hoco-
moco [K+18d] and the Kellis ENCODE Motif database [KK14], containing, for
instance, sets for homo sapiens, mus musculus and vertebrata composed of 561, 380
and 690 TF motifs, respectively.
Using the command:

./TEPIC.sh -g genome.fa -b regions.bed -o Example -p Motifs.PSEM

Tepic computes a matrix A with n rows and m columns, were n is the number of
sites contained in regions.bed, corresponding genomic sequence are generated from
genome.fa using BEDTools [QH10] and m is the number of TF motifs contained
in the entire motif collectionM obtained from Motifs.PSEM. The motif setM does
not contain typical PWMs as introduced before, instead it contains position specific
energy matrices (PSEMs). The parameter λ and R0 required for Trap are already
incorporated into the value of the PSEMs. Matrix A is computed using formula
(3.14) as defined above:

Ai,t =

|si|−|Mt|∑
l=1

Mt
R0
· e−βMtE(λMt ,sil ,M

t)

1 +M t
R0
· e−βMtE(λMt ,sil ,M

t)
,∀i ∈ {1, .., n}, ∀t ∈ {1, ...,m}, (3.24)

where si is the considered sequence, |si| denotes the length of si in base pairs,
sil denotes the subsequence of si starting at index l, n is the number of sequences
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to be scored, m is the number of considered PSEMs, M t is the current TF motif,
|M t| denotes the length of the motif, λM is the λ parameter chosen for all motifs
in the motif set M and βMt is the energy parameter calculated for M t. The sum
iterates over all possible positions of M t in s, denoted by l.

The summation of contributions from all possible binding sites within a candidate
region as well as the energy based calculation of TF-binding scores ensures that also
sites with a less likely binding motif still contribute to the overall score.

3.2.2 Validation of TFBS predictions using TF ChIP-seq data

To check the quality of the predictions computed in this manner, we have computed
TFBS predictions using Tepic within footprint calls from HINT-BC [G+16b],
using Fimo-Prior and using PIQ for HepG2, GM12878, K562 and H1-hESC.
Additionally, we obtained 33, 24, 19 and 22 preprocessed TF ChIP-seq datasets
from ENCODE for those cell lines, respectively. ENCODE accession IDs and details
on the execution of the software are provided in Section B.1.
The quality of the TFBS predictions is evaluated in terms of precision-recall AUC

values (c.f. Section 2.2.2) computed using the PRROC package [G+15c]. This is
a well suited strategy to evaluate the ranking of sites based on the affinity values
and to deal with the imbalance of bound and unbound sites. In our evaluation,
the cell type specific gold standard Gt for TF t is composed of all binding sites of
t predicted with Fimo that overlap a ChIP-seq peak of t. The negative set Nt is
holding all predicted sites not overlapping a ChIP-seq peak. Here, let c denote the
score threshold used in the PR-AUC computation. Further, we define a site st as
a TP if st overlaps a site g ∈ Gt and the score a(st) > c. Consequently, a FP is a
site st not overlapping a g ∈ Gt and the score a(st) > c. A TN is a site n ∈ Nt that
is either not overlapping any predicted site st, or a(st) ≤ c. Lastly, a FN is a site
g ∈ Gt not overlapping any of our predictions [S+18b].
As shown in Figure 3.5, our unsupervised Tepic approach clearly outperforms

the state of the art methods Fimo-Prior and PIQ. The superior performance is
achieved by the combination of high-quality footprint calls from HINT-BC with the
affinity-based scoring of TFs. Importantly, we outperform the TF specific DNaseI-
seq models postulated in PIQ. However, for some TFs such as NRF1 and REST,
Fimo-Prior outperforms both PIQ and TEPIC. It seems that for these TFs,
an approach that considers footprints is not well suited. Due to their conceptual
difference, We have not considered comparisons against supervised approaches like
BinDNase or Catchitt.

3.2.3 Runtime analysis of TEPIC for TFBS predictions

During the course of Tepic’s development, we have published two versions of the
framework, where the essential difference with respect to TFBS computation is a
tremendous speed-up between TEPIC 1.0 and TEPIC 2.0 [S+17a, S+18b]. This
speed-up could be achieved, for instance, by optimization of data processing steps,
e.g. avoiding unnecessary annotations. By fare the most important difference has
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Figure 3.5: The y-axis shows the area under the precision-recall curve computed
for several TFBS predictions obtained from various TFs on GM12878,
H1-hESC, HepG2 and K562. The color code indicates which predic-
tion method has been used. Overall, TEPIC combined with foot-
prints from HINT, outperforms both Fimo-Prior and PIQ. Figure
from Schmidt et al. [S+18b].

been the replacement of an R-implementation of Trap, by a C++ implementation
previously used in the PASTAA webserver. However, the latter was not designed
to be used in parallel, a functionality added by us. Note that the definition of the
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Figure 3.6: The y-axis shows the runtime in [min] for computing genome-wide
TFBS predictions using Fimo-Prior, PIQ, TEPIC 1.0 [S+17a] and
TEPIC 2.0 [S+18b]. As TEPIC requires the input of a candidate
region file, we also include the runtime of this preprocessing step using
the peak caller JAMM to provide a fair comparison to Fimo-Prior
and PIQ. However, even including the peak calling step, both versions
of Tepic outperform the competitors, while TEPIC 2.0 again shows a
significant speed-up compared to its predecessor. Figure from Schmidt
et al. [S+17a, S+18b].

TF affinities was not changed in TEPIC 2.0. As shown in Figure 3.6, both version
of TEPIC perform the TFBS prediction task much faster than both Fimo-Prior
and PIQ, even if we add the time required for peak calling, for instance, using
JAMM [I+15]. The runtime experiments have been conducted for seven samples,
the cell lines mentioned above (HepG2, K562, GM12878, H1-hESCs) as well as
three primary human hepatocytes samples from DEEP (LiHe1-3). Data IDs as well
as details on processing of the DEEP data are provided in Section B.1. We assessed
the runtime using the UNIX time utility (/usr/bin/time) on a compute server
using an Intel Xeon CPU E7-8837 processor with 1TB of main memory. Within
Tepic and JAMM, 16 cores were used for the computation of TFBS prediction for
458 TFs, using the original TF motif set from Schmidt et al. [S+17a]. As above, for
details on the execution of the software we refer the reader to Section B.1.

Both, the ChIP-seq and the runtime validation illustrate that Tepic is capable
of computing accurate and genome-wide TFBS predictions in very short time. In
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the next section, we illustrate how these predictions can be aggregated to the gene-
level, a feature of Tepic that is not supported as an easy-to-use built-in function
by any other tool listed in Table 3.2.

3.3 Aggregating genome-wide TFBS to the gene level
with TEPIC

In this section, we explain how both genome wide TFBS predictions and TF ChIP-
seq peaks obtained for one sample can be summarized onto the gene-level.

3.3.1 Common strategies to aggregate TFBS predictions to the
gene-level

There are two main strategies how TFBS predictions obtained in peaks or footprints
p can be linked to genes. The classical approach is to consider the distance dp,g
of a predicted site p to each gene g. Next, p is assigned to the gene with the
smallest value of dp,g [G+15b]. By definition, in this approach a site p can only
be linked to one distinct gene g, which especially in gene-dense regions might be
an issue. Alternatively, in window based approaches, a gene is associated with
regulatory regions p that are located within a defined genomic region, typically
centered around a gene’s TSS. In this thesis, windows are always centered at the
most 5′ TSS of a gene. As the search windows around genes can be overlapping, a
distinct site p can be assigned to more than one gene g [O+09, M+12b]. Figure 3.7
illustrates the two different concepts.

5’ 3’

TSSTSSTSSTSS
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Nearest 

gene
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signal

Peak calling
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Figure 3.7: Here, the workflow of assigning TFBS to genes is illustrated exemplary
for DHS identified using peak calling. In window based approaches,
the peaks are assigned to a target gene using a window based link-
age that is DHS sites are overlapped with a window centered at the
TSS of a gene and overlapping peaks are matched. In nearest gene
approaches, candidate regulatory sites are linked to a gene following
the nearest gene approach that is a purely distance based association
of each peak to its closest target gene in genomic space.
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3.3.2 Computation of TF-gene scores in TEPIC

Tepic’s TF-gene score computation can be readily applied to TFBS predictions,
but it can also be used to aggregate TF ChIP-seq data, as described in the following
two sections. In Table 3.3, we provide an overview of all used variations of TF-gene
scores.

Integration of predicted TFBS

Within TEPIC, we have tested both window based and nearest gene assignments
of regulatory regions to genes. Let Pg,w denote the set of all regions assigned by
linkage paradigm w to gene g.

Ouyang et al. suggested an exponential decay formulation for the aggregation
of TF ChIP-seq data [O+09]. The assumption of the exponential decay is that the
regulatory influence of a region on a gene declines with increasing distance to the
gene. Although this is an oversimplification and neglects the occurrence of chro-
matin looping and long range interactions, it was shown to be a good approximation
reducing noise added to the TF-gene scores [O+09, M+12b]. Therefore, we use the
exponential decay formulation in Tepic as well.
As mentioned in Section 3.2.1, Tepic computes a score matrix Ap,t, denoting the

TF affinity of TF t to site p by summing up the contribution of all possible TFBS
in p.
In the original TF-gene score annotation, termed Epi-Decay(E), TF-gene scores

aEg,t are computed as (Eq. 3.23) [S+17a]

aEg,t =
∑

p∈Pg,w

ap,te
− dp,g

d0 , (3.25)

where d0 is a constant set to 5000 [O+09].
The Epi-Decay-Scaled (ES) annotation directly integrates the epigenetic signal

sp of region p into the TF-gene score aESg,t (Eq. 3.24)

aESg,t =
∑

p∈Pg,w

ap,tspe
− dp,g

d0 . (3.26)

In Schmidt et al. [SS18], we suggested "normalized TF-gene scores" [SS18] āEg,t
(Eq. 3.25) that not only account for a bias caused by the length of region |p| but
also for a bias introduced by the number of potential TFBSs within p, given as
|p| − |m| + 1. Furthermore, in addition to the TF affinities, we proposed three
region-based features per gene: the number of considered regions cEg (Eq. 3.26),
the length of those regions lEg (Eq. 3.27) and the combined epigenetic signal across
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all considered regions fEg (Eq. 3.28):

āEg,t =
∑

p∈Pg,w

ap,t
|p| − |m|+ 1

e
− dp,g

d0 , (3.27)

cEg =
∑

p∈Pg,w

e
− dp,g

d0 , (3.28)

lEg =
∑

p∈Pg,w

|p|e−
dp,g
d0 , (3.29)

fEg =
∑

p∈Pg,w

spe
− dp,g

d0 . (3.30)

We name the set EN = {āE , cE , lE} Epi-Decay-Normalized and refer to ESN =
{āE , cE , lE , fE} as Epi-Decay-Scaled-Normalized, to EPF = {cE , lE} as Epi-peak-
features, and to EPFS = {cE , lE , fE} as Epi-peak-features and signal.

As mentioned above, to our knowledge, no other TFBS prediction tool provides
this aggregation of predictions to the gene-level as a build in function.

Aggregation of TF ChIP-seq data

In a similar fashion TF-gene scores aCg,t for gene g and TF t are computed for TF
ChIP-seq data:
First, we get for aCg,t (Eq. 3.29) as in Ouyang et al. [O+09]:

aCg,t =
∑

p∈Pg,w

cp,te
− dp,g

d0 , (3.31)

where we sum all ChIP-seq scores cp,t for TF t, weighted by their distance to
the TSS dp,g. The scores cp,t are defined as the −log of the p-value computed for
peak p by ENCODEs uniform peak processing pipeline. As above and proposed by
Ouyang et al. [O+09], the parameter d0 is set to 5000. We call this score design
ChIP-seq TF-features (C).
Also for ChIP-seq data, we suggested "normalized TF-gene scores" [SS18] āCg,t

(Eq. 3.30). We defined āCg,t as the fraction of aCg,t and the total number of ChIP-seq
peaks cCg (Eq. 3.31). Additionally, we considered cCg and the total peak length lCg
(Eq. 3.32), as extra features:

āCg,t =

∑
p∈Pg,w

cp,te
− dp,g

d0

cCg
, (3.32)

cCg =
∑
t∈T

∑
p∈Pg,w

I(cp,t)e
− dp,g

d0 , (3.33)

lCg =
∑
t∈T

∑
p∈Pg,w

I(cp,t)|p|e
− dp,g

d0 . (3.34)
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Figure 3.8: (a) The computation of the TF-gene scores aCg,t from ChIP-seq data is
shown for two genes g1 and g2 using several chipped TFs. In (b), we
show how the normalization factor cCg is computed. Part (c) illustrates
how the normalized TF-gene scores āCg,t are computed. As one can see,
the scores for g2 are increasing, as there are not many peaks located in
the vicinity of that gene. Simultaneously all scores of g1 are shrinked
as this gene is residing in a region that is heavily bound by TFs. Figure
from Schmidt et al. [SS18].

Here, the set comprised of all chipped TFs is denoted by T , the length of peak
p is represented by |p| and I is the indicator function returning one if there is a
ChIP-seq peak for TF t among all peaks in Pg,w for gene g and window w and zero
otherwise, i.e. the function checks whether cp,t is non-zero. We point out that the
additional features cCg and lCg are also weighted by the distance of the respective
regions. Normalized scores are denoted by ChIP-seq TF-features normalized (CN ).
An example for the impact of the normalization is provided in Figure 3.8.

The combination of features cCg and lCg is called ChIP-seq peak-features (CPF).
As pointed out in Schmidt et al., cCg and lCg (Eq. 3.31, 3.32) "capture the regula-
tory activity in the vicinity of a gene measured with ChIP-seq experiments. Thus,
[these scores] can be seen as an aggregated view for the activity of transcriptional
regulation" [SS18].
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Table 3.3: Overview of different TF-gene score variations used in this thesis [SS18].
Abbreviation Equation Included features

Epi Decay E (3.23) aE

Epi Decay-Scaled ES (3.24) aES

Epi Decay normalized EN (3.25,3.26,3.27) āE , cE , lE

Epi Decay-Scaled normalized ESN (3.25,3.26,3.27,3.28) āE , cE , lE , fE

Epi peak-features EPF (3.26,3.27) cE , lE

Epi peak-features and signal EPFS (3.26,3.27,3.28) cE , lE , fE

ChIP-seq TF features C (3.29) aC

ChIP-seq TF features normalized CN (3.30) āC

ChIP-seq peak features CPF (3.31,3.32) cC , lC

3.4 Gene-expression modelling using TF-gene scores

Utilizing TF-gene scores as described in Section 3.3.2, we proposed to build a linear
regression model predicting gene-expression, with the aim of inferring which TFs
have a regulatory role in the analysed tissue or cell type. This is known as per-sample
learning , because the models attempt to find features that predict gene-expression
well over all genes within one sample. In instances where only a few samples
are available, per-gene learning , which aims at identifying these associations for
a distinct gene, can not be applied and only per-sample models can be used.
In the literature, several approaches can be found that suggest interpretable gene-

expression models based on a variety of different features [O+09, C+11b, N+12,
M+12b, W+13a, OB14, B+15a, LCHG15, S+16b]. Aside from predicting gene-
expression, the purpose of these models is to identify and to interpret those features
that can be meaningfully associated with gene-expression. Novel insights on the
overall importance of TFs both within [O+09, S+17a] and between samples [O+09,
C+12a, D+16e] can be obtained by methods that are utilizing either TF ChIP-seq
or predicted TF binding data.
Due to the large amount of epigenetics data produced in consortia like ENCODE

[D+12b], Roadmap [K+15] and Blueprint [A+12], in silico models of transcriptional
regulation have gained popularity in the community. For instance Ouyang et al.
predicted gene-expression in mouse embryonic stem cells (mESC) from TF ChIP-
seq data and used it to model differential expression between mESCs and embryoid
bodies [O+09].
Within this section, we present the machine learning model used by us, illus-

trate several analyses we have conducted to understand our model’s performance,
detail dependencies on various model characteristics and illustrate applications of
the models to different primary cell types in the scope of the DEEP project. An
overview of the used data sets and details on how those have been processed are
provided in Section B.1.
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3.4.1 Statistical model

Throughout this chapter, linear regression models using elastic net regularization, as
implemented in the glmnet R-package [FHT10] are used to predict gene-expression.
As features, we considered TF-gene scores derived either from Tepic’s predicted
TFBS or from TF ChIP-seq data. As explained in Section 2.2.1, models regularized
with elastic net are sparse and thus interpretable. Furthermore, the grouping effect
preserves correlated features. In the problem sets at hand features are correlated
frequently, for instance, due to cooperation and co-occurrence of TFs. These de-
sirable characteristics of the elastic net are achieved by a combination of the ridge
and the lasso penalty terms:

β̂ = arg min
β

||y −Xβ||2 + λ[α||β||2 + (1− α)||β||]. (3.35)

Here, β is the feature coefficient vector, β̂ are the estimated coefficients, X is
the TF-feature matrix, y the response vector holding gene-expression estimates and
the parameter λ controls the total amount of regularization. The feature matrix
X holds the features explained in Section 3.3.2. For example, using C-scores the
rows of X refer to genes and the columns contain TF-gene scores based on ChIP-seq
data. Consequently, the entry Xg,t reflects the TF-gene score aCg,t for gene g and TF
t. In Section B.1.9, we exemplify the composition of the feature matrix depending
on the TF-gene scores listed in Table 3.3.
Both X and y are log-transformed considering a pseudo-count of 1 and are sub-

sequently centered (subtraction of the column means from the column values) and
scaled (the centered columns of X are divided by their standard deviations). The
parameter α controls the trade-off between the ridge and lasso penalty terms. It is
optimized in a grid search considering the interval [0.0,1.0] with a step-size of 0.01.

As described in Schmidt et al. we assessed the quality of the model using a
ten-fold Monte-Carlo cross-validation procedure considering a randomly sampled
hold-out test data set that is comprised of 20% of the complete data, while the
remaining 80% of the data are used for training. The cv.glmnet procedure is used
to fit the parameter λ in a six-fold inner cross-validation procedure. The λ is selected
according to the minimum cross validated error, which is computed as the average
mean squared error (MSE) on the inner folds (lambda.min). The entire learning
procedure is visualized in Figure 3.9. The selected λ and the entire training data set
is used to compute the final regression coefficients. The total number of non-zero
regression coefficients is denoted with ||β||model0 .

Conclusions on which TFs are relevant regulators can be drawn from the co-
efficients β̂ computed by the model. Their sign and magnitude can be seen as
an indicator for the explanatory power of TFs for gene-expression, averaged over
all considered genes within the analysed sample. Before we start interpreting the
model coefficients (Section 3.4.4), we examine the performance of the models and
characterise factors influencing model behaviour (Section 3.4.2).
This section is a slightly adapted version of Section 2.4 from Schmidt et al. [SS18].
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Outer 10-fold Monte Carlo cross validation (CV)

Determine parameter λ according to the minimum mean 

squared error (MSE) across the inner folds
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𝑐𝑎𝑣𝑔 =
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Determine best α value according to MSE on 
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Figure 3.9: Schematic overview of the learning paradigm used to derive cell type
specific transcriptional regulators from TF-gene scores. We assess the
performance of a linear model using elastic net regularization in a 10-
fold Monte-Carlo cross-validation procedure. Model parameters are
learned in a 6-fold inner cross validation procedure, while the param-
eter α is optimized in a grid search in [0.0,1.0] with a step-size of 0.01.
Figure from Schmidt et al. [SS18].

3.4.2 Model performance and evaluation

In the following, we describe how variations in the generation of the TF-gene scores
influence model performance. Having models with a good performance is essential
to draw reliable conclusions on which of the modeled factors are important for
transcriptional regulation. Details on the data used in this section are provided in
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Section B.1. Throughout all figures in this section, model performance is assessed in
terms of Pearson correlation, if not stated otherwise. Except for the next paragraph,
all results of this section are published in Schmidt et al. [S+17a].

Nearest gene compared to window based approaches

Before assessing the performance of models that utilize the actual TF binding infor-
mation, we investigate the performance of models based only on chromatin accessi-
bility and ChIP-seq activity information that is models EPF and CPF , respectively.
We have learned EPF and CPF models for five different cell lines (GM12878, HeLa,
HUVEC, IMR90 and K562) utilising both the nearest gene and the window based
linkage, the latter with two different window sizes: 3kb and 50kb.

As shown in Figure 3.10a, the window based models almost always outperform
their nearest gene counterpart across all cell lines and two different sizes of w,
namely 3kb and 50kb. Using ChIP-seq data, we observe that model performance
is generally boosted as opposed to DNaseI-seq data and that window based mod-
els constantly outperform nearest gene models (Figure 3.10b). In Figure 3.10c the
mean squared error (MSE) for 9000 randomly selected individual genes from the
EPF model for HeLa cells are shown (Here a 50kb window is used). Note that
the HeLa models shows on average a similar performance with either association
strategy. Therefore, it is a nice example to illustrate the gene-specific advantages of
one of the linkage paradigms. For example the MSE of RPL7A(ENSG00000148303)
is nearly twice as high using the nearest gene than the window based annotation.
As shown in Figure 3.11a there seems to be a bidirectional promoter for RPL7A
and MED22. The model suggests that this can not be adequately covered by the
nearest gene approach. A different scenario is depicted in Figure 3.11b for the
gene HINT1(ENSG00000169567). This gene is located in a gene sparse region sur-
rounded by several DHS peaks which seem to add large portions of noise in the near-
est gene approach. In contrast to that, for the gene APOA2(ENSG00000131096),
the nearest gene approach leads to a better performance as it neglects, in contrast
to the window based model, several DHS sites that seem to be associated with
TOMM40L (Figure 3.11c). Each of these genes, RPL7A, HINT1 and APOA2 is
highlighted in Figure 3.10c.

Overall, these results suggest that neither the window based, nor the nearest gene
annotation generalise well across all genes, although the window based approach
performs slightly better on average. Therefore, for the remaining analysis, we stick
to the window based approach.

In Chapter 8, we present a method that overcomes the limitations of both window
and nearest-gene based assignments by learning regulatory regions de novo from
large-cohorts. However, for now, we stick to the case where only few samples are
available and only per-sample models can be considered.
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Figure 3.10: (a) Performance of EPF models comparing the nearest gene against
the window based approach. (b) Performance of CPF models using
either the nearest gene compared to the window based annotation.
(c) Mean squared error shown for individual genes from the HeLa
cell line comparing EPF models using the window based and near-
est gene annotation. Joint work Fabian Kern in the scope of the
extension of his bachelor thesis, presented at GCB 2018.

(a) RPL7A

(c) APOA2

(b) HINT1

Figure 3.11: IGV browser tracks for (a) RPL7A, (b) HINT1 and (c) APOA2
illustrating the benefits of the linkage approaches over each other,
depending on genomic context. Joint work Fabian Kern in the scope
of the extension of his bachelor thesis, presented at GCB 2018.

Performance of predicted TFBS in window based models

We have tested the E and ES models using two different window sizes, a 3kb and a
50kb window, along with DNaseI-seq data from ENCODE obtained for GM12878,
H1-hESC, K562, DEEP DNaseI-seq data for HepG2 and three primary human hep-
atocyte samples (LiHe1-3) as well as NOMe-seq data from DEEP for six CD4+
T-cell samples (T1-6). See Section B.1 for details on the data and on data prepro-
cessing.
As depicted in Figure 3.12, including the signal intensity within candidate TFBS

into the TF-gene scores improves model performance. On average, we observe that
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3 INFERRINGKEY TFS FROMEPIGENETICS ANDGENE-EXPRESSION DATA

the ES models perform better than E models and that 50kb models outperform 3kb
models. Furthermore, combining the exponential decay in the 50kb window with
scaling of the TF-gene scores using the chromatin accessibility signal outperforms
all other tested setups.
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Figure 3.12: Mean test correlation for all linear regression models using predicted
TFBS score aggregated using the E and ES models with two different
windows. ES models outperform E models and the 50kb window
leads to better results than the 3kb window. On average, the CD4+
T-cell samples (T1-T6) screened with NOMe-seq tend to perform
worse than the remaining samples, which were screened with DNaseI-
seq, especially considering the 3kb window. Figure from Schmidt et
al. [S+17a].

This observation not only points out that incorporating distal TF binding events
is important to model gene regulation accurately, it also suggests that the quantita-
tive information on how accessible a TFBS is in a pooled sample provides insights
on the regulatory activity of this site. We observe that the positive effect of scaling
is stronger for DNaseI-seq than for NOMe-seq samples. This difference might be
due to the inherent differences of the assays.

According to in-house quality control, the DNaseI-seq experiment for LiHe2 is
of low quality, which might explain the poor performance of this sample in our
gene-expression models. The poor quality is also reflected by a rather low number
of DHSs detected in LiHe2 compared to, for instance, LiHe3 (1, 166, 618 versus
1, 800, 917 DHS called by JAMM).
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3.4 Gene-expression modelling using TF-gene scores

Peak numbers influence model quality

We analysed the relation between the number of considered accessible sites and
the performance of the linear regression models using Tepic’s TF-gene scores (Fig-
ure 3.13) by constructing twelve different peak sets using HepG2 DNaseI-seq data.
The sets are including DHS sites ranked by their JAMM peak score. We consid-
ered 10, 000, 50, 000, 100, 000, 200, 000, ... , 900, 000 and all filtered peaks that is
1, 023, 463.
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Figure 3.13: Throughout all annotations setups, model performance increases
with increasing peak numbers. For the 50kb models, the performance
remains unchanged for ≥ 500, 000 peaks, whereas it keeps rising for
3kb models until all peaks are included in the model. Figure from
Schmidt et al. [S+17a].

We observe that the performance of the 50kb setups (E and ES) remains roughly
constant for peak numbers ≥ 500, 000, while the performance of the 3kb setups
rises steadily until all peaks are included. This may be considered as support for
the hypotheses that more distal regulatory events captured by the 50kb window are
vital to model gene regulation. Furthermore, we notice that the difference between
the setups pertaining to the same window size with and without the incorpora-
tion of the open-chromatin signal, respectively, rises with increasing peak numbers.
This suggests that it is truly important to prioritize certain peak regions using the
chromatin accessibility signal.
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3 INFERRINGKEY TFS FROMEPIGENETICS ANDGENE-EXPRESSION DATA

Footprints harbour essential transcription factor binding sites

So far, most segmentation-based methods identify TF binding sites by predicting
footprints [G+16b]. There, we compared a footprint-based segmentation to a peak-
based segmentation using DHSs. The peak-based segmentation has the advantage
that it does not require specifically designed footprint-calling methods and that the
actual footprint calling can be omitted after the already performed peak calling
procedure.
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Figure 3.14: This scatter plot contrast the performance of linear models predicting
gene-expression using TF-gene scores that are based on either HINT-
BC footprints or JAMM-Peaks. The shape of the points indicates
which cell line was used for the experiment, the color indicates the
used annotation. There is no clear trend, which method performs
best in this scenario, although one can see that the performance
depends on the considered sample, e.g. HepG2 performs better with
peaks, whereas, GM12878 constantly achieves better performance
with footprints. Figure from Schmidt et al. [S+17a].

To conduct the comparison, we considered 452, 281 footprints in HepG2, 738, 707
footprints in K562, 598, 500 footprints in GM12878 and 1, 023, 559 footprints in
H1-hESC identified with an accurate footprinting method for DNaseI-seq data,
HINT-BC [G+16b]. The footprint calls were provided to us by Eduardo Gusmao,
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3.4 Gene-expression modelling using TF-gene scores

the developer of HINT-BC. We used Tepic to compute TF-gene scores considering
the regions around each footprint. As the footprints are often < 10bp in length, we
computed TF-gene scores in small windows, either 24bp or 50bp that are centered in
the middle of the footprints to ensure that scores for all TFs can be computed. We
found that the results for both window sizes are very similar. Therefore, we present
only the results for the slightly better 50bp window in the thesis. See Schmidt et
al. [S+17a] for the 24bp result.
Figure 3.14 illustrates the comparison between Tepic applied to footprints and

DHSs. The DHS-based approach outperforms the footprints in HepG2 and K562.
Furthermore, the DHSs have a slight performance advantage over footprints in H1-
hESC, whereas in GM12878 the footprint based approach outperforms DHSs.
As before with DHSs, we see that including the chromatin accessibility signal,

comparing ES against E scores, is beneficial for footprint based TFBS predictions
as well. Although the peak based models do achieve a better performance on
average, it is remarkable that the rather small footprint regions seem to capture
most of the important binding sites. Using only 22.98%, 25.33%, 36.02% and 91.2%
of base pairs in footprint regions compared to peaks in HepG2, K562, H1-hESC and
GM12878 , respectively, illustrates that indeed most of the important regulatory
TFBSs overlap the footprint calls.

The choice of peak callers tremendously influences model performance

During the development of Tepic, we compared two different peak callers JAMM
and MACS2 [I+15, Z+08a]. While the latter one is the main peak caller used
within the DEEP consortium, JAMM has been specifically designed to account
for the narrow peaks present in DNaseI-seq data [I+15], a design aspect that has
not been considered specifically in MACS2. Section B.1 provides details on the
command calls and parameters used for peak calling. For this analysis, we have
used the DEEP DNaseI-seq samples for the previously introduced samples HepG2,
LiHe1, LiHe2 and LiHe3.
As depicted in Figure 3.15 JAMM peaks lead to a better correlation between

predicted and measured gene-expression than MACS2 peaks. This observation
might be explained by the difference between the overall number of called peaks
that is JAMM computes far more DHS sites, than MACS2. For instance, on HepG2
JAMM calls 1, 023, 463 DHS sites, while MACS2 calls only 65, 497 peaks. As we
found that the overall number of peaks also influences the learning (Figure 3.13),
this might be an explanation for the poor performance of MACS2 peaks.
Interestingly, our results show that scaling the TF-gene scores using the DNaseI-

seq signal within MACS2 peaks does not necessarily improve the learning result
as compared to JAMM peaks. For example, in LiHe3 the correlation drops form
0.3 to 0.26 comparing the E and the ES setup with a 3kb window. A possible
explanation for this behaviour is the already mentioned better resolution of JAMM
for DNaseI-seq data, resulting in sharper peaks compared to MACS2: the mean
width of peak in HepG2 called with JAMM is 96bp while it is 534bp for MACS2
peaks. Presumably, the chromatin accessibility information in the more narrow
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Figure 3.15: Mean test correlation of linear models for HepG2 and LiHe1-3 using
DHS sites produced with JAMM or MACS2. Throughout all sam-
ples and annotation versions, JAMM peaks lead to a better perfor-
mance of the regression models. Figure from Schmidt et al. [S+17a].

regions is less noisy and thus provides a clearer link between gene regulation and
expression.

Choice of PWMs influences model performance

In the original Tepic publication, we have considered a TF motif set comprising
439 motifs from Jaspar (release 2014) [K+18c] and Uniprobe [H+15b]. We have
compared this set against the complete set of human mono-nucleotide profiles from
Hocomoco, version 10, containing 641 TF motifs [K+18d]. We compared the
performance of TF-gene scores computed for both sets in gene-expression learning
using the samples HepG2, LiHe1, LiHe2 and LiHe3. As shown in Figure 3.16, the
Hocomoco motifs perform worse than the set obtained from Jaspar and Uniprobe.
Therefore, for all further application scenarios within Schmidt et al. [S+17a], we
used the Jaspar and Uniprobe set.
This analysis highlights that the quality of TF motifs is essential to infer well

performing models. As a consequence, the motifs also directly influence the inter-
pretability of the model coefficients.

Hit-based vs Affinity-based TFBS predictions

As explained in Section 3.2, Tepic uses a biophysical measure to quantify the
binding of TFs. We have compared this affinity-based measure to traditional hit-
based annotations in two different ways:
Firstly, we have replaced Trap with Fimo [G+11] to annotate DHS sites with

TFBS, used the Fimo log-likelihood ratio scores (c.f. Section 3.1.2) in the TF-gene
score computation. Therefore, we do not log-transform the Fimo TF scores in the
elastic net model, comparable to McLeay et al. [M+12b], as this would imply taking
the log two times. Secondly, we have compared Tepic against a state-of-the-art
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Figure 3.16: Mean test correlation of linear models for HepG2 and LiHe1-3 using
TF motifs from Jaspar & Uniprobe compared to models using Ho-
comoco TF motifs. For all samples and annotation versions, the Ho-
comoco motifs perform worse than the combined Jaspar & Uniprobe
set. Figure from Schmidt et al. [S+17a].

TF binding prediction method by Cuellar-Partida et al. that extends Fimo with
an epigenetic prior [CP+12]. Just as in Gusmao et al. [G+14d], we refer to this
method as Fimo-Prior, c.f. Section 3.1.6.
To run Fimo, we have used its default parameters, except for the parameter max-

stored-scores, which we set to 200, 000 instead of its default 100, 000. This ensures
that more binding sites can be retrieved by the tool. We applied Fimo to the
samples HepG2, K562, GM12878, H1-hESC, LiHe1, LiHe2 and LiHe3.
Similar to the TF ChIP-seq comparison shown in Section 3.2.2, the results pro-

vided in Figure 3.17a illustrate that the incorporation of low-affinity binding sites
using Trap outperforms the traditional hit-based TFBS predictions methods in the
gene-expression models. This underlines the importance of including low-affinity
binding events into consideration. Similarly, in Figure 3.17b and c, we contrast the
performance of TEPIC TF-gene scores using the ES models with 3kb and 50kb
windows against Fimo-Prior and PIQ, respectively. Overall, we see that TEPIC
performs favourably compared to both approaches.
Importantly, our results indicate that the performance of Fimo-Prior on K562,

on H1-hESC and on GM12878 decreased if 50kb windows are considered compared
to the 3kb window. This observation might be related to how the epigenetic signal
is used in Fimo-Prior. As stated before, Fimo-Prior is a site-centric approach
considering all binding sites in the 50kb window. Although the open-chromatin
signal is used for reweighing the TFBS predictions, it may be that still too many
false positive hits are considered in the final TF-gene score computation.
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Figure 3.17: (a) Scatter plot comparing the performance of linear models using
TF-gene scores composed of hit-based TFBS predictions computed
with Fimo compared to the affinity-based scores used in Tepic.
The affinity-based scoring clearly outperforms the hit-based scores.
Comparisons of Fimo-Prior against Tepic and against PIQ are
shown in (b) and (c), respectively. Overall, Tepic scores achieve a
better correlation between predicted and measured gene-expression
than the ones from Fimo-Prior and PIQ. Figure from Schmidt et
al. [S+17a].

Another important aspect is the runtime of the considered methods. As indicated
in Figure 3.6, TEPIC runs much faster than both Fimo-Prior and PIQ, which
renders Fimo-Prior and PIQ to be a bad choice if many samples need to be
annotated.

Histone marks are well suited to pinpoint TFBS as well

Not only DHSs, but also Histone Marks (HMs) have been successfully used in
predicting TFBSs [CP+12, B+15a, PR+11, G+16b]. Using preprocessed ENCODE
ChIP-seq data of the active chromatin marks H3K4me3 and H3K27ac obtained for
HepG2, K562, GM12878 and H1-hESC we show that HMs can also be used in Tepic
to pinpoint candidate TFBS. We have applied Tepic separately to sites enriched
for the active promoter mark H3K4me3 as well as on the active enhancer mark
H3K27ac [H+09, C+10b]. Figure 3.18 holds model performance for these models
and as it can be seen, both HMs lead to good performance in gene-expression
learning.
Similar to the DNaseI-seq data, we note that using a larger window improves the

learning results and that incorporating the abundance of the ChIP-seq peaks into
the TF-gene scores improves model performance further in most cases. Besides,
regions enriched for H3K4me3 lead to better prediction performance than regions
enriched in H3K27ac across all samples. This could be related to the strong as-
sociation of H3K4me3 to active promoters, whereas H3K27ac is rather related to
potentially very distal enhancer regions [H+09, C+10b]. Particularly, this might
explain the reduced performance of H3K27ac peaks in the 3kb windows compared

88



3.4 Gene-expression modelling using TF-gene scores

GM12878 H1−hESC HepG2 K562

E(3
kb

)

E(5
0k

b)

ES(3
kb

)

ES(5
0k

b)

E(3
kb

)

E(5
0k

b)

ES(3
kb

)

ES(5
0k

b)

E(3
kb

)

E(5
0k

b)

ES(3
kb

)

ES(5
0k

b)

E(3
kb

)

E(5
0k

b)

ES(3
kb

)

ES(5
0k

b)

0.30

0.34

0.38

0.42

0.46

0.50

0.54

0.58

0.62

0.66

0.70

Annotation Setup

M
ea

n 
te

st
 c

or
re

la
tio

n

H3K27ac

H3K4me3

Figure 3.18: Performance of gene-expression models using sites enriched for either
H3K4me3 or H3K27ac instead of DNaseI-seq or NOMe-seq peaks.
We observe that H3K4me3 leads to better model performance than
H3K27ac on average. Interestingly, the difference between both ap-
proaches is more prominent with 3kb and 50kb models. Figure from
Schmidt et al. [S+17a].

to H3K4me3, as the 3kb window is likely to capture mostly TF binding events at
the core promoter of a gene, whereas the effect of enhancers can be captured better
in the bigger 50kb window.

Predicted TF-gene scores through TEPIC vs TF ChIP-seq

Another way of assessing the quality of both Tepic’s TF-gene scores and of the
linear models is to compare them to models based on TF ChIP-seq data, as proposed
by Ouyang et al. [O+09]. In Figure 3.19, the learning results for HepG2, K562,
GM12878 and H1-hESC are shown. To state the relation between the different
TFBS prediction methods, the figure holds the best correlation achieved by applying
Fimo within DHSs (labelled as Hit-based), using Fimo-Prior, using Tepic in
footprints and in DHSs as well as using TF ChIP-seq data.
In HepG2 and K562 cells, TEPIC applied to DHSs outperforms all other TFBS

prediction approaches, including Fimo-Prior as used in McLeay et al.[M+12b] and
achieves correlation values that are close to what is obtained by using TF ChIP-seq
data. In GM12878 and H1-hESC, TEPIC applied to footprints, outperforms the
competitive prediction methods and also achieves an acceptable prediction perfor-
mance.
These results are yet another indicator for the good quality of our TFBS predic-

tions. The performance difference between the ChIP-seq and the best performing
TFBS approach is not surprising, as all TFBS prediction approaches are still miss-
ing many binding events of TFs and all mechanisms of TF binding are not yet fully
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Figure 3.19: The bar plots indicated the mean test correlation for linear mod-
els using either a hit-based scoring, Fimo-Prior, Tepic with foot-
prints, Tepic with peaks, or TF ChIP-seq data. The ChIP-seq based
models outperform the ones utilizing predicted TFBS. However on
HepG2 and K562, predicted TFBS through Tepic on peaks achieve
almost the same correlation, underlying the quality of our models.
Figure from Schmidt et al. [S+17a].

understood [K+19]. Furthermore, the position of TF-complexes in the genome,
which can be described by TF ChIP-seq data can not be easily predicted using
computational models, as there is no direct interaction of all proteins with the
DNA and thus there is no detectable binding motif.

3.4.3 Robustness of TF-gene scores derived from ChIP-seq and
predicted TFBS in gene-expression models

As stated above, the main purpose of the gene-expression models is to deduce
insights on important regulatory factors. Therefore, the models should be robust
and lead to reproducible results. Especially correlation between different features
was reported to effect model interpretability and might lead to wrong conclusions
about the biological questions at hand [B+18a].
Indeed, it has been shown that chromatin accessibility data [M+12b], HM abun-

dance and TF-binding data [B+15a] are similarly predictive for gene-expression,
arguing for the presence of shared information between the biological signatures,
even across different biological experiments. For TF ChIP-seq data, redundancy
has been reported between individual TFs [R+11, Y+13, R+15a, D+16a].
Partially this redundancy might be related to the wealth of "known biases influ-

encing various chromatin profiling experiments, e.g. the so called expression bias
of ChIP-seq data [P+13a], ChIP-seq antibody quality, PCR amplification biases, se-
quencing depth, or outlier samples. Those biases have been investigated in detail
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and methods have been suggested to account for them [K+11, D+12a, Y+14, R+15a,
G+16b, W+17]." [SS18].
We realized that none of these approaches investigated data from a gene-centric

perspective. Therefore these methods do not account for biases introduced through
data integration. In Schmidt et al. [SS18], we reviewed confounders in modeling
TF-gene scores from both TF ChIP-seq as well as chromatin accessibility data and
studied their effect on gene-expression prediction and on the interpretation of the
models.
The material presented in this section is published in the manuscript On the

problem of confounders in modelling gene-expression [SS18]. Results deal-
ing with the performance of linear models are postulated in terms of Spearman
correlation. In the Supplement of our manuscript, also Pearson correlation and
MSE are provided. As the conclusions are invariant for all performance measures,
we do not show all three, but stick to Spearman correlation for brevity.

Row-wise permutation of the feature matrix

To test whether the input data for the gene-expression models contains a system-
atic bias, we permuted the original feature matrix Xo per gene that is per row
and obtained a randomized matrix Xr. This was suggested before in Bessiere et
al. [B+18a]. Confounding factors that affect all TF-gene scores for one gene are re-
tained by a per-gene permutation. However, TF specific confounders are removed.
The randomized matrix Xr is used as input for the linear regression model through-
out this chapter, whenever we refer to permuted input data or permuted features.
A graphical illustration of the permutation is shown in Figure B.1.

Multicollinearity in TF ChIP-seq data

Several studied showed TF ChIP-seq data is well suited to predict gene-expression
using in silico models [O+09, R+15a]. However, Bessiere et al. observed that per-
gene permuted TF-gene scores derived form TF ChIP-seq data have almost the
same predictive power than the original data [B+18a]. However, Bessiere et al. did
not try to elucidate the reason of that behaviour.
In Schmidt et al. [SS18], we tried to reproduce their findings by performing a

similar experiment and trained linear regression models using elastic net regular-
ization to predict gene-expression in four different cell lines. Specifically, we ob-
tained ENCODE TF ChIP-seq data for K562, HepG2, GM12878 and H1-hESC
cells (see Section B.1 for ENCODE accession IDs). We found that the performance
of models based on randomized input is significantly worse compared to the origi-
nal data (Figure 3.20a). However, the absolute value of the performance measure is
not indicating that the randomized models are indeed based on an erroneous data
set. Therefore, we hypothesized that "the presence of any TF ChIP-seq peak in
the vicinity of a gene is predictive for gene-expression" [SS18]. This hypothesis is
backed up by Yan et al. [Y+13]. They showed that a majority of TFs tend to bind in
dense clusters throughout the genome. This observation suggests that the TF-gene
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Figure 3.20: (a) The box plots indicate the Spearman correlation achieved by lin-
ear regression models using TF-gene scores derived from TF ChIP-
seq data for four different cell lines using three different feature se-
tups: C scores, permuted C scores and CPF scores. (b) The distribu-
tion of pairwise Spearman correlations of TF-gene scores for 33 TFs
for K562 is shown for original and permuted C scores. (c) A detailed
inspection of these pairwise correlations is provided for the original C
scores in a heatmap. (d) The regression coefficients for C scores and
permuted C scores are visualized here. Statistical significance in (a)
is computed with a Wilcoxon test, where **** refers to a significance
level of 10−4. Figure from Schmidt et al. [SS18].

score vector for an actively regulated gene is not sparse, but is composed of many
non-zero values, which might cause the scores to be exchangeable without a strong
reduction in model performance. To test whether this hypothesis is plausible, we
used the CPF scoring, considering only peak count and peak length per gene. We
found that CPF models perform worse than the original C models, but at the same
time show better performance than the permuted C models, thereby supporting our
hypothesis (Figure 3.20a).
To better understand this finding, we determined the pairwise Spearman cor-

relation between all TF ChIP-seq scores for 33 TFs in K562 cells, shown in Fig-
ure 3.20b. As indicated, the median correlation between original scores (0.362) is
only marginally higher than the correlation on the randomized version (0.311). This
explains why the permuted C scores and also the CPF scores achieve good model
performance compared to original C scores. The high pairwise correlation of the TFs
renders a large portion of the input features to be exchangeable. However, permut-
ing the original input matrix causes the correlation between a few originally highly
correlated TF pairs to be diminished. To learn whether these high values point
out to biologically meaningful links between the factors, we inspected all pairwise
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correlations in detail using a heatmap, depicted in Figure 3.20c. We could verify
using the literature that some highly correlated TFs are indeed known interaction
partners. For instance, CTCF is known to interact with RAD21 [G+14b] (Spear-
man correlation: 0.862). Furthermore, GABPA and ELF1 are both belonging to
the ETS TF-family [Sha01] (Spearman correlation: 0.776).
With respect to the non-robustness of gene-expression models based on TF ChIP-

seq data in randomization experiments, Bessiere et al. raised concerns that such
model might be misinterpreted easily [B+18a]. To address this concern, we in-
spected the regression coefficients obtained by the linear models in detail. We
observe that regression coefficients determined for original C scores are spread over
a wide range of values with a standard deviation of 0.056. Unlike that, regression
coefficients determined for permuted C scores have a similar value across all factors
with a standard deviation of 0.0053 (Figure 3.20d). As the regression coefficients
are stably selected in this fashion and are thus not interpretable at all in case of the
randomized data, a wrong interpretation is unlikely. Despite the high pairwise cor-
relation of the original C scores, only regression coefficients deduced from them can
be meaningfully interpreted. For instance, TAF1, an indispensable TF to initiate
transcription [B+14a], has the highest regression coefficient.

Characterisation of the correlation

As stated above, also the CPF scores (Eq.3.31, 3.32) achieve a reasonable perfor-
mance (Figure 3.20a). This puts forward that "aggregating ChIP-seq data across
several TFs resembles a measure of regulatory activity, which itself is highly pre-
dictive for gene-expression." [SS18]. We associated this hypothesis to studies by
Ramachandran et al. [R+15a]. They trained gene-expression prediction models us-
ing only single TF ChIP-seq experiments as input and compared those to models
based only on DNaseI-seq data. They found that only a handful of factors, e.g.
TAF1 or POL2, are highly predictive for gene-expression. Furthermore, they sug-
gest that chromatin accessibility data can substitute ChIP-seq data for all other
TFs.
We followed up on this idea by computing the overlap of ChIP-seq peaks to DHSs

in HepG2, K562, GM12878, as well as in H1-hESCs considering two cases. First, we
considered all ChIP-seq peaks throughout the genome and secondly only ChIP-seq
peaks located in a 50kb window around the 5′TSS of all protein coding genes. As
shown in Figure 3.21, 71% of all genome-wide ChIP-peaks overlap a DHSs and even
81% of all ChIP-seq peaks around the 5′TSS of protein coding genes are overlapping
a DHSs. These results indicate that the pure presence of a peak can be seen as an
equivalent to the presence of a DHS site, arguing for the interchangeability of TF
ChIP-seq data as well as its usage in an aggregated fashion.

Attempting to adjust for the correlation

By accounting for the number of ChIP-seq peaks around a genes 5′TSS, we tried to
improve the robustness of ChIP-seq derived TF-gene scores against permutation.
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Figure 3.21: The fraction of ChIP-seq peaks that overlap a DNase peak is shown
for all genome-wide ChIP-seq peaks and for all ChIP-seq peaks in a
50kb window around the 5′TSS of protein coding genes. Figure from
Schmidt et al. [SS18].

This is implemented in the CN (Eq. 3.30) scoring. The observation that the cC

feature, which represents the number of peaks, has a strong positive regression
coefficient in CPF models (Figure 3.22) motivates the novel score as it implies that
this quantity itself covers a large portion of the information contained in TF ChIP-
seq data. The value of cC is high if there are many TF ChIP-seq peaks within the
considered window and these peaks are close to the 5′TSS of the considered gene
(Figure 3.8). Thus, normalizing by cC leads to a general depletion of TF-gene scores
if many ChIP-seq peaks are present around a gene and simultaneously increases
TF-gene scores if there are only a few peaks located in the considered window.
Intuitively, CN scores strengthen individual peaks and weaken the importance of
peaks occurring in dense clusters. As depicted in Figure 3.23a using CN scores
performs as expected and results in a significant reduction of model performance
on permuted input compared to permuted C scores. Therefore, we believe that
CN scores are more robust against permutations than C scores, because essential
information is lost through the permutation. To our surprise, we found that CN
scores also caused a significant performance increase on original data for three out
of four cell lines (Figure 3.23a).
According to a Wilcoxon test, the normalization implemented in the CN scores

reduced the pairwise correlation between TF-gene scores significantly for both origi-
nal and permuted data (Figure 3.23b). From an hands-on perspective, these results
imply that model performance and the pairwise correlation among TF-gene scores
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Figure 3.22: The regression coefficients of Peak count cC and Peak length lC in
models using only peak features derived from TF ChIP-seq data
of GM12878, H1-hESC, HepG2 and K562 is shown. Figure from
Schmidt et al. [SS18].

computed for CN scores are more suitable than those computed for C scores to spot
errors occurring during data handling or processing.
As above, we closely investigated the values of the pairwise correlations. We

found that the normalization introduced a negative correlation between several
TFs (Figure 3.23c), for instance, between TAF1 and CTCF (−0.282). The negative
correlation between these two factors has been reported previously in the litera-
ture [K+07]. With the original C scores, this TF-pair achieved a correlation of
(0.181). The difference suggests that the CN scores seem to improve the modeling
of interactions among TFs. As a consequence of the altered correlation between
the TF features, the regression coefficients for some TFs are altered as well (Fig-
ure 3.23d). Only using CN scores, several TFs that are known to be repressors such
as E2F6 [G+04], REST [B+06c] and EGR1 [A+08] also obtain a negative regression
coefficient.

Open chromatin characteristics impact predicted TFBS and TF-gene scores

Although ChIP-seq experiments deliver genome-wide insights into in vivo TF-
binding, it is infeasible to obtain ChIP-seq data for all TFs in all tissues. Therefore,
predicting TFBS using chromatin accessibility data became a standard procedure
in the field. Hence, we additionally examined confounders affecting TF-gene scores
based on predicted TFBS.
We trained linear regression models with elastic net regularization to predict

gene-expression for seven distinct DNaseI-seq samples using Tepic TF-gene scores
computed according to the E setup (Eq. 3.23). As reported before [B+18a], we also
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Figure 3.23: (a) The model performance of linear regression models predicting
gene-expression based on original (C) scores is compared to the nor-
malized (CN ) scores. (b) The boxplots indicate the pairwise Spear-
man correlation of TF-gene scores based on TF ChIP-seq data com-
puted for 33 TF ChIP-seq assays in K562 for C and CN . (c) The
heatmap shows the pairwise correlation between 33 TFs for CN
scores. (d) The regression coefficients inferred for C and CN scores
are contrasted. Statistical significance in (a) and (b) is computed
with a Wilcoxon test, where **** refers to a significance level of
10−4. Figure from Schmidt et al. [SS18].

find that model performance drops marginally on randomized input (Figure 3.24a)
and thus renders performance to be inadequate to judge model reliability. We
contrasted the performance of a model considering only peak count and peak length
per gene as features (EPF) (Eq. 3.26, 3.27) against a model using the full feature
matrix (E) to test whether chromatin-accessibility data itself might be a confounder
that is inherently contained in TF-gene scores. As it could have been expected
from the ChIP-seq experiments, also EPF models considering DHS based features
show good performance (Figure 3.24b). Similar observations were made for the ES
setup (Eq. 3.24). These are omitted here for brevity and are provided in Schmidt
et al. [SS18]. As noted by others [M+12b, R+15a], this shows that chromatin-
accessibility itself is predictive for gene-expression. Furthermore, it also supports
the idea that TF-gene scores might be linked to chromatin specific features such as
peak count and peak length.
To follow up on that hypothesis, we calculated the pairwise correlation between

all TF-gene scores across all genes within each DNaseI-seq sample. As shown in
Figure 3.24c, several TFs are highly correlated, especially TFs with a similar binding
motif such as HEY1 and CLOCK, or TEAD1, TEAD3 and TEAD4. Correlation
that is due to similar sequence preferences between TFs would be lost in a per-gene
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Figure 3.24: (a) Spearman correlation values of linear regression models pre-
dicting gene-expression using Tepic scores (E) as input compared
against permuted (E) scores. (b) E scores are compared against a
EPF scores considering peak length and peak count as features. (c)
Boxplots showing the pairwise Spearman correlation between TF-
gene scores, for both original and permuted data across all DNaseI-
seq samples using the E setup. Figure from Schmidt et al. [SS18].

randomization. However, correlation that is caused by confounders affecting each
gene should not be removed by a per-gene randomization. Therefore, the remaining
correlation on permuted data, which is shown in Figure 3.24c, is probably due to
confounding variables representing chromatin context. As shown in Figure 3.25a
peak length, peak count and peak signal are indeed highly correlated to TF affinities.
An example is shown in Figure 3.25b and c. It illustrates the correlation between
TF-gene scores of HOXA3 and peak length lE (0.9568) as well as peak count cE

(0.6786), respectively.
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Figure 3.25: (a) The pairwise correlation of ES and ESN scores against peak
length lE , peak count cE and peak signal fE is shown. In (b) the
correlation of TF affinities for HOXA3 using the E setup are plotted
against peak length lE , whereas in (c) they are plotted against peak
count cE . Figure from Schmidt et al. [SS18].
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3 INFERRINGKEY TFS FROMEPIGENETICS ANDGENE-EXPRESSION DATA

Adjusting for the confounding effects

In the computation of TF affinities following the E and ES setup, the contributions
of all possible TFBS within a DHS are considered in the final score. Therefore, the
length of the DHSs is indirectly incorporated into TF-gene scores. We attempt to
account for this by normalizing TF affinities per DHS in EN scores (Eq. 3.25). Per
DHS, we divide the TF affinities by the number of possible binding sites |p|−|m|+1,
where |p| is the length of the region p and |m| is the length of the current binding
motif. We apply the same normalization to the ES setup leading to ESN scores.
Additionally, we consider the DNaseI-seq signal as an extra feature, instead of
multiplying it with the TF affinities as performed in the ES setup.
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Figure 3.26: (a) Illustration of the performance of gene-expression models based
on four different annotation setups (E , ES, EN , ESN ) for origi-
nal and permuted data. (b) Here the number of selected features is
shown for all annotation variants in original and permuted data using
elastic net or lasso regularization. In (c), the range of regression co-
efficients per sample inferred from permuted and not permuted data
for TF-gene scores computed using the E , EN , ES and ESN setup
and elastic net regularization are depicted. Figure from Schmidt et
al. [SS18].

Using EN and ESN TF-gene scores as input to the linear models shows that the
performance compared to E and ES scores on original, not permuted data, changed
only marginally. As expected, we observe a significant drop in model performance
for permuted data, achieving a median Spearman correlation of 0.268 and 0.269, re-
spectively (3.26a). This observation is invariant to the used regularization method,
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3.4 Gene-expression modelling using TF-gene scores

we observed it for both elastic net and lasso regularization. The drop in model
performance is linked to a reduction of the correlation between TF-gene scores and
chromatin-accessibility features using EN and ESN scores. For instance, as out-
lined in Figure 3.25a, the correlation between TF-gene scores for HOXA3 in LiHe1
and peak length could be decreased from 0.9568 to 0.5808.

Impact of the regularization on judging model performance

In addition, we looked at the number of non-zero features derived on permuted
and not permuted data observing the general trend ||β||D0 ≥ ||β||DS0 ≥ ||β||DN0 ≥
||β||DSN0 (Figure 3.26b). We made the striking observation that elastic net con-
stantly selects all features in each annotation setup on permuted data, while lasso
selects only a few representative ones. Due to the grouping effect, the elastic net
considers all predictors and assigns them similar regression coefficients if the pre-
dictors are part of a group of highly correlated features [HH05]. Using permuted C,
E and ES scores, all contained features form one group of correlated predictors with
similar pairwise correlations. Therefore, elastic net selects all of them and assigns
them similar regression coefficients that are close to zero (Figure 3.26c).

Model evaluation using a gold-standard set of gene regulation in primary
human hepatocytes

In order to get an impression on the quality and reliability of the TF predictions
depending on the different TF-gene score systems, we compared TFs selected by
the linear models as tissue-specific regulators in three primary human hepatocyte
samples from DEEP against a manually curated gold-standard (GS) set, To avoid
any biases existing in a literature curated GS, we considered all TFs that are ex-
pressed by at least 5 Transcripts Per Million (TPM) in liver RNA-seq expression
data obtained from the Human Protein Atlas [U+15]. Additionally, the TFs need to
be included in our TF motif collection. With respect to these two constraints, we
obtained a gold-standard set comprising 200 TFs (c.f. Section B.1.12). To evaluate
the predictions, we refer to the area under the precision-recall (AUPR) curve com-
puted using the PRROC package [G+15c]. A TP is defined as a TF retrieved by
the model that is contained in the GS, a FP is a TF that is inferred by the model
but is not included in the GS and a FN is a TF that is listed in the GS but is not
retrieved by the model. In PRROC, TFs are sorted according to their regression
coefficients.
As listed in Table 3.4, the absolute number of non-zero features varies across the

tested annotation versions and samples, while the AUPR is similar across all anno-
tation setups. However, we note a drop in terms of non-zero features and AUPR
for LiHe2 with the ESN annotation. As mentioned before, DEEP quality control
suggested that the DNaseI-seq data for this sample might not be optimal, which
could explain the difference to the other primary human hepatocyte replicates. No-
tably, there is a slight advantage for the original approaches E and ES in terms of
AUPR.
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3 INFERRINGKEY TFS FROMEPIGENETICS ANDGENE-EXPRESSION DATA

Table 3.4: Number of selected features and AUPR scores computed in a gold stan-
dard comparison of regulatory TFs suggested by linear models using
elastic net regularization for primary human hepatocytes.

#selected features AUPR

E ES EN ESN E ES EN ESN

LiHe1 274 210 156 143 0.341 0.360 0.333 0.368

LiHe2 301 145 227 107 0.355 0.346 0.347 0.292

LiHe3 193 297 238 160 0.347 0.333 0.311 0.319

The differences in the number of non-zero features might be linked to the corre-
lation between features existing in E and ES scores: Keeping in mind that elastic
net attempts to find a balance between sparsity and the inclusion of correlated
yet predictive features, the number of selected features might be higher in E and
ES models compared to EN and ESN models. Importantly, this analysis did not
clearly argue in favor of one of the tested approaches to compute TF-gene scores in
terms of biological relevance.

Conclusions for interpreting and handling gene-expression models

Predictive models of gene-expression became prevalent in computational biology.
While our analysis showed, similar to the earlier work by Bessiere et al. [B+18a]
that row-wise permutation of TF ChIP-seq data does not remove the entire signal,
an erroneous interpretation of the models is unlikely. Due to the grouping effect of
the elastic net, correlated features are down weighted and their values are shrinked
towards zero, which, in case of permuted data, leads to small regressions coefficients
for all factors. The widely used lasso regularization does not show this helpful
characteristic. Therefore, it should be used carefully to avoid wrong conclusions.
The normalized scores for ChIP-seq (CN ) and predicted TF-gene scores (EN ,
ESN ) improve model robustness and, in case of CN scores, even model perfor-
mance. However, no scoring strategy could completely alleviate the correlation
present in TF-gene scores. As illustrated in Figure 3.2, a complete removal of the
correlation should not be expected as the correlation is partially due to biologi-
cal and experimental reasons. For example, ChIP-seq data captures the signal of
TFs forming complexes via protein-protein interactions, thereby yielding correlated
scores. Furthermore, it is known that TFs tend to bind in clusters [Y+13], ChIP-seq
data is very sensitive to that and causes features to be correlated as well. Neverthe-
less, the correlation could also be of technical nature, for instance, due to similar
binding motifs or open chromatin characteristics.
Although we investigated ways how to reduce this correlation, it is inherent to

the data and the problem setting and thus, to some extend, unavoidable.
In Schmidt et al. [SS18] we stressed this point to make the community aware

of the potential pitfalls arising from gene-expression modelling. We demonstrated
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how the number of non-zero features and the magnitude of regression coefficients
are indicators for model quality and can pinpoint researchers to potential flaws in
feature design or data handling. Importantly, our work led to the conclusion that
results obtained using approaches like the C scores [O+09] or E scores [M+12b] are
not necessarily incorrect, but highlighted the complexity of prioritizing meaningful
TFs due to confounders investigated here.

3.4.4 Linear models suggest expressed and known transcriptional
regulators

Within this section, we delineate how we can use predicted TFBS within our linear
models to learn about candidate tissue-specific regulators. The results presented in
this section are based on ES models, published in Schmidt et al. [S+17a].

Regression coefficients harbour cell type specificity

To learn about whether our linear models highlight tissue-specific regulators, a Prin-
cipal Component Analysis (PCA) (Section 2.2.3) was conducted on the regression
coefficients vectors of all 13 samples used in Schmidt et al. [S+17a]. As depicted in
Figure 3.27, the primary human hepatocyte samples (LiHe1-3) are distinctly placed
away from the other samples, while according to PC1, HepG2, a human liver can-
cer cell line, is their next neighbour. The T-cell samples T1-T6 are positioned in
the right half of the PCA plot. Their nearest neighbour is GM12878, which is a
lymphoblastoid cell line. Because lymphoblasts can differentiate into T-cells, the
position of GM12878 in the PCA plot is sensible as well. However, we note that
PC1 might also capture an experimental difference between the T-cell and the re-
maining samples. Chromatin accessibility in all DEEP T-cell samples has been
screened using NOME-seq, whereas chromatin accessibility in all other samples was
investigated with DNaseI-seq.
Keeping the PCA analysis in mind, we performed a cross-sample comparison

using our models. That means, a model has been trained for a distinct sample
si ∈ S, where S is the set of all 13 samples. Next the model learned for si is
used to predict the expression in all other samples sj , with j 6= i. As shown in
Figure 3.28, this experiment argues for a tissue-specificity of our models as well. The
dendrograms resemble a clear similarity/dissimilarity between related/unrelated cell
types. Therefore, we concluded that it is worthwhile to investigate the feature
coefficients in more detail to learn about tissue-specific regulators.

Primary human hepatocytes

To investigate the role of TFs in the primary human hepatocyte samples (LiHe1-3),
we computed the overlap between the features with a non-zero regression coefficient
using the ES annotation with a 50kb window, visualized in Figure 3.29a using a
Venn diagram. We found that 65 (38.5%) TFs are commonly selected among the
three replicates.
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Figure 3.27: PCA of the regression coefficients learned from linear gene-expression
models using Tepic TF-gene scores for 13 datasets. Three primary
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In Figure 3.29b, we show the top 10 positive and top 10 negative features selected
by our models ranked by the mean regression coefficients across the replicates.
By searching the literature we retrieved evidence for 52 of the 65 factors to be

known to have a function in hepatocytes. All sources are listed in the Supplementary
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3.4 Gene-expression modelling using TF-gene scores

Material of Schmidt et al. [S+17a]. Within the top 10 positive and negative features,
we found for example, the hetero-dimer PPARG::RXRA. This complex is known
to have a key role in hepatic transcription [Q+00]. Another TF is CEBPA, which
is known to be involved in liver regeneration [Die98, C+03]. The TF GATA4 has
been shown to be involved in liver induction [B+16c]. Similarly CTCF was found
to have a role in imprinting liver [HdL13, G+12b] and NRF1 has been shown to
possess a protective function against oxidative stress in liver [X+05].

Feature value

(a) (b)

Top 10 
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features

Top 10 

negative 

features

…
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TBP
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JUN
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ARNT::AHR
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Figure 3.29: (a) Overlap of non-zero regression coefficients determined for the
primary human hepatocyte models (LiHe1-3). The top 10 positive
and negative features among the 65 shared ones ranked by the mean
regression coefficient are shown in (b). TFs labelled with a * could
not be related to hepatocytes by literature research. Figure from
Schmidt et al. [S+17a].

CD4+ T-cells

As for primary human hepatocyte samples, we have computed the commonly se-
lected features across all six CD4+ T-cell samples. In total, there are 53 (39%) TFs
commonly selected. The overlap between the individual T-cell replicates is shown
in Figure 3.30a. We suggest that those 53 TFs are potential key regulators within
CD4+ T-cells. In literature, we found evidence that 42 out of the 53 suggested
regulators are known to be related to the immune system, see the Supplementary
Material of Schmidt et al. [S+17a] for the complete list. For instance, among the top
10 positive and negative coefficients (Figure 3.30b) we found the factor GMEB1,
which was shown to inhibit T-cell apoptosis [Ko12]. Another TF with a positive
coefficient is ETS1, which is known to be essential for T-cell development [E+04b].
In agreement with its negative regression coefficient, the TF ZBTB7B, is an estab-
lished repressor in CD4+ T-cells [W+08].
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Figure 3.30: The pairwise overlap of non-zero regression coefficients learned for
DEEP T-cell samples is shown in (a). In total 53 TFs are common
between all six samples. The top 10 positive and negative coefficients
are shown in (b), ranked by the mean regression coefficient. TFs
labeleld with a * could not be linked to T-cells by literature search.
Figure from Schmidt et al. [S+17a].

TF expression and its relation to model performance

Another sanity check for the selected features is to check how many of the selected
TFs that is TFs with a non-zero regression coefficient, are expressed in the analyzed
samples. We found that the mean expression level of selected TFs is higher than
the mean expression level of the ones that have not been selected (Figure 3.31,
Figure 3.32). Similarly, in Schmidt et al. [SS18], we have shown that the expression
of TFs highlighted by models from permuted data (c.f. Section 3.4.3) is significantly
lower than that of TFs inferred by original models.
These insights not only suggests that the model selects meaningful regulators, but

they also point out that it might be possible to reduce the feature space by removing
factors that are not expressed, without a loss in model performance. Therefore,
we have repeated the gene-expression learning with an expression filtered set of
TFs using a FPKM cut-off of 1.0 and additionally removed all TFs that could not
be mapped to a ENSEMBLE gene ID. Figure 3.33 shows that this reduction of
TFs does not significantly affect model performance. However, due to the reduced
feature space, it can help to simplify model interpretation and speeds model fitting
as well.

3.4.5 Integration of conformation capture data into TF-gene scores

The window based exponential decay formulation explained in Section 3.3.2 is not
able to capture long Promoter-Enhancer-Interactions (PEIs), mediated e.g. by
DNA-looping, as delineated in Section 2.1.13.
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Figure 3.31: Expression [log2(FPKM+1)] of TFs with a non-zero regression coef-
ficient (selected) vs not selected factors in the three primary human
hepatocyte samples from DEEP. Figure from Schmidt et al. [S+17a].
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Figure 3.32: Expression [log2(FPKM+1)] of TFs with a non-zero regression co-
efficient (selected) vs not selected factors in the six T-cell samples
from DEEP. Figure from Schmidt et al. [S+17a].
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Figure 3.33: Mean test correlation of models if TFs that are not expressed by at
least one FPKM are removed from the features space. As it can be
seen in the figure, the reduction of the feature space does not nega-
tively affect model performance. Figure from Schmidt et al. [S+17a].

We extended our TEPIC framework to account for regulatory elements derived
from chromatin conformation-capture experiments, specifically form Hi-C data. Ex-
perimental details on Hi-C are delineated in Section 2.1.11.
To avoid additional complexity introduced by considering individual TF bind-

ing events and to test whether the inclusion of Hi-C data into our gene-expression
models is beneficial at all, we decided to model gene-expression only from chro-
matin accessibility or aggregated ChIP-seq data in a first step, similar to the mod-
els EPF and CPF . Furthermore, we include chromatin state segmentations from
ChromHMM into our modelling, attempting to further refine the considered ge-
nomic regions. Details on data processing are provided in Section B.1. The material
presented in this section is joint work with Fabian Kern extending his bachelor the-
sis [Ker16]. It was presented in an oral presentation at GCB 2018 in Vienna.

Model extension

We compared a window based annotation that incorporates Hi-C data against a
local window based linkage, as introduced in Section 3.3.2. As before, candidate
regulatory sites are derived from DHS as well as TF ChIP-seq peaks and additionally
from a chromatin state segmentation computed with ChromHMM [EK12].
As before, we use the following notation: For a DHS site d ∈ D, where D is the

set of all DHS sites, we denote the length of d with l(d) and DNaseI-seq signal in
d with s(d). For a distinct ChIP-seq peak ct ∈ Ct, where Ct refers to all ChIP-seq
peaks for TF t, we denote its length with l(ct) and the peak score with s(ct). The
set of all chipped TFs is denoted with T .
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3.4 Gene-expression modelling using TF-gene scores

We obtained chromatin state segmentations for several cell lines: GM12878,
HeLa, HUVEC, IMR90 and K562 from ENCODE (see Section B.1 for details). Each
segmentation contains 15 states generated with ChromHMM [EK12]. From those
15 states, we extract two promoter states, specifically TssA (1) and TssAFlnk (2),
as well as three enhancer states, namely EnhG(6), Enh(7) and EnhBiv(12). Neigh-
bouring segments of the same type are merged into one segment h, representing
a distinct ChromHMM state. The set of all considered segments for gene g is
denoted with Hg. The length of a distinct segment h ∈ Hg is denoted with l(h)
and the DNaseI-seq/aggregated TF ChIP-seq signal within h is denoted with s(H).
Accordingly, we define three ChromHMM features plhg , pchg and pshg as:

plhg =
∑
h∈Hg

l(h)e
−dist(h,g)

d0 , (3.36)

pchg =
∑
h∈Hg

e
−dist(h,g)

d0 , (3.37)

pshg =
∑
h∈Hg

s(h)e
−dist(h,g)

d0 , (3.38)

where plhg is the length of the considered ChromHMM segments for g, pchg are the
distance weighted counts and pshg is the distance weighted, aggregated epigenetic
ChIP-seq or DNaseI-seq signal within the segments. Note that in the ChIP-seq
case s(h) aggregates the ChIP-seq signal across all available TFs, neglecting TF
specificity. In this way, the ChIP-seq signal can be easily compared against the
chromatin accessibility signal deduced from DNaseI-seq.
Furthermore, we define an intersection operation ∩H between Dg,w or Cg,w and
Hg,w such that only d ∈ Dg,w or c ∈ Cg,w are retained that overlap by at least one
1bp with any h ∈ Hg,w. The variable w indicates the width of the window used
for a window based aggregation of regulatory elements to the gene level. Formally
that is:

Xg,w ∩H Hg,w = {x|x ∈ Xg,w ∧ ∃h ∈ Hg,w : x ∩m 6= ∅}, (3.39)

where Xg,w = Dg,w or Xg,w = Cg,w and x∩h indicates the overlap in genomic space
of peak x and segment h.

We apply the ∩H intersection operation to Dg,w and Cg,w, thereby removing
regions that do not overlap with either an enhancer or promoter state from Hg,w,
obtaining the reduced sets D′g,w and C′g,w, respectively:

D′g,w = Dg,w ∩H Hg,w, (3.40)

C′g,w = Cg,w ∩H Hg,w. (3.41)

Because the window based linkage of genes achieved a better model performance
than the nearest-gene linkage in gene-expression experiments presented in Sec-
tion 3.4.2, we have extended the window based linkage to include chromatin in-
teractions derived from Hi-C data. Specifically, we used the loop files as provided
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by the Lieberman-Aiden group [R+14b] for GM12878, HeLa, HUVEC, IMR90 and
K562. The loop files contain, for each sample, the extracted Hi-C loops with a
specific resolution. In case of the Hi-C datasets used in this work the loops are of
5kb, 10kb and 25kb resolution, respectively.

Recall from Section 2.1.11 that a loop is defined as a pair of genomic loci that
are in arbitrary genomic distance from each other, but, at the same time, are in
close spatial proximity. The Hi-C resolution defines the number of base pairs to
which both genomic loci can be pin-pointed in the genome. Therefore, the better
the resolution of the Hi-C experiment (numerically smaller), the shorter is the
region around the true interaction site in each locus. Here, the Hi-C resolution
called All refers to loops of an arbitrary resolution, a more conservative approach
where we consider all available loops. For reasons of simplicity, less frequent inter-
chromosomal loops, are excluded.
The loops are modelled by considering an additional window v inferred from

contacts of a Hi-C experiment (equations 3.40-3.48). We link a Hi-C contact to
g if one of its loop regions is located within a 50kb radius of g. All DHS sites p,
ChIP-seq peaks c and ChromHMM regions h within v, denoted with Dg,v, Cg,v and
Hg,v, respectively, are included in the score computation. The set Cg,t,v denotes all
ChIP-seq peaks for TF t that are associated with gene g via the additional window
v. Because the Hi-C experiment suggests a direct interaction of the potentially far
away region v with gene g, we do not apply an exponential decay to peak signals
of that region. However, we did test whether applying the exponential decay in the
Hi-C regions would be benefital for model performance and found that it is indeed
not the case (results not shown).
The updated Hi-C formulas for DNaseI-seq data are:

pldg =
∑

d∈Dg,w

l(d)e
−dist(d,g)

d0 +
∑

d∈Dg,v

l(d), (3.42)

pcdg =
∑

d∈Dg,w

e
−dist(d,g)

d0 + |Dg,v|, (3.43)

psdg =
∑

d∈Dg,w

s(d)e
−dist(d,g)

d0 +
∑

d∈Dg,v

s(d), (3.44)

for ChIP-seq data:

plcg =
∑
t∈T

 ∑
ct∈Cg,w

l(ct)e
−dist(ct,g)

d0 +
∑

ct∈Cg,v

l(ct)

 , (3.45)

pccg =
∑
t∈T

 ∑
ct∈Cg,w

e
−dist(ct,g)

d0 + |Cg,t,v|

 , (3.46)

pscg =
∑
t∈T

 ∑
ct∈Cg,w

s(ct)e
−dist(ct,g)

d0 +
∑

ct∈Cg,v

s(ct)

 , (3.47)
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and for ChromHMM promoter/enhancer segments we get:

plhg =
∑

h∈Hg,w

l(h)e
−dist(h,g)

d0 +
∑

h∈Hg,v

l(h), (3.48)

pchg =
∑

h∈Hg,w

e
−dist(h,g)

d0 + |Hg,v|, (3.49)

pshg =
∑

h∈Hg,w

s(h)e
−dist(h,g)

d0 +
∑

h∈Hg,v

s(h). (3.50)

Finally, for the window based and nearest gene annotation, we intersect Dg,v and
Cg,v with Hg,v and obtain D′g,v and C′g,v to reduce the number of regions associated
with g from the distal region v. The considered annotation versions are explained
in Figure 3.34.

Association of Hi-C loops to accessible chromatin

Before learning any models using Hi-C data, we tried to get a better understanding
of the characteristics of Hi-C data and its relation to chromatin accessibility in
general. To this end, we assessed the overlap between DHS and Hi-C loops. As
shown in Figure 3.35a, the fraction of Hi-C loops overlapping with at least one DHS
increases with a decreasing Hi-C resolution.
The tremendous differences between the various resolutions suggest that the

choice of the used Hi-C resolution will likely effect any downstream analysis re-
lying on DHS sites. Taken into account each Hi-C loop across all resolutions, at
least 80% of the identified Hi-C loops overlap with at least one DHS site in four
out of five cell lines.
These observations trigger the question how many DHSs that can be associated

with the loop are already occupied by factors such as CTCF or Cohesin that are
required for mediation and maintenance of the chromatin interactions. Assuming
that these factors spatially fully occupy the accessible chromatin, it might be likely
that regulatory factors interacting with the mediator complex and the transcrip-
tional initiation machinery need to bind to other regions and thus such, we term
them structural DHSs, might be a source of noise in our models.
The effect of the Hi-C resolution on the number of genes that are linked to

a chromatin loop is depicted in Figure 3.35b-c. Generally, we observe that the
number of genes associated with a loop reduces with a more precise, i.e. numerically
smaller, Hi-C resolution. The search window used to link a Hi-C loop to a gene also
influences the number of mapped genes. As expected, with an increasing window
size, the number of genes that are linked to a loop is rising. Simultaneously the
slope of the increase depends on the utilised Hi-C resolution. For example, as shown
in Figure 3.35b-c, the increase in the number of genes is only marginal for the best
resolution (5kb), while it is more than three times as strong for the lowest one
(25kb).
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Figure 3.34: Figure 1 illustrates several ways how regulatory regions can be linked
to genes. In a window based annotation, DNaseI-seq or TF ChIP-
seq peaks are linked to a gene if they are located within a window w
centred at the 5’ transcription start site (TSS) of a gene of interest.
Using Hi-C, a second window v covering the looped region is consid-
ered in addition to the TSS window. We computed three variants
per linkage strategy. In the first row, we depict the linkage using
only DNaseI-seq or TF ChIP-seq peaks and aggregating their signal
across all associated peaks. The second row shows the aggregation
of the signal of an epigenetic signature in promoters and enhancers
identified by ChromHMM and in the third row, we consider the
intersection of peak regions with ChromHMM promoter and en-
hancer segments. The figure illustrates these setups for two genes g1
and g2. The color code of peaks and the border color of segments
indicate to which gene a peak or segment is assigned. Peaks with
a striped filling are not assigned to any gene. To improve clarity,
we show for the DNaseI-seq case the peak/segment sets. Joint work
with Fabian Kern, presented at GCB 2018.

Performance of models including Hi-C loops

We trained linear models of gene-expression on the Hi-C gene set using window
based models of DNaseI-seq (Dg,w, Figure 3.36a) and ChIP-seq (Cg,w, Figure 3.36b)
data with two different window sizes, 3kb and 50kb. Those models are compared to
Hi-C models incorporating DHS/ChIP-seq peaks in the Hi-C window v both with
and without an intersection using promoter/enhancer regions from ChromHMM.
The results shown are based on Hi-C loops from all resolutions. They did not
change if a subset of resolutions has been used (data not shown).
In case of DNaseI-seq (Figure 3.36a), we do not find a clear trend to argue that a

certain setup constantly performs best. However, we can see that the Hi-C models
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Figure 3.35: a) The total number of Hi-C loops (aggregated across all available
Hi-C resolutions) per cell line is shown and the percentage of how
many loops intersect with at least one DNaseI-seq peak is indicated.
Except for GM12878, a large fraction of Hi-C loops overlap at least
one DHS site. b)-c) indicate the number of genes with a least one Hi-
C loop for varying search window sizes and Hi-C resolutions. With
an improving resolution of the Hi-C experiments, i.e. it’s value gets
numerically smaller, the number of overlapping genes seems to be
reducing. With an increasing search window size around the TSS of
genes, the number of overlapping genes is monotonically increasing
although the increase tends to be less pronounced for high resolution
experiments. Joint work with Fabian Kern, presented at GCB 2018.

never perform better than the conceptually simpler peak-based models. Also, we
note that the ChromHMM intersection improves the performance significantly in
only one cell line.
In the ChIP-seq case (Figure 3.36b), we observe a generally increased model

performance compared to the DNaseI-seq data. Further the simple 50kb window
models tend to outperform the remaining annotation versions, including the Hi-C
models. In contrast to the DNaseI-seq case, the ChromHMM intersection does
significantly improve model performance in four out of five samples. At the same
time four of these models perform similar to the 3kb window models neglecting
Hi-C data.
Overall, including long-range PEI deduced from several Hi-C experiments by
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Figure 3.36: In a) the performance of gene-expression models, assessed via Spear-
man correlation, based on DNaseI-seq data is depicted using four
different annotation setups: [1] DHSs in a 3kb window, [2] DHSs in
a 50kb window, [3] DHSs in a 3kb window combined with DHS sites
in Hi-C loops searched in a 50kb window, [4] same as [3] considering
chromatin state segmentation from ChromHMM. Although no clear
trend in terms of model performance is identifiable, it appears that
purely DNaseI-seq based models perform slightly better than models
including Hi-C data. Figure b) is analogous to a) but using TF ChIP-
seq data instead of DNaseI-seq data. Here, best model performance
could be achieved by considering the ChIP-seq signal within a 50kb
window around the TSS of genes, neglecting the Hi-C data. How-
ever, it can be seen that combining the Hi-C data with ChromHMM
segmentations improves model performance. A p-value ≤ 0.001 is in-
dicated by ***, a p-value ≤ 0.01 is indicated with ** and a p-value
≤ 0.05 is indicated with *. Joint work with Fabian Kern, presented
at GCB 2018.

Aiden et al. [R+14b] turned out not to be beneficial for modelling gene-expression
as performed in this study.

Our models indicate that reducing the number of considered peaks from the Hi-
C loop windows is beneficial for model performance, suggesting that the focus on
fewer regions in the distal loop window is eliminating irrelevant signal such as pure
noise or the aforementioned structural DNaseI-seq peaks that are relevant for loop
formation but not for the actual expression regulation. Furthermore, it might also
be possible that not all chromatin contacts are directly linked to transcriptional
regulation and gene-expression, as suggested by Ray et al. [R+19].
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3.4 Gene-expression modelling using TF-gene scores

Refining the considered genomic space via chromatin state segmentations

To gain a better understanding why the performance of the Hi-C models could be
improved by a stricter selection of potential regulatory regions, we had a closer
look at the performance of simple window based models using the reduced sets of
DNaseI-seq or TF ChIP-seq peaks, respectively (D′g,w and C′g,w). Additionally, we
considered models based on DNaseI-seq, or TF ChIP-seq signal within the selected
ChromHMM segments (Eg,w).
In Figure 3.37a, the results for the models trained on DNaseI-seq data using a

50kb window are shown.
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Figure 3.37: a) Spearman correlation of expression models based on DNaseI-seq
data is shown for five cell lines and three annotation versions using
a 50kb window: [1] DNaseI-seq peaks only, [2] ChromHMM regions
and [3] the intersection of both. Considering only the DNaseI-seq
signal within ChromHMM segments outperforms the other two ap-
proaches, while the intersection of DHS-sites with the ChromHMM
segments outperforms the purely DHS based features. b) This sub
figure is analogous to (a) with the difference that DNaseI-seq data is
replaced with ChIP-seq data. Here, considering the ChIP-seq signal
within the ChromHMM segments performs worse than the alterna-
tive annotation versions. A p-value ≤ 0.001 is indicated by ***, a
p-value ≤ 0.01 is indicated with ** and a p-value ≤ 0.05 is indicated
with *. Joint work with Fabian Kern, presented at GCB 2018.

Interestingly, models based exclusively on promoter/enhancer segments (Hg,w)
perform significantly better than models solely relying on DHS sites (Dg,w). The
intersection of regulatory segments with DHS sites (D′g,w) significantly improved
over the Dg,w models in three out of five cases. However, the intersected feature
space still leads to significantly worse performance than the state based models
(Hg, w).

We have characterised the peaks removed by the intersection in terms of peak
quality and functional annotation using ChromHMM. As exemplified for GM12878
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in Figure 3.38a, the mean q-value of removed DHS peaks in the D′g,w case is lower
than that of peaks retained after the intersection suggesting that more pronounced
and reliable peaks are maintained. The same observation can be made for the other
cell lines (data not shown).
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Figure 3.38: a) The mean of JAMM q-values is shown for DHS sites in GM12878
that are removed/retained by an intersection with promoter and en-
hancer segments derived from ChromHMM using two different win-
dow sizes. Overall, the score of the retained peaks is higher than
that of the removed peaks. In b), we show the ChromHMM states
for those peaks being removed from consideration. We observe dif-
ferences in the count distribution between the 3kb and the 50kb
windows. By increasing the window from 3kb to 50kb, the amount
of peaks falling into Quiescent/Low, Weak Repressed/Polycomp and
Weak transcription segments is increasing considerably, suggesting
that many DHS sites that would be considered by the enlarged win-
dow might not be relevant for the regulatory activity. Joint work
with Fabian Kern, presented at GCB 2018.

A large portion of removed peaks are linked to Quiescent/Low, Weak Repressed
Polycomb and Weak transcription ChromHMM states (Figure 3.38b), which also
indicates that the removed peaks are not relevant for transcriptional regulation.
In the ChIP-seq case, depicted in Figure 3.37b, we find a different behaviour.

Here, models based only on the enhancer segments (Mg,w) perform worse than the
other two models (Cg,w, C′g,w). Note that the ChIP-seq peaks intersected with the
promoter/enhancer regions (C′g,w) perform significantly worse than the purely peak
based models (Cg,w) in four of five cases. However, we do observe, as for the DNaseI-
seq data that the mean score of the removed ChIP-seq peaks (C′g,w) is lower than
that of the retained peaks. Evaluating the ChromHMM segments linked to the
removed peaks again shows that many peaks are linked to Quiescent/Low, Weak
Repressed Polycomb and Weak transcription states. We conclude that currently

114



3.5 INVOKE - A pipeline for integrative analysis of TFBS prediction and gene-expression data

available Hi-C resolutions lead to many false positive associations, preventing an
adequate modelling of long range PEIs, in this per sample based gene-expression
prediction problem. Furthermore, our analysis also puts forward the hypothesis that
only very few genes are involved in long-distal regulatory interactions. It is likely
that other methods, e.g. ChIA-PET or capture Hi-C [D+14, F+09] (Section 2.1.11),
which can enrich the sequencing libraries for distinct regions such as promoters of
interest, lead to more precise contact maps. Leveraging these more fine-grained
technologies for gene-expression modeling seems to be an opportunity to improve
the prediction performance and to increase our understanding of the underlying
regulatory processes.

3.5 INVOKE - A pipeline for integrative analysis of
TFBS prediction and gene-expression data

3.5.1 Motivation

To provide users with a comfortable way of using both TEPIC and computing
linear models from TF-gene scores, we include the Invoke pipeline in the Tepic
repository. In general terms, Invoke is an integrated analysis pipeline of epigenetics
data, e.g. open-chromatin data (DNaseI-seq, ATAC-seq, NOMe-seq) and gene-
expression data to suggest key transcriptional regulators in the analysed sample.
The Invoke analysis is split up into two main steps:

1. Computing TF-gene scores on the basis of epigenetic data using Tepic.

2. Learning a linear regression model to predict gene-expression from TF-gene
scores computed in (1).

As illustrated above for T-cells and primary human hepatocytes, we use TF-gene
scores as features in a linear regression setup to predict gene-expression. In such
a per sample approach, we stick to the simplifying assumption that all genes are
regulated similarly. Features with a high regression coefficient can be suggested to
be key regulators in the analysed sample, as they seem to affect the expression of a
large portion of the genes under consideration. However, the results of this method
should be seen as suggestions for possible regulators and not as the absolute truth.

3.5.2 Implementation details

The Invoke pipeline can be easily executed using a single bash script, controlling
TFBS annotation through TEPIC and learning the linear model in R. Model pa-
rameters can be easily adjusted in a configuration file. An executable example is
provided in the Tepic repository.

We offer three different regularization techniques: lasso, ridge and elastic net.
As described in Section 2.2.1, lasso regularization leads to sparse models and can

be optimized quickly. But, lasso cannot properly deal with correlated features, e.g.
instead of distributing the coefficients among them, only one feature is selected.
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Also, lasso solutions are not stable and therefore should be interpreted with cau-
tion. Nevertheless, lasso regularization is good to get a first impression of model
performance. The disadvantage of ridge regression is that it cannot produce sparse
models (many coefficients being exactly 0), which may hinder interpretability. Elas-
tic net regularization on the other hand, resolves the correlation between features
by distributing the feature weights among them and simultaneously leads to sparse
and stable models.
The data matrixX, containing TF-gene scores and the response vector y, contain-

ing gene-expression values, are log-transformed, with a pseudo-count of 1, centered
and scaled. Regression coefficients are computed in an inner cross validation, the α
parameter of elastic net regularization is optimized with a default step size of 0.1.

We offer two ways to use our learning pipeline:

1. Learn a model for feature interpretation without computing performance mea-
sures: In order to provide a time efficient way of obtaining an interpretable
model and to prevent a potential loss of information by considering only a
portion of the full data set for model training, the regression coefficients are
determined on the entire data set.

2. Learn a model for feature interpretation and compute model performance:
Nested cross-validation is used to learn the models and to assess their perfor-
mance. Per default, 20% of the data are used as test data and 80% are used as
training data. Model performance is assessed in an outer cross validation. We
report the mean Pearson correlation, the mean Spearman correlation and the
MSE over the outer folds as measures of model performance. Additionally, a
model is learned on the entire data set as described in (1) for interpretation
of the coefficients.

All parameters mentioned in this section can be changed by the user.

3.5.3 Required input

In addition to the input required for the computation of TF-gene scores in TEPIC
that is a reference genome file, a TF motif file, a set of candidate regions as well as
a genome annotation file, gene-expression data must be provided to run Invoke.
The gene-expression data is a tab delimited file that should be structured such that
Column 1 contains the gene identifiers and Column 2 holds expression values.

3.5.4 Output and hints for interpretation

The user is always provided with the following files:

• a list of regression coefficients computed on the entire data set and

• a bar plot showing the regression coefficients with an absolute value > 0.025.
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The larger a regression coefficient, the stronger is the inferred effect of the
corresponding TF on gene-expression. Positive coefficients suggest an activating
influence of TFs, negative TFs suggest an inhibiting effect.
If model performance was assessed, the following is available in addition:

• a summary on model performance containing the aforementioned measures
(Pearson correlation, Spearman correlation, MSE),

• a list of regression coefficients determined in the outer cross validation,

• a heatmap visualizing the regression coefficients determined in the outer cross
validation for at most the top 10 positive and negative features, sorted ac-
cording to their median value.

• an image showing a box plot for Pearson and Spearman correlation, respec-
tively and

• scatter plots showing the predicted vs the measured gene-expression for each
outer cross validation fold.

The heatmap can be easily used to judge model performance, as it shows the
regression coefficients of all outer-cross validation runs and thus indicates whether
the coefficients are stable. The box plots provide further insights into model per-
formance and stability across the outer folds of the cross validation.

3.6 Regulator Trail

3.6.1 Purpose of RegulatorTrail

To provide an even more user-friendly option to use Tepic and the Invoke pipeline,
we included both approaches in the RegulatorTrail webserver [K+17a]. Regu-
latorTrail is a web service for both identification and prioritisation of key tran-
scriptional regulators using different methods. The webserver provides an extensive
documentation as well as tool-tips to guide users while performing the analyses. Ex-
ample data is available to exemplify all potential applications. RegulatorTrail
allows four general use cases [K+17a], which are briefly sketched in the following
Section.

3.6.2 Supported use cases

To RegulatorTrail, we have contributed the code, examples and documentation
for use-cases three and four.

Over-representation analysis

The first use case requires a user to upload a list of differentially expressed genes.
Using RegulatorTrails rich collection of known regulatory-target interactions
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(RTI) transcriptional regulators, whose set of target genes have a significant overlap
with the uploaded gene list are identified. To do so, three statistical tests are
offered: a binomial test, a hyper-geometric test and the Fisher’s exact test. P-value
adjustment methods are available as well. In the end, the user is provided with a
list of regulators sorted according to the adjusted p-values.

Regulator effect analysis

In the second use-case, gene-expression data for two groups of interest, e.g. dis-
ease and control, should be provided. Gene-expression differences are identified
either via simple statistical measure like the z-score or the fold-change, or via more
sophisticated methods like DESeq2 [AH10].
In a second step, RegulatorTrail utilizes user defined lists of up and down

regulated genes in approaches that utilize expression correlation between regulators
and targets to prioritize the regulatory factors. To do so, RegulatorTrail offers
several approaches, including Reggae developed by Kehl et al. [K+18b]. Besides,
the sorted regulator lists information on whether the regulators have an activating
or repressing effect on the selected genes is provided.

Annotation of TFBS using TEPIC

This scenario refers to the annotation of candidate regulatory sites using Tepic to
compute TF-gene scores. To improve the runtime of the annotation, only candidate
TFBS in the vicinity of genes are considered (according to a user defined window).
The resulting affinities are aggregated into TF-gene scores, which can be used, for
instance, in enrichment analysis or used as input for a linear model, as described in
the next Section.

INVOKE analysis to determine tissue specific regulatory factors

This use-case is the webserver implementation of the Invoke analysis. First, TF-
gene scores are computed as in use-case 3. Next a linear regression model using
either lasso, ridge, or elastic net regularization is fitted to predict gene-expression
in a sample of interest. The gene-expression file needs to be uploaded by the user.
The webserver provides a user-friendly way to set the parameters of the method

and to interpret the determined regression coefficients.

3.7 Contributions of all researchers involved in the
projects described here

The work in this Chapter is based on contributions from several people: Flo-
rian Schmidt (Saarland University), Nina Gasparoni (Saarland University), Gilles
Gasparoni (Saarland University), Kathrin Gianmoena (IfADo), Cristina Cadenas
(IfADo), Julia K Polansky (German Rheumatism Research Centre, currently at
Charité University Medicine), Peter Ebert (Max Planck Institute for Informatics,
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currently at Saarland University), Karl Nordström (Saarland University), Matthias
Barann (Chris
tian-Albrechts-University), Anupam Sinha (Christian-Albrechts-University), Sebas-
tian Fröhler (Max-Delbrück Center for Molecular Medicine), Jieyi Xiong (Max-
Delbrück Center for Molecular Medicine), Azim Dehghani Amirabad (Saarland Uni-
versity), Fatemeh Behjati Ardakani (Saarland University), Barbara Hutter (DKFZ
Heidelberg), Gideon Zipprich (DKFZ Heidelberg), Bärbel Felder (DKFZ Heidel-
berg), Jürgen Eils (DKFZ Heidelberg), Benedikt Brors (DKFZ Heidelberg), Wei
Chen (Max-Delbrück Center for Molecular Medicine), Jan G. Hengstler (IfADo), Alf
Hamann (German Rheumatism Research Centre), Thomas Lengauer (Max Planck
Insitute for Informatics), Philip Rosenstiel (Christian-Albrechts-University), Jörn
Walter (Saarland University), Marcel H. Schulz (Saarland University and Göthe
University Frankfurt), Fabian Kern (Saarland University), Lara Schneider (Saar-
land University), Tim Kehl (Saarland University) and Hans-Peter Lenhof (Saarland
University).
Specifically, DEEP primary hepatocyte samples (LiHe1, LiHe2, LiHe3) and

HepG2 data have been generated by Kathrin Gianmoena, Cristia Cadenas and
Jan G Hengstler. CD4+ T-Cells from DEEP (T1-T6) were obtained by Julia K
Polansky and Alf Hamann. RNA-seq of all DEEP samples was carried out by
Sebastian Fröhler and Wei Chen. The data was processed by Matthias Barann,
Anupam Sinha and Philip Rosenstiel. DNaseI-seq and NOMe-seq experiments for
DEEP data were performed by Gilles Gasparoni, Nina Gasparoni and Jörn Wal-
ter. Data management and inital processing such as alignment was carried out
by Bärbel Felder, Barabara Hutter, Gideon Zipprich, Benedikt Brors and Jüergen
Eils. Aligned DNaseI-seq data was processed by Peter Ebert (MACS2) and Florian
Schmidt (JAMM). Aligned NOME-seq reads were analyzed by Karl Nordström and
Gilles Gasparoni.
All ENCODE DNaseI-seq an RNA-seq data has been downloaded from the EN-

CODE data portal and has been curated by Florian Schmidt.
Florian Schmidt developed the TEPIC approach including all scoring schemes

listed in Table 3.3. All experiments and analysis shown in Figures 3.2, 3.5-3.9 and
3.11-3.33 were performed by Florian Schmidt. He was advised by Marcel H Schulz.
Fabian Kern performed the comparison of window based to nearest gene ap-

proaches shown in Figure 3.10 and developed the Hi-C extension for Tepic (Fig-
ures 3.34). He was advised by Florian Schmidt, who suggested the project and the
analyses shown in Figures 3.35-3.38 and Marcel H Schulz.
Fatemeh Behjati and Azim Dehghani Amirabad contributed to the first version of

the INVOKE pipeline by contributing a script for merging several feature matrices
and an R-script for linear regression, respectively. With the ongoing development of
Tepic, both scripts were replaced by improved versions written by Florian Schmidt,
which are now included in the Tepic framework.
The RegulatorTrail webserver has been developed at the chair of Hans-Peter

Lenhof. In detail Florian Schmidt provided the code for TEPIC and INVOKE
modules, while Tim Kehl programmed the web-interface and the remaining func-
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tionality of RegulatorTrail. Lara Schneider supported both and assisted in
testing the webserver and contributed to the tool-tips and the documentation.
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4
Identification of regulators linked to

differential gene-expression

This chapter delineates our contributions to DEEP sub-project SP5-1 Epigenetics
of inflammatory T-cells-features functions and implications for the clinic, published
in Durek et al. [D+16e].

4.1 Research questions of the project

4.1.1 Problem setting in SP5-1

The goal of this sub-project was to characterize the impact of epigenetic modifica-
tions on the differentiation of memory T-cells. Particularly, a better understanding
of the directions of differentiation among various memory T-cell sub-types should
have been obtained. Also, essential regulatory signatures involved in regulating the
differentiation should have been determined.
To this end, two replicates each of naive CD45RA+ CD4+ T-cells from blood

(TN), central memory cells (TCM) and effector memory cells (TEM) were subject
to genome-wide DNA methylation, histone modification, DNA accessibility (using
NOMe-seq) and gene-expression profiling.
Details on the data used within this chapter as well as on data processing are

provided in Section B.2.

4.1.2 Our contributions

We made two main contributions to this work. We devised a similarity score used
to argue for a linear differentiation from TN to TCM to TEM cells, c.f. Figure 2c
in Durek et al. [D+16e]. For reasons of brevity, this is not further discussed within
this thesis.
Furthermore, we designed an integrative approach that suggests TFs exhibiting a

differential binding behaviour between cell types that is predictive for observed gene-
expression changes. Using knockout experiments in mice, the TF FOXP1, which
was suggested by our method, was validated as an essential regulatory TF. Within
the remainder of this chapter, we describe this approach, termed Dynamite, in
more detail.
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4.2 The DYNAMITE pipeline

4.2.1 Overview

Dynamite infers TFs exhibiting a differential binding behavior between two cell
types or conditions that results in differential gene-expression. As input, Dynamite
requires both chromatin accessibility and gene-expression data for both groups of
interest, as depicted in Figure 4.1. For gene-expression data, we use the information

TF-gene scores 

Replicate 1

TF-gene scores 

Replicate 2

TF-gene scores 

Replicate 1

TF-gene scores 

Replicate 2

RNA-seq

Replicate 1

RNA-seq

Replicate 2

RNA-seq

Replicate 1

RNA-seq

Replicate 2

Cuffdiff

Differentially 

expressed genes

Mean TF-gene 

scores

Mean TF-gene 

scores

TF-gene ratio 

scores

Tissue 1 Tissue 2 Input for Dynamite

Gene-expression dataPredicted TF affinity values

Figure 4.1: Here, the overall score computation for the feature matrix used within
Dynamite and for the response, i.e. the differential gene-expression,
is illustrated.

of all available replicates to determine differentially expressed genes, e.g. using
Cuffdiff [T+10]. Genes that are differentially expressed between two conditions
are labelled with 1 if they are up-regulated in group 1 compared to group 2 and
with 0 otherwise. Genes that are not differentially expressed are not considered
within a Dynamite analysis. The computation of TF-gene ratio scores is detailed
in the next Section.

4.2.2 A differential TF-gene score

Differential TF-gene scores should reflect differences in the binding behaviour of
TFs between two cell types or two conditions. We compute TF-gene scores aEg,t,s
using Tepic in candidate TFBS deduced from chromatin accessibility data in each
available replicate s separately. Within the two considered groups of samples U1

and U2, we compute the mean TF-gene scores aEg,t,U1 and aEg,t,U2 for each gene g
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and TF t, according to:

aEg,t,U1 =
1

|U1|
∑
s∈U1

aEg,t,s, (4.1)

aEg,t,U2 =
1

|U2|
∑
s∈U2

aEg,t,s, (4.2)

where |U1| is the number of samples of group one and |U2| denotes the number of
samples of group two.
The mean values aEg,t,U1 and aEg,t,U2 are converted into a ratio score aEg,t,r denoting

the changes in TF binding:

aEg,t,r =
aEg,t,U1 + 1

aEg,t,U2 + 1
. (4.3)

To ensure that the score can be computed also if aEg,t,U2 = 0, we add a pseudo-count
of 1 to both the nominator and the denominator. The ratio score aEg,t,r is > 1 if
the computed TF-gene score for TF t in samples s ∈ U1 is higher than in samples
s ∈ U2. Analogously, aEg,t,r is < 1 if the computed TF-gene scores for TF t in
samples s ∈ U1 is smaller than in samples s ∈ U2. The ratio score evaluates to 1 if
the binding behaviour is identical for TF t. Note that this mostly happens in case
that a TF does not bind to gene g. An example is provided in Figure 4.2.
We refer to the TF-gene ratio matrix composed of all aEg,t,r as Xr, where the rows

are genes and the columns are TFs.

4.2.3 Logistic regression to classify genes as up- or down-regulated

We use Xr as input for a logistic regression classifier, as explained in Section 2.2.2.
The classifier predicts gene-expression labels that is whether a gene is up- or down-
regulated between two groups of samples, using the TF-gene ratio scores.
We are using the same model fitting and evaluation procedure as with the linear

models in Chapter 3, c.f. Section 3.4.1 with the only difference that we are us-
ing accuracy as a performance measure and not the MSE. Thus, the optimization
function is:

min
β0,β


N∑
i=1

[yi log(p(xi;β)) + (1− yi) log(1− p(xi;β))]−
p∑
j=1

(αβ2
j + (1− α)|βj |)

 ,

(4.4)
where N is the number of considered genes, p is the number of features and

β is the regression coefficient vector as before. The parameter α determines the
weights between lasso and ridge regularization, as introduced in Chapter 3. The
optimisation problem is solved using the glmnet R-package [FHT10].
As explained in Chapter 3 in context of linear gene-expression prediction models,

the advantage of the elastic net regularization is that the inferred models are sparse
yet correlated features are preserved in the model.
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Region TF1 TF2 …

chr1:2-39 13 2

chr1:40-89 0.5 10

…

TF affinities: tissue A, sample s1
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Region TF1 TF2 …

chr1:5-42 12 3

chr1:45-88 0.5 11

…

Region TF1 TF2 …

chr1:50-70 5 23

chr1:85-90 0.2 1

…

TF affinities: tissue B, sample s1

TF affinities: tissue B, sample s2

Region TF1 TF2 …

chr1:52-69 5 22

chr1:84-99 0.2 1

…

Gene TF1 TF2 …
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P300 0.8 0.4

…

TF-gene scores: tissue A, sample s1

Gene TF1 TF2 …
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P300 0.6 0.4

…

Gene TF1 TF2 …
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…

Gene TF1 TF2 …
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P300 30 0.4

…
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TF-gene scores: tissue B, sample s1
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Mean TF-gene scores: tissue A

Mean TF-gene scores: tissue B

Gene TF1 TF2 …

SIVA1 4 23

P300 31 0.3

…

Gene TF1 TF2 …

SIVA1 19 9.5

P300 0.7 0.4

…

Ratio of TF-gene scores: 
𝑡𝑖𝑠𝑠𝑢𝑒 𝐴+1

𝑡𝑖𝑠𝑠𝑢𝑒 𝐵+1

Gene TF1 TF2 …

SIVA1 4 0.438

P300 0.053 1.08

…

Figure 4.2: Example of the differential TF-gene score computation between two
tissues with two replicates each. We consider two different tissues
A,B with two samples each A = {s1, s2} and B = {s1, s2}. First,
we compute TF affinities for all candidate TFBS. Next, these are
aggregated to TF-gene scores. From these scores, mean TF-gene scores
(Eq. 4.1 and 4.2) are computed. Finally, the TF-gene ratio score is
calculated (Eq. 4.3).

4.2.4 Availability and Usability of DYNAMITE

Similar to the Invoke, Dynamite is integrated into our TEPIC framework. We
provide a bash script that automatically computes TF-gene scores for provided
candidate regions, calculates the TF-gene ratio scores and fits the logistic regression
model. Parameters can be easily adjusted via a configuration file and an illustrated
example is provided in the repository as well.

4.2.5 Required input

To run DYNAMITE, a user most provide candidate regions of TFBS for two groups
U1 and U2, e.g. control and diseased. These can be derived, for example, from open
chromatin experiments such as DNaseI-seq, or NOMe-seq. It is important for the
performance of the model that the candidate regions reflect the characteristics of
chromatin organization in the analysed tissues with high accuracy. In addition, a
list of differentially expressed genes in terms of log2 fold changes of the expression
are required.
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4.2.6 Output and model interpretation

Model performance is reported both in a text file and visually in a bar plot using
mean test and training accuracy as well as the F1 measure. Additionally, we report
confusion matrices for all outer cross validation folds. A heatmap shows the regres-
sion coefficients of the selected features in the outer cross validation folds, providing
insights on model stability. Besides, a bar-plot is generated showing the regression
coefficients of all features selected in the final model. A positive coefficient is used
by the model to predict genes as up-regulated, a negative coefficient is related to
genes that are predicted as down-regulated.
To further simplify model interpretation, we provide an additional plotting script

within the Tepic repository that can be applied to the output files of a Dynamite
run. As shown in Figure 4.3, density and scatter plots as well as a one column
heatmap showing the regression coefficient of a distinct feature are generated to
help elucidating why a particular feature was selected by the model. The density
plots show the distribution of the mean feature values for both considered groups
using the full data set as well as the 0.9 quantile, which removes extreme values.
The scatter plots show the values for a distinct gene, colored according to the genes
log2 fold change.

Figure 4.3: Example for an automatically created feature analysis figure generated
on the example data provided in the Tepic repository. The density
plots show the distribution of feature values, the scatter plot relates
them to the observed expression changes. The miniature heatmap
shows the regression coefficients determined during the outer cross
validation.
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4.3 Application of DYNAMITE to CD4+ T-cell
differentiation

We apply Dynamite to suggest key regulators involved in CD4+ T-cell differenti-
ation. Within DEEP, 2 replicates each of TN, TCM and TEM cells were profiled.
Here, we use both NOMe-seq and RNA-seq data, see Section B.2 for details on the
data. In total, we consider three comparisons:

• TN versus TCM (1223),

• TCM versus TEM (614),

• TN versus TEM (2259),

where the numbers in brackets indicate the number of differentially expressed genes
according to a q-value threshold of 0.01.
We use our initial set of TF motifs, comprising 450TFs [S+17a] to compute TF-

gene scores for all 6 replicates. As sketched in the previous chapter, we compute
TF-gene ratio scores between the different cell types and use those as input for
a logistic regression classifier to predict differential gene-expression. The logistic
regression model is trained with the same scheme used for Invoke: We use a 10-
fold outer Monte-Carlo cross validation procedure to assess model performance and
6-fold inner cross validation for parameter learning. The step-size to optimise α is
again set to 0.01.

4.3.1 Prediction results

The bar-plots in Figure 4.4 show the mean test-accuracy across the outer folds.
Note that a random model would deliver an accuracy of 0.5. In our application all
models are performing sufficiently well to be subject to feature interpretation.
At the right hand-side of Figure 4.5, we show which features obtained a median

regression coefficient across the 10 outer-folds in the individual comparisons (marked
by a red box). This filtering is performed to focus on features that are consistently
selected on different compositions of the training data, thereby improving model
performance. The heatmap on the left hand-side illustrates of Figure 4.5 how the
expression of these TFs varies among the different replicates of the T-cell cell types,
in relation to the mean expression level across all T-cell replicates. Note that the
continuous expression information is not used directly in Dynamite and is shown
here only for illustration purposes.
Interestingly, our model suggests several TFs exhibiting distinct expression pro-

files during T-Cell development. For instance, the TF genes RUNX2, BCL6, FOS,
ETV6, REL, BATF::JUN and JUN::FOS are becoming more expressed during the
suggested differentiation trajectory from TN to TCM to TEM cells. In contrast to
that, LEF1, KLF7, FOXP1 and SREBF1 seem to be down-regulated during that
differentiation. Also, several selected TF genes seem to be under epigenetic con-
trol, for instance, AHR, FLI1, FOXP1 and RUNX3, as they overlap differentially
methylated regions arising between the different T-cell sub-types [D+16e].
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Figure 4.4: Mean test accuracy across a 10-fold Monte-Carlo cross validation of
logistic regression models. The best classification performance can
be achieved between TN and TCM. All models perform better than
random models, which would achieve an accuracy of only 0.5. After
Figure S4a from Durek et al. [D+16e] (open access).

4.3.2 Experimental validation

The TF FOXP1 was of particular interest in this study as the FOXP1 gene is
gaining DNA methylation during differentiation (TN to TCM to TEM), implying
that the methylation is exerting a silencing effect on FOXP1 expression. Further,
our Dynamite analysis highlighted FOXP1 as being an essential regulator, related
to expression differences between TN and TEM. Our predictions are backed up
further by an iRegulon analysis that identified TFBS of FOXP1 to be enriched
in genes forming T-cell sub-type specific clusters [D+16e]. Therefore, the role of
FOXP1 was elucidated experimentally using a knockout-experiment in mice, which
is detailed in Durek et al. [D+16e].

CD4+ T-cells were isolated from spleens of both FOXP1 expressing and knock-
out mice. The results of sorting these extracted cells according to the markers CD44
and CD62L are show in Figure 4.6. In the knockout mice, shown at the right hand
side of the figure, the number of TN cells is diminished, while the number of TCM
and TEM cells is increased. This suggests that FOXP1 is a TF that keeps T-cells in
a naive state, a so called naive keeper. Importantly, the experiment also validates
our Dynamite prediction for FOXP1.

4.4 Related approaches

In 2012, Chen et al. have shown that there is a substantial correlation between
differential TF-binding derived from ENCODE TF ChIP-seq experiments and dif-
ferential gene-expression between cell lines [C+12b]. Specifically, they have used the
log2 ratio of the ChIP-seq signals of 22 TFs available for both K562 and GM12878
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Figure 4.5: TF with a non-zero median regression coefficient across the outer cross
validation for the individual comparisons are indicated at the right
hand site by red boxes. The heatmap indicates the variation of gene-
expression of these factors related to the mean expression of the factors
across all six considered T-cell replicates. Extended version of Figure
4b from Durek et al. [D+16e] (open access).
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TN TCM TEM

Figure 4.6: Results of a FOXP1 knock-out experiment in mice. The left rectangle
shows sorted CD4+ T-cells extracted from spleen of mice expressing
FOXP1, whereas the right rectangle represents the knock-out mice.
The colored areas indicate the cell type of the extracted T-cells, ac-
cording to the markers CD44 and CD62L. After Figure 5a from Durek
et al. [D+16e] (open access).

cells as features in four different machine learning approaches, including random
forests and support vector regression, to predict the log2 ratio of differentially ex-
pressed genes. The ChIP-seq data has been aggregated in 2kb windows centered
around genes TSSs.
Their work can be seen as a proof of concept of the idea to link differential gene-

expression to differential TF-binding, which in their case has been determined in
vivo.
Within Dynamite, we extended their idea to account for predicted TFBS. An-

other difference to this earlier work is that we are treating the problem as a clas-
sification and not as a regression problem. We choose for this formulation of the
problem as it is an easy way to reduce the influence of noise in the gene-expression
data on the model.
Another fairly related work has been presented by Gonzales et al. [G+15b] in 2015.

They obtain DNaseI-seq data from Roadmap for six cell types: human embryonic
stem cells, hematopoietic stem and progenitor cells, monocytes, B-cells, T-cells
and NK-cells. All identified DHSs are treated as candidate regulatory elements
and linked to the closest gene in genomic space. Next, DHSs are annotated with
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TFBS and those are used as features for a ridge regression model predicting gene-
expression changes within HSPC, B-cells, T-cells, Monocytes and NK-cells.
This approach is different from Dynamite, because it does not consider differen-

tial binding of TFs, between conditions, but rather a combination of binding events
in fully differentiated cells. Therefore, the explicit description of differential bind-
ing formulated in Dynamite is not made by Gonzales et al.. Furthermore, the
ridge regression model is less suited for model interpretation than the elastic net
regularization used in Dynamite, because the ridge solution will not be sparse.

4.5 Contributions of all researchers involved in the
described project

The research presented in this chapter is part of a major collaborative project
in the scope of DEEP to which the following people contributed [D+16e]: Pawel
Durek (German Rheumatism Research Centre), Karl Nordström (Saarland Uni-
versity), Gilles Gasparoni (Saarland University), Abdulrahman Salhab (Saarland
University), Christopher Kressler (German Rheumatism Research Centre), Melanie
de Almeida (German Rheumatism Research Centre), Kevin Bassler (University of
Bonn), Thomas Ulas (University of Bonn), Florian Schmidt (Saarland University),
Jieyi Xiong (Max-Delbrück Center for Molecular Medicine), Petar Glazar (Max-
Delbrück Center for Molecular Medicine), Filippos Klironomos (Max-Delbrück Cen-
ter for Molecular Medicine), Anupam Sinha (Christian-Albrechts-University), Sarah
Kinkley (Max Plank Institute for Molecular Genetics), Xinyi Yang (Max Plank In-
stitute for Molecular Genetics), Laura Arrigoni (Max Planck Institute of Immuno-
biology and Epigenetics), Azim Dehghani Amirabad (Saarland University), Fate-
meh Behjati Ardakani (Saarland University), Lars Feuerbach (DKFZ Heidelberg),
Oliver Gorka (Technical University Munich), Peter Ebert (Max Planck Institute
for Informatics, currently at Saarland University), Fabian Müller (Max Planck In-
stitute for Informatics, currently at Department of Genetics, Stanford University
School of Medicine), Na Li (Max Plank Institute for Molecular Genetics), Stefan
Frischbutter (German Rheumatism Research Centre), Stephan Schlickeiser (Char-
ité University Medicine), Carla Cendon (German Rheumatism Research Centre),
Sebastian Fröhler (Max-Delbrück Center for Molecular Medicine), Bärbel Felder
(DKFZ Heidelberg), Nina Gasparoni (Saarland University), Charles D Imbusch
(DKFZ Heidelberg), Barbara Hutter (DKFZ Heidelberg), Gideon Zipprich (DKFZ
Heidelberg), Yvonne Tauchmann (Charité University Medicine), Simon Reinke (
Berlin-Brandenburg Center for Regenerative Therapies), Georgi Wassilew (Charité
University Medicine), Ute Hoffmann (German Rheumatism Research Centre), An-
dreas S Richter (German Rheumatism Research Centre), 0lina Sieverling (DKFZ
Heidelberg), Hyun-Dong Chang (German Rheumatism Research Centre), Uta Syrbe
(Charité University Medicine), Ulrich Kalus (Charité University Medicine), Jür-
gen Eils (DKFZ Heidelberg), Benedikt Brors (DKFZ Heidelberg), Thomas Manke
(Max Planck Institute of Immunobiology and Epigenetics), Jürgen Ruland (Tech-
nical University Munich), Thomas Lengauer (Max Planck Institute for Informat-
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ics), Nikolaus Rajewsky (Max-Delbrück Center for Molecular Medicine), Wei Chen
(Max-Delbrück Center for Molecular Medicine), Jun Dong (German Rheumatism
Research Centre), Birgit Sawitzki (Charité University Medicine), Ho-Ryun Chung
(Max Plank Institute for Molecular Genetics), Philip Rosenstiel (Christian-Albrechts-
University), Marcel H Schulz (Saarland University, Göthe University Frankfurt),
Joachim L Schultze (University of Bonn), Andreas Radbruch (German Rheuma-
tism Research Centre), Jörn Walter (Saarland University), Alf Hamann (German
Rheumatism Research Centre) and Julia K Polansky (German Rheumatism Re-
search Centre, currently at Charité University Medicine).
The overall project was designed by Julia K Polansky, Jörn Walter, Alf Hamann

supported by Nina Gasparoni. Samples were prepared by Stefan Frischbutter, Ste-
fan Schlickeiser, Ulrich Kalus, Carla Cendon, Yvonne Tauchmann, Georgi Was-
silew, Simon Reinke, Uta Syrbe, Birgit Sawitzki, Jun Dong, Hyun-Dong Chang, Alf
Hamann and Julia K Polansky. NOMe-seq data considered within our Dynamite
approach has been generated by Giles Gasparoni, Nina Gasparoni and Jörn Walter.
It has been post-processed by Karl Nordström and Giles Gasparoni. RNA-seq data
has been generated by Sebastian Fröhler, Wei Chen and Charles D Imbusch. It
has been computationally processed by Anupam Sinha. The data was managed by
Bärbel Felder, Gideon Zipprich, Karl Nordström, Peter Ebert, Charles D Imbusch,
Barbara Hutter, Benedikt Brors and Jüergen Eils. FOXP1 knockout experiments
shown in Figure 4.6 were performed by Oliver Gorka and Jürgen Ruland.
Florian Schmidt designed the Dynamite approach as sketched in Figures 4.1

and 4.2. The classifier is based on a script for linear regression by Azim Dehghani
Amirabad. However, the script has been heavily rewritten for speedup, clarity and
stability. Also, an automated generation of Figures was added by Florian Schmidt.
To further simplify usage and interpretation of Dynamite, Florian Schmidt inte-
grated the classifier into the Tepic framework as a fully automated pipeline. Also,
together with Marcel H Schulz, he devised a strategy for improved interpretation of
the selected features (Figure 4.3). Further, Florian Schmidt evaluated the models
and generated the results shown in Figure 4.4 and 4.5.
Besides, Florian Schmidt suggested the cosine similarity as a measure to argue

for cell type (dis)similarity in context of the linearity of the differentiation path of
considered T-cell sub types. Fatemeh Behjati Ardakani came up with the idea of
boosting to generate a statistical significance for this result (data not shown in the
thesis).
Further details on author contributions covering parts of the manuscript that

are not essential for the work presented in this chapter can be found in the Cell
Immunity article [D+16e].

131





5
EPIC-DREM - Identification of key

regulators from time-series data

In this chapter, we illustrate our contributions to the article "Temporal enhancer
profiling of parallel lineages identifies AHR and GLIS1 as regulators
of mesenchymal multipotency" [GSo18], which was joint work with Deborah Gér-
ard and Lasse Sinkkonen from the University of Luxembourg. The manuscript is
used as a scaffold for this chapter.

5.1 Project description

5.1.1 Motivation and research objectives

The main research question in Gérard et al. [GSo18] was the elucidation of shared
regulatory factors involved in the differentiation of multipotent bone marrow stro-
mal progenitor cells towards either osteoblasts or bone marrow adipocytes. These
are so called mesenchymal cell types.
A better understanding of the differentiation path of these cell types is of great

(bio)medical interest for several reasons. Due to the common progenitor cells of os-
teoblasts and bone marrow adipocytes, there is a reciprocal balance in the number
of fully differentiated cells between the two cell types. This dependency might ex-
plain why a reinforced commitment of progenitors to differentiate to adipocytes was
associated with the inhibition of, for instance, bone healing [A+17a]. This obser-
vation has been made related to obesity and high age. The accurate and complete
differentiation of osteoblasts is not only important in recovering bone fractures and
osteoporosis. Additionally, hormones produced by osteoblasts carry out important
cellular functions, for instance, in the metabolism [L+07, RC14]. Furthermore, bone
marrow adipocytes have been shown to be an essential source of hormones responsi-
ble for metabolic well being such as the sensitivity to insulin concentration [C+14b].
These examples illustrate how important the balance between osteoblast and bone
marrow adipocyte differentiation is. In the following, we refer to bone marrow
adipocytes simply as adipocytes.

5.1.2 Generated data and used methods

To identify shared as well as unique regulators important for the (de)differentiation
of osteoblasts and bone marrow adipoctyes, time-series epigenomic (H3K27ac,
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H3K36me3, H3K4me3) and transcriptomic profiling using RNA-seq was performed
by our collaborators. In the profiling experiments, we investigated six distinct time
points spread over 15 days during the differentiation processes of multipotent bone
marrow stromal cell line cells (ST2) towards both osteoblasts as well as adipocytes.
Using TF-footprints called with the software HINT-BC[G+16b] on H3K27ac

data, we computed TFBS predictions and devised a new approach to use TF-gene
scores, computed at various time points, as input for the Dynamic Regulatory
Events Miner (Drem). The purpose of Drem is to identify essential regulatory
elements by associating regulatory information to temporal transcriptomic data
(c.f. Section 5.2). We refer to our novel approach as Epic-Drem. It is detailed in
Section 5.3. To simplify the interpretation of Epic-Drem predictions, we devised
a network visualization strategy to indicate the interplay between predicted factors
as well as the regulatory impact of individual TFs on their target genes.
Additionally, our coauthors identified super-enhancers (SEs) from H3K27ac data.

SEs are large genomics intervals with enhancer function. Differences in the activity
of super-enhancers over time have also been used to highlight putative regulatory
proteins. The identified SEs are merged across all analysed time points. By consid-
ering the activity of these merged SEs across different time points, dynamic activity
profiles of SE for both differentiation processes are generated. These profiles were
used to further prioritize potential transcriptional regulators which we identified
using Epic-Drem. Computational details on SE identification are provided in Sec-
tion B.3.3.

5.1.3 Results

Both the super-enhancer based identification of regulators as well as the Epic-
Drem analysis have highlighted FOXN1, AHR and GLIS1 as potential regulatory
factors. While AHR has been reported earlier to inhibit both osteoblast [W+19a]
and adipocyte [Ao98] differentiation, GLIS1 and FOXN1 have not been associated
with these differentiation trajectories before.
In the scope of Gérard et al., the regulatory function of AHR1 and GLIS1 was

experimentally validated using both over-expression and silencing of the correspond-
ing genes. The experimental findings are further described in Section 5.6. A more
detailed analysis of FOXN1 is subject to future work.

5.2 Dynamic Regulatory Events Miner (DREM)

Drem is a tool designed to combine time-series expression data with protein binding
data, to "infer an annotated global temporal map" [E+07, S+12b]. The global
temporal map has two key purposes. Firstly, it denotes the major transcriptional
regulatory events resulting in the measured expression patterns. Secondly, the map
points the user to the regulatory factors linked to these regulatory events.
Within Drem, regulatory events are modelled as bifurcation events. A bifurca-

tion event refers to a split point of gene-expression development that is a group of
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genes that shares similar expression levels until some time point ts where they split
and follow different paths. Exactly at ts, the bifurcation event happens. For several
organisms, e.g. escherichia coli, a multi-layer hierarchical model of gene regulation
has been proposed. The bifurcation events can be seen as a representation of this
structure [B+05a, E+07]. A bifurcation event is not limited to be a binary split,
also splits into more branches are possible.
Overall, Drem performs the following tasks:

• Identify bifurcation events in time-series transcriptomic data.

• Link TFs to bifurcation events.

• Assign genes to paths in a temporal map, which denotes a gene’s expression
development over time.

• Present this information in a global temporal map, exemplified in Figure 5.1a.

To fulfill these tasks, Drem uses an IOHMM, an extension of classical HMMs,
introduced in Section 2.2.5. In the original version of Drem, either ChIP-chip
experiments or motif data are used as the extra input. The output used in the
models is time-series expression data. The hidden states are linked to the individual
time points. Gaussian distributions model gene-expression for genes linked to the
time point. An important change to this was made with Drem2.0 [E+07], enabling
the use of dynamic, time point-specific, regulatory information in the input.
By constraining the transitions between the hidden states, a tree structure is

enforced that allows the bifurcation events to be modeled. Drem investigates many
feasible tree structures. It selects the best one in a cross-validation procedure
to optimize parameters. Specifically, for each tree structure, a logistic regression
classifier (Section 2.2.2) is trained for each hidden state. The classifier is used to
map the provided input to the individual hidden states and maps it to its transition
probabilities (Figure 5.1b).
The global dynamic map is computed from the transitions that are inferred be-

tween the hidden states. Finally, for the best model, each gene is assigned to a
distinct path within the global map according to its time-series expression informa-
tion as well as the regulatory information used in the input. Subsequently, Drem
computes association scores for TFs at bifurcation events utilizing a hypergeometric
enrichment test [B+05a].

Throughout this thesis, whenever we refer to Drem, we refer to Drem2.0, specif-
ically to version 2.0.3. As mentioned above, Drem2.0 allows to use varying reg-
ulatory input features at each time point. Moreover, the included set of regula-
tory features in Drem2.0 has been extended compared to the original version and
Drem2.0 accepts continuous regulatory scores as input. Also, the expression of
TFs can be incorporated into the model.
In the past, Drem became an established tool to analyse regulatory networks

from time-series transcriptomic data in several species [C+12c, S+16c].
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(a) (b)

Figure 5.1: (a) Illustration of three temporal paths of gene-expression changes.
Different colors encode different groups of genes. Until time 1h, all
genes follow one trajectory until they split. While the expression of
the genes labeled in red decreases until it stays constant at time 2h,
the genes marked in blue and pink gain expression until time 2h and
then are split again. Here, the expression of pink genes remains con-
stant while the expression of blue genes drops again. Drem attempts
to pinpoint such split-events. (b) Illustration of the logistic regression
classifiers (marked with a "?") learned at the split points during the
fitting procedure of the IOHMM model. Adapted from Figure 1 of
Ernst et al. [B+05a] obtained under the Creative Commons Attribu-
tion License.

5.3 EPIC-DREM

5.3.1 Workflow of EPIC-DREM

In Epic-Drem we replace the static set of regulatory interactions, which are in-
cluded in Drem by predicted, time point-specific, regulatory scores. To do so, we
suggested a novel approach to compute time point-specific TFBS predictions in TF
footprints. To compute a p-value for the significance of TF affinity values for each
TF at each time point, a randomization strategy, which accounts for GC-content
and footprint length, is utilized. Time point-specific TFBS predictions computed in
this way can be used as input for Drem to infer a temporal map of gene-expression
development and regulation (Figure 5.2).

5.3.2 Method description

Drem2.0 supports continuous scores for TF-gene relationships. However, we have
encountered not only issues in the computation of results using the continuous scores
(both in terms of time and memory constraints) but also in the interpretation of
the resulting models, simply because the feature space of the considered regulatory
factors is very large.
Therefore, we developed a new Tepic module that allows to compute a TF

specific affinity cut-off to derive a binary measure of TF binding from TF affinities.
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Figure 5.2: (i) From temporal epigenomic data, e.g. chromatin accessibility data,
putative TFBS are computed (ii) through either peak or footprint
calling. (iii) Using a novel Tepic sub-module, TF- and time point-
specific affinity thresholds are calculated to obtain binary TF affinities
per candidate TFBS and time point. (iv) Using Tepic, the binary
TF affinities are aggregated into binary, time point-specific TF-gene
scores. (v) The binary time point-specific TF-gene scores together are
used as input. Drem generates a temporal map of gene-expression
development and identifies related regulators. (vi) In the example,
Drem highlights two gene sets, visualized by the red and yellow lines,
respectively. They represent two distinct expression patterns, which
are associated with the TFs 1 and 2. At the next time point, Drem
predicts the formation of four sub-groups. The functionality to com-
pute TFBS predictions as input to Epic-Drem is part of Tepic
2.0 [S+18b]. Figure based on Figure 2a from Gérard et al. [GSo18]
(open access).

This is achieved by comparing TF affinities computed on the actual candidate sites
to TF affinities computed on a set of random sequences that are designed to mirror
both the GC content and length distribution of the true candidate binding sites.
Formally, let ar,t denote the affinity for TF t computed in the random region

r ∈ R, where R is the set of all random regions and |r| is the genomic length of
r. Analogously, let ao,t denote the affinity for TF t computed in the actual region
o ∈ O, where O is the set of all true candidate TFBS and |o| is the genomic length of
o. Similar to the normalized TF-gene scores introduced in Chapter 3, we compute
length normalized TF affinities a′r,t and a′o,t for TF t in each region r ∈ R and
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o ∈ O, respectively:

a′r,t =
ar,t
|r|

,∀r ∈ R, (5.1)

a′o,t =
ao,t
|o|

,∀o ∈ O. (5.2)

Using the distribution of a′r,t across all r ∈ R, we calculate a threshold zt for TF
affinities according to a p-value cut-off of c by considering the 1− c quantile of a′r,t
(∀r ∈ R) to determine the value of zt. With respect to zt we can calculate a binary
affinity value bo,t indicating whether TF t binds to region o or not:

bo,t =

{
1, a′o,t > zt,

0, else.
(5.3)

The binary TF affinity scores bo,t are used to compute a binary TF-gene link ag,t
for gene g and TF t:

ag,t =

{
1,∃ o ∈ Og,w : bot = 1,

0, else.
(5.4)

In this application, Og,w refers to all footprint regions that occur within a window
of size w, which is centered at the TSS of gene g. Together with time-series gene-
expression data, binary TF-gene links can be used as input to Drem.

5.3.3 Validation of TF-specific affinity cut-offs using ChIP-seq data

In order to ensure that the affinity thresholding introduced in the previous section
leads to a good distinction between bound and unbound TFBSs, we compared the
predicted to experimentally determined TFBSs. In this comparison, ENCODE TF
ChIP-seq data for K562, HepG2 and GM12878 as well as H3K27ac data is used
(see Section B.3 for details).
Candidate TFBS were determined by footprint calling with HINT-BC [G+16b].

TF affinities were computed both in the footprints as well as in the set of random
sequences that reflect the characteristics of the footprint regions in terms of length
and CG content. The script to compute the random sequences was provided by
Peter Ebert (MPI for Informatics, Saarland University).
To see how the binarization relates to in vivo TF-binding data, we computed TF

affinity thresholds for several p-values: 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4 and
0.5. Affinities that are smaller than the selected threshold zt are set to zero, the
remaining ones are assigned to one. We assess the accuracy of the discretization
using a peak-centric measure in terms of precision and recall. The peak-centric
performance measure has been suggested before in Cuellar-Partida et al. [CP+12]
and has also been used in Schmidt et al. [S+18b]. Here,"the positive set of the
gold standard is comprised of all ChIP-seq peaks that contain a motif predicted by
Fimo [G+11], the negative set contains all remaining ChIP-seq peaks. A prediction
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is counting as a true positive (TP) if it overlaps the positive set, it counts as a
false positive (FP) it if overlaps the negative set. The number of false negatives
(FN) is the number of all entries in the positive set that are not overlapped by any
prediction" [GSo18]. We compute precision and recall as introduced in Section 2.2.2.
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Figure 5.3: This figure shows mean precision and recall computed in a TF ChIP-
seq comparison across 36 TFs in HepG2, 18 TFs in K562 and 24 TFs
in GM12878 for several p-values to assess the performance of the TF
affinity binarization. Figure following Supplementary Figure 2a from
Gérard et al. [GSo18] (open access).

As indicated in Figure 5.3, choosing a stricter p-value threshold improves preci-
sion at the cost of lowering recall. Because 0.05 appears to achieve an acceptable
trade-off between precision and recall, we used this p-value throughout our work in
Gérard et al. [GSo18].

5.3.4 Considered related methods

We are comparing Epic-Drem against three related approaches: One approach is
to use the static regulatory information included in Drem2.0 instead of predicted
point-specific TFBS predictions.
Another strategy, which can be seen as a baseline is to use predicted TFBS

within the promoter region of all genes. To do so, we computed TF affinities for all
genes within 2kb windows, which are centered at the 5′ TSS of the genes and apply
the same binarization approach as explained above for Epic-Drem. We term this
approach Drem-Trap. It represents a class of methods that is solely based on
sequence and annotation and does not consider dynamic changes in the chromatin.
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One more sanity test of Epic-Drem is a permutation experiment of the actual
Epic-Drem input matrix. Specifically, we permuted the columns 1 (TFs), 2 (target
genes) and 4 (time points) of the TF-gene score input matrix. By this permutation,
the number of TFs, the number of target genes and the number of time points listed
in the matrix are not changed. However, the biological signal of the associations is
lost. We refer to this approach as Random.

5.3.5 Aggregation of DREM enrichment scores at split nodes

Drem utilizes a hypergeometric distribution to compute the so called split-score.
It measures the association of a TF to genes in a distinct path A at split S. The
lower the value of the split score, the stronger is the association between the TF
and the genes. The split score for TF t is computed according to

min(cS ,nA)∑
i=cA

(
cS
i

)(
nS−cS
nA−i

)(
nS
nA

) . (5.5)

Here cA is the total number of genes regulated through TF t in path A, cS is the
number of genes in split S regulated by TF t, nS is the total number of genes in
path A entering split S and nA is the total number of genes in path A leaving S.

In our application, we perform many tests per split, at most as many as we have
TFs in Tepic’s TF motif database. Therefore, the split-scores are corrected for
multiple testing using Bonferroni correction (Section 2.2.6).
The Bonferroni adjusted Drem split-scores are −log2 transformed and visualized

in violin plots to allow a easy comparison between enrichment scores for various
inputs. In the remainder of the manuscript, we refer to these scores as Drem split
score. The higher the value of the Drem split score the stronger is the association
of the TFs to its target genes across the split points.
While the Drem split scores provide insights on the importance of regulators at

a distinct bifurcation event, we also want to find a ranking of all TFs that belong
to bifurcation events at a distinct time point. To do so, we aggregate individual
p-values following Fisher’s method:

Xt,n = −2
s∑
j=1

log(pt,j,n). (5.6)

Here, Xt,n refers to the combined score for TF t at time point n, j refers to the
current split, s is the number of splits at time point n and pt,j,n refers to the split
score for TF t in split j at time point n. Sorting Xt,n according to time point n
provides a ranking of the most influential TFs per time point.

5.3.6 Generation of TF-TF interaction networks

To improve the interpretability of Epic-Drem results, we generated TF-TF inter-
action networks at individual split points in the global temporal map. At a split of
interest, we obtain the top 25 regulators t ∈ T , ranked by the Drem split score.
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For each regulator t ∈ T , we determine its target genes Gt considering any gene g
to be a target of TF t, if and only if ag,t = 1. To maintain the networks readable and
to avoid them to be visually overcrowded, only interactions among the top regulators
are shown. For a directed edge from t to g in the TF-TF network to be present, it is
required that g ∈ T . For each TF t, we only show the top 10 interactions, ranked by
the numerical affinity values across all a′g,t. Furthermore, the diameter of each node
in the network is scaled according to the total number of target genes |Gt| of a TF
t ∈ T . We considered a set of several intervals: {[0, 2000], [2001, 4000], [4001, 6000],
[6001, 8000], [8001, 10000], [10000,∞[}. Thereby, the importance of the regulators
can be judged also aside from the top TFs for the depicted split. Expression changes
of TFs compared to time point zero of the time-series data are color coded: orange
indicates down-regulation, blue indicates up-regulation. Networks visualization is
performed with graphviz and the neato layout algorithm [GKN05].

5.4 A data driven approach to investigate mesenchymal
multipotency

5.4.1 Experimental setup and preliminary analysis

Our collaborators performed epigenomic and transcriptomic profiling for the differ-
entiation of mouse multipotent bone marrow stromal ST2 cell line cells to both
adipocytes and osteoblasts. RNA-seq and ChIP-seq experiments screening for
H3K4me3, H3K27ac and H3K36me3 were performed at six different time points
during the differentiation which lasted for 15 days: day 0, 1, 3, 5, 9 and 15. Three
replicates were generated at each time point. The successful differentiation of ST2
cells to adipocytes and osteoblasts was verified via microscopic inspection with
regard to cellular morphology as well as using osteoblast and adipocyte specific
marker genes [GSo18]. A PCA performed on the obtained RNA-seq data illustrates
that two distinct lineages are formed (Figure 5.4).
In total, our collaborators identified 5156 significantly differentially expressed

genes using DEseq2 [L+14c] across all time points in adipocytes and 2072 signifi-
cantly differentially expressed genes in osteoblasts. A gene counts as differentially
expressed if it passes an FDR threshold of 0.05 and has a log2 fold change of at least
1. Of all these genes 1401 are affected in both lineages, all be it often in lineage
specific ways, i.e. they are up-regulated in one lineage, but down-regulated in the
other one. We used Epic-Drem as a data driven approach to identify regulators
linked to these differential gene-expression patterns. Experimental details and an
overview of the data generated in the scope of this project is listed in Section B.3.

5.4.2 Application of EPIC-DREM

Time point-specific regulatory input

As input for Epic-Drem, we used TF footprints in the H3K27ac data called with
HINT-BC [G+16b]) (version 0.9.9). Next, we computed binary TF-gene scores (c.f.
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Figure 5.4: PCA on the time-series gene-expression data. Different cell types are
indicated by the shape of the points, their color indicates different
time points. Replicates of identical cell types and time points clus-
ter together describing the differentiation of the cells in PCA space.
Analysis performed by D Gérard. Figure following Figure 1b from
Gérard et al. [GSo18] (open access).
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Section 5.3.2) exploiting the H3K27ac footprints as candidate TFBS. We applied
a p-value threshold of 0.05 to determine binary TF affinity values and considered
a window of size 50kb centered at the 5′ TSS of genes to aggregate the affinities
to TF-gene scores. In addition to all raw data (Section B.3), the TF-gene score
matrices are available online at datadryad.org using doi:10.5061/dryad.r32t3.
Here, we explicitly decided to use H3K27ac footprints as these would rather be

linked to enhancers than the H3K4me3 footprints, which are more closely linked to
active promoters. As cell type specific regulation is typically mediated by enhancers,
we focused our analysis on these regions. In total, we obtained TF-gene scores for
687 TF motifs specific for Mus musculus included in the Tepic repository using
the mouse genome version mm10 (GRCm38).

Output of EPIC-DREM

Applying Epic-Drem to our time-series data sets resulted in two temporal maps
for adipocyte and osteoblast differentiation, respectively. They are shown in Fig-
ure 5.5a and 5.5b. As explained in Section 5.2, Drem clusters co-expressed genes
across different time points, infers bifurcation events indicating a branching of gene-
expression development and links transcriptional regulators to these split points.
Because the total gene regulatory networks are consisting of several thousands nodes
and edges, they can not be visualized completely. Therefore, we show only a refined
set of TF-TF networks illustrating the top 25 TFs associated with distinct paths in
the temporal maps. We refer the reader to the Supplement of Gérard et al. [GSo18]
for a complete list of all regulators at each path. The Epic-Drem results are also
available online at datadryad.org under doi:10.5061/dryad.r32t3.

The diameter of nodes in the TF-TF networks illustrates that TFs involved in
regulatory events right after the differentiation initiation are associated with the
highest number of predicted target genes. An extreme case is the TF HES1, with
more than 10, 000 predicted targets. Interestingly, HES1 is a known regulator for
both adipogenesis and osteoblastogenesis [Far06, H+04].

A detailed investigation of the shown cell type specific TF-TF networks revealed
that many of the found top TFs are established activators such as KLF5, CEBPA
and TGIF2 as well as known repressors of adipogenesis, for instance, HES1, NR4A3
and FOXC1 [Far06, H+08, O+14, C+08]. In case of osteoblastogenesis, HES1,
TEAD2 and BHLHE40 are examples for known transcriptional regulators [H+04,
H+14a, I+06].

Suggested shared regulators between adipo- and osteogenesis

The major objective of studying two parallel lineages was the identification of com-
mon regulatory factors that could mediate the (de)differentiation of both adipocytes
and osteoblasts. Therefore, we merged the Drem split scores obtained from all bi-
furcation points per time point and derived separate lists for the top 20 TFs that
have the strongest associations at each time point in both lineages (Figure 5.6).
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(b)

(a)

Figure 5.5: Temporal maps of gene-expression development derived by Epic-
Drem for the differentiation of adipocytes and osteoblasts, shown
in (a) and (b), respectively. At split points, Drem maps TFs, ac-
cording to their time point-specific binding scores to gene-expression
changes occurring over time. Thousands of regulatory interactions
are derived for each unique path in the map, enabling us to compute
TF-TF networks that represent the interplay of the regulatory factors.
Here, TF-TF networks for the top 25 TFs are shown for two selected
paths in osteoblast differentiation as well as for three selected paths
in adipocyte differentiation. Whether the expression of a TF is up-
or down-regulated compared to its expression in ST2 cells is indicated
by a color code. Blue represents up-regulation whereas orange repre-
sents down-regulation. Figure based on Figure 3ab from Gérard et al.
[GSo18] (open access).
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Figure 5.6: For both adipocytes and osteoblasts rankings of the top 20 TFs per
time point are assembled by aggregating all predictions from the in-
dividual splits. The overlap between lineage-specific top TFs at each
time point as well as the shared top TFs are shown in the Venn dia-
grams. Figure based on Figure 3c from Gérard et al. [GSo18] (open
access).

We overlapped the top 20 TFs at each time point to unravel how many and
which TFs are shared among the top ones. As expected, we found the highest
number of shared regulatory factors in the beginning of the differentiation, where
9 out of 20 TFs are present in both osteoblasts and adipocytes (Figure 5.6). It is
likely that TFs that are common in both lineages at the early stage are essential for
maintaining and orchestrating the multipotent state of the ST2 cells. Therefore,
these TFs might act as repressors of the differentiation process.
In fact, AHR::ARNT, E2F4, GLIS1, HIF1A and TEAD2 have been identified to

be be involved in gene regulation within different stem cell types [G+17a, S+11a,
M+11, L+17a, L+17d, F+10a, T+11]. Another interesting factors is FOXN1, which
is a shared TF at two time points and is also highly connected in TF-TF networks.
However, the factor seems to carry out opposing roles in the two lineages, as it is
highly expressed in osteoblasts, but down-regulated in adipocytes [GSo18].

Quality assessment of Epic-Drem predictions

To ensure that Epic-Drem’s predictions are reliable, we compare Epic-Drem to
alternative methods, as described in Section 5.3.4. Specifically, we use ChIP-seq
datasets of TFBS as provided in DREM2.0 as input. These are not time point-
specific. Also, we use Drem-Trap, where TFBS predictions are computed in
2kb windows centered at the 5′TSSs of all genes, neglecting any epigenomic data.
Further, we use a randomized version of the actual Epic-Drem feature matrix.

A first indication for the reliability of Epic-Drem is that the Drem split scores,
which are explained in Section 5.3.5, are overall higher for Epic-Drem as compared
to the other tested methods (Figure 5.7). This suggests that TFs prioritized by
Epic-Drem have a superior explanatory power for gene-expression dynamics than
those inferred by the other methods.
To test the reliability of Epic-Drem in yet another way, we combined the top

15 TFs with the highest Drem split scores from each split at day 0 into lists of po-
tential master regulators suggested for both lineages and each prediction approach
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Figure 5.7: The distributions of the computed Drem split scores per method and
lineage are depicted. Epic-Drem typically obtains the highest scores
at most split points, indicating a superior explanatory power of gene-
expression differences through Epic-Drem. Figure based on Figure
2c from Gérard et al. [GSo18] (open access).

(see Section 5.3.5 for details on the aggregation). We examined the literature for
evidence indicating that the predicted TFs in these lists have been previously report
to be involved in adipogenesis or osteoblastogenesis. The complete list showing all
references can be found in the Supplement of Gérard et al. [GSo18].

As shown in Figure 5.8, only 20%− 30% of the identified factors using the Ran-
dom scores are mentioned in the literature to be related to osteogenesis or adipo-
genesis. This percentage increases to 53%− 59% using Drem-Trap or Drem2.0.
Epic-Drem yields an even better precision: 92% of TFs linked to adipogenesis and
74% of TFs linked to osteoblastogenesis are known in the literature [GSo18].

Both evaluation approaches indicate that considering the epigenomic landscape
at different time points indeed improves the prediction results that can be obtained
with Drem. This also strengthens the findings of our application of Epic-Drem
in analyzing the differentiation of adipocytes and osteoblasts.

5.5 Mapping of super-enhancers to their targets
suggests regulatory factors as well

To complement our analysis with Epic-Drem, our collaborators generated super-
enhancer (SE) profiles using the generated H3K27ac acetylation data. Methodolog-
ical details on SE identification are provided in Section B.3. They hypothesized that
key transcriptional regulators of the studied differentiation processes would also be
under strong regulatory control, potentially by temporal changes in the activity of
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Figure 5.8: Benchmarking of Drem2.0, Epic-Drem, Drem-Trap and the ran-
domized Epic-Drem input matrix using regulators of adipo- or os-
teoblastogenesis, respectively, identified across all time points of the
differentiation. We consider the top 15 TFs sorted by their Drem score
across all bifurcation events in the initial split node at day 0. For all
identified TFs, we conduct a literature search to check for evidence
suggesting a function of the TFs in osteoblastogenesis, adipogenesis
or in maintaining multipotency. The fraction of the suggested TFs
that are backed up by literature is shown for each method and lineage
separately. Further, the total number of identified top TFs is pro-
vided at the top of the bars. Figure following Figure 2b from Gérard
et al. [GSo18] (open access).

SEs. In their analysis, a SE must be a region of at least 10kb that is enriched for
H3K27ac signal.
To quantify changes in SE signal across time, overlapping SEs are merged to form

one region capturing the entire genomic space covered by the SEs at different time
points. To describe changes in the regulatory activity of SEs, H3K27ac ChIP-seq
read counts are normalized to day 0. A SE is declared to be dynamic, if it shows a
log2 fold change ≥ 1 in at least one time point. Applying this criterion resulted in a
list of 120 and 79 dynamic SEs for adipocytes and osteoblasts, respectively [GSo18].
These SEs are assigned to putative target genes by calculating the Pearson correla-
tion between the H3K37ac signal within the SEs across replicates and time points
to the gene-expression of all genes located within 500kb up- and downstream of
the individual SEs. As regulatory interactions are typically limited to topological
associated domains, this is a reasonable distance threshold. Following this strategy
151 genes were identified.
Importantly, the SE analysis identified the genes Ahr, Glis1 and Hoxa10 to be
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under SE control in both adipo- and osteoblastogenesis. Interestingly, Ahr was
linked to four distinct SEs, more than any other regulatory factor in the SE analysis.
Especially AHR and GLIS1 are promising candidates as they are suggested to be
top regulators by Epic-Drem, occurring in the TF-TF networks at the early stages
of differentiation, with GLIS1 occurring also within the top 25 regulators at day 3
of adipogenesis [GSo18].
The SE analysis together with the transcriptomics data suggested that Ahr is

strictly repressed during adipogenesis from day 1 on wards, while the repression
in osteoblastogenesis is more linear during the differentiation. Similar observations
are made for Glis1 although the expression pattern of Glis1 in adipocytes shows an
induction at day 5 [GSo18]. These findings indicate that both AHR and GLIS1 act
as gatekeepers of mesenchymal multipotency, which might explain their repression
during differentiation. Due to the strong evidence for a biological role of AHR
and GLIS1 in both adipo- and osteoblastogenesis, our collaborators decided to
validated our predictions for AHR and GLIS1 in the lab using over-expression as
well as knock-down experiments.

5.6 Experimental validation of candidate regulators

5.6.1 Over-expression experiments of Ahr and Glis1

Experimental setup

To test whether omitting the down-regulation of Ahr or Glis1 upon differentiation
prevents successful differentiation, our collaborators generated stable doxycyclin
inducible ST2 cell lines that are able to over-express Ahr or Glis1 (ST2-TetOn-
AHR and ST2-TetOn-GLIS1 cells, see Section B.3 for details).
Inducible CopGFP cells that is cells expressing GFP upon doxycyclin treatment,

were generated (ST2-TetOn-GFP). CopGFP expression was confirmed using fluo-
rescence microscopy, after a 24h treatment of the generated ST2-TetOn-GFP cell
lines with doxycycline (Dox+). Thereby the inducibility of the cell lines was veri-
fied, too.
Upon the positive control experiment, all generated cell lines were differentiated

towards either adipocytes or osteoblasts in two different conditions: Either in pres-
ence (Dox+) or in absence (Dox-) of doxycycline. To study the impact of the
over-expression of the factors, RNA and protein samples were extracted at day 5
and day 9 of differentiation.

The successful induction of Ahr and Glis1 expression is shown using RT-qPCR
and, in case of AHR, also with western blotting. Western blotting is not performed
for GLIS1 due to the absence of a specific antibody. We note that for both TFs
slightly elevated expression levels were also detected in the Dox- conditions, which
argues for a baseline activity of the Tet-On 3G promoter in the absence of doxycy-
cline as well. However, the induction in Dox- is several fold less compared to Dox+
conditions [GSo18].
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Impact on adipocytes

The consequences of the over-expression of AHR and GLIS1 on adipocyte differen-
tiation are assessed in two ways. Firstly, our collaborators have performed Oil Red
O staining of lipid accumulation on day 5 and day 9 of adipogenesis.
A faint red staining in ST2-TetOn-GFP control cells at day 5 shows a minor

accumulation of lipids. However, such staining is neither observed for ST2-TetOn-
AHR nor ST2-TetOn-GLIS1 at day 5. At day 9, the control cells accumulated many
lipids, resulting in a strong red staining in both Dox+ and Dox- setting. In contrast
to that, AHR expressing cells show no lipid accumulation at all in Dox+ setting
and only accumulation of lipids in the Dox- setting (Figure 5.9a).
For GLIS1 expressing cells, the behavior after day 5 could not be screened by

Oil Red O staining because cells expressing GLIS1 are loosing their adherence with
progressing differentiation [GSo18].

(a) (b)

Figure 5.9: (a) Oil Red O staining at day 9 of adipocyte differentiation. In the
AHR over-expressing Dox+ sample, no staining can be observed. (b)
Statistical significance for RT-qPCR measurements of Lpl expression
is assessed by a comparison to the Lpl expression in the undifferenti-
ated ST2-TetOn-GFP cells by a one sample t-test. ∗ = p < 0.05, ∗∗ =
p < 0.01 and ∗ ∗ ∗ = p < 0.001. Data points represent the mean of 3
independent stable cell lines. Figure following Figure 6de from Gérard
et al. [GSo18] (open access).

Secondly, RT-qPCR of the known adipocyte marker gene Lpl was conducted.
The RT-qPCR results, depicted in Figure 5.9b support the Oil Red O staining:
While in ST2-TetOn-GFP cells Lpl is up-regulated by day 5 and remains constantly
high till day 9, independent of doxycycline. Upon Ahr over-expression in Dox+
cells, no additional induction in ST2-TetOn-Ahr cells was observed. The same is
observed for Glis1 over-expressing cells. Taken together these results indicate an
unsuccessful differentiation towards adipocytes upon the over-expression of either
Ahr or Glis1 [GSo18].
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Impact on osteoblasts

The impact of Ahr over-expression on osteoblastogenesis can not be clearly assessed,
because doxycycline caused an increase in the expression of the marker gene Sp7,
suggesting that doxycycline itself is involved in osteoblastogenesis, which has also
been reported in the literature [W+99, G+17c]. Nevertheless, Glis1 over-expression

Figure 5.10: Statistical significance for RT-qPCR measurements of Sp7 is assessed
by a comparison to its expression in undifferentiated ST2-TetOn-
GFP cells by a one sample t-test. ∗ = p < 0.05, ∗∗ = p < 0.01 and
∗ ∗ ∗ = p < 0.001. Data points are the mean of 3 samples from
independent stable cell lines. Figure based on Figure 6f from Gérard
et al. [GSo18].

in ST2-TetOn-GLIS1 cells leads to a complete loss of Sp7 in day 5 in Dox+ con-
dition, suggesting that Glis1 expression prevents osteoblast differentiation (Fig-
ure 5.10). Because, Glis1 over-expressing cells undergo increased rates of cell death
especially in osteoblastogenesis, data for day 9 could not be collected [GSo18].

5.6.2 Silencing

Our collaborators have performed a knock-down of endogenous Ahr and Glis1
in ST2. To confirm a successful differentiation, the expression of lineage-specific
marker genes (Adipocytes: Cebpa, Pparg, Lpl; Osteoblasts: Runx2, SP7, Bglap)
was tested (Figure 5.11a). For Ahr a knock-down of 50% is shown for mRNA as well
as protein, while the mRNA reduction of Glis1 is around 30%. Due to the lack of
a GLIS1 specific antibody, the reduction of the protein can not be measured. Nev-
ertheless, GLIS1 knock-down leads to a significant induction of the marker genes
Cebpa, Lpl and Bglap expression, while AHR knock-down affects the Lpl marker
gene, consistent with our results from the over-expression experiments. These find-
ings indicate that both AHR and GLIS1 are involved in maintaining the multipotent
state of ST2 cells [GSo18].
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(a)

(b) (c)

Figure 5.11: Validation silencing: (a) The y-axis shows the relative expression of
marker genes for adipocyte and osteoblast differentiation upon Ahr
or Glis1 knock-down in ST2 cells. Statistical significance for RT-
qPCR measurements of knock-down cells against cells transfected
with siControls was determined by a two-tailed Student’s t-test:
∗ = p < 0.05, ∗∗ = p < 0.01 and ∗ ∗ ∗ = p < 0.001. Data points
represent the mean of 3 independent samples from stable cell lines.
(b) The cumulative distribution of the log2 fold change upon the de-
pletion of AHR is shown separately for all expressed genes, all AHR
target genes predicted by Epic-Drem as well as for the top 200 pre-
dicted AHR target genes ranked by AHR affinities. A Kolmogorov-
Smirnov test was used to assess the significance of the fold changes.
(c) The relative expression of Glis1 mRNA upon Ahr knock-down
is shown for ST2 cells, cells differentiating to adipocytes and cells
differentiating to osteoblasts. Figure following Figures 7a, 7d and 7e
from Gérard et al. [GSo18] (open access).

Because the Ahr knock-down is more robust than the Glis1 knock-down, we
continue our analysis with Ahr knock-down only. To assess whether the endogenous
activity of AHR is related to keep ST2 cells in their multipotent state, Ahr was
knocked-down in ST2 cells. Those have been differentiated towards both osteoblasts
and adipocytes. Gene-expression was measured two days after the knock-down
using RNA-seq.
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We used the Ahr knock-down information to further validate Epic-Drem’s pre-
dictions. That is, we tested whether the depletion of AHR had an impact on the
targets of AHR predicted by Epic-Drem predicted AHR targets at the correspond-
ing time point were indeed affected by depletion of AHR [GSo18].
Figure 5.11b illustrates that the predicted AHR targets are significantly more

affected by the AHR knock-down than all genes on average for both adipogenesis
and osteoblastogenesis. This holds especially for the genes with the highest TF
affinity scores for AHR at day 1 of adipogenesis, as those genes are clearly up-
regulated by the knock-down. This is indicated by a shift to the right in the
cumulative distribution plot. These results stress the reliability of Epic-Drem’s
predictions and further strengthen the role of AHR as a repressor. Furthermore,
the TF-TF networks shown in Figure 5.5 states that GLIS1 is regulated by AHR
at day 0 during early adipogenesis. Via RT-qPCR, we test this prediction and
show a significant change in Glis1 expression upon AHR depletion in adipocytes
as well as in osteoblasts (Figure 5.11c), which further supports the predictions of
Epic-Drem [GSo18].

5.6.3 Conclusions made for mesenchymal differentiation

Taken together, the experimental results support a role of AHR and GLIS1 as
likely "guardians of mesenchymal multipotency" [GSo18]. Importantly the wet-lab
experiments validate not only the general prediction of Epic-Drem that both AHR
and GLIS1 act as important regulatory factors, but also showed that even detailed
aspects of our predictions are correct, e.g. the target genes of AHR.

5.7 Interactive visualization of dynamic regulatory
networks (iDREM)

During the revision of our manuscript, a successor of the original Drem method
called iDrem [D+18] has been published. Their new method attempts to integrate
more datasets then the original Drem approach such as time-series proteomics and
epigenomics data. Another interesting feature is the possibility to superimpose
single-cell RNA-seq data to the temporal maps generated from bulk data.
A major difference between iDrem and Epic-Drem is how the additional input

information is incorporated into the model. In iDrem proteomics data can be used
to model the activity of TFs that is TF activity acts as a prior for the static regu-
latory information included in Drem and can thus prioritize highly active TFs and
at the same time neglect inactive TFs. Epigenomics data such as DNA methylation
or HM ChIP-seq data is incorporated into the model in the same way.
In contrast to that, in Epic-Drem we consider time point-specific regulatory

predictions, which is a conceptually different approach as no ChIP-seq data is used
and only regulatory sites that are most likely active are considered at all. An
advantage of Epic-Drem compared to iDrem is that more regulatory factors can
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be included in the model and that more species can be considered, because the
build-in set of regulators is no limiting factor.
Overall, the simultaneous development of Epic-Drem and iDrem irrevocably

indicates the need for novel approaches to integrate both time-series transcriptomics
and epigenomics data to gain better insights on transcriptional regulation.

5.8 Contributions of all researchers involved in the
described project

The following people contributed to the work presented in this Chapter: Debo-
rah Gérard (University of Luxembourg), Florian Schmidt (Saarland University),
Aurélien Ginolhac (University of Luxembourg), Martine Schmitz (University of
Luxembourg), Rasi Halder (University of Luxembourg), Peter Ebert (MPI Inf, cur-
rently at Saarland Univeristy), Marcel H Schulz (Saarland Univeristy, currently at
Göthe University Frankfurt), Thomas Sauter (University of Luxembourg) and Lasse
Sinkkonen (University of Luxembourg).
The overall project was designed by Deborah Gérard, Thomas Sauter and Lasse

Sinkkonen. Deborah Gérard and Aurélien Ginolhac performed the RNA-seq and
ChIP-seq analysis. Martine Schmitz and Deborah Gérard performed western blot-
ting. The knock-down experiments were performed by Rasi Halder. All other wet-
lab experiments as well as bioinformatics data preprocessing such as alignment,
peak and footprint calling as well as initial analysis was performed by Deborah
Gérard (Figures 5.4, 5.6, 5.9-5.11). Besides, Deborah Gérard performed the SE
identification and analysis advised by Marcel H Schulz and Lasse Sinkkonen.
The Epic-Drem approach, as depicted in Figure 5.2, was developed jointly by

Marcel H Schulz and Florian Schmidt. Peter Ebert contributed a script to generate
random DNA sequences given a template set. The regions provided by that tool
are used in an extension of TEPIC written by Florian Schmidt to generate binary
TF binding scores (Figure 5.3). Florian Schmidt computed TEPIC predictions for
all considered samples and time points, generated TF feature matrices and used
them to run Drem. A flexible python script to generate regulatory networks has
been written by Florian Schmidt as well (Figure 5.5). Besides, Florian Schmidt
performed all benchmark experiments of the Epic-Drem approach (Figures 5.7
and 5.8).
The main manuscript was written by Lasse Sinkkonen, supported by Deborah

Gérard, Florian Schmidt and Marcel Schulz.
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6
Same same but different - Diversity of

chromatin accessibility assays

The work presented here is based on the article by Nordström et al. "Unique and
assay specific features of NOMe-seq, ATAC-seq and DNaseI-seq data" pub-
lished in the journal Nucleic Acids Research [N+19].

6.1 Motivation and research objectives

In Chapters 3 and 4, we have seen how chromatin accessibility data can be used in
various applications to assess the regulatory activity of genomic regions and to pre-
dict TFBS. In Section 2.1.10, we introduced three different assays to identify nucleo-
some depleted regions (NDR) in a cell: DNaseI-seq, NOMe-seq and ATAC-seq. The
first two, DNaseI-seq and NOMe-seq, have been used in Chapters 3 and 4 already.
Due to the utmost importance of chromatin accessibility assays in understanding
gene regulation and functional annotations, we perform a systematic comparison of
DNaseI-seq, NOMe-seq and ATAC-seq by generating chromatin accessibility profiles
with all methods for identical samples and applying joint bioinformatics analysis.
In light of upcoming single-cell applications, especially of ATAC-seq [C+18a], it

is important to characterise potential biases of the assays to avoid a wrong interpre-
tation of the noisy single-cell readout. In an earlier work, Song et al. have shown
that there are certain regions in the genome exclusively identified by DNaseI-seq and
FAIRE-seq , respectively [S+11b], arguing for the presence of similar specificity’s as
well with the more frequently used ATAC-seq and NOMe-seq approaches.
In the remainder of this Chapter, we present our contributions to Nordström et

al. [N+19], as well as other essential aspects of that paper required for its general
understanding.

6.2 Generated data and experimental setup

To directly compare DNaseI-seq, NOMe-seq and ATAC-seq chromatin accessibility
profiles, we generated novel data for the HepG2 cell line. All chromatin accessi-
bility assays were performed using an identical stock of cells and under the same
cultivation conditions to reduce technical confounding variables in the lab of Jörn
Walter at Saarland University. The data was generated according to established
IHEC and BLUEPRINT protocols. Because HepG2 is a major cell line used in
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ENCODE, several external datasets, for instance, TF ChIP-seq data, are available
for further validation. Details on the experimental and computation processing are
provided in Section B.4.

6.3 Results

We evaluated the agreement between the three assays both on signal and peak
level. The signal based annotation allows an unbiased genome-wide view on the
data, while the peak level focuses on truly accessible sites. The three libraries
were sequenced at sufficient sequencing depth that is 10x genome wide coverage of
GpCs with NOMe-seq, 180 million reads with DNaseI-seq and 60 million reads with
ATAC-seq, allowing a reliable quantification of enriched sites.

6.3.1 Signal level

To obtain a peak caller independent, genome-wide impression on the agreement
between the different assays, we suggested a comparison based on the actual signal
of the assays. To this end, Karl Nordström computed the genome wide GCH
methylation levels of the NOMe-seq data as well as FPKM values obtained for
DNaseI-seq and ATAC-seq reflecting the number of 5′ read ends across the genome.
Recall that H represents A, C and T. Next, the correlation between the raw signal
distributions of the different assays aggregated in 500bp bins was assessed. As
shown in Figure 6.1, we observe a Spearman correlation of 0.41 between DNaseI-
seq and ATAC-seq data. However, the agreement between DNaseI-seq or ATAC-seq
to NOMe-seq is far less with a Spearman correlation value of only 0.25 and 0.21,
respectively.

Figure 6.1: Pairwise correlation of the binned genome-wide signal between
DNaseI-seq, ATAC-seq and NOMe-seq. Figure based on Supplemen-
tary Figure 1 from Nordström et al. [N+19].

This genome-wide comparison already illustrates that there seems to be a high
variability in the signal between the different methods. The observation that ATAC-
seq and DNaseI-seq are more similar to each other than they are to NOMe-seq
makes intuitive sense as the ATAC-seq and DNaseI-seq are both enrichment based
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methods and thus more similar in terms of the experimental design to each other
than they are to NOMe-seq. Furthermore, it has been reported in literature before
that ATAC-seq and DNaseI-seq do produce fairly similar chromatin accessibility
maps on the peak-level, although (dis)similarities have not been investigated in
detail [B+13d].

6.3.2 Peak level

Typically, researches use chromatin accessibility data to identify accessible sites,
also known as nucleosome free regions (NFR) or nucleosome depleted regions (NDR),
as these can be used for functional annotations and interpretations, c.f. Chapter
3-5. Often, researchers refer to such regions simply as peaks. In this study, peaks in
DNaseI-seq and ATAC-seq data were called using MACS2 [Liu18]. For NOMe-seq,
we determined the position of NDRs with a HMM termed gNOMeHMM. This
method was developed in the lab of Jörn Walter at Saarland University together
with Nico Pfeiffer and Marcel H Schulz from MPI for Informatics and Saarland Uni-
versity, respectively. It provides a robust genome wide NDR annotation. Details on
gNOMeHMM and on the usage of Macs2 are provided in Section B.4. Figure 6.2
provides an overview of the peak overlap between the assays.
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Figure 6.2: Overlap of peak-calls for DNaseI-seq, ATAC-seq and NOMe-seq.

Interestingly, the overall number of detected accessible sites is very similar across
the three assays: There are 65, 683 NDRs for NOMe-seq, 62, 365 for DNaseI-seq
and 67, 675 for ATAC-seq.

Overall, there are 105, 081 NDRs detected by at least one of the three assays. In
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total, we find 24% of NDRs to be shared by all methods and 27% to be supported
by two methods. However, 49% of the peaks are identified by only one distinct
assay. Specifically, 19, 480 unique NDRs are identified using NOMe-seq, 12, 854
with DNaseI-seq and 19, 452 with ATAC-seq.
As could be expected from the signal based comparison, most shared open regions

are found between ATAC-seq and DNaseI-seq data. We note that in addition to the
already mentioned experimental commonalities, e.g. the enzymatic reaction, also
the shared peak calling methodology might have contributed to this result as well.
NDRs commonly reported by all three assays are frequently longer than unique

ones and show a pronounced above-average signal in all assays (Figure 6.3a). Acces-
sible sights uniquely identified with NOMe-seq are an exception to this observation.
In contrast to the other two assays, the unique NDRs show a slightly stronger signal
as opposed to the commonly retrieved ones. In general, assay-unique NDRs show a
rather strong signal in the assay the are found with. The signal intensity for those
region falls or even vanishes completely in the remaining assays (Figure 6.3b).
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Figure 6.3: (a) Length of unique and common peaks [bp] (b) Signal intensity in
terms of NOMe GCH-methylation, DNaseI and ATAC read counts.
The green line indicates the average GCH methylation. Figure follow-
ing Figure 3b-e from Nordström et al. [N+19].

6.4 Targeted deep amplicon sequencing of unique NDRs

To assess the correctness of NDRs detected by NOMe-seq, DNaseI-seq and ATAC-
seq, 17 NDRs exhibiting distinct recognition patterns across the different assays
were selected for validation using targeted deep amplicon bisulfite sequencing fol-
lowed by a NOMe treatment.
In accessible regions reliably identified by several methods our collaborator’s mea-

sured a median GCH-methylation level of 38%-70% , while NDRs not called by any
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6.4 Targeted deep amplicon sequencing of unique NDRs

of the assays exhibit a lower median GCH methylation of 9%-26% (Figure 6.4a).
An example control locus is HSPA5(up) shown in Figure 6.4b, while MLH1, for
instance, is a site that is reliably detected by all assays.

(b)

(a)

Figure 6.4: (a) GCH methylation signal of the targeted amplicon sequencing (b)
ATAC, DNaseI and NOMe signal at three regions: NDR at MLH1,
found by all sites, NDR at NICK2, which is not called by the actual
NOMe data and a closed control region HSPA5(up). Figure based
on Supplementary Figure S9 from Nordström et al. [N+19]. Data
generated in the lab of Jörn Walter.
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6 SAME SAME BUTDIFFERENT - DIVERSITY OF CHROMATIN ACCESSIBILITY ASSAYS

Importantly, the deep amplicon sequencing enables us to describe interesting
patterns of GCH-methylation in regions not identified by gNOMeHMM on the
actual NOMe-seq data, but only by the other assays. One such example is the
DNaseI-seq and ATAC-seq specific open region NCK2 (Figure 6.4b). There, we
observe an obvious GCH-methylation pattern in a fraction of the sequences sug-
gesting that a proportion of the cells fulfills the criteria of a NOMe-specific NDR.
This example not only clarifies that some accessible regions might be neglected by
gNOMeHMM due to low GCH-methylation levels but also underlines that unique
DNaseI-seq and ATAC-seq NDRs can be truly accessible regions. Another reason
why the gNOMeHMM peak calling might miss an open site is a low GCH-density
in the respective genomic loci resulting in an insufficient methylation signal.

6.5 Clustering of NDRs is linked to functional
associations

To unravel commonalities in the signal patterns among different accessible sites,
we computed the average NOMe-signal, ATAC-seq signal and DNaseI-seq signal in
10bp bins spanning a 2kb window centered on NDR summits. NDR summits are
determined using NOMe-seq peaks first, following DNaseI-seq, following ATAC-seq
only peaks. Using k-means clustering, the resulting signal matrix is clustered into
15 clusters. The obtained clustering is shown in Figure 6.5a.
These clusters were overlapped with a ChromHMM segmentation for HepG2,

computed by Peter Ebert on DEEP HepG2 data [K+15]. Also, an enrichment
analysis using TF-ChIP-seq data was carried out with LOLA [SB16]. The Locus
Overlap Analysis (LOLA) is an enrichment analysis for sets of genomic regions.
The query regions are compared against a curated database of regulatory elements
and functional regions obtained, for instance, from ENCODE. The results of the
cluster specific LOLA analysis are shown in Figure 6.5b.
According to the ChromHMM segmentation, regions identified by any accessi-

bility method are typically linked to active transcription start sites (Figure 6.5b,
Clusters C3, C9, C11, C12, C13, C15). An enrichment analysis of assay-unique
NDRs reveals that NOMe and ATAC unique regions are enriched for CTCF, Rad21
and SMC3 binding sites (Clusters C7), which are interacting in the Cohesin pro-
tein complex [G+14b]. Unique DNaseI-seq regions are enriched for binding sites of
FOXA1, FOXA2 and HNF4G (Cluster 1).

6.6 Unique accessible regions contribute information to
gene-expression prediction models

To gain a better understanding on the regulatory relevance of the various open chro-
matin regions identified by the different assays and their relation to gene-expression,
we trained linear regression models to predict gene-expression, as introduced in
Chapter 3.
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6.6 Unique accessible regions contribute information to gene-expression prediction models

(a) (b)
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Figure 6.5: (a) Clustering of NDRs according to the epigenomic signal (b)
Heatmap showing the enrichment tests result of the clusters from (a)
compared to ChromHMM and ENCODE TFBSs. Figure following
Figure 4 from Nordström et al. [N+19].

6.6.1 Feature definition

In this study, we computed TF-gene scores using Tepic [S+17a] in the ATAC-
seq A, DNaseI-seq D and NOMe-seq N NDR sets. In addition, we included the
intersection I of the three sets, as well as their union U :

I = A ∩D ∩N , (6.1)
U = A ∪D ∪N . (6.2)

Moreover, we considered NDR sets extending A, D and N to match |U| by
sampling regions, not overlapping any of the real NDRs (AR, DR, NR). In the end,
eight different NDR sets P = {A,AR,D,DR,N ,NR, I,U} are considered for model
training. Here, Pj , refers to the jth set in P.

For each NDR p ∈ Pj , TF affinities ap,t for TF t are computed using TRAP
([R+07]) for a set of 726 TF motifs obtained from the TEPIC 2.0 repository
([S+18b]).
TF affinities ap,t are combined to normalized TF-gene scores āg,t for gene g and

TF t following the EN scoring as suggested in Section 3.3.2, Eq. 3.25− 3.27, using
a 3kb window as before.
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6 SAME SAME BUTDIFFERENT - DIVERSITY OF CHROMATIN ACCESSIBILITY ASSAYS

6.6.2 Linear regression

For each set of normalized TF-gene scores, we learned a linear regression model
using elastic net regularization as introduced in Section 3.4.1.

6.6.3 The union of all NDRs achieves the best model performance

The performance in terms of Spearman correlation of all linear models is shown in
Figure 6.6.
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Figure 6.6: Spearman correlation of the linear models predicting gene-expression.
Figure following Figure 5b from Nordström et al. [N+19].

Evaluating the linear models shows that the worst performance is obtained using
the intersection of all three assays I. This is surprising as it indicates that, although
these regions have a strong signal, they do miss out many important regulatory
sites. NDRs specific models, based exclusively on either the A,D or N set perform
comparable to each other with a marginally better performance of ATAC-seq over
NOMe-seq and DNaseI-seq.
TF-gene scores based on the union of all three NDR sets U lead to the best

model performance, unmatched by no other NDR set. To ensure that the improved
performance is not only due to the larger number of NDRs, we extend each assay
specific NDR set with randomly generated peaks to be as large as the union set:
AR, DR, NR. Models based on these NDR sets models perform constantly worse
than their not extended counterparts A, D and N .
Overall, we conclude that the individual assays are unable to describe a distinct

part of the chromatin landscape. Therefore, the union of assay specific NDRs allows
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6.7 Shape, sequence and methylation characteristics at the active sites of the participating enzymes

to model the regulatory landscape of gene-expression with greater accuracy. This
conclusion is backed up by the enrichment results presented in Section 6.5, because
they illustrate that certain TFs are enriched in NDRs that are exclusively detected
by a distinct chromatin accessibility method.

6.7 Shape, sequence and methylation characteristics at
the active sites of the participating enzymes

While the previous analyses have shown that the assay specific NDRs are function-
ally relevant, we attempted to better understand the reason behind why certain
regions are uniquely identified by a distinct method. Therefore, we investigated a
potential bias of the enzymes used in the various reactions with respect to DNA
shape, DNA sequence and DNA methylation.
Specifically, we profiled these three molecular signatures on the 5′-cut-sites/GpC

sites retrieved from the aligned reads using BEDTools [QH10]. As pointed out
to us by Ivan Costa, ATAC-seq sequences need to be shifted by 4bp upstream, to
account for the 3D structure of the Tn5 transposase dimer [B+13d]. In case of
NOMe-seq, reads are sampled with respect to the GpC methylation.

6.7.1 DNA shape

The DNAshapeR R-package [C+16a] was used to obtain estimates for the mi-
nor groove width (MGW), Roll, propeller twist (ProT) and helix twist (HelT), as
introduced in Section 2.1.1. To predict DNA shape characteristics, we randomly
selected 2 million sequences per assay, constructed as described above. This reduc-
tion is necessary due to memory limitation of the DNAshapeR R-package. All
spatial features were predicted in a 31bp window centered at the enzyme active
site.
For NOMe-seq, we find a striking signal for an increased Helix Twist (HelT) and

Propeller Twist (ProT) at the M.CviPI enzyme recognition site 5’GpC3’. Also,
we observe an increased Minor Groove Width (MGW) flanking the GC site. For
DNaseI-seq, we predict the MGW to be enlarged around the cut site, as reported
before by Lazarovici et al. [L+13c], coupled with a slightly increased base roll. In
contrast to the monomers, M.CviPI and DNaseI, the Tn5 transposase is a dimer.
Consequently, we observe bidirectional changes in MGW, ProT and Roll oscillat-
ing around the Tn5 insertion site. The DNA shape predictions are visualized in
Figure 6.7. They were reproduced in various other samples, too (Figure B.5).

6.7.2 DNA sequence

Using 59, 850, 858 DNaseI-seq sequences, 30, 108, 148 ATAC-seq sequences and
126, 202, 679 NOMe-seq sequences, we generated sequence logos using the ggseql-
ogo R-package [Wag17]. Although the bias motifs reported in literature are rela-
tively short that is 6bp for DNaseI-seq [K+13c] and 20bp for ATAC-seq [B+13d],
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Figure 6.7: Predictions for HelixTwist (HelT), Minor Groove Width (MGW),
Proppeller Twist (ProT) and Roll on 2 million randomly sampled 5′

sites of the distinct assays. Figure based on Figure 2b from Nordström
et al. [N+19].

we used a 31bp window centered on the enzyme activity sites of each assay to
harmonize the sequence logos with the remaining figures.
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Figure 6.8: The detected sequence bias is visualized using sequence logos. For
NOMe-seq, the artificial GCG bias is obvious, while for DNaseI-seq
and ATAC-seq, a slightly more complex bias can be observed. Figure
based on Figure 2a from Nordström et al. [N+19].

In concordance to earlier work [B+13d, K+13c] we find a distinct sequence pref-
erence at the active sites of the DNaseI-seq and the Tn5 enzymes, as shown in
Figure 6.8. An additional analysis by Karl Nordström reveals the existence of these
profiles also in various other samples (Figures B.2, B.3, B.4). For M.CviPI, only a
minor sequence preferences at the flanking −2 and +2 position is found, depicted in
Figure 6.8. However, this is only due to the in silico exclusion of ambiguous GCG
sites, which are overlapping with endogenous CpG methylation and are therefore
inconclusive.
Taken together, the sequence based analysis already indicates that each assay
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has strong sequence and structural preferences that impact the genome wide signal
distribution.

6.7.3 DNA methylation

We obtained CpG methylation data for the same set of sequences used to generate
the sequence-motifs reported above. On the basis of that data, the average DNA
methylation, weighted to coverage, was calculated for each relative position.
As reported by Lazarovici et al., the DNaseI-seq enzyme has a slight but pro-

nounced preference for an increased CpG methylation around its cut sites [L+13c],
while neither the M.CviPI nor the modified Tn5 show a position-specific relation
to CpG methylation. Nevertheless, we do notice that the overall amount of 5mC
around DNaseI-seq and modified Tn5 cutting sites is obviously lower compared to
M.CviPI active sites. Our results on DNA methylation are shown in Figure 6.9. As
for the sequence motifs and shape predictions, the DNA methylation profiles were
verified in various other samples as well (Figure B.5).
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Figure 6.9: DNA methylation (CpG) characteristics around the active sites of the
enzymes. Figure following Figure 2b from Nordström et al. [N+19].

6.8 A logistic regression classifier to classify assay
specific NDRs

As shown in the previous section, there are distinct DNA methylation, sequence
and shape characteristics detectable for assay-specific open chromatin regions. To
systematically assess whether those can be used to categorize assay-specific NDRs,
we trained a multi-class logistic regression classifier considering various sequence
based features. Specifically, we computed:

• A, T, C and G content,

• CG content,

• CpG and GpC count,

• average CpG methylation,

• NOMe-seq coverage,

• and counts for all 1024 5-mers.
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6 SAME SAME BUTDIFFERENT - DIVERSITY OF CHROMATIN ACCESSIBILITY ASSAYS

Two features were purposefully excluded from the model, as they might have
overshadowed other relevant features: GpC methylation for its undoubtedly strong
relation to NOMe-seq NDRs and the length of NDRs, which would have likely
been a resemblance of peak caller artefacts [K+14c]. In total, we obtained the
aforementioned features for 12, 415 unique DNaseI-seq, 19, 323 unique ATAC-seq
and 19, 453 unique NOMe-seq NDRs.

On the basis of these features, we trained a multi-class logistic regression classifier
with elastic net regularization, as described in Section 3.4.1. As we are dealing with
a classification problem, model performance is assessed in terms of accuracy (ACC)
on a balanced hold-out test data set, represented in a 3x3 confusion matrix C:

ACC =
C1,1 + C2,2 + C3,3∑

i,j Ci,j
(6.3)

We remind the reader that, because we perform a 3-class classification, a random
classifier would obtain an accuracy of about 0.33.

The accuracy of the classifier including the counts of 5-mers in the regions, is
0.63, computed from the confusion matrix shown in Figure 6.10a. Compared to a
model neglecting the k-mer information, which obtains an accuracy of only 0.55,
the importance of both sequence composition and indirectly of DNA shape becomes
obvious.
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Figure 6.10: a) Confusion matrix of a 3-class classifier separating NDRs uniquely
identified with just one assay from each other b) Feature values ex-
emplified for A content, C content, CG methylation and GC Count.
Figure based on Figure 2a from Nordström et al. [N+19].

As shown in Figure 6.10b, the regression coefficients suggest that A-content,
C-content and GC count separate unique NOMe-seq regions from ATAC-seq and
DNaseI-seq, while CG methylation seems to distinguish unique ATAC-seq NDRs
from both NOMe-seq and DNaseI-seq regions. An overview of the top assay specific
features is provided in Table 6.1.
As indicated in Table 6.1, some 5-mers are helpful in separating the classes as well.

For example, for classifying NOMe-seq unique NDRs the 5-mer CGCGC is depleted,
representing the aforementioned GCG effect, while 5-mers enriched in DNaseI-seq
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Table 6.1: The table contains the top 15 enriched (enr.) and depleted (dep.)
features to distinguish assay unique NDRs. The features are ranked by
the weights determined by the logistic regression classifier.

DNaseI enr. DNaseI dep. ATAC enr. ATAC dep. NOMe enr. NOMe dep.

G content GACTC A content GpC count GpC count CAGTG

CATCG AGGGC T content CG methylation CG content CTCTG

C content CCTTC C content CCCGG CG methylation GCATG

TCCTG CGGTC G content CCGGG AAATT CAGGC

AGCCA AACT CpG count AGACT GTCTT CACTG

TTGCG AGAGG NOMe coverage CACGG ATGGT CAGAG

TTGCA GAAGC CGCCG TTCGA AAGAC AAAGA

TATCG GCCAC CGGCG GGCCT GTCTC CCTTG

AATCG GCGAT CG content ACCGA GAGAC CAAGG

CCCGC GTGGC GACTC GTTTT AATTT CGCGC

GTCAA ATCGT GAGTC GCCGA AAGAT T content

TTCAA T content TGACT CAAAC AGTGA A content

TGCCA A content TGAGT AGGCC CCACT CpG count

GTTTA GpC count ACTCA TTAGG GGTGG C content

GACCT CG content TGCAG AAAAC TTTTC G content

unique NDRs resemble the observed DNaseI-seq sequence bias motif. In general,
the classifier is better suited to separate NOMe-seq from ATAC-seq and DNaseI-
seq and the most miss-classifications arise between the ATAC-seq and DNaseI-seq
unique regions. (see Figure 6.10a).

6.9 General conclusions

Although many of the identified accessible regions are called by all three or at least
two assays, we observe that there are numerous more specific NDRs, which are
suggested by one of the assays only. Using targeted deep amplicon sequencing, our
collaborators have shown that assay unique NDRs can be assumed to be genuine
accessible sites.
Via gene-expression modelling, we illustrate that the assay specific NDRs do con-

tain essential biological signals, required for accurate gene-expression predictions.
Furthermore, using a logistic regression classifier, we attempt to find genomic fea-
tures that could help us to comprehend why certain regions are preferred by a
distinct assay. Additionally, we look at chromatin shape predictions as well as at
the sequence biases at the cut sites/active sites of the DNaseI, the Tn5 and the
methyltransferase M.CviPI, respectively.
Overall, our comparative study suggests that all three assays enable researchers

to identify the most pronounced accessible regions, which can be frequently asso-
ciated with molecular functions, e.g. TF binding. However, we also see that assay
specific NDRs are indispensable in gene-expression modelling. Our findings lead
to the conclusion that single assays to characterise chromatin accessibility are less
comprehensive than expected and seem to lead to a biased and incomplete picture
of a cells chromatin landscape, all be it, following the recommended protocols.
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6.10 Contributions of all researchers involved in the
described project

Karl Nordström (Saarland University), Florian Schmidt (Saarland University), Nina
Gasparoni (Saarland University), Abdulrahman Salhab (Saarland University),
Gilles Gasparoni (Saarland University), Kathrin Kattler (Saarland University),
Fabian Müller(MPI Inf, currently at Department of Genetics, Stanford University
School of Medicine), Peter Ebert (MPI Inf, currently at Saarland University), Ivan
G. Costa (RWTH Aaachen), DEEP consortium, Nico Pfeifer (MPI Inf, currently at
University of Tübingen), Thomas Lengauer (MPI Inf), Jörn Walter (Saarland Uni-
versity) and Marcel H Schulz (Saarland University, currently at Göthe University
Frankfurt).
The project has been suggested by Jörn Walter and Marcel H Schulz in the

scope of the DEEP project. All chromatin accessibility data was generated in
the lab of Jörn Walter by Nina Gasparoni, Gilles Gasparoni and Kathrin Kattler.
The generated raw data was processed by Karl Nordström, Peter Ebert and Nina
Gasparoni.
Florian Schmidt suggested the signal based comparison of the assays shown in

Figure 6.1. The actual experiment was performed by Karl Nordström. Figure 6.2 is
based on MACS2 peak calls generated by Karl Nordström using a pipeline provided
by Peter Ebert in the scope of the DEEP project. Basic characteristics of these
regions have been investigated by Karl Nordström (Figure 6.3). Nina Gasparoni,
Gilles Gasparoni and Karl Nordström performed the amplicon analysis summarized
in Figure 6.4. Further, Karl Nordström performed the clustering analysis shown
in Figure 6.5. Florian Schmidt performed the gene-expression modelling and the
required data processing, summarized in Figure 6.6.
The analysis of DNA shape, DNA sequence and DNA methylation (Figures 6.7-

6.9) at unique sites has been suggested by Florian Schmidt. For DNA methylation,
this analysis was performed by Karl Nordström, for DNA sequence and DNA shape
it was performed by Florian Schmidt on HepG2. Karl Nordström applied Florian
Schmidt’s code later on an extended set of samples.
Using a logistic regression classifier to classify assay specific sites was suggested

by Marcel H Schulz. Florian Schmidt implemented the classifier, generated the
features and interpreted the results. He generated the content of Figure 6.10 and
of Table 6.1
The main manuscript was written by Karl Nordström and Jörn Walter. Flo-

rian Schmidt provided the method and results description for the gene-expression
modelling, DNA shape, sequence and (in parts) methylation analysis as well as the
explanation of the multi-class classifier.
All researchers involved in the project as well as other researches from the DEEP

consortium regularly discussed the preliminary results of the project and brain
stormed on potential further analyses.
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7
Objective assessment of batch effect

adjustment methods

7.1 Motivation and research objective

In Chapters 3, 4 and 5 we introduced several approaches to combine epigenomics
with transcriptomics data to identify key regulatory factors in per-sample ap-
proaches. With the advancement of consortia like IHEC, GTEx, or The Cancer
Genome Atlas (TCGA) and the wealth of data that has been produced, even per-
gene approaches become feasible. However, the existence of batch effects in the
biological data sets makes it hard for researches to perform integrative analyses of
large scale data sets. Batch effects can arise from different labs carrying out the ex-
periment, different environmental conditions, different experimental protocols and
so on. It was shown that neglecting batch effects can result in inaccurate conclu-
sions [L+10b] and the community accords that batch effects should be dealt with
in any computational data processing problem [G+17b]. Therefore, several Batch
Effect Adjustment (BEA) approaches have been suggested by the community (Sec-
tion 7.3).
Choosing an appropriate BEA method and deciding whether the adjusted data

is improved compared to the original data set is not straight forward. However, an
accurate adjustment of the data is essential to ensure the reliability of all down-
stream analyses. It is especially important to ensure that while adjusting for batch
effect(s), no or only very little biological variation is removed from the data. A
standard approach to assess BEA quality is the visual examination of the data in
reduced dimensions, which can be achieved using PCA or t-SNE visualizations of
the data before and after BEA. But, we and others believe that the visual check is
rather subjective and non-interpretable, particularly in instances where the batch
is not associated with the highest variance occurring in the data [R+13]. Till
now, an objective measure to determine the quality of batch effect adjustment that
is applicable to heterogeneous data sets with only few, biologically highly diverse
samples, has not been proposed.
Here, we present an innovative, novel method to judge the performance of BEA

approaches. We use the Cell Ontology (Section 7.5) to generate a gold-standard of
sample similarity; that is we compute a distance matrix holding pairwise similarity
scores for all samples within a data set. This enables us to model the relationships
between samples even in instances with low replicate numbers and diverse, hetero-

169
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geneous data sets. Comparing the expected similarity matrix against a similarity
score obtained for the original as well as the batch effect adjusted data, we can
quantify the quality of the BEA method. Our score allows us to obtain not only a
global picture of BEA performance, but also allows for a fine grained, sample and
tissue specific evaluation of the quality of BEA.
In Section 7.2, we describe related scores to judge the performance of BEA meth-

ods and outline the limitations of these scoring strategies. Furthermore, in Section
7.3, we briefly sketch three commonly used tools and algorithms to adjust data for
batch effects.
In the following, the term group variable, refers to a variable indicating a bi-

ological group of samples, e.g. the cell- or tissue-type. The term batch variable
denotes a known confounder, for instance the consortia a sample originates from.
This chapter is based on our article "An ontology-based method for assessing
batch effect adjustment approaches in heterogeneous data sets" [S+18a].

7.2 Established methods to evaluate batch effect
adjustment methods

As mentioned above, the most common way to assesses BEA performance is a visual
examination of the data in a lower dimensional space, or instance using PCA or
t-SNE [vdMH08].
A more quantitative approach would be to compute the overlap of samples orig-

inating from divers data sets before and after BEA considering their distance in a
high-dimensional space. This can be done, for instance, by calculating the ratio of
samples belonging to the same study and those belonging to another one for the
k-nearest neighbors of each sample. This quantity is established in the field as the
mixture score [L+13b]. Instead of the origin of the study, also other labels, e.g. cell
type, can be used.
Furthermore, a correlation analysis of replicates can inform about BEA perfor-

mance. Assuming that BEA is removing confounders and preserving the actual
signal, the correlation between replicates is assumed to rise through BEA. Fre-
quently, few or no replicates are available, for instance, in DEEP or in the other
IHEC consortia, making this type of analysis challenging.
Another alternative to systematically evaluate BEA performance would be to

train a classifier to predict group variables, e.g. cell type or tissue labels. A suc-
cessful application of BEA methods is expected to result in a improved performance
of the classifier on unseen test data when the model was trained on BEA corrected
data in contrast to the original data set. The downside of this approach is that it is
not suited be an indicator of BEA performance, because the low replicate numbers
are not sufficient such that the data at hand can be equally split into training and
test sets [L+10c].
Yet another approach is to asses the skewness of a gene’s expression distribu-

tion across studies, for example by considering the cumulative density function
of gene-expression values [L+13b]. However, in a setting with samples of high
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biological variability, the gene-expression profiles are expected to have a high bio-
logical variability already, which renders this approach less suitable as well. The
same line of arguments excludes the usage of differential gene-expression analy-
sis [LS07, GBS12b].
A promising approach if batch variables are known is principal variance compo-

nent analysis [L+10b, C+11a], which first identifies Principal Components (PCs)
and subsequently uses those in variance component analysis to determine the im-
pact of the known batch variables. A successful BEA should lower the contribution
of the known batch variables. Unfortunately this type of analysis is unfeasible in
most settings as for many data sets, only a very limited number of batch effects are
described in the meta data.
Recently, probabilistic principal component and covariate analysis (PPCCA) has

been suggested. This approach aims at circumventing some of the aforementioned
problems by including covariates into a PCA and calculating significance tests for
each PC individually to assess whether it is linked to a batch effect [N+17]. To
perform PPCCA covariates have to be known. Therefore, PPCCA can not be
utilized to quantify whether the BEA reduced the impact of the batch effects on
the data at hand or not.
As delineated in this section, most BEA assessment methods are not suitable

if sample groups are highly diverse and not sample numbers vary a lot between
batches. This is exactly the scenario we are facing in many recent data sets, as
generated by IHEC, GTEx, or TCGA.

7.3 Batch effect adjustment methods

Within this section, we briefly describe three commonly used BEA methods de-
veloped for bulk RNA-seq data sets: Combat [J+07], Surrogate variable analysis
(SVA) [LS07] and Removing unwanted variation ((RUV) [J+16a].

Here, we used the Combat and SVA implementation in the sva R-package
(version 3.24.4) as well as the RUV R implementation RUVNormalize (version
1.12.0).

7.3.1 Combat

A default approach to adjust for batch effects is to convert data from various batches
such that it will exhibit a similar mean and variance for each gene. This approach
is known as the Location and scale (L/S) adjustment. Mean and variance can be
adjusted using both linear and non-linear transformations.

Combat is a widely used method implementing the L/S strategy via an empirical
Bayes method, pooling information across genes with similar expression profiles.
Specifically, the underlying gene-expression model in Combat for the expression
Yi,j,g of gene g in sample j of batch i is:

Yi,j,g = αg +Xβg + γi,g + δi,gεi,j,g. (7.1)
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Here αg is the overall gene-expression, X is the experiment design matrix, βg is the
vector of regression coefficients corresponding to X, γi,g and δi,g are the additive
and multiplicative batch effects for batch i influencing g and ε is the error term
following a normal distribution [J+07].
Using per-gene standardized expression data Zi,j,g, the parameters γi,g and δi,g

are estimated with an empirical Bayes approach. See Johnson et al. [J+07] for
details on parameter inference. The BEA gene-expression Y ∗i,j,g can be computed
according to:

Y ∗i,j,g =
σ̂g
δi,g

(Zi,j,g − γ̂i,g + α̂g +Xβ̂g), (7.2)

where α̂g, β̂g and σ̂g are the model parameters estimated using an ordinary least-
squares approach [J+07].

Since Combat has been developed to correct for batch effects occurring in mi-
croarray data sets, it is well suited for small batch sizes with low biological vari-
ability. Combat can be utilized either with or without informing about group
variables. All batch variables must be known to the model [J+07].
In the scope of this project, Combat is used with information on present batches

that is the source of the data and the tissue or cell type label of each sample.

7.3.2 Surrogate variable analysis (SVA)

Also matrix factorization can be used for BEA by identifying and removing batch-
associated factors, which can be automatically identified and removed from the data
using.
A well known algorithm implementing matrix factorization is SVA [LS07]. SVA

approximates the number of latent variables to be removed and can be utilized
with as well as without considering group variables in the model. The algorithm
attempts to estimate surrogate variables searching for frequent patterns in gene-
expression variance. The challenge lies in designing the surrogate variables such
that their signal is not due to the primary variable (e.g. cell- or tissue-type).
The method is split into two parts. First, unmodeled factors are detected, which

are subsequently used to construct surrogate variables hk [LS07]. Unmodeled factors
are detected by generating a residual matrix R that is computed from the actual
gene-expression matrix removing the influence of the primary variable yj (e.g. cell-
or tissue-type) on gene-expression:

Xi,j = µi + fi(yj) + εi,j , (7.3)
Ri,j = Xi,j − µi + fi(yj), (7.4)

where µi is the baseline expression of gene i, yj is the primary variable of interest,
fi(yj) denotes the relationship between xi,j and yi according to E(xi,j |yi)− µi, X
is the normalized gene-expression matrix where i indicates genes and j indicates
samples, and εi,j is an error term. The variables µi and fi(yj) can be determined
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using a regression approach and allow the computation of matrix R. An essential
idea of SVA to model the unwanted factors is to split the error term εi,j into

εi,j =

L∑
l=1

γl,igl,j + ε∗i,j . (7.5)

Here L refers to the number of all unmodeled factors, gl,j denotes the contribution
of factor l to sample j, γl,i denotes the gene-specific influence of factor l and ε∗i,j
is true gene-specific noise [LS07]. The purpose of SVA is to estimate the linear
combination

∑L
l=1 γl,igl,j . Firstly, a singular value decomposition of the residual

matrix R is computed:

R = UDV T . (7.6)

From D, the amount of variance explained can be computed for each eigengene k
that is the kth diagonal element of D according to:

Tk =
d2
k∑n−df

l=1 d2
l

, (7.7)

where df refers to the degrees of freedom of R. Using permuted versions of R, a
p-value for the significance of each Tk can be computed [LS07].
In the second phase of the SVA algorithm, we test for each significant eigengene

ek, where ek = (ek,1, ..., ek,n)T is the kth column of V from Equation 7.5, whether it
significantly influences the expression of each in X. The number m̂ of genes that are
associated with ek is determined and a residual gene-expression matrix Xr holding
the expression of those genes is generated. Next, another set of eigengenes, specif-
ically the eigengenes erj for matrix Xr are computed and we define the estimated
surrogate variable ĥk as

ĥk = erargmax
1≤j≤n

(cor(ek,e
r
j )). (7.8)

Using the estimated surrogate variables, the adjusted gene-expression can be
determined according to

X∗i,j = µi + fi(yi) + εi,j +

K∑
k=1

λk,iĥk,j , (7.9)

where λk,i are the eigenvectors corresponding to ek weighing the contributions of
each surrogate variable ĥk.

7.3.3 Removing unwanted variation (RUV)

RUV is an alternative method that utilizes several control genes to remove batch
effects in the considered data sets [J+16a]. Typically, a set of so-called negative
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control genes that is gene whose expression is invariant under the variable of interest,
are used to adjust the batch effect for all other genes. In RUV, the underlying gene-
expression model is

Y = Xβ +Wα+ ε, (7.10)

where Y is the observed gene-expression, X is the matrix containing the factors
of interest, W represents the unwanted factors, e.g. the confounders causing the
batch effect, ε is the noise term following a normal distribution and β and α are the
coefficients corresponding to X and W , respectively. An estimator for W based on
a set of negative control genes is termed Ŵ2 [GBS12a]. Assume further that X is
not known that is Xβ = 0 in Equation 7.9. Than, we can determine α according
to

min
α∈Rkxn

||Y − Ŵ2α||2F , (7.11)

where k is the number of unwanted factors and ||x||2F is the Frobeniusnorm. With
an estimate of α, the observed gene-expression data Y can be adjusted (Ŷ ) in a
straightforward way according to:

Ŷ = Y − Ŵ2α. (7.12)

For RUV, we exploit several housekeeping genes suggested by [NT09] as negative
control genes.

7.4 Data used in this study

7.4.1 IHEC data

Here, 36 fastq files for ENCODE [D+12b] and 112 fastq files for Roadmap [K+15]
RNA-Seq experiments have been obtained. Additionally, we acquired fastq files for
12 DEEP RNA-seq samples [Con18] as well as for 56 BLUEPRINT RNA-seq sam-
ples [A+12]. Gene-expression is reported in transcripts per million (TPM). The
quantification was performed with Salmon (version 0.8.2) [P+17a] utilizing a ref-
erence transcriptom downloaded from Gencode v26 (GRCh38.p10). Data accession
numbers for ENCODE and Roadmap data, sample IDs for DEEP and Blueprint
data, as well as tissue and cell type assignments, sample numbers per consortia and
command lines used to run Salmon are provided in Section B.5.

7.4.2 GTEx and TCGA data

We used fastq files for 6, 575 distinct RNA-seq data sets from the GTEx project
[C+15c] and 741 RNA-seq samples from TCGA [W+13b], respectively. In our
application, only TCGA control samples are considered while tumour samples are
not taken into account. We focused on five different tissues that are contained in
both GTEx and TCGA: colon, liver, kidney, prostate and thyroid. Altogether, this
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leads to 1, 062 GTEx samples as well as to 274 TCGA samples. In Section B.5, we
provide a detailed overview of sample counts per tissue and consortia.
The processing of the GTEx and TCGA RNA-seq data was performed by En-

gin Cukuroglu at the Genome Institut of Singapore. The RNA-Seq data was
mapped against the human reference genome version hg19 using TopHat2 (version
2.0.12) [K+13a] with the Ensembl gene annotation v75. Mapped reads have been
counted with the R package Genomic Alignments [L+13a] and the parameter
setting mode=Union and inter.feature=FALSE. Only primary read alignments have
been retained. Data normalization has been performed using DESeq2 [L+14c].

7.5 Cell Ontology

The Cell Ontology(CL) [B+05b, D+16b] provides a curated vocabulary of mostly
vertebrate cell types. With the last major update of the Ontology in 2016, the
CL contained 2, 200 classes of cell types, with a focus on cell types occurring in
vivo [D+16b]. The cell types are linked to each other in a directed acyclic graph
structure, yielding a hierarchical structure with the root class Cell, denoted with the
identifier CL:0000000. A heart cell, for instance, has the ID CL:1000147, whereas
a cell of the large intestine has the ID CL:1000320. The CL can be freely accessed
online, e.g. via the Ontobee webserver [O+17].

7.6 An ontology score to assess sample similarities

Figure 7.1 provides a schematic overview of the computation of our ontology score.
In Section 7.6.1, we detail how the Cell Ontology is used to obtain a measure
of an expected similarity between samples, Section 7.6.2 describes how a similarity
measure is computed on the gene-expression data and the ontology score combining
both measures is explained in Section 7.6.3. R-Code to use our method is freely
available online at https://github.com/SchulzLab/OntologyEval.

7.6.1 Calculating expected sample similarities from the Cell Ontology

For all ontology terms contained in the CL [B+05b], we calculate the pairwise
similarity sim(ti, tj) between terms ti and tj using both jaccard coefficients (simjac)
and cosine similarity (simcos) [P+09]. The function A(ti) is returning the set of
ancestors for a term ti in the CL, considering only subclass relationships. Here,
A(ti) is defined such that ti ∈ A(ti). Examples are shown in Figure 7.2a and b.
To compute the cosine similarity, a vector representation vt for term t is required.

The vector has |CL| entries, where |CL| is the total number of terms contained in
the Cell Ontology, with a one to one mapping between terms of the CL and entries
in vt . At every index that corresponds to an entry in A(t), we set vt to one and to
zero otherwise, see Figure 7.2a,b for an example. The jaccard similarity and cosine
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gene expression(a)

(b)

(c) ontology
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t(A2)

t(B) t(C)
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Figure 7.1: (a) Using a gene-expression data matrix, a similarity matrix D hold-
ing pairwise similarities of the measured gene-expression data is com-
puted. (c) Using an ontology the lengths of the paths between all on-
tology terms associated with the samples in (c) are computed. These
are used to computed matrix O of expected pairwise sample similar-
ities (d). By computing the correlation between the observed sample
similarities from (b) and the expected similarities from (d) the ontol-
ogy score can be computed (e). Figure from Schmidt et al. [S+18a].

similarity between two terms ti and tj are defined as

simcos(ti, tj) =
vti · vtj√
v2
ti
·
√
v2
tj

, (7.13)

simjac(ti, tj) =
|A(ti) ∩A(tj)|
|A(ti) ∪A(tj)|

. (7.14)

Illustrative examples for the computation of these two measures are provided in
Figure 7.2c and d.

In our application, we have manually mapped all samples from TCGA, GTEx and
IHEC to CL terms. With these mappings, we generated matrices holding expected
pairwise sample similarities sim(sk, sl) for any combination of samples sk and sl
(within one consortia) according to the similarity measures sim and CL terms tsk
and tsl . Calculating sim(sk, sl) = sim(tsk , tsl) leads to two symmetric similarity
matrices: Ojac and Ocos. These can be transformed to distance matrices according
to dist(sk, sl) = 1− sim(tsk , tsl).
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Figure 7.2: We show the value of A(t7) and A(t9), as well as the vector repre-
sentations vt7 and vt9 required to compute the cosine similarity in (a)
and (b), respectively. An example for the computation of the jaccard
similarity is shown in (c) and an example for the cosine similarity is
shown in (d). Figure from the Supplement of Schmidt et al. [S+18a].

7.6.2 Using PCA to obtain a sample similarity matrix with respect to
gene-expression data

To compute a matrix of observed sample similarities, we first perform a dimen-
sionality reduction of the original gene-expression matrix using PCA. By definition,
most of the gene-expression variability between the samples is captured by the first
PCs. Therefore, these can be used to distinguish different samples from one an-
other. This approach allows us to focus on the difference between samples. The
differences might be harder to detected in normal data space due to overshadowing
by housekeeping or faintly expressed genes. Using PCs1 − 4 (explaining 86% to
95% of the measured gene-expression variance), we computed a sample similarity
matrix D using Spearman correlation, as shown in Figure 7.1b.

7.6.3 Contrasting expected distances with expression-based distances
to obtain a quality score

By construction, matrix O with expected similarities from the ontology and matrix
D with the observed similarities from the gene-expression data are n x n matrices,
where n is the number of considered samples. Not only the dimensionality but
also the order of samples in the observed similarities D[, k] matches that in the
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expected similarities in O[, k] for each sample k. This enables us to assess the
agreement between the expected similarities O and the inferred similarities D via
global score that considers the similarity of both matrices, for instance, the inner
product. Although such a score provides an overall judgment of BEA performance,
sample-specific information would be lost. Therefore, we compute a vector u of
ontology scores with a simple index based comparison, as depicted in Figure 7.1e,
according to

uk = cor(D[, k], O[, k]) (7.15)

for each sample k and cor as either Spearman Ssp or Pearson Sp correlation.
All figures shown in this chapter are based on Ocos, Ssp. We refer the reader to
the Supplementary Material of Schmidt et al. for results on other score combina-
tions [S+18a]. These are omitted as changes to the scoring did not effect any of the
drawn conclusions.
The per sample scoring permits us to investigate batch effects at different levels

of granularity. For instance, we can look at individual samples, at groups of distinct
samples, or at group variables, e.g. cell types.
An important point is that there is no threshold to determine which value the

ontology score should reach to be satisfactory. Therefore, our ontology score should
be used to perform comparisons on a relative level only.

7.7 Results

Before we apply our ontology score to real data, we used simulations to determine
the effects of using the CL for computing ontology scores u. Secondly, to assess the
robustness of the ontology scores u, we added Gaussian noise to GTEx data and
analysed the impact of that on our scoring. Thirdly, we introduced an artificial
batch effect on GTEx data and adjusted for it using Combat to see if the ontology
score adequately reflects the data manipulation events.
As explained in Section 7.7.4, we applied the ontology score to TCGA, GTEx

and IHEC data to present the interpretability of our score when it is applied to
heterogeneous data sets.

7.7.1 The ontology score leverages information captured in the Cell
Ontology

To characterize the robustness of our ontology score, we conducted randomization
experiments using GTEx data for five different tissues (see Section 7.4.2). Specif-
ically, we generated 100 sets in which each sample was assigned to a random CL
term from all available ones. For each set, we recomputed both the similarity and
the ontology score.
As shown in Figure 7.3, the mean score obtained for the randomized ontology is

significantly lower than that of the original ontology matrix.
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Figure 7.3: The y-axis shows the ontology score, in terms of Spearman correlation
for GTEx normal samples. To compute the score, we used the original
ontology matrix, a fixed similarity matrix, as well as 100 randomly
generated ontology matrices. We see that the real ontology matrix
results in scores that are significantly higher than those obtained for
both alternative similarity measures (Wilcoxon-Mann-Whitney test:
∗∗∗ = p < 0.0001, ∗ = p < 0.05). Figure from Schmidt et al. [S+18a].

Another sanity check is to use a fixed similarity measure that assigns samples
from the same tissue a score of 1.0 and 0.25 otherwise. This test reveals whether
leveraging between sample type similarities leads to a significantly higher score than
considering only the absolute identity between group variables as a measure. As
shown in Figure 7.3, the between sample similarity score achieves a better ontol-
ogy score than the fixed similarities. Overall, these experiments suggest that the
ontology score does inform about sample similarities we can expect to observe in
gene-expression data. They emphasize that a precise mapping of samples to CL
terms will influence our novel score. In other words, the more accurate the used on-
tology is and the more precisely the sample mapping reflects the underlying biology,
the more accurate the ontology score can be.
Here, we mapped samples to their ontology terms manually. We acknowledge that

this is an error-prone procedure and have experienced that it can be challenging
to come up with suitable mapping. Therefore, we encouraged our IHEC partners
to include expert-curated associations of ontology terms to samples in the sample
meta data.

7.7.2 The ontology score is sensitive to noise in the data

As we have seen that the ontology score is sensitive to the used ontology, we next
tried to see how it depends on the quality of gene-expression data. To this end, we
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7 OBJECTIVE ASSESSMENTOF BATCH EFFECT ADJUSTMENTMETHODS

have conducted two simulation studies to learn about the effect of artificial noise
added to the expression data at hand.
Firstly, we added Gaussian noise N(µ = 10, σ = 1) to all genes across all tissues

affecting 0% − 50% of all GTEx samples. As shown in Figure 7.4a, the score
decreases when the fraction of samples that have been exposed to noise increases.

G G

Figure 7.4: (a) The plots shows how the ontology scores reacts on Gaussian noise
N(µ = 10, σ = 1) which is added to a subset of GTEx samples. (b)
Here, the impact of a varying mean (µ) of Gaussian noise added to 50%
of all samples on the ontology score is shown. With increasing mean,
the ontology score drops. However, the score stays almost steady after
µ > 10. Figure from Schmidt et al. [S+18a].

Secondly, we added Gaussian noise with constant variance but with a varying
mean ranging from 0% to 30% to 50% of all samples (Figure 7.4b). The ontology
score drops rapidly with increasing noise intensity but stays almost constant after
µ ≥ 10.
In summary, these results indicate that our novel scoring strategy is susceptible

for increasing levels of distortion in data associated either to the number of affected
samples or to the level of the considered noise.

7.7.3 The ontology score describes the performance of BEA

We extended the simulation study introduced before by trying to adjust for the
introduced noise using Combat. By design, Combat should be well suited to
adjust for the artificial linear shift we have introduced. As shown in a PCA analysis,
the original GTEx data clusters in a tissue-specific manner (Figure 7.5a,d).
As expected, adding Gaussian noise to 50% of the samples dissolves the tissue-

specific clustering of the original data and results in the formation of two large
separate clusters (Figure 7.5b,e). Upon adjusting the data with Combat the tissue
specific clustering is mostly restored (Figure 7.5c,f). Encouragingly, the ontology
score reflects the behaviour observed in the PCA. As shown in Figure 7.6, the score
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Figure 7.5: In (a-c), the 1st and 2nd PC, in (d-f) the 3rd and 4th PC of a PCA of
original GTEX data is shown. The addition of Gaussian noise caused
a linear shift in the data, which can be seen in (b) and (e). We observe
that the addition of the noise leads to the formation of two distinct
batches per tissue and the tissue specific clustering in PC3 and PC4,
shown in (d) vanished almost completely. The results of the PCA
after BEA adjustment using Combat are shown in (c) and (f). The
shift observed in (e) does not exist in (f) anymore. Overall, the PCA
of the adjusted data is resembling that of the original data shown in
(d). Nevertheless, the liver samples were not adjusted properly, as
indicated in (c). There, a new shift, has been introduced by the BEA
resulting in a different overall clustering as compared to the original
data shown in (a). Figure from Schmidt et al. [S+18a].

is decreasing when noise is added and it is almost restored to its original value
upon BEA via Combat. However, we note that the score can not be restored for
liver samples. There, PC1 and PC2 indicate that the artificial noise could not be
adequately removed (Figure 7.5a,c). Hence, the ontology score does not improve
either.
This example illustrates the practicality of our novel approach in a controlled

setup. Surprisingly, we find it already challenging to assess the BEA only by a
visual inspection of the PCA. Even in this simplistic scenario, the ontology score
offers an interpretable and effective alternative measure to circumvent the subjective
visual assessment of the PCA.
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Figure 7.6: Here, the ontology score is depicted for GTEx normal tissues in three
instances. Firstly, for the original GTEx data as obtained from the
consortium. Secondly, for data that was subject to Gaussian noise
N(µ = 10, σ = 1), which has been added to 50% of all samples and
thirdly, for the instance that this artificial noise has been removed
with Combat. Figure from Schmidt et al. [S+18a].

7.7.4 Application to heterogeneous data sets

Sections 7.7.1 to 7.7.3 supported the reliability of our scoring scheme. Hence, we
applied our method to two real use-cases: (1) we considered data from TCGA
and GTEx together and (2) data from the epigenomic consortia Blueprint, DEEP,
ENCODE and Roadmap.
We corrected for known batches using the BEA methods Combat, RUV and

SVA, explained above in Section 7.3.
In Figure 7.7a the behaviour of the ontology score in the first use case is docu-

mented separately for TCGA and GTEx data. Recall that we consider five different
tissue-types in this comparison: colon, kidney, liver, prostate and thyroid. Accord-
ing to our score, the RUV method does not lead to an improvement of data quality.
In contrast to that, SVA appears to properly adjust GTEx data, but fails to ac-
count for batches in TCGA data. Interestingly, the ontology scores for both data
sets do show little improvements if Combat was used for BEA.

In Figure 7.7b, we utilize the ability of our score to analyse the effect of BEA from
a more fine-grained perspective. Specifically, we show the ontology score separately
for each consortia and tissue-type. This is helpful to identify samples and batches
which really benefit from BEA. Devoid of this detailed representation of the scores,
only little insights can be gained (Figure 7.7a).
The detailed view on the ontology scores shows that SVA lead to negative scores

for prostate samples (Figure 7.7b) and highlights that SVA was not able to improve
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Figure 7.7: a) The boxplots show ontology scores calculated before and after BEA
for GTEx and TCGA data belonging to five different tissues. (b) Same
as (a) but with a tissue separation of the ontology scores. (c) PCA
analysis of the SVA adjusted data showing PC1 vs PC2 and PC3 vs
PC4. Although the clustering in PC3 and PC4 suggests an adequate
adjustment of the data, one can observe in PC1 and PC2 that prostate
samples overlap with colon and thyroid samples. Figure from Schmidt
et al. [S+18a].

the quality of TCGA liver data, while it did improve GTEx liver data. These
insights could not easily be obtained from a visual inspection of the PCA plots
obtained for the various BEA approaches and the two data sets.
Importantly, our score suggests potential issues not easily deducible from a PCA.

For instance, Figure 7.7c shows the PCA of SVA adjusted data. It seems that SVA
results in a desirable separation of samples according to tissue-types. However, our
score suggests that the cluster with the prostate samples is not behaving as expected
in relation to the remaining tissue-types, suggesting that SVA might have caused
an artifact.
In fact a detailed analysis of the pairwise correlations of prostate samples with

the remaining ones confirmed this (Fig. 7.8). According to our ontology score, none
of the BEA approaches seems to be able to improve the gene-expression data in
this use-case. Secondly, we use our ontology score in a challenging scenario with 65
different tissues and cell types obtained from four consortia within IHEC. In this
data set, only few replicates are available per tissue and cell type.
A PCA analysis depicted in Figure 7.9 reveals that the data clusters in a highly

consortia specific manner, preventing any integrative analysis effort. As also, the
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7 OBJECTIVE ASSESSMENTOF BATCH EFFECT ADJUSTMENTMETHODS

Figure 7.8: Pairwise correlation between the gene-expression of all samples to
prostate samples in terms of Spearman correlation. In the SVA cor-
rected data, the prostate samples are negatively correlated to thyroid
and obtain a high correlation to the colon samples.

overlap of tissues and cell types across the consortia is small, BEA is challeng-
ing (Section B.5). Integrating such diverse data sets is a major challenge for the
IHEC consortium. This holds not only for RNA-seq, but also for other data types,
rendering this a highly important application scenario.

As shown in Figure 7.10a, the RUV algorithm appears to achieve favorable results
on DEEP and Roadmap samples, whereas it is the worst method on Blueprint data.
For the latter, Combat shows the best score improvements. Surprisingly, according
to the ontology score, there is no BEA approach that is able to adjust the ENCODE
data.

An example of a cell type and tissue specific analysis is shown in Figure 7.10b.
Here, RUV adequately adjusts gene-expression data of primary human hepatocytes
across the consortia, while it does not work well on erythroblasts. This use case
shows that on heterogeneous data sets such as the one produced by IHEC, the
currently available sample numbers are not sufficient to utilize already established
BEA methods without carefully evaluating the adjusted data. Our analysis raises
severe concerns regarding the impact of BEA methods on the data, as in the worst
case, the BEA might introduce an additional noise by eliminating true, biologically
relevant, variation. Also in light of the large-numbers of single-cell data being
produced nowadays, it is an important question how to integrate these data sets
and how to quantify the quality of such data cohorts.
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7.7 Results

Figure 7.9: PCA analysis of the IHEC data set comprised of data from Blueprint,
DEEP, ENCODE and Roadmap. With the exception of four sam-
ples, the RNA-seq data clusters in a highly consortia specific manner,
suggesting the presence of a strong batch effect that hampers an inte-
grative analysis of the data set.
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Figure 7.10: a) Box plots holding the ontology scores for BEA in a IHEC data set
that is comprised of 65 different tissues and cell types. (b) Illustration
for a tissue specific view of the ontology score across the consortia.
Figure from Schmidt et al. [S+18a].
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7.8 Conclusions and Impact of this work

The presented ontology score is, to our knowledge, the only approach to objectively
and robustly assess the performance of BEA approaches on heterogeneous data.
Moreover, our method is not only applicable to BEA but could also be applied to
test data normalization approaches. Specifically, our method has two main advan-
tages compared to previous approaches to assess the performance of BEA methods.
Firstly, due to using an overall sample similarity score, no problems arise if only
few samples of the same cell- or tissue-type are available. Secondly, our methods
allows the comparison of several BEA methods with one another at various levels
enabling users to identify strengths and limitations of the BEA approaches.
As already stated in the previous Section, our ontology score indicates that there

is a need for novel BEA methods that are specifically designed to handle hetero-
geneous data sets, like the IHEC data set. Not being able to adequately integrate
these data sets will severely hamper integrative analysis and prevent us from pro-
gressing in deciphering gene regulation in more detail. We do agree that designing
such methods is complicated as unified cell lines or mock-up samples, processed
by each consortia are not existing. These would have simplified the identification
and adjustment of batches considerably. Also, in case of other data sets such as
HM ChIP-seq, or DNaseI-seq, BEA approaches must be applied to the raw signal,
which might turn out to be even more complicated than adjusting quantified gene-
expression data. Our ontology score will be helpful to optimize and to develop such
approaches.

7.9 Contributions of all researchers involved in the
described project

The following people contributed to this project: Florian Schmidt (Saarland Uni-
versity), Markus List (MPI Inf, currently at Technical University Munich), Engin
Cukuroglu (Genome Institute of Singapore), Sebastian Köehler (Berlin Institute
of Health), Jonathan Göke (Genome Institute of Singapore) and Marcel H. Schulz
(Saarland University, currently at Göthe University Frankfurt).
Florian Schmidt proposed the idea of a gold standard based comparison to judge

batch effect adjustment approaches, Marcel H. Schulz suggested to use the Cell On-
tology for that. Together with Markus List, Florian Schmidt devised the Cell ontol-
ogy score in a brain storming session. The IHEC RNA-seq data was processed by
Florian Schmidt. Engin Cukuroglu processed the GTEx and TCGA gene-expression
data, provided by Jonathan Göke during a research visit of Florian Schmidt at the
Genome Institute of Singapore. Sebastian Köhler generated the pairwise jaccard
coefficients and cosine similarity scores for all Cell Ontology terms. Florian Schmidt
generated code to apply Combat and RUV, Markus List provided code to use SVA.
The Cell ontology score was implemented by Florian Schmidt, who also generated
all Figures shown in this Chapter, except for Figure 7.1, which was designed by
Markus List. All computational analyses have been performed by Florian Schmidt.
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7.9 Contributions of all researchers involved in the described project

Markus List and Florian Schmidt actively discussed potential analyses and their in-
terpretations. Furthermore, Jonathan Göke and Marcel H. Schulz advised Florian
Schmidt. Markus List and Florian Schmidt contributed to the manuscript and are
shared first authors of the respective publication in Bioinformatics [S+18a]. Florian
Schmidt presented a talk on this work at ECCB 2018 in Athens.
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8
Suggesting regulatory sites on the

gene-level

So far, in Chapters 3-5, we have looked at per-sample models of gene-expression.
The increasing amount of available epigenetics data in IHEC triggered us to develop
a novel approach to elucidate transcriptional regulation on the level of distinct genes,
instead of averaging across all genes as done before. We call this method StitchIt,
following the analogy that we stitch several data sets together to gain novel biolog-
ical insights. This chapter is based on the manuscript "Integrative analysis of
epigenetics data identifies gene-specific regulatory elements", available
at bioRxiv [S+19]. This work is accepted for presentation at the Great Lakes Bioin-
formatics Conference (GlBio) 2019 at the University of Madison at Wisconsin. In
the course of this project, we have collaborated with Alexander Marx and Jilles
Vreeken from the Exploratory Data Analysis group at the Cluster of Excellence for
Multimodal Computing and Interaction at Saarland University.

8.1 Motivation and research objectives

As described in Chapter 1, the elucidation of transcriptional regulation is a major
problem in computational biology. Especially regulatory elements (REMs) such as
promoters (Section 2.1.4) and enhancers (Section 2.1.13), harbouring binding sites
for TFs are essential to orchestrate cellular processes [V+09a].

Recall from Section 2.1.13 that according to the scanning model, REMs can in-
fluence a gene in close proximity. According to the looping model however, they
can also influence genes that are several kb away - brought into spatial proximity
by chromatin looping [BK98]. The identification of REMs throughout the genome
has been addressed by international efforts such ENCODE and Roadmap. There,
REMs have been identified using DNaseI-Hypersensitive Sites (DHS) [T+12] via dis-
tinct patterns of Histone Modifications (HMs), i.e. the co-occurrence of H3K27ac,
H3K4me1 while H3K4me3 is absent [H+07], or from TF-ChIP-seq experiments of
proteins such as EP300 [V+09b]. Typically such data sets are analyzed with peak
calling algorithms. Although there is a plethora of peak callers available that were
designed for ChIP-seq [T+16] and chromatin accessibility data [K+14c], they still
have several limitations. For instance, the selection of the cut-off to determine
peaks over background is non-trivial and also cell cycle stage [L+17c] or cell num-
bers [G+12a] can prevent us from accurately detecting all truly enriched regions.
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8 SUGGESTING REGULATORY SITES ON THE GENE-LEVEL

Furthermore, the minimum level of enrichment to make a region biologically active
is unclear [CZ10]. As illustrated in Figure 8.1, integrating peak calls across several
diverse samples is not straightforward [LS15]. However, an integrated set of peaks
is required if machine learning approaches should be utilized to associate a defined
set of candidate REMs to potential target genes across many samples, which is
required for per-gene learning. Therefore, we wanted to devise a method that does
not rely on peak-calling to identify REMs.

TSS
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TSS
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Sample 2
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Sample 4
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Figure 8.1: Illustration of two common ways to integrate DHSs across multiple
samples. In the intersection case, only the accessible portion of the
genome across all samples is available. In the union case, all overlap-
ping DHSs are merged. The latter case preserves a large part of the
accessible sites, but it looses some of the variance in the data. The
intersection, on the other hand, might be too conservative. Figure
from Schmidt et al. [S+19].

However, identifying REMs throughout the genome does not suffice to learn about
their function, as the REMs need to be associated with their target genes as well. In
literature, especially in instances where only few replicates are available, putative
REMs are often linked to their nearest gene according to genomic distance [G+15b],
or aggregated using window based approaches [S+17a, M+12b]. As explained in Sec-
tion 2.1.13, especially enhancers and repressors do not regulate their nearest gene
but may influence more distant genes. Yao et al. [Y+15] described two general
approaches to account for such long distance regulatory events: (1) methods based
on physical interaction, i.e. capture Hi-C and (2) methods based on associating
gene-expression to the activity of REMs, e.g. using DNaseI-seq [T+12, H+18b],
or HM abundance [E+11]. While methods based on physical interaction are labo-
rious, time consuming and experimentally challenging, e.g. in terms of providing
a sufficient resolution of long-range contacts [R+14b], association based methods
are predestined to use the plethora of available epigenetics data to link REMs to
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8.2 Brief summary and outline of this chapter

their target genes. Several of these methods are detailed in Section 8.3. However,
most of them are not available as usable software. Furthermore, as all methods
rely on peak-calls, they use either a peak number or a peak distance cut-off to filter
candidate regulatory sites. This is another parameter that needs to be set by the
user and can not be easily determined in a data driven way. We aimed at designing
a method that can be easily applied to user-specific data sets and that does not
depend on fixed distance cut-offs.

8.2 Brief summary and outline of this chapter

Our novel method StitchIt fulfills these aforementioned goals. It is an easy-to-
use, peak caller independent method that can be applied to user-defined genomic
intervals around a gene of interest to suggest candidate REMs. The major difference
to any existing method that either links or identifies REMs is that StitchIt solves
the combined task of identifying potential REMs and linking them to their putative
target genes at the same time.
Basically, StitchIt solves a classification problem by segmenting a large ge-

nomic area around the specified target gene. The resulting segmentation highlights
regions exhibiting epigenetic signal variance, which is linked to the expression of the
analyzed gene. Thus, StitchIt belongs to the class of association based methods
delineated by Yao et al. [Y+15]. However, StitchIt extends the typical function
of this class of methods as it does not require the precise location of candidate
REMs as input. As illustrated in Figure 8.2, StitchIt is designed to improve on
peak-based approaches by providing a higher resolution and greater accuracy in
pinpointing REMs.
In the scope of this chapter as well as in Schmidt et al. [S+19], we use DNaseI-seq

data to model regulatory activity. We emphasize that the proposed methods are
not limited to that input, but can also be applied to other chromatin accessibility
assays as discussed Chapter 6, or for example to HM ChIP-seq data.
Within Section 8.3, we sketch relevant related methods to link REMs to their

targets. Three approaches against which we compare our StitchIt approach in
various validation scenarios are introduced in Section 8.4. Details on StitchIt are
provided in Section 8.5, a toy-example illustrating the function of the algorithm is
provided in Section 8.6. In Section 8.9 we present an application of StitchIt to
various IHEC datasets and analyze the performance of our method with various
validation scenarios. Section 8.10 concludes this chapter with a discussion of our
method and by pointing out limitations of our approach.

8.3 Related methods linking REMs to genes

Here, we describe several approaches that have been used by others to link putative
regulatory elements to their target genes.
Cao et al. propose to integrate predicted REMs into cell type specific interaction

networks [C+17]. For this purpose, they developed the Jeme method to associate
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TSSg2 TSSg3TSSg1
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Epigenomic and transcriptomic profiling
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Inference of gene specific regulatory regionsUnified peak calling STITCHIT
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Gene

g1 g2 g3

s1 2.1 41 0.9

s2 54 0.4 32

s3 49 42 35

Gene-expression [TPM]

TSSg2 TSSg3TSSg1

Associate peaks to gene-expression data

True REMs

Predicted REMs

True REMs

Predicted REMs

Figure 8.2: Here three genes (g1, g2, g3) and their colour coded REMs are depicted.
Their DNaseI-seq and RNA-seq profiles have distinct patterns. One
the left, REMs are derived based on correlation tests between called
peaks and the expression of the target genes. As shown, the peak
based linkage is inaccurate: the neighbouring REMs for g1 and g2 are
not distinguished accurately due to insufficient resolution during peak
calling. Also, a distal REM for g1 is predicted to be larger than it is
and an intragenic REM of g3 is missed. StitchIt however, uses the
chromatin accessibility and gene-expression data in a unified statisti-
cal framework to define gene-specific REMs with greater accuracy, as
shown on the right hand site. Figure from Schmidt et al. [S+19].

enhancers to their target genes using many samples. Briefly, Jeme first extracts
candidate enhancer elements in a 1 mb window around all annotated TSSs. These
enhancer elements are obtained from ChromHMM segmentations computed for
127 samples from ENCODE and Roadmap. Cao et al. "took the union of the
predicted enhancers from all samples, removed those larger than 2500 bp, merged
the remaining enhancers that overlapped and removed the ones larger than 2500 bp
again after merging" [C+17], leading to 489581 candidate enhancers. Next, for each
TSS i, a linear model using all its candidate enhancers and the signal of H3K4me1,
H3K27me3, H3K27ac and DNaseI-seq computed within those enhancers is trained
to predict the expression measurements linked to the TSS i. The model uses Lasso
regularization to avoid over-fitting. On the basis of these models that utilize the full
spectrum of all candidate enhancers, the importance of the individual enhancers can
be computed in terms of error terms er, by learning individual regression models
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using only one type of epigenetic signal within one enhancer as a feature at a time.
This allows to rank enhancer-TSS pairs et by the individual error terms eret.

Jeme uses these enhancer-TSS error terms together with the distance information
of enhancers and their assigned TSSs as well as the epigenetic signal within the
enhancers in Random Forest(RF) models to learn about sample specific enhancer-
TSS importance across all enhancer-TSS pairs within one sample. The RFs are
trained using data on chromatin contacts such as ChIA-PET data.
Note that within Jeme, the definition of enhancers strongly influences the initial

set of candidate regions. For instance, the definition could be strictly neglecting
regulatory events at the promoter of a gene, or could be more lenient and considering
those sites as well. Within StitchIt we do not require any preselected candidate
regions, thereby circumventing this problem in the first place. Our methods simply
highlights any region that shows epigenetic signal variance that is associated with
expression changes.
The methodology proposed by Hait et al. within their method FOCS [H+18b]

has some similarities to the strategy implemented in Jeme. FOCS requires the user
to provide the DNaseI signal within candidate enhancer sites and uses this signal
to predict gene-expression. FOCS automatically selects the n closest candidate
enhancers for each promoter and builds an ordinary least squares model from that
data. In Hait et al. the 10 closest enhancers are considered. The importance
of individual enhancers is determined in a leave-one-cell-type-out cross-validation
procedure. Next, models with poor quality are discarded. Whether a model is of
poor quality or not is decided according to the p-value of the Spearman correlation
between the predicted and the measured promoter activity. The p-values were
computed using the Benjamini-Yekutieli correction [BY01]. Models with a corrected
p-value ≤ 0.1 are considered for a more detailed analysis. Specifically, linear models
with elastic net regularization and a fixed value for α, the parameter controlling
the trade of between lasso and ridge, are used to determine the final coefficients of
each candidate enhancer.
Gonzales et al. called DHSs on Roadmap DNaseI-seq data for six different cell

types using MACS. Only peaks that are reproducible across all replicates of one
cell type are used in an iterative heuristic approach to generate an atlas of DHSs
that is comprised of DHSs from all six tissues. Gonzales et al. suggest to neglect
the non-overlapping part of two overlapping peaks if the overlap between the two is
> 75%. If the overlap is ≤ 75%, the overlapping area is removed and two individual
peaks are added to the atlas. Next, all DHSs of the atlas are linked to their target
genes by simply assigning each peak to its closest gene in terms of distance to TSS
or TTS, depending on which is closer [G+15b].
Shooshtari et al. used regulatory sites derived from chromatin accessibility data

together with Genome-Wide Association Studies (GWAS) to better pinpoint regula-
tory events in autoimmune and inflammatory diseases [Sho17]. In more detail, they
called DHSs in 350 samples obtained from Roadmap. To compare the chromatin
accessibility landscape across samples, Shooshtari et al. computed the overlap be-
tween neighboring peaks per sample. Using a clustering approach, they combined
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overlapping peaks into one merged peak that is defined by its extreme positions.
Next, a cluster is termed to be active in a sample, if it is overlapping with at least
one DHS site within this sample. Active clusters have been used by Shooshtari et al.
to prioritize GWAS hits that are likely to be influenced by mutations in regulatory
regions [Sho17].

In the FANTOM5 consortium, putative REMs have been linked to their target
genes by associating enhancer activity to gene-expression [A+14]. More specifically,
they compute the correlation between enhancer activity derived from CAGE data
and gene-expression measurements across 808 samples considering primary cells,
cell lines and tissues. Unlike the other methods that have been introduced so far,
this is the only correlation based method that uses CAGE data and does not rely
on DNaseI-seq data.

These examples of recent methods that link REM to their genes require a pre-
selected set of regulatory regions and at the same time are often based on peaks,
typically DHSs. Also, prior knowledge on regulatory regions is used, e.g. in Jeme.

8.4 Alternative approaches used to assess the
performance of STITCHIT

To mimic common strategies of REM linkage approaches pursuit in the methods
introduced in the previous section and to compare them to our StitchIt software,
we devise three general strategies to identify and to link REMs to their target genes.
They are depicted in Figure 8.3. We use an unsupervised, window based aggregation
of DHSs per gene and per sample, representing purely distance based approaches.
Secondly, we generate the union of DHSs across all samples (UnifiedPeaks) and
thirdly we consider known REMs from the GeneHancer database. Command line
arguments along with further details on how to produce the respective scores are
provided in Section B.6.

Unsupervised integration of peaks per sample

Similar to earlier work [G+15b, SS18], we determine for each gene g in each sample i
how many DHSs cgi are located within a distinct window w, how wide the accessible
regions lgi are and we aggregate the signal intensity within the selected DHSs sgi .
The contribution of each DHS p is also weighted by its distance dist(p, g) to the
TSS of gene g following an exponential decay.

As introduced in Chapter 3 in the context of Schmidt et al. [SS18], these quantities
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are computed as:

cgi =
∑

p∈Pw,g

I(p) · exp

(
−dist(p, g)

d0

)
, (8.1)

lgi =
∑

p∈Pw,g

|p| · exp

(
−dist(p, g)

d0

)
, (8.2)

sgi =
∑

p∈Pw,g

s(p) · exp

(
−dist(p, g)

d0

)
. (8.3)

Here, I is the indicator function, Pw,g refers to all DHSs p that overlap the window
w around gene g,d0 is a constant set to 5000, |p| is the genomic length of p and
s(p) refers to the DNaseI-seq signal within p. In this study, we considered three
different instances for the window w: a 5kb window centered at the 5′TSS of g, a
50kb window centered at the 5′TSS of g and a 2.5kb of the TSS of g as well as the
entire gene body of g.
As the region-specific view on the data is lost within this scoring methodology,

it is not considered for interpretation purposes at later stages of this Chapter.

Unified peaks

Here, we generate aggregations of DHSs across all samples under consideration.
Overlapping DHSs are merged using the BEDTools [QH10] merge command.
Thereby, we obtain a set of regions representing all accessible sites within a dataset.
Using the bigwig files generated with DEEPTools [R+14a] and the libBigWig
library (https://zenodo.org/record/45278), we compute the DNaseI-seq signal
within the merged peaks for each sample. Next, we test for all candidate peaks
within a distinct window w, here w = 25kb, upstream of a genes TSS and down-
stream of its TTS, whether there is a significant correlation (p ≤ 0.05) between the
DNaseI-seq signal within the peak and the expression of the gene. All merged peaks
passing this test (U) are considered to be a candidate regulatory element. We refer
to this as the UnifiedPeaks approach. This methodology is conceptually similar
to the peak aggregation approaches suggested by Hait et al. [H+18b] and Shooshtari
et al. [Sho17] introduced above.

GeneHancer

For all REMs obtained from the GeneHancer database, we calculate the sample-
specific DNaseI-seq signal within each region for each gene using the libBigWig
library. Note that a window or distance cut-off is not required because each region
is already assigned to its putative target gene. Considering that the GeneHancer
database is comprised of REMs originating from many different sources identified
with a plethora of assays and molecular signatures, we perform the same correlation-
based test as with the UnifiedPeaks approach to identify a subset (G) of regions
with sufficient correlation between the DNaseI-seq signal and the gene-expression
of the respective target gene.
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Figure 8.3: (a) Following a window based approach, as normally applied in per
sample models, we assess length, count and signal of DNase hyper-
sensitive sites (DHSs) per gene and per sample using three different
windows: 5kb, 50kb and a gene body window. (b) Also, we consider
a curated set of promoters and enhancers contained in the Gene-
Hancer database. Next, we select regions whose DNaseI-seq signal
correlate with the expression of the tested target gene. Another ap-
proach is depicted in (c). Here, we identify the union of all DHSs and
select regions that exhibit DNaseI-seq signals that correlate with the
expression of the target gene. Figure from Schmidt et al. [S+19].

8.5 Overall workflow of STITCHIT

Conceptually, we pursue the idea of identifying regions in large genomic intervals
around a gene of interest that can be associated with the gene’s expression vari-
ation across many samples. To identify such regions we utilize paired epigenetics
and gene-expression data. The StitchIt algorithm uses the actual signal of the
epigenetics data to highlight segments of the data showing signal variation that can
be used to separate samples according to the expression of the target gene. Thus,
the peak-calling step can be omitted and the two tasks of identifying regulatory
sites and their linkage to targets are solved simultaneously. To refine the list of pu-
tative REMs identified by StitchIt, we apply a two-level learning approach that
is detailed below in Section 8.7. The two-level learning enables us to judge the ex-
planatory power of the found regions for gene-expression and to obtain a p-value for
the significance of each identified site. The workflow of the proposed methodology
is depicted in Figure 8.2.
In the following we are given a dataset Dg with m rows, corresponding to the

samples and n columns representing the epigenetic signal at base pair resolution
around the target gene g. Further, we assign a class label to each row indicating
whether the corresponding sample is associated with a high, medium, or low ex-
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pression value (C = 0, 1, 2). Depending on the distribution of the gene-expression
values, also a two-level classification was used here (C = 0, 1).

StitchIt can be used with any number of distinct class labels that is smaller or
equal to the number of samples. With Ck we relate to all rows to which we assigned
class label k ∈ C.
A segment s has a start point i and an end point j, where 1 ≤ i ≤ j ≤ n. We

call Sg a segmentation of Dg, if it contains a set of non-overlapping segments that
covers the entire range from 1 to n. There are two trivial segmentations: Firstly,
a segmentation consisting of only a single segment with start point i = 1 and end
point j = n and secondly the segmentation containing n segments, where each
segment contains only a single column that is the DNaseI-seq signal at single base.
The former would contain no information about the class labels, while the latter
would consist of a large set of noisy segments. Our goal is to provide a small set of
robust features for the learning step. We achieve this by joining adjacent base pairs
to segments such that the variance between the epigenetic signals of base pairs that
are contained in a segment is low, w.r.t. to the class labels representing the discrete
gene-expression state. The optimal segmentation according to the score we define
below finds a trade-off between the number of segments and the variance.
To score a segmentation we propose an information theoretic score based on

the Minimum Description Length (MDL) principle [Grü07b]. MDL is a practical
instantiation of Kolmogorov complexity [Kol68] and thus belongs to the class of
compression-based scores. Formally, given a model class M, MDL identifies the
best model M ∈M for data D as the one minimizing

L(D,M) = L(M) + L(D |M) , (8.4)

where L(M) is the length of the description of the model M in bits and L(D |M)
is the length of the description of the data D given M in bits. This is known as
two-part, or crude MDL. In essence, we try to find the simplest model that can
explain the data well. We follow the convention that all logarithms are base two,
since the length of the encoding relates to bits and define 0/ log 0 = 0. In this work,
we use MDL to balance our segmentation between having too few segments and
running at risk of missing structure in the data and finding too many segments,
which contain spurious information and make the post-processing infeasible.
From now on, we consider the model class of segmentations S from which we

want to find the optimal segmentation Sopt
g that is

Sopt
g = arg min

Sg∈S
(L(Sg) + L(Dg | Sg)) (8.5)

In particular, we encode a segmentation Sg as follows

L(Sg) = LN(|Sg|)+ |Sg||C| log2

(
|max(Dg)−min(Dg)|

τ

)
+log2

(
n− 1

|Sg| − 1

)
, (8.6)

where |Sg| denotes the number of segments, min(Dg) refers to the minimum value
occurring in Dg, max(Dg) refers to the maximum value occurring in Dg, |C| is the
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number of class labels, τ is the data resolution. The value of τ is smaller or equal
to one. The smaller it is, the more accurate is the representation of floating-point
numbers. LN is the universal prior for integer numbers [Grü07b], which is defined
recursively:

LN(x) =

{
log2(2, 865064), if (x ≤ 0),

LN(log2(x)) + log2(x), otherwise.
(8.7)

In summary, we first compute the costs to encode the number of all segments
(LN(|Sg|)), then for each segment per category we calculate the associated mean
signal value of the considered epigenetic assay by assuming it lies between the min-
imum and the maximum value in the data (|Sg||C| log2

(
|max(Dg)−min(Dg)|

τ

)
)and

lastly we determine model complexity to select |Sg| segments from possible n seg-
ments (log2

(
n−1
|Sg |−1

)
).

To compute L(Dg | Sg), the costs for representing the data given a segmentation,
we simply sum over the costs per segment

L(Dg | Sg) =
∑
s∈Sg

∑
k∈C

1

|Ck|
L(Dg | s, k) , (8.8)

where |Ck| corresponds to the number of rows associated with class label k and
L(Dg | s, k) refers to the cost for gene g’s segment s being assigned to class k. To en-
code the costs for a specific segment and the data associated with class k, we encode
the error assuming a Gaussian distribution. Using σ̂k as the standard deviation of
the data corresponding to segment s and class label k, we get (compare [Grü07b])

L(Dg | s, k) =
|s||Ck|

2

(
1

ln(2)
+ log2(2πσ̂k

2
)

)
+ |s||Ck| log τ, (8.9)

σ̂ki,j =

√√√√ 1

nki,j

(
(SSk[j]− SSk[i− 1])− 1

nki,j(Sk[j]− Sk[i− 1])2

)
, (8.10)

nki,j = (j + 1− i) · |Ck|, (8.11)

Sk[j] = Sk[j − 1] +
∑
i∈Ck

Dgi,j , (8.12)

SSk[j] = SSk[j − 1] +
∑
i∈Ck

D2
gi,j . (8.13)

with |s| being the length of the segment. To find the optimal segmentation Sopt
g ,

we use dynamic programming [Bel54]. In essence, we start with a segmentation
containing only one single segment. Then we iteratively compute the best seg-
mentation containing i segments based on the best segmentation containing i − 1
segments for i ∈ {2, . . . , n}. Lastly, we select Sopt

g among the optimal segmentations
for each possible number of segments. The runtime complexity of this algorithm is
O(n2). By selecting a minimum segment size of β and partitioning the search space
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into l chunks, we can run each chunk in parallel and the total runtime complexity
reduces to O( n

2

lβ2 ). In our experiments, we use β = 10 and set l to d n
5000e, which

makes the algorithm feasible to be applied to large genomic intervals. Here, we
have considered 25kb upstream of a gene’s Transcription Start Site (TSS) and 25kb
downstream of a gene’s Transcription Termination Site (TTS), although also larger
areas can be chosen at the users convenience. As shown in Figure 8.4, the runtime
of StitchIt is still feasible even if a windows of 1mb is considered.

Figure 8.4: Runtime [min] of StitchIt depending on the window size that is the
sum of the up- and downstream extension of the considered search
window. Figure from Schmidt et al. [S+19].

Upon completion of the StitchIt algorithm, those segments that are associated
with the observed expression changes need to be extracted from Sopt

g . Thus, for all
segments s ∈ Sopt

g we compute both Pearson and Spearman correlation between the
epigenetic signal in s across all samples m and the continuous expression values of
the target gene g. We select all segments that achieve either a Pearson or Spearman
correlation with a significance threshold of p ≤ 0.05.

8.6 A toy example illustrating STITCHIT

The following example showcases a run of the STITCH algorithm on a data matrix
D consisting of six samples with six initial segments (β = 1). The example tries to
find the segmentation that best explains the expression difference for two classes,
labelled 0 and 1, respectively. Each class has been assigned to three samples.
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The data matrix Di,j holding raw counts of the data that should be segmented
is given as:

b1 b2 b3 b4 b5 b6 exp

s1 10 9 1 1 7 8 0

s2 11 10 2 1 7 8 0

s3 10 8 1 0 9 8 0

s4 2 4 25 24 0 1 1

s5 3 5 23 22 1 0 1

s6 2 6 26 25 0 1 1

Using D, we compute the sum S and the sum of squares SS for each column of
D per class k according to

Sk[j] = Sk[j − 1] +
∑
i∈Ck

Di,j , (8.14)

SSk[j] = SSk[j − 1] +
∑
i∈Ck

D2
i,j . (8.15)

S0[1] S0[2] S0[3] S0[4] S0[5] S0[6] S1[1] S1[2] S1[3] S1[4] S1[5] S1[6]

31 58 62 64 87 111 7 22 96 167 168 170

SS0[1] SS0[2] SS0[3] SS0[4] SS0[5] SS0[6] SS1[1] SS1[2] SS1[3] SS1[4] SS1[5] SS1[6]

321 566 572 574 753 945 17 94 1924 3609 3610 3612

To calculate the data costs wki,j for each hypothetical segment from position i to
j, with i ≤ j, we need to compute the empirical standard deviation σ̂ki,j as well as
the number of data points within a bin nki,j . This is possible in constant time using
the precomputed vectors Sk and SSk [E06], where

σ̂ki,j =

√√√√ 1

nki,j

(
(SSk[j]− SSk[i− 1])− 1

nki,j(Sk[j]− Sk[i− 1])2

)
, (8.16)

nki,j = (j + 1− i) · |Ck|, (8.17)

where |Ck| denotes the number of samples related to class k.
It holds that n0

i,j = n1
i,j :

i\j 1 2 3 4 5 6

1 3 6 9 12 15 18

2 0 3 6 9 12 15

3 0 0 3 6 9 12

4 0 0 0 3 6 9

5 0 0 0 0 3 6

6 0 0 0 0 0 3
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The standard deviation for class 0 σ̂0
i,j evaluates to

i\j 1 2 3 4 5 6

1 0.471405 0.942809 4.012327 4.403282 4.069398 3.804237

2 0 0.816497 3.890873 3.829708 3.771236 3.627059

3 0 0 0.471405 0.57735 3.224137 3.47511

4 0 0 0 0.471405 3.578485 3.435472

5 0 0 0 0 0.942809 0.687184

6 0 0 0 0 0 0

and for class 1 σ̂1
i,j we have

i\j 1 2 3 4 5 6

1 0.471405 1.490712 10 10.34777 10.73437 10.55789

2 0 0.816497 9.889669 9.113821 10.92748 11.02643

3 0 0 1.247219 1.34371 11.29186 11.87668

4 0 0 0 1.247219 11.7047 10.9522

5 0 0 0 0 0.471405 0.5

6 0 0 0 0 0 0.471405

From σ̂ki,j and n
k
i,j , we compute the cost matrices wki,j following the MDL encoding

for normally distributed data points [Grü07b]. For notational convenience, we write
s to denote to the segment ranging from i to j. The data costs for segment s and
class k can be computed as

L(D|s, k) = wki,j =
nki,j
2

(
1

ln(2)
+ log2(2πσ̂ki,j σ̂

k
i,j)

)
+ nki,j log2 τ. (8.18)

Here τ is the data resolution. Because we consider only integers in this example,
we can set τ = 1. According to Equation 8.14, we obtain for w0

i,j

i\j 1 2 3 4 5 6

1 5.705249 17.4105 44.92036 61.50349 75.17291 88.45775

2 0 8.082693 29.68083 44.31552 58.821 72.68268

3 0 0 5.705249 13.16539 42.08063 57.40525

4 0 0 0 5.705249 28.95637 42.90498

5 0 0 0 0 8.705249 14.67289

6 0 0 0 0 0 0

and for w1
i,j

i\j 1 2 3 4 5 6

1 5.705249 21.37628 56.77776 76.29552 96.16316 114.9653

2 0 8.082693 37.75581 55.57291 77.2392 96.7441

3 0 0 9.916281 20.4776 58.35531 78.68126

4 0 0 0 9.916281 39.21437 57.95874

5 0 0 0 0 5.705249 11.92027

6 0 0 0 0 0 5.705249

The total cost matrix W is defined as

Wi,j =

k∑
l=1

wki,j
|Ck|

. (8.19)
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In our example, we get for W

i\j 1 2 3 4 5 6

1 3.803499 12.92893 33.89937 45.93301 57.11203 67.80769

2 0 5.388462 22.47888 33.29614 45.3534 56.47559

3 0 0 5.207177 11.21433 33.47865 45.36217

4 0 0 0 5.207177 22.72358 33.62124

5 0 0 0 0 4.803499 8.864386

6 0 0 0 0 0 1.90175

Using dynamic programming [NV15], we compute the costs for all possible seg-
mentations according to the recursion formula

ci,j = min
k=1,...,j−1

(ci−1,k +Wk+1,j), (8.20)

yielding the cost matrix C.

i\j 1 2 3 4 5 6

1 3.803499 12.92893 33.89937 45.93301 57.11203 67.80769

2 0 9.191961 18.1361 24.14326 46.40757 54.79739

3 0 0 14.39914 20.40629 28.94675 33.00764

4 0 0 0 19.60631 25.20979 29.27068

5 0 0 0 0 24.40981 28.4707

6 0 0 0 0 0 26.31156

After computing L(D|S), we need to compute the costs of L(S). These are
obtained according to

L(S) = LN(|S|) + |S||C| log2

(
|max(D)−min(D)|

τ

)
+ log2

(
n− 1

|S| − 1

)
, (8.21)

where |C| is the number of possible class labels and LN(|S|) refers to the optimal
encoding for natural numbers as defined above [Grü07b, p.100].

Thereby, we obtain L(S) as:

Level 1 10.91945

Level 2 23.64225

Level 3 35.29254

Level 4 45.44401

Level 5 54.66348

Level 6 62.33327

For the combined costs L(S)+L(D|S) we get:

Level 1 78.72714

Level 2 78.43965

Level 3 68.30019

Level 4 74.71469

Level 5 83.13418

Level 6 88.64484
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8.7 A two-level learning approach to refine suggested regulatory elements

As demonstrated above, the smallest costs are obtained for the segmentation at
level 3. We perform backtracking through the dynamic programming matrix to
identify the corresponding segmentation. Below, the backtracking path is high-
lighted in blue.

i\j 1 2 3 4 5 6

1 3.803499 12.92893 33.89937 45.93301 57.11203 67.80769

2 0 9.191961 18.1361 24.14326 46.40757 54.79739

3 0 0 14.39914 20.40629 28.94675 33.00764

4 0 0 0 19.60631 25.20979 29.27068

5 0 0 0 0 24.40981 28.4707

6 0 0 0 0 0 26.31156

We obtain the final segmentation b1,2-b3,4-b5,6, which merges two consecutive bins
into one segment.

8.7 A two-level learning approach to refine suggested
regulatory elements

StitchIt provides a matrixX holding the epigenetic signal for all selected segments
s ∈ Sopt. The m rows of X denote the samples, the n columns refer to the regions
selected by StitchIt. To further refine the suggested regions for a distinct gene g,
we first train a linear model using elastic net regularization, as implemented in the
glmnet R-package [FHT10]. Here, we are utilizing the DNaseI-seq signal within
candidate REMs (X) to predict the expression of g. We use the same learning
scheme as introduced in Section 3.4.1.
Significance of the correlation between predicted and measured gene-expression

is adjusted using the Benjamini-Yekutieli correction [BY01], which is designed to
account for dependency between the tests. This has been used before in Hait
et al. as well [H+18b]. Only models with a q-value ≤ 0.05 are considered for
interpretation of the selected regions. The q-value is the adjusted p-value obtained
from the Benjamini-Yekutieli correction. For those models, we refer to all features
with a median non-zero regression coefficient across the outer folds by XNZ .
In a second learning step, similar to Hait et al. [H+18b], we train an Ordinary

Least Squares model (OLS) on the pre-selected features XNZ predicting y and
report the regression coefficients βOLS as well as the p-values per feature for down-
stream analysis:

y = XNZβOLS . (8.22)

The OLS model allows for a simple comparison of regression coefficients βOLS across
genes, as there is no bias introduced by the regularization as in elastic net. Also,
OLS provides a straight forward way to compare individual REMs. Therefore, we
invert the order of using the elastic net and the simple OLS model compared to
Hait et al.. All regions and model coefficients used for interpretation and validation
are obtained from the OLS models.
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8.8 Implementation & usability

We have implemented the StitchIt algorithm, the UnifiedPeaks approach and
a linking using previously defined regions (e.g. from GeneHancer) using C++.
Each linkage method is available as a separate executable in our repository. The
code can be easily build using cmake (version ≥ 3.1) and requires a C++11 com-
piler supporting openmp for parallel execution of StitchIt. We have thoroughly
tested StitchIt using googletest. Scripts for the unsupervised peak linkage are
available at www.github.com/schulzlab/TEPIC. All the other code is available at
www.github.com/schulzlab/STITCHIT.

8.9 Application of STITCHIT to IHEC data sets

We applied StitchIt to a large collection of paired, uniformly reprocessed DNaseI-
seq and RNA-seq samples from Blueprint, ENCODE and Roadmap to determine
gene-specific REMs. These datasets are very different. The Blueprint dataset is
rather homogeneous representing a wide spectrum of the haematopoietic lineage,
the ENCODE dataset is composed of few diverse samples and the Roadmap dataset
is a large, highly diverse, heterogeneous dataset. Thus, these three datasets are ideal
to test the capabilities of StitchIt.

8.9.1 Data and processing

Paired DNaseI-seq and RNA-seq data were downloaded from the ENCODE data
portal for 41 ENCODE and 110 Roadmap samples. Upon granted access, we ob-
tained 56 paired DNaseI-seq and RNA-seq samples from Blueprint. An overview
is provided in Table 8.1 on sample numbers and tissue/cell type diversity. In Sec-
tion B.6 all data accession numbers are listed. Paired samples are required as they
are expected to have a better correlation between chromatin structure and gene-
expression, because both samples originate from the same donor. Details on data
processing as well as used command calls are provided in Section B.6.

Table 8.1: Overview of the data used in this chapter.
Blueprint Roadmap ENCODE

#paired samples 56 110 41

#different cell types 13 33 25

primary cells only Yes No No

Further, we obtained H3K27ac data in wig format from the Blueprint data portal
for four samples (C0011IH1, S00C0JH1, S00XUNH1, C0010KH1). REMs contained
in the GeneHancer database were obtained from the GeneLoc website [P+17b].

Files generated within Schmidt et al. [S+19] are available at Zenodo (10.5281/zen-
odo.2547384). The genome annotation file from GenCode [H+12a] as well as the
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8.9 Application of STITCHIT to IHEC data sets

candidate REMs from the GeneHancer database are included in the StitchIt
repository.

8.9.2 Performance of gene-specific expression models

Prior to a biological evaluation of the suggested REMs, we investigated their general
characteristics. Here, REMs computed using StitchIt, the UnifiedPeaks ap-
proach, the GeneHancer database and using the aggregation of individual DHSs
for the datasets originating from Blueprint, ENCODE and Roadmap are investi-
gated more closely.
As illustrated in Fig. 8.5a both StitchIt and UnifiedPeaks identify more can-

didate regions per gene than GeneHancer. Simultaneously, the regions retrieved
by StitchIt and UnifiedPeaks are shorter than those extracted from Gene-
Hancer (Fig. 8.5b). The same observation is made using Pearson correlation as a
measure to filter candidate regions (data not shown). This suggests that although
StitchIt predicts more individual segments, the total genomic space covered by
those might not be larger than that of UnifiedPeaks regions. As shown in Ta-
ble 8.2, the UnifiedPeaks regions indeed cover a larger fraction of the genome
than StitchIt and GeneHancer regions.
Figure 8.5c depicts the number of genes for which a model could be learned

per consortia and linkage method. StitchIt and UnifiedPeaks segments lead to
more statistically significant models than GeneHancer segments, while StitchIt
has a slight quantitative advantage over UnifiedPeaks.
In Fig. 8.5d, the Spearman correlation of elastic net models predicting gene-

expression from the DNaseI-seq signal within the identified REMs is depicted. For
ease of comparison, we only show model performance for genes that are covered
by each tested method. For each gene, the boxes labeled Individual peaks show
only the best performing model based on either the 5kb, 50kb, or the gene body
window. Across all datasets, we observe that models based on StitchIt regions
achieve a significantly better correlation (p ≤ 0.0001) than models based on the
other approaches. This is independent of the correlation measure used for the
initial filtering of REMs within StitchIt, UnifiedPeaks and GeneHancer. In
a gene-to-gene comparison, as shown in Fig. 8.5e exemplary for Roadmap data,
StitchIt shows a favorable performance, too.
In case of Blueprint data, we observe that the absolute performance difference

between StitchIt and UnifiedPeaks is less pronounced than for the other two
datasets. This is also reflected by the number of selected regions and their length.
The median length of selected regions is more similar for Blueprint data between
StitchIt and UnifiedPeaks than for ENCODE and Roadmap data (Fig. 8.5b).
At the same time, their average length is almost identical, in contrast to the seg-
ments identified in the other two datasets (Fig. 8.5a). In terms of total genomic
coverage, as indicated in Table 8.2, the UnifiedPeaks approach covers about 1.65
times the space covered by StitchIt on Roadmap data, whereas the difference on
Blueprint data is far less (1.02). Further, our results clearly indicate that the super-
vised generation of REMs outperforms the unsupervised selection considerably, as
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different window sizes used with the unsupervised approach do not generalize well
across different genes (Figure B.6). We found that using Spearman correlation for
the internal filtering leads to a better model performance and thus, we decided to
use Spearman correlation for all remaining experiments in the manuscript [S+19].

Table 8.2: Total genomic space covered by the predicted REM in various data sets
Blueprint ENCODE Roadmap

StitchIt 162,453,061 33,229,288 165,805,230

UnifiedPeaks 165,590,118 70,571,718 273,259,579

GeneHancer 137,722,391 109,432,986 155,548,667

8.9.3 STITCHIT generates an extensive catalogue of REMs

To better understand the nature of StitchIt REMs, we have conducted several sta-
tistical analyses. Not only the number and the length of REMs is different between
datasets (Figure 8.5a,b), we also find that the overlap in terms of genes for which a
model could be learned, is generally less than 50% between two datasets (Figure B.7,
independent of the method used for computation. Specifically for StitchIt, only
12.7% (4477) of all gene-specific models are shared between Blueprint, Roadmap
and ENCODE. Roughly 23% (8214) of all genes could be exclusively modeled using
Blueprint data, about 2% (6917) with Roadmap and 6% (2175) with ENCODE.
To gain a better understanding of the characteristics of the suggested regions

learned with StitchIt, we overlapped them with the Ensembl Regulatory Build
(ERB) [Z+15] (release 86). We considered the terms: Open chromatin, Promoter,
Promoter Flanking Region, TF binding site and Enhancer to compare predicted
REMs to an established regulatory annotation of the genome.
Interestingly, although the absolute numbers differ, the relative trend among the

different datasets is similar: most StitchIt regions do not overlap with an anno-
tated region (Figure 8.6b-d). Thus, they are labelled as Unknown. Only in about
a quarter of all cases an overlap is found with a state annotated as Promoter, Pro-
moter flanking region, TF binding site, Enhancer, or Open chromatin. The question
arises whether the remaining regions are simply noise or whether they reflect REMs
that have not been annotated so far. To investigate whether these unknown REMs
are performing regulatory functions, we assessed the H3K27ac signal in four ran-
domly chosen Blueprint samples within windows of size 1kb centered in the middle
of the considered REMs. The signal was calculated within the top 10, 000 regions
per class contained in the ERB as well as in a randomly shuffled set of the same
size. As indicated in Figure 8.6e the strongest H3K27ac signal occurs within Pro-
moter and Promoter Flanking Regions. Importantly, the signal of the randomly
distributed regions is the lowest. The signal of the Unknown regions is similar to
that of TF binding sites and Open Chromatin suggesting that these regions do have
a regulatory effect.
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Figure 8.5: (a) The natural logarithm of the number of segments selected by
StitchIt, UnifiedPeaks and GeneHancer is shown for each
dataset, respectively, whereas in (b), the average length of the selected
segments is depicted. The number of learned models is shown in (c),
separately per consortia and method. (d) Boxplots showing Spear-
man correlation between predicted and measured gene-expression us-
ing linear regression with elastic net penalty considering all regions
identified by StitchIt, the UnifiedPeaks approach, GeneHancer
and individual peak aggregation, respectively for Blueprint, ENCODE
and Roadmap data. Within StitchIt, UnifiedPeaks and Gene-
Hancer Spearman correlation was used for the initial filtering of
candidate regions. Within each consortia, the same set of genes is
displayed to allow comparability (Blueprint: 11140 , ENCODE: 2057
, Roadmap: 9102). As indicated by a two-sided t-test, StitchIt re-
gions achieve the best model performance (****: p ≤ 0.0001). The
estimated values for the variances are: 0.018, 0.017 ,0.029, 0.038
(Blueprint), 0.018, 0.024, 0.032, 0.041 (Roadmap), 0.016, 0.021 ,0.026,
0.048 (ENCODE), for StitchIt, UnifiedPeaks, GeneHancer and
the peak aggregation, respectively. (e) Scatter plots comparing the
performance of StitchIt (x-axis) against the individual peak ag-
gregation, UnifiedPeaks and GeneHancer regions (y-axis) on
Roadmap data. Each plot shows 9102 genes. A single dot repre-
sents the performance of gene-expression models for a distinct gene.
Figure from Schmidt et al. [S+19].

Additionally, the trends between the datasets are varying, e.g. we find most
associations with StitchIt on the Roadmap dataset, whereas in case of the Uni-
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8 SUGGESTING REGULATORY SITES ON THE GENE-LEVEL

fiedPeaks approach, we find most associations on Blueprint data.
In Figure 8.7, we sketch the distribution of StitchIt regions around a gene. We

find that most StitchIt regions are located in intragenic positions that is within
the gene body of their respective target gene. Importantly, we do not observe an
enrichment in identified sites upstream of the considered genes’ TSSs indicating
that we do not focus on promoter specific features. The histograms of Fig. 8.6f
illustrate how the number of associated REMs are distributed among their target
genes. As expected, the distribution for GeneHancer is different from that of
UnifiedPeaks and StitchIt. While the latter predict up to 20-30 REMs per
gene depending on the dataset, GeneHancer reaches the optimum at 1-4 predicted
sites per gene. Our results also indicate that StitchIt tends to find more sites per
gene than the UnifiedPeaks approach.

8.9.4 Validation of suggested REMs with external data

All details on the methods used for the following analyses can be found in Sec-
tion B.6.3.
As StitchIt can be used to learn interactions with distant sites, we compare

the learned interactions to ChIA-PET data for K562 and MCF-7 cells as well as to
Promoter-Capture Hi-C data for GM12878 cells. On Blueprint and Roadmap data,
about one third of all possible interactions overlap with predictions by StitchIt
and UnifiedPeaks, on ENCODE data about one sixth of all ChIA-PET contacts
are retrieved (Figure 8.8a). While GeneHancer constantly finds the smallest over-
lap, StitchIt segments overlap with more chromosomal contacts using Blueprint
and Roadmap data, while the UnifiedPeaks approach finds more on ENCODE
data. There is no clear advantage for any method on the Promoter-Capture data
(Figure 8.9d).
Another approach to assess the reliability of our predictions is to compute the

number of recovered interactions from GeneHancer. As shown in Figure 8.8b,
about 32 − 36% of GeneHancer REMs are retrieved in case of Blueprint and
Roadmap, respectively and about 18% using ENCODE data. In the latter case
the UnifiedPeaks approach finds marginally more overlapping regions, whereas
StitchIt finds more known associations with Blueprint and Roadmap datasets.
The COSMIC database is a collection of known somatic mutations in cancer.

Especially mutations occurring in the non-coding part of the genome overlapping
REMs might affect TF binding sites in those regions and thereby cause changes in
gene-expression that contribute to the progression of cancer. By overlapping our
predictions with all non-coding mutations stored in COSMIC, we suggest to which
gene the non-coding somatic mutation can be linked (Supplementary material of
Schmidt et al. [S+19]). In total, we find 1, 006, 848 associations between 883, 111
somatic mutations and 22, 588 distinct genes. StitchIt is especially well suited
for this task, as its overall enrichment of regulatory sites is higher compared to
UnifiedPeaks and GeneHancer regions (Figure 8.8c) while more mutations
can be linked (Figure 8.9b). Interestingly, randomly selected regions overlap more
mutations than predicted REMs. This suggests that the sequence in the predicted
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Figure 8.6: (a) The Venn diagram illustrates the overlap of valid StitchIt mod-
els between the datasets. (b-d) The distribution of a mapping of
StitchIt sites to the ERB is shown. (e) H3K27ac signal shown
for randomly shuffled regions, as well as StitchIt regions split ac-
cording to the ERB categories. H3K27ac signal is shown for four
Blueprint samples in a window of 1kb centered in the middle of the
putative REMs. StitchIt regions overlapping Promoter or Promoter
Flanking Regions show the highest H3K27ca signal, while the signal
in randomly determined regions is the lowest. Most regions that were
labeled as unknown have a similar signal intensity as sites labeled as
a TF binding site or Open Chromatin. (f) The density plots delineate
the number of predicted REMs per gene, shown separately for the
used datasets and tested methods. Figure from Schmidt et al. [S+19].

REMs is conserved and thus likely to be functionally relevant (Figure 8.9b).
Similarly, we overlape GWAS sites from the EMBL-EBI GWAS catalog with our

predictions suggesting to which gene(s) GWAS hits might be associated (Supple-
mentary material of Schmidt et al. [S+19]). Overall we find 4697 associations with
Blueprint, 888 with ENCODE and 4588 with Roadmap data covering 3394, 753
and 3366 genes, respectively using StitchIt. Similar to above, StitchIt yields
a better enrichment score than the other two methods (Fig. 8.8d). Compared to a
random setting, all actual regions yield significantly more associations and obtain
a significantly better enrichment score (Figure 8.9a).
Expression quantitative trait loci (eQTLs) are distinct genomic loci that are

linked to the expression of genes. We obtained eQTL data from the ExSNP database
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Figure 8.7: Distribution of PEIs around genes for all datasets and all methods.
We observe a peak in the intergenic part of the gene and a decline
downstream of the gene.

and overlaid it with our predictions by computing how many eQTL links are cor-
rectly overlapping our predictions. Fig. 8.8e shows that StitchIt regions obtain
the best enrichment score for the identification of eQTL overlaps, supporting the
accuracy of StitchIt predictions. Furthermore, compared to randomization ex-
periments, we see an enrichment of eQTL overlaps using StitchIt REMs (Fig-
ure 8.9c).

8.9.5 CRISPR-Cas9 validated enhancers for ERBB2 are accurately
retrieved with STITCHIT

Klann et al. validated several REMs for ERBB2 using CRISPR-Cas 9 experi-
ments [K+17b], leading to a set comprising 11 validated regions influencing the
expression of ERBB2. We assembled a list of these validated regions (c.f. Sup-
plementary Table S2) and generated a bed file containing all validated DHSs in
SKBR3 breast cancer cells using the original DHS calls from Klann et al, obtained
from the GEO [GSE96876] [K+17b].
We have calculated the overlap between all DHSs identified in SKBR3 cells and

predicted REMs using BEDTools across all datasets. If more than one predicted
region overlapped a DHS site, only the most significant one is kept in the intersec-
tion.
We obtained REMs for ERBB2 using StitchIt, UnifiedPeaks and Gene-

Hancer. Next, we pooled the REMs learned across the three datasets by inter-
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Figure 8.8: (a) The bar plot indicates how many ChIA-PET contacts are matching
the associations of REMs to their target genes across all three datasets
and linkage approaches for the K562 and MCF-7 cell lines. With the
exception of the ENCODE dataset, StitchIt retrieves more interac-
tions than both UnifiedPeaks and GeneHancer. (b) Here, the ra-
tio of recovered entries from the entire GeneHancer database is shown
for StitchIt and UnifiedPeaks. While UnifiedPeaks retrieves
slightly more entries than StitchIt on ENCODE data, StitchIt
retrieves more known sites on Blueprint and Roadmap data. (c-e)
Length-normalized enrichment of non-coding mutations (c), of GWAS
sites (d) and eQTLs (e). With the exception of (c), which considers
only Blueprint data, all other analysis are performed on all datasets
and indicate that StitchIt regions achieve the best score. Figure
from Schmidt et al. [S+19].

secting them with all potential SKBR3 DHSs (see B.6.3 for details).
As depicted in Figure 8.10, StitchIt finds 9 of the 11 regions, the Unified-

Peaks approach retrieves 7 regions and GeneHancer retrieves 6 regions. As an
additional support of the predictions, we found that ChIA-Pet data (4DGenome)
is linking REMs around GRB7 to ERBB2 [W+15].
As shown in Fig. 8.10, StitchIt regions are very sharp and rather a subset of the

validated DHSs, especially for those within the gene body of ERBB2, while Uni-
fiedPeaks and GeneHancer segments are very broad, not providing a good res-
olution on the regulatory landscape of the chromatin around ERBB2. For instance,
6 validated DHSs are covered by only 2 GeneHancer segments, rendering the
GeneHancer segments less useful in an exploratory analysis of gene-expression,
because the actual sites of importance are not pinpointed precisely. The Unified-
Peaks approach performs better in terms of this ratio, as only in one instance
an identified site overlaps 2 validated DHS, but the mean length of the Unified-
Peaks regions (1449bp) is still longer than the mean length of StitchIt regions
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Figure 8.9: (a) Random comparison to overlapping GWAS sites indicating the to-
tal number of overlapping sites as well as the enrichment score. (b)
Total number of overlapping mutations from the COSMIC database
and the enrichment score compared between randomized and original
data. (c) Random analysis of the eQTL data from expSNP show-
ing the total number of correctly overlapping eQTLs as well as the
enrichment score. (d) Total number as well as the number of REM
overlapping contacts from a Capture Hi-C experiment. Significance
in a)-c) is indicated by a two-sided t-test (****: p ≤ 0.0001). Figure
from Schmidt et al. [S+19].

(214bp) and longer than the validated SKBR3 DHSs (562bp). Especially in down-
stream applications such as TF-binding predictions or foot-print calling, the more
fine grained resolution of StitchIt is beneficial and can avoid false-positive calls.

8.9.6 STITCHIT can be used to segment large regulatory elements

From the overlap between UnifiedPeaks (U) and StitchIt (S) regions it can be
computed how many StitchIt segments s a peak p ∈ U is split into. We refer to
the segmentation of p into several segments s as a split event, with the additional
constraint that the new sub-regions should not be linked to the same gene as the
original peak. The degree of a split event denotes the number of StitchIt segments
s a peak p ∈ U is divided into. Within this counting procedure we also impose that
any s overlapping p needs to be linked to a different gene g than p, while any
StitchIt segment s can be assigned to the same target gene g′ as long as g′ 6= g.
In addition, we quantify how many split events are supported by conformation data.
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Figure 8.10: This genome-browser visualization depicts in the gene track the ge-
nomic locus of ERBB2. The second track shows DHSs identified in
SKBR3 cells and sites highlighted in green have been validated using
CRISPR-Cas9 experiments [K+17b], indicated by the gRNA bind-
ing sites shown in the track below. The track labeled ChIA-PET
shows an interaction obtained from the 4DGenome database. The
StitchIt track contains all StitchIt regions identified across the
three datasets. A blue color indicates that the region overlaps a val-
idated DHS site. The tracks for UnifiedPeaks and GeneHancer
are generated analogously. StitchIt retrieved 9 sites, Unified-
Peaks identified 7 and GeneHancer 6. Figure from Schmidt et
al. [S+19].

To this end, for each split event, we assess how many StitchIt segments overlap
a matching genomic contact obtained from ChIA-Pet or Capture Hi-C data. If all
StitchIt regions are supported, we call a split fully supported, if not all but at
least one region is supported we call it partially supported.
As shown above, the UnifiedPeaks approach produces longer candidate regions

than StitchIt. As depicted in Figure 8.11a split events do occur frequently. Note
that for illustration purposes, split events of degree > 10 and smaller than < 2 are
not displayed.
An example for a split event is provided in Figure 8.11b. Here, a peak is linked

exclusively to TMEM14B by the UnifiedPeaks method. The peak itself is located
around the promoter of TMEM14C and covers a total genomic range of 2497bp.
StitchIt divides that peak into segments linked to PAK1P1, to TMEM14C itself
and to TMEM14B. ChIA-PET data obtained from K562 cells support the long range
interactions to PAK1P1 and TMEM14B. Together with the analysis presented in
Figure 8.11a, this example underlines the ability of StitchIt to precisely pinpoint
regions of regulatory potential and suggests segmentations of large REMs into more
refined segments to reveal their regulatory interactions

8.9.7 Exploratory analysis of EGR1 regulation

To better understand the functional advantage of StitchIt over UnifiedPeaks,
we investigate the regulatory landscape of EGR1 in more detail. For EGR1, the
Spearman correlation achieved by the UnifiedPeaks REMs in gene-expression
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Figure 8.11: (a) The x-axis of the bar plots indicate the magnitude of a Split
event that is the number of differently linked StitchIt segments a
peak is split into. The y-axis holds the frequency for the individual
counts. The color code indicates whether StitchIt associations are
fully, partially or not at all supported by conformation data. (b) Ex-
ample of a split event at the TMEM14C locus. At the promoter of
TMEM14C, a peak that is linked to TMEM14B is split into several
StitchIt segments. These are associated with PAK1P1, TMEM14C
itself and TMEM14B. All StitchIt associations shown here are sup-
ported by ChIA-PET data. Figure from Schmidt et al. [S+19].

modelling is 0.55, while StitchIt regions achieve a correlation of 0.72. Here, we
test whether this difference in model performance is also reflected by an improved
interpretability of the identified regions regarding the regulation of EGR1. In Fig-
ure 8.12a, we show the identified candidate regions ranked by the absolute value of
the regression coefficients per site (Table B.24).
A striking difference between StitchIt and UnifiedPeaks is that the latter

identifies one large segment (U1: 8970bp) covering 2842bp upstream of EGR1, the
entire EGR1 gene as well as 2304bp downstream of EGR1 TTS. This segment is
split up into two regions using StitchIt: a region downstream of EGR1 TTS (S1)
and into a region within the first exon of EGR1 (S2). As shown by the DNaseI-seq
signal tracks in Figure 8.12a, StitchIt region S1 and S2 do overlap DNaseI-seq
signal in sample C0010KB, in which EGR1 is expressed, whereas they lack signal in
C005VG11, where EGR1 is not expressed. This difference between StitchIt and
UnifiedPeaks is likely the main reason for the observed performance difference.
Another interesting association can be observed for S3 and S8, which are both
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overlapping with U2. S3 has the strongest negative regression coefficient identified
by StitchIt for EGR1 and indeed this region (as well as S8) shows signal in
C005VG11 but not in C0010KB, supporting the role of the regions as an active
repressor of EGR1. The link of S3 to EGR1 is further supported by ChIA-PET
data.
While these examples provide insights on the level of individual samples, we have

considered the DNaseI-seq signal within all identified StitchIt regions and used
it to cluster the Blueprint samples (Figure 8.12b). Using only the signal within the
candidate regulatory sites, an almost perfect clustering into samples according to
EGR1 expression levels was obtained. The clustering can be used to assess the cell
type specificity of the suggested regions.
We further hypothesized that regions with strong regression coefficients should

be functionally active, e.g. are containing TF binding sites. We use Fimo [G+11]
to predict TF binding in REM S1 (Table B.25) and REM S3 (Table B.26), the
regions with the strongest positive and negative association predicted by StitchIt,
respectively. For the top hits (ranked by Fimo q-value), we checked ENCODE for
TF ChIP-seq data. Indeed, we found a peak of TEAD4 and BHLHE40 in S1,
which are ranked as first and fourth hit by Fimo. For the second and third TF,
namely SP8 and BCL6, as well as for most TFs binding in S3 no ChIP-seq data
was available at ENCODE. However, EGR1 ChIP-seq data, which was predicted to
bind in S3, is available. Surprisingly, EGR1 does not only bind to S3, but also to
S1, S2 and S10, a region uniquely identified using StitchIt that is located about
15kb upstream of the EGR1 gene. Overall, the ChIP-seq analysis not only suggests
that the regions identified with StitchIt are functionally relevant, it also suggests
a potential self-regulatory role of EGR1 by binding REMs associated with its own
gene.

8.9.8 STITCHIT retrieves REMs related to doxorubicin resistance

CRISPR screens are performed routinely on a genome-wide scale, yet most studies
and gRNA libraries focus on protein-coding regions, leading to limited availability
of data containing sequences of intergenic or non-coding origin.
We performed a genome-wide doxorubicin CRISPR-Cas9 resistance screen, which

led to 332 non-coding target sites of 226 validated gRNA sequences. Experimental
details are provided in Section B.6.4. In total, we found 111 putative REMs over-
lapping with a non-coding gRNA binding site (TableB.27). Importantly, StitchIt
obtains significantly more REMs overlapping the gRNA binding sites than randomly
selected regions (Figure 8.13).
While several of the predicted REMs have additional support using ChIA-PET

or GeneHancer data, StitchIt identified 78 new putative genes via regulatory
interactions, among them 24 having a p-value smaller than 0.1. Two genes targeted
by gRNAs via regulatory element interactions have been previously reported to be
associated with doxorubicin resistance: MMP9 and ATF3 (p-values 0.03 and 0.08,
respectively). Doxorubicin is a chemotherapy medication used to treat different
forms of cancer. It induces double-strand DNA breaks and triggers DNA damage
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Figure 8.12: (a) Genome browser tracks describing the regulation of EGR1. Track
C0010KB1 (black) exemplifies the DNaseI-seq signal for a sample
where EGR1 is expressed, whereas track C005VG11 (gray) illus-
trates the case where EGR1 is not expressed. For the last three
tracks, a green segment indicates that the respective TF ChIP-seq
peak overlaps with a StitchIt region. (b) Heat map that is clus-
tered according to the DNaseI-seq signal in the candidate REMs
S1, ..., S10 identified by StitchIt. The gene-expression of EGR1
is not used for the clustering itself and shown for illustration pur-
poses only. The data has been log transformed with a pseudo-count
of 1. Two major clusters can be observed corresponding to samples
where EGR1 is expressed and to those samples where EGR1 is not
expressed. The heatmap shows the log2 of read counts for DNaseI-
seq and log2 of TPM for gene-expression, respectively. Figure from
Schmidt et al. [S+19].

associated cell cycle arrest and apoptosis pathways, for example via MAPK/ERK
pathway [T+84, C+10a].

An increase of Myocardial Metallo Proteinases (MMPs) expression through in-
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Figure 8.13: Illustration of the number of gRNAs overlapping a REM and of
the number of REMs overlapping gRNA binding sites for StitchIt
REMs and randomly sampled regions.

creasing ROS formation induced by doxorubicin has been observed in myocytes
[S+06]. At position chr20:45993823, overlaps between a gRNA hit and StitchIt
predictions suggest a regulatory site of MMP9, being in agreement with the find-
ing of Spallarossa et al. [S+06]. ATF3 is a TF known to be involved in cellular
stress response and is enriched in cells exposed to stress signals [H+99]. Under
doxorubicin treatment, it has been reported that ATF3 affects cell death and cell
cycle progression, however it is unclear whether the factor acts as a negative or
positive regulator [N+02, P+12]. Nobori et al. claim that ATF3 plays a pivotal
role as transcriptional regulator in the process of doxorubicin-induced cytotoxicity
via an ERK-dependent pathway [N+02]. StitchIt identified a REM of ATF3 in
proximity of position chr1:212621320, a gRNA target site. Both MMP3 and ATF3
are also supported by GeneHancer data as well as ChIA-PET interactions.

StitchIt is capable to reveal interactions between genetic loci. In particular,
StitchIt can link one gRNA perturbation to several genetic targets of regula-
tory elements. We observed that in 33% of all cases, intronic or exonic gRNA-
target regions of a gene function as enhancer for upstream or downstream located
genes, as is the case for APOL5 and FANCA introns, serving as enhancers for
RBFOX2 and ZNF276, respectively. Moreover, StitchIt proposes single REMs
being linked to multiple genes, demonstrating that one gRNA can lead to multi-
ple correlated interrogations and functional interactions. For instance, the gRNA
target site chr3:147409323 was linked to altered gene-expression of ZIC1 as well
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as ZIC4. An enhancer targeting the genomic location chr3:147407359-147412176
has also been identified by GeneHancer (GRCh38/hg38, GH03J147407). In an
extreme example, StitchIt indicated one gRNA target site chr9:92116400 to be
linked to four pseudogenes simultaneously (MTATP6P29, LINC00475, AL354751.3
and AL354751.1). In summary, the combination of StitchIt and CRISPR-Cas9
screens has the potential to prioritize non-coding gRNA hits in known and unknown
REMs.

8.10 Limitations of the STITCHIT approach

Although StitchIt considerably improves over existing methods to identify and
to link REMs, it has some limitations to be aware of. First of all, we emphasize
that the performance of predictive models alone does not proof that the identified
regions truly play a role in gene regulation. Additional checks, for instance, the
demonstrated overlap with H3K27ac data, should be performed to ensure the va-
lidity of the predicted REMs. Furthermore, we stress that StitchIt associations
do not imply causation. Thus, we can not distinguish whether the accessibility of
certain regions is driving expression of a gene, or whether it is a consequence of
that gene being expressed. Also indirect associations, which could be caused by
co-regulation of genes, can not be avoided. Therefore, it is especially important to
characterize the predicted REMs further.
Another limitation concerns the usability of StitchIt: The current implemen-

tation requires discrete gene-expression data, which forces the user to perform an
additional pre-processing step.
Throughout this study, we observed that especially on large heterogeneous data-

sets such as the Roadmap dataset, the peak-independent generation of REMs shows
clear advantages over the peak-based strategies. This is particularly obvious com-
paring our results obtained for Blueprint and Roadmap data. While the Blueprint
dataset is composed of primary cells related to the hematopoietic lineage, the
Roadmap dataset is more diverse and also comprised of tissue samples. On the more
homogeneous Blueprint data, StitchIt and UnifiedPeaks identify almost the
same number of segments with similar length (Figure 8.5b,c). In contrast to that,
on Roadmap data, StitchIt selects more, but shorter REMs than UnifiedPeaks
(Figure 8.5b,c, Figure8.6a). This difference is also reflected by the performance
of the gene-expression models. The overall difference between StitchIt and Uni-
fiedPeaks is more pronounced for Roadmap than for Blueprint data (Figure 8.5a).
The most likely explanation for this behavior is that due to the high variance in the
Roadmap data, merging peaks introduces a loss of specificity by removing the infor-
mation of the exact genomic location of accessible chromatin (Figure 8.2). On the
less heterogeneous Blueprint dataset, this seems to be less of an issue. StitchIt
however, is able to resolve the sample and tissue specific variance, therefore ob-
taining better results on Roadmap data compared to the UnifiedPeaks method.
Importantly, we note that StitchIt is not able to outperform the UnifiedPeaks
approach on ENCODE data in terms of recall from the GeneHancer database as
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well as in the overlap with ChIA-PET data, which is likely to be due to the low
number of samples contained in the ENCODE dataset. Compared to Blueprint and
Roadmap data, this might also explain why much fewer REMs have been predicted
in total (Figure 8.6a). Taken together, this shows how closely the analyzed data is
linked to model quality and reliability.

8.11 Future work and applications of STITCHIT

In the future, we plan to apply StitchIt to the joint dataset of all IHEC consortia.
On a small scale, we will first utilize the paired gene-expression and DNaseI-seq data
introduced in this chapter for this purpose to see how StitchIt can deal with the
batch effects included in the data (Figure 7.9).
In a second step, we will utilize StitchIt in the scope of the EpiMap project

of the IHEC integrative analysis working group, which is currently working on a
uniform joint processing of all available epigenomic datasets produced under the
umbrella of the IHEC consortium. The dataset generated by EpiMap will be the
largest uniformly processed epigenomic dataset that is currently available and is
thus a rich resource for StitchIt.
Furthermore, as part of the EpiReg project funded by BMBF, we plan to set up a

database that holds all StitchIt predicted REMs and provides an easy-to-use API
for users to query the database, e.g. to retrieve regulators for a distinct gene, or to
retrieve regulators that overlap a certain site in the genome. With this service, we
attempt to provide the community an easy way to utilize our predictions.

8.12 Contributions of all researchers involved in the
described project

The following people contributed to this project: Florian Schmidt (Saarland Uni-
versity), Alexander Marx (Saarland University), Marie Hebel (Göthe University
Frankfurt), Martin Wegner (Göthe University Frankfurt), Nina Baumgarten (Gö-
the University Frankfurt), Manuel Kaulich (Göthe University Frankfurt), Jonathan
Göke (Genome Institut of Singapore), Jilles Vreeken (Helmholtz Center for Cyper
Security) and Marcel H. Schulz (Saarland University, currently at Göthe University
Frankfurt).
Specifically, Alexander Marx, together with Jilles Vreeken, developed the MDL

based segmentation algorithm used within StitchIt. The algorithm was optimized
to be usable in genomics experiments by Florian Schmidt and Alexander Marx. Flo-
rian Schmidt performed the uniform data reprocessing, conducted all computational
experiments presented in this chapter and wrote the computational framework em-
bedding the segmentation algorithm, the UnifiedPeaks and the GeneHancer
approach. The doxorubicin resistance screen (Section 8.9.8) was performed by Marie
Hebel, Martin Wegner and Manuel Kaulich. Marie Hebel performed the literature
review to check for known REMs and genes associated with doxorubicin resistance.
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Nina Baumgarten assisted in the validation analysis by computing the Fimo pre-
dictions used in Section 8.9.7 to analyze the regulation of EGR1. Marcel H. Schulz
designed the study and advised Florian Schmidt, together with Jonathan Göke.
Further, Marcel H. Schulz, Florian Schmidt and Jonathan Göke wrote a BMBF
proposal that funded parts of the EpiReg project, which StitchIt is a part of.
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9
Summary, Discussion and Outlook

9.1 Software created in the scope of this thesis

In this Section, we recapitulate all software tools written in the scope of this thesis.
We sketch their functions, limitations and outline possible future improvements.

9.1.1 The TEPIC framework

The Tepic framework is a versatile software tool to elucidate transcriptional regu-
lation through TFs. It is freely available on github (www.github.com/Schulzlab/
TEPIC).
Its core module predicts TF affinities, which is a quantitative, biophysically mo-

tivated measure of TF binding, using TRAP [R+07]. In a comparison against TF
ChIP-seq data, we have shown that these predictions are accurate and outperform
hit-based approaches like Fimo [G+11]. To obtain the predictions, TF motifs in
form of position specific energy matrices are used. The Tepic repository contains
a maintained set of such matrices for various species including data from JAS-
PAR [K+18c] and Hocomoco [K+18d]. As Tepic is not depending on the assay
used to prioritize candidate TFBS, it can be used flexibly. In light of the con-
clusions drawn from the comparison of chromatin accessibility assays in Chapter
6, this point becomes even more relevant. The TFBS prediction module runs ex-
tremely fast compared to related approaches and can be easily accessed either via
a stand-alone Linux tool or via the RegulatorTrail webserver [S+18b, K+17a].

Nevertheless, there is still room for improvement. As discussed in Chapter 3,
aside from position weight matrices and related TF motif representations, there
are more sophisticated models that capture dependencies within nucleotides, for
instance, Slim models [KG15]. Replacing TRAP or modifying it to consider such
TF motif representations could improve our TFBS predictions considerably. Aside
from the TF motif representation, the scoring of TRAP could be further improved
by including the true activity of a TF modelled by the factors concentration in a
cell. This could be inferred either from gene-expression or more accurately from
proteomics data and would result in a more accurate prediction with respect to the
activity of the TFs in a cell.
In our comparison of TFBS predictions between peaks and TF-footprints, we

have already mentioned that some TFs do not cause TF footprints in the chro-
matin accessibility profile due to their short residence time on DNA. It would be
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worthwhile to systematically analyze the residence time of TFs in tissues to build
up a database informing users when it is recommendable to use TF footprints for
TFBS predictions and when peaks should be used.
Another aspect of TF binding is only marginally considered by Tepic, which is

the formation of TF complexes. We have illustrated in Chapter 3 that TF com-
plexes can be revealed and discovered by ChIP-seq assays, however, their prediction
using sequence based methods is more challenging. We have contributed a random
forest model to predict TFBS genome wide for the ENCODE DREAM in vivo tran-
scription factor binding site prediction challenge (not discussed in this thesis) that
learns associations between the occurrence of various TFs from ChIP-seq data and
utilizes this information for TF predictions [A+18]. However, we do not model TF
complexes in Tepic aside from a few dimers included in the JASPAR database. It
might be possible to use, for instance, the String database to generate a score for
the binding of distinct TF complexes [S+17c].
In the literature, it was shown that TF binding does not only depend on chro-

matin accessibility but can also depend on DNA methylation. For instance, the TF
CTCF binds preferably to unmethylated DNA [BF00]. As the dependence on DNA
methylation can not be easily modelled with classical TF motifs, we are currently
working together with Jan Grau from the University of Halle(Saale) to develop a
DNA methylation dependent representation of TF binding.
Furthermore, we acknowledge that the window based aggregation of TF affinities

or TF ChIP-seq scores to the gene-level is a strong simplification of the regulatory
landscape. However, in case of limited data in terms of biological samples and diver-
sity, we have shown that the window based aggregation is the best approximation.
We also note that Tepic is one of the few tools that provides this gene-centric view
of TF scores as a build-in feature. As Tepic is not limited to a distinct species,
this is a valuable asset for the bioinformaticians toolbox.
In further in silico experiments, we have illustrated that additional data such

as histone modifications in form of ChromHMM state segmentations can help to
reduce noise while aggregating TFBS predictions to the gene-level. At the same
time, we have shown that the unsupervised integration of current chromatin con-
formation capture data such as Hi-C leads to noisy associations of genes to their
putative enhancer regions. We believe that this can be improved especially by en-
hancements of the chromatin conformation capture assays in the future. Also, a
different way of modelling the Hi-C data, for example a binned approach based
that takes into account the genome-wide distribution of Hi-C read counts, might be
helpful. However, a sensible simplification would be to consider TAD boundaries
in the TF-gene score generations to avoid that the considered windows cross the
TADs. With our StitchIt approach [S+19], we have suggested an alternative in
silico solution for the problem of identifying gene-specific regulatory elements in-
troduced in Chapter 8 and discussed below in Section 9.1.3. In the TF-gene score
generation one could also consider all gene-specific regulatory elements inferred by
StitchIt and reweigh them using the chromatin accessibility signal for the sample
of interest. Thereby, the simplifying window based aggregation could be omitted.
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Alternatively, the linkage of regulatory elements to genes could be obtained from
the GeneHancer database [P+17b].
Aside from the prediction of TFBS and the generation of TF-gene scores, the

Tepic framework enables the user to directly carry out two machine learning
pipelines to elucidate the regulatory role of TFs: INVOKE and DYNAMITE.
We provide easy-to-use and well documented pipelines for both approaches. Fig-
ures to judge the performance and reliability of the models and to interpret them,
are generated automatically.
In the INVOKE pipeline we learn a linear model using elastic net regularization

predicting gene-expression to infer a tissue specific coefficient matrix that informs
about the general importance of TFs for transcriptional regulation across all genes
within the considered tissue. We have illustrated in using several DEEP and EN-
CODE data sets that the coefficient vectors can be easily interpreted in case of
predicted TFBS and in case of TF ChIP-seq data. The INVOKE method has been
used in several DEEP projects and is also included in the RegulatorTrail web
service.
This functionality was complemented by the DYNAMITE method described in

Chapter 4 which can be used to determine regulators linked to expression changes
occurring between samples. Within this approach a logistic regression classifier is
used to prioritize regulators. Just as for INVOKE, the coefficient vector of the
model can be interpreted by the user. To simplify the interpretation, we provide
an additional script that generates plots specifically tailored to visualize the coeffi-
cient values in the differential setup. Furthermore, one of our predictions has been
experimentally validated within DEEP sub-project 41 regarding the role of FOXP1
in the differentiation of T-cells [D+16e].

Yet another use case is covered by the Epic-Drem workflow. This approach
combines a binary TF-gene score matrix computed by Tepic, which is new Tepic
feature added for this application, with the Drem software to identify regulators
that are associated with gene-expression changes measured over time. As demon-
strated in Chapter 5, the time-point specific features used in Epic-Drem perform
better than previous approaches using static input features. Also, several of our
predictions could be validated using wet-lab experiments. We remind the reader
that the Epic-Drem approach is rather a workflow and not a one click pipeline,
as this would have required major changes to the Drem software and could not be
done in the scope of this project. As the original Drem output can be overwhelm-
ing for interpretation purposes, we devised a network visualization strategy to help
biologists deriving meaningful insights from the analyzed data.
While all three approaches have been shown to provide reliable predictions, an

obvious drawback is the linearity assumption of the underlying statistical mod-
els. The linear relationship between TF binding and gene-expression might be an
oversimplified assumption, although it did perform well in practice. An argument
supporting the use of linear models is that they can be easily interpreted opposed
to non-linear methods.
We have been frequently asked why we do not explicitly consider the expression

223



9 SUMMARY, DISCUSSION AND OUTLOOK

of TFs neither in INVOKE nor in DYNAMITE. We do acknowledge that includ-
ing the expression of TFs into the models might help to emphasize TFs that are
enriched in a tissue. However, it was shown in the literature that post-translational
modifications are a major workhorse of the cell to regulate TF activity [W+13d].
By neglecting the expression information, we allow the model to infer the impor-
tance of TFs in an unbiased way. As shown in Chapter 3, the expression level of the
inferred TFs is higher than that of the non-selected features supporting that the
models do not depend on the prior knowledge of TF expression. In the Epic-Drem
project, we did remove TFs from consideration that are not expressed in at least
one considered time point.
Using elastic net regularization in INVOKE and in DYNAMITE ensures that

TFs that exhibit similar binding behaviour are all kept in the model if they are
relevant for gene-expression. This allows the modelling of co-binding effects of TFs
to DNA. However, it does not help in modelling TF complexes if factors bind to
other proteins and not to DNA. In the current implementation of Tepic it is not
possible to constrain the regression coefficients such that prior knowledge on TFs
working jointly can be incorporated. However, as this would require a tissue specific
database of TF-TF interactions, which cannot be easily obtained in most instances,
we believe that such a feature would not have a strong practical benefit.
We do see that our models could benefit from a multitask approach if several

similar samples, e.g. biological replicates, are considered. The multitasking would
likely result in less noisy predictions although there is the risk that some biolog-
ical variance occurring within the individual samples might not be resolved accu-
rately. Nevertheless, the multitask models are expected to have a higher general-
izability across unseen replicates of the same tissue than the single task models.
This has been shown, for instance, by Jain et al. in reconstruction regulatory net-
works [J+14]. Especially in light of the vast amount of up-coming single cell data, it
might be worthwhile to reconsider per-sample that is per-cell models in a multi-task
regression setup to account for the noise present in single cell omics data.
In applications of INVOKE, DYNAMITE and Epic-Drem on bulk data the

performance of the models also depends on several biological aspects. One of the
most important points is the cell-cycle stage of the analyzed samples. To remove
variation that is due to heterogeneity caused by different cell-cycle stages within
the cell pool, it is essential that the cells are synchronized.
We are convinced and have shown in this thesis that Tepic and the machine

learning pipelines contribute to a better understanding of transcriptional regulation
and help to interpret the vast amount of epigenomic data sets being produced. With
ongoing improvements in modelling, our methods will also be applicable to single-
cell data sets that will help elucidating gene regulation on a more detailed level.

9.1.2 Ontology Scoring

During the development of the StitchIt method we were faced with the integration
of several IHEC data sets. While trying out various batch effect adjustment meth-
ods (BEA), as described in Chapter 7, we realized that there is a lack of methods
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that objectively quantify the quality of BEA. To fill this gap, we developed a novel
approach that utilizes the Cell Ontology to derive a gold-standard of expected sam-
ple similarity. We have illustrated the applicability of our approach using various
simulated examples as well as real RNA-seq data sets.
One of the major limitations of our method is that it requires a mapping of CO

terms to the samples at hand. If this is not done by the researchers producing the
data, the end-users will have to perform this mapping, which is a potentially error
prone endeavour. Furthermore, the accuracy of the ontology itself is influencing
our score. Despite these two downsides, the ontology score is a easy-to-use, highly
interpretable and flexible tool to judge BEA methods. Unlike other approaches the
consideration of sample similarities between all samples in a data set, across tissue
and cell types, makes it applicable to very heterogeneous data set, which is a unique
feature of our approach.
We note that our score can not only be applied to judge BEA methods, but also

for comparing other data normalization approaches, e.g. RNA-seq normalization.
Besides, although we have tested our score only on bulk RNA-seq data, it is not
limited to that. It could also be applied to single-cell RNA-seq batch correction
approaches, for instance, a method by John Marioni’s lab [H+18a]. To avoid addi-
tional complexity introduced by handling single-cell RNA-seq data itself we did not
consider such data sets in our project. However, for example in the scope of the
Human Cell Atlas [R+17b], our method might be useful to compare various BEA
approaches for data integration purposes.

9.1.3 STITCHIT

With our StitchIt method we provide a novel software that is able to infer reg-
ulatory regions such as enhancers or repressors on a gene-specific level. It utilizes
paired DNaseI-seq and RNA-seq data sets obtained from IHEC in a segmentation
approach that links variation in DNaseI-seq signal to gene-expression changes of a
single gene. Thereby, the location of candidate regulatory elements is pinpointed.
Importantly, this approach does not depend on peak calls. As illustrated in Chapter
8, StitchIt outperforms traditional peak based approaches and known curated reg-
ulatory elements from GeneHancer in various validation scenarios. An advantage
of using the minimum description length principle in the underlying optimization
problem is that the model inferred by StitchIt can not over-fit by construction.

Our method requires large and heterogeneous data sets, ideally containing several
biological replicates of the same tissue or cell type. In the scope of the EpiMap
project in IHEC, an even larger data set than the one considered in this thesis
will be generated by the IHEC integrative analysis working group. We believe that
applying StitchIt to this data set will boost the value of our predictions further.
While developing our method we ensured that the tool is well tested and can be
easily applied to large novel data sets making the analysis of new data sets easily
possible. StitchIt can be obtained from github: www.github.com/schulzlab/
STITCHIT. Although we have tested StitchIt on DNaseI-seq data, our method is
not specifically tailored to that. Other chromatin accessibility assays or even HM
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ChIP-seq data could be used as input, too.
It is important to realize that our predicted sites are based on correlation, not on

causation. In other words, StitchIt does not perform causal discovery. To draw
causal conclusions, biological experiments such as gene-editing using CRISPR-cas9
need to be performed. Alternatively, it might be possible, but computationally
challenging to generate a causal regulatory network from all StitchIt predictions
using the PC algorithm [S+00b]. Learning the network is computationally chal-
lenging not only because the algorithm’s runtime is exponential in the number of
considered variables, but also the tissue and cell type specificity of the regulatory
interactions need to be considered. However, especially for applications in precision
medicine, the establishment of causal links is essential.
In the current version of StitchIt we have omitted to consider TFs in our

model. As we have shown in Chapter 3 that chromatin accessibility alone is highly
predictive for gene-expression, this was solely a reasonable simplification to identify
regulatory elements. In future work, we will integrate TFBS predictions as well as
TF ChIP-seq data into the model.
An example for a future extension of Stitchit is the EpiReg database which is

currently under development in our group. EpiReg will contain all of StitchIt’s
predictions in a database that can be queried via a web interface. It will allow users
to retrieve regulatory elements for a distinct gene, overlap known regulatory regions
with other genomic data sets such as mutations or differentially methylated loci.
Additionally, the database will contain an annotation of the predicted regulatory
elements with TF binding sites. With the advancement of IHECs EpiMap project,
our database will contain more and more regulatory elements and thus might be a
future standard resource to retrieve gene-specific regulatory elements. Furthermore,
the associations contained in EpiReg could also be easily augmented using single-
cell data to generate cell specific regulatory maps.
Here, I also like to mention that StitchIt was a collaborative effort developed

with the group of Jilles Vreeken from the Cluster of Excellence. The project "was
born" during a Cluster retreat. Thus it is a nice example for how useful scientific
exchange, even within one institute, can be.

9.2 General challenges and Outlook

It is safe to say that we have reached the area of biological data science. Within
DEEP, we were already faced with several data integration issues and challenges,
although only few samples were considered. Within the IHEC consortium we are
faced with even bigger challenges. In Chapter 6, we have illustrated how differ-
ences can arise from using different chromatin accessibility assays in profiling the
chromatin landscape of identical samples. This very detailed and specific analysis
illustrates how challenging it is to distinguish biological signal from technical and
methodological biases.
With the advancement of deep learning approaches, especially in precision medicine

and cancer research [R+18, NS+19], it is essential to be aware of potential biases to
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ensure that these hardly interpretable models do not over-fit to confounders. Also
in single cell analysis, where the signal to noise ratio is considerably worse compared
to bulk assays, data integration and processing are future challenges for the field.
The methods introduced in this thesis utilize biological data in an interpretable

manner and, in case of Tepic, could even be applied to single-cell data. With
StitchIt we introduced a novel and innovative approach that might have a strong
influence on the understanding of gene-specific regulatory events and will help the
community to advance in the field.
With the joint advancements in biology, physics, computational resources and

data science, we believe that we are at the edge of achieving invaluable insights in
molecular biology and medicine which were unimaginable a decade ago. Hopefully
the work presented in this thesis can contribute to this endeavour.
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Nomenclature

Abbreviations

3C Chromosome Conformation Capture

acc Accuracy

ADLD autosomal dominant adult onset demyelinating leukodystrophy

AHR Aryl Hydrocarbon Receptor

AML Acute Myeloid Leukemia

asRNA antisense RNA

ATAC Assay for Transposase-Accessible Chromatin

BAC Bacterial Artificial Chromosomes

BEA Batch Effect Adjustment

CAF-1 Chromatin Assembly Factor 1

cDNA complemenarty DNA

CEBPA CCAAT/enhancer-binding protein alpha

ChIA-PET Chromatin Interaction Analysis by Paired-End Tag sequencing

ChIP-seq Chromatin Immuno Precipitation followed by DNA-Sequencing

CL Cell Ontology

CRISPR clustered regularly interspaced short palindromic repeats

CRISPR-ko CRISPR-knock out

CTCF CCCTC-binding factor

DEEP Deutsches Epigenom Programm

DHS DNaseI hypersensitive site
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DNA Deoxyribonucleic acid

DNMT DNA methyltransferase

DNMT1 DNA cytosine-5-methyltransferase 1

DREM Dynamic Regulatory Events Miner

DWM Dinucleotide Weight Matrix

eIF eukaryotic Initiation Factor

EPE Estimated Prediction Error

eRNA enhancer RNA

FAIRE-seq Formaldehyde Assisted Isolation of Regulatory Elements

FDR False Discovery Rate

FISH Fluorescence In Situ Hybridization

FN False Negative

FP False Positive

FPKM Fragments Per Kilobase of transcript per Million mapped reads

FPR False Positive Rate

GLIS1 Glis Family Zinc Finger 1

GMEB1 Glucocorticoid Modulatory Element Binding Protein 1

gRNA guideRNA

GTEx Genotype-Tissue Expression

GWAS Genome-Wide Association Studies

HATs Histone-Acetyl-Transferases

HDAC Histone deacetylase

HDACs Histone-Deacetylases

HM Histone Modification

HMM Hidden Markov Model

HP1 Heterochromatin Protein 1

IHEC International Human Epigenomics Consortium
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IOHMM Input Output Hidden Markov Model

iPS induced Pluripotent Stem Cells

Klf4 Kruppel-like factor 4

LAR Least Angle Regression

LCS Longest Common Subsequence

LDA Linear Discriminant Analysis

LMNB1 Lamin B1

lncRNA long non-coding RNA

LOLA Locus Overlap Analysis

Lpl Lipoprotein Lipase

MDL Minimum Description Length

MDL Minimum Description Length

MDL Minimum Description Length

miRNA micro RNA

mRNA messenger RNA

MSE Mean Squared Error

NDR Nucleosome Depleted Regions

NFR Nucleosome Free Regions

NGS Next Generation Sequencing

NIH National Institute of Health

NRF1 Nuclear respiratory factor 1

Oct3 octamer-binding transcription factor 3

Oct4 Octamer-binding transcription factor 4

ORF open reading frame

p-TEFb positive transcription elongation factor b

PBM Protein Binding Microarray

PC Principal Component
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PCNA proliferating cell nuclear antigen

PCR Polymerase Chain Reaction

PEI Promoter-Enhancer-Interactions

PFM Position Specific Frequency Matrix

PPM Position Specific Probability Matrices

pre Precision

pre-mRNA precursor mRNA

PSEM Position Specific Energy Matrix

PTM Post-Translational Modification

rec Recall

REM Regulatory element

RF Random Forest

RNA Ribonucleic acid

RNAi RNA interference

ROC Receiver Operating Characteristic

RPKM Reads Per Kilobase of Transcripts per Million mapped reads

rRNA ribosomal RNA

RSS Residual Sum of Squares

RTI Regulator-Target Interaction

RUV Removing unwanted variation

SE Super-enhancer

SELEX Systematic Evolution of Ligands by Exponential Enrichment

siRNA short interfering RNA

SNP Single Nucleotide Polymorphism

SNP Single nucleotide polymorphism

SNV Single Nucleotide Variation

Sox2 Sex determining region Y-box 2
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SVA Surrogate variable analysis

SVD Singular Value Decomposition

TAD Topologically Associated Domain

TAF1 Transcription initiation factor TFIID subunit 1

TBP TATA binding protein

TCGA The Cancer Genome Atlas

TCM Central Memory T-Cells

TEM Effector memory cells

TF Transcription factor

TFBS Transcription Factor binding site

TFII Transcription factor for RNA polymerase II

TN Naive T-cells

TN True Negative

TP True Positive

TPM Transcripts Per Million

tRNA transfer RNA

TSS Transcription Start Site

ZBTB7B Zinc Finger And BTB Domain Containing 7B

RNA-Pol II RNA-polymerase II

Glossary

β-thalassemia Heritable disease affecting red blood cells by a reduced production
of haemoglobin beta

bed-file Tab delimited file containing genomic positions and annotations for those.
See www.ensembl.org/info/website/upload/bed.html for details

Cardiomyocytes These are muscle cells with a high mitochondrial density forming
the heart

Cell type A cell type is defined by a cells morphology and function. There are
about 200 different cell types known in human [A+05]
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Chaperone Proteins that assist in the correct folding of other proteins and/or in
the correct (dis)assembly of protein complexes

Chromatin Chromatin refers to the complex of DNA, histone proteins and other
non-histone DNA binding proteins

Deletions Removal of a DNA nucleotide from the sequence

Eigenvector A vector v is called an eigenvector of a n× n matrix A if there exists
a λ such that Av = λv. The parameter λ is called eigenvalue.

Enhancers Genomic regions harbouring binding sites for TFs. Enhancers can be
found several kilobases away from their target gene(s). Distal enhancer can
be brought into spacial proximity to their target gene via chromatin looping

Epigenesis ∼ describes the emergence of new structures from non-structured mat-
ter [AP15]

Epigenetics ∼ is the study of changes in gene function that are mitotically and/or
meiotically heritable and that do not entail a change in DNA sequence
[WM01]

Erythrocytes Red blood cells transporting oxygen

Ester bond Chemical bond between an carboxylic acid and an alcohol

Euchromatin A transcriptionally active, loosely compacted form of chromatin that
is accessible for DNA binding proteins.

FAIRE-seq A sample is cross-linked with formaldehyde. As the cross linking is
not efficient in nucleosome free regions, the non-cross linked sites can be
extracted, sequenced and used to determine chromatin accessibility

FDR The false disovery rate is the ratio of false rejections of H0 to all rejections
of H0

Fibroblast Fibroblasts are the most common cell type in connective tissue, they
produce, among other products, collagen which is essential for the extra-
cellular matrix

Frobeniusnorm The Frobeniusnorm of a matrix is the square root of the sum of the
squared absolute values at each matrix position

Haematopoiesis Development of cells of the blood cell lineage

Heterochromatin A transcriptionally silent, highly condensed form of chromatin
that is inaccessible for DNA binding proteins, except for pioneering TF.

Hydrogen bond Interaction between a hydrogen atom from a molecule XâĂŞH in
which X is more electronegative than H and an atom or a group of atoms in
the same or a different molecule [A+11]

234



Hypomethylation Opposite to hypermethylation, refers to a decrease of DNAmethy-
lation

Insertions Addition of a DNA nucleotide to the genome

Monoallelic gene-expression This refers to the setting mRNA is only generated from
one allele of a gene, while the second copy of the gene on the sister chromo-
some is not transcribed

Multipotent Multipotent cells are precursor cells for other cell types of a lineage,
e.g. all cell types of the haematopoietic linage

Mutations Change of the DNA nucleotide at a distinct position

Myelodysplastic syndrome Disease of the bone marrow preventing the maturation
of blood cells

N-glycosidic bond Bond between a carbohydrate and another group

ncRNAs non-coding RNAs

Occam’s razor ∼ states that in explaining a thing no more assumptions should be
made than necessary

Oil Red O staining A method to highlight triglycerides with a red color

Omics The term omics refers to all fields in biology containing the suffix omics in
the name, such as genomics, proteomics, metabolomics, or epigenomics

Osteogenesis Development of osteoblasts

Peptide bond Bond between two amino acids. Generated using a condensation that
is the elimination of water while formation of the bond

Per-gene learning Machine learning approach that is applied to one-gene using
many observations for the gene of interest

Per-sample learning Machine learning approach that generalizes across all genes
within one sample

Phenotype The set of an organism’s observable traits

Pioneer TF TFs with the ability to bind to heterochromatin mediating chromatin
remodelling

Pluripotent A pluripotent cell can give rise to any of the three germ layers: endo-
derm, mesoderm, or ectoderm

Polymerase Chain Reaction An automated reaction used to amplify double stranded
DNA fragments
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Promoters Genomic region upstream the transcription start site of a gene. It is
bound by the transcriptional machinery to initiate transcription

Proteasome Protein complex that degrades other proteins

Proteomics Proteomics elucidates the present proteins in a analyzed samples, typ-
ically via Mass spectrometry

Reverse transcription Process of generating DNA from a RNA template

S-phase Phase of the cell cycle. During S-phase, the DNA is replicated

Stochastic process A stochastic process is a referring to an indexed collection of
random variables
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Supplementary Information

B.1 Appendix Chapter 3

Details on data processing presented in Sections B.1.1 to B.1.4 are taken from the
Supplementary Material of Schmidt et al. [S+17a].

B.1.1 Experimental processing of DEEP DNaseI-seq data

DEEP DNaseI-sequencing was performed according to a publicly available EN-
CODE protocol with some modifications. Briefly, 1 x 107 cells (HepG2, liver hep-
atocytes (LiHe)) were resuspended in 2ml buffer A (60mM KCl, 15mM Tris-HCl
(pH 8.0), 15mM NaCl, 1mM EDTA (pH 8.0), 0.5mM EGTA (pH 8.0), 0.5mM
spermidine free base), combined with a protease inhibitor cocktail (Roche, Basel,
Switzerland). Nuclei were extracted by adding an equal volume of buffer A with
0.1% -0.2% of NP-40 and incubation on ice for 10-15min. Nuclei were washed
in buffer A and aliquots of 2.3 x 106 nuclei were digested for 3min at 37°C in
DNase buffer (13.5mM Tris-HCl pH 8.0, 88.5mM NaCl, 54mM KCl, 6mM CaCl2,
0.9mM EDTA, 0.45mM EGTA, 0.45mM spermidine) with different amounts of
DNaseI (Roche; 40 − 80U/ml). Using equal volumes of stop buffer, the reactions
were stopped (50mM Tris-Cl (pH 8.0), 100mM NaCl, 0.1% SDS, 100mM EDTA
(pH 8.0), 1mM spermidine and 0.3mM spermine) with proteinase K (50g/ml) and
incubated at 55°C for 1h. DNA was then purified using phenol chloroform extrac-
tion and quality controls (agarose gels, qPCRs) were performed to determine the
optimal digestion level per sample. Double-hit fragments of 100bp-500bp were se-
lected using either gel-electrophoresis followed by electro-elution (HepG2, LiHe1,
LiHe2) or sequential purifications with Agencourt AMPure XP Beads (Beckman
Coulter, Brea, USA; LiHe3). The sequencing libraries were prepared from 8ng
of purified DNA using the TruSeq ChIP Library Preparation kit (Illumina, San
Diego, USA) according to the manufacturer’s protocol and sequenced on HiSeq v3
paired-end flow cells (HiSeq2500 system).

B.1.2 Computational processing of DEEP and ENCODE DNaseI-seq
data

DEEP DNaseI-seq bam files were created according to the DEEP GAL v1 pro-
cess (http://doi.org/10.17617/1.2W). Alignments were produced with BWA, sorted
with samtools, and duplicated reads were marked with Picard tools.
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DHSs have been called with JAMM using default parameters for both ENCODE
and DEEP data. All peaks passing the JAMM filtering step have been used for
further analysis. Additionally, MACS2 peaks have been called using the options
–keep-dup all –genomesize 2900000000 –nomodel –shift -100 –extsize 200
–qvalue 0.05.

B.1.3 Experimental and computational processing of DEEP RNA-seq
data

Pooled samples for RNAseq were homogenized in QIAzol Lysis (Qiagen) using a 21G
needle. Total RNA was extracted from the aqueous phase by using the miRNeasy
Micro Kit (Qiagen) following the manufacturers recommendations, upon addition
of chloroform and phase separation using centrifugation. Starting from 2x500ng
totalRNA of RIN 9.6, one stranded total RNA as well as mRNA libraries were
prepared according to the manufacturer’s instructions (Illumina). Both libraries
were sequenced for 2x101nt on an Illumina HiSeq 2000, resulting in ∼ 100 million
paired-end reads for each library.
RNA-Seq bam files were generated with TopHat version 2.0.11 [T+09], and

Bowtie version 2.2.1 [LS12], using NCBI build 37.1 in –library-type
fr-firststrand and –b2-very- sensitive setting. Gene-expression quantification
was performed using Cufflinks version 2.0.2 [T+10] using hg19 as the reference
genome and enables program settings frag-bias-correct, multi-read-correct,
and compatible-
hits-norm.

B.1.4 Experimental and computational processing of DEEP
NOMe-seq data

Nuclei from formaldehyde fixed cells were extracted using nuclei extraction buffer
(60mM KCl; 15mM Tris-HCl, pH 8.0; 15mM NaCl; 1mM EDTA, pH 8.0; 0.5mM
EGTA, pH 8.0; 0.5mM spermidine free base) complemented with a protease in-
hibitor cocktail from Roche as well as 0.1% NP40 from Sigma-Aldrich. They were
incubated for 30min on ice and dounced 10 to 20 during that time using a douncing
pistil from Qiagen. After incubation, the nuclei were centrifuged (500g, 4°C, 8min)
and the pellet was washed using the same buffer as described before but without
NP-40. Next, the pellet was gently re-suspended in 90µl of 1x GpC-buffer from
NEB after another centrifugation round. This was followed by the addition of 70µl
of NOMe reaction mix (7l 10x GpC buffer (NEB), 1.5l of 32mM SAM (NEB), 45µl
of 1M sucrose and 60U of M. CviPI (NEB). The reaction was incubated 3h at
37°C. After one and two hours from the reaction start, 0.5µl of SAM were added.
Using 16µl of NOMe stop buffer (20mM Tris-HCl, pH 8.0; 600mM NaCl; 1% SDS,
10mM EDTA) plus 10l proteinase K (20mg/ml, Sigma-Aldrich), the reaction was
stopped and genomic DNA (classic phenol chloroform purification) was extracted.
Next, using EZ DNA Methylation-Gold kit (Zymo, Irvine , USA) 100ng of DNA
were bisulfite converted and a NGS library was prepared using the TruSeq DNA
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Methylation Kit (Illumina, San Diego, USA), following the manufacturer’s proto-
col. The presence of adapter dimers was tested for all libraries. The same holds for
the fragment distribution, which was tested on a Bioanalyzer HS chip from Agilent
Technologies. Sequencing was conducted on a HiSeq2500 system using 1-2 lanes of
a HiSeq v3 paired-end flow cell. Read adapters were trimmed using Trim Galore!
and mapped with bwa [LD09]. Duplicate reads were removed after mapping. Bis-
SNP [L+12b] was used to call DNA methylation levels at CpGs and GpCs. DNA
methylation i a GCG context was not considered. The efficiency of the bisulfite
conversion was ensured by genome-wide considering cytosines in an HCH-context.

B.1.5 Peak-calling on NOMe-seq data

This Section is based on the Methods section of Nordström et al. [N+19].
Using a Hidden Markov Model (HMM), all cytosines with methylation valuesMi,

with i ∈ [1,m], where m is the total number of cytosines in a GCH context within
the sequence, are segmented into one of two states. The cytosine is either in an
open chromatin region, a nucleosome free (or depleted) region, or in heterochromatic
region, that is occupied by nucleosomes. Considering that the DNA methylation
varies in the interval [0, 1], it can be easily modelled with a binomial distribution
in each HMM state. As described in Section 2.2.5, the Baum-Welch algorithm
can be used to fit an HMM. Here, an implementation of this algorithm from the
R package HiddenMarkov [Har15] was used to fit chromosome specific HMMs
in parallel using the Snow package. The algorithm is stopped either after 1000
iterations are completed or if the likelihood between two consecutive rounds falls
below 10−3. Each GC nucleotide is predicted to be either open or closed based
on its posterior decoding using the fitted binomial HMM. Several consecutive GCs
that are predicted as accessible form a peak. Using a one-sided Fisher’s exact
test, p-values were computed setting the number of methylated cytosines in GCH
context in relation to that of unmethylated cytosines in GCH context between a
query and a background region. As background, the closest 4kb of closed chromatin
up- and down-stream of the tested region was chosen. They are further ranked by
statistical significance based on empirical false discovery rates and the corresponding
q-values [ST03]. The false discovery rate at significance threshold t, FDR(t) can
be computed as the expected value of the ratio of false discoveries f(t) made at
threshold t and the total number of significant discoveries s(t) at threshold t:

FDR(t) = E[f(t)/s(t)] (B.1)

FDR(t) ≈ E[f(t)]

E[s(t)]
(B.2)

Using the computed p-values, a value for E[f(t)] can be estimated by counting
peaks with a p-value smaller than or equal to t. To estimate E[s(t)], we permuted
the methylation levels of the original input data and segmented the permuted data
leading to a p-value distribution of regions in-corrected labelled as open.
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To account for the influence of read coverage on the tests, the suggested peak
callers performs an automated stratification procedure based on non-parametric
mixture model that performs clustering using the Mclust R-package ([FR02]).
The assumption is that regions with deviating copy numbers are the exception,
and the median represents the common coverage. Consequently, the clustering
tries to minimize the number of clusters showing a mean coverage that is below
the median. After each loci is assigned to a cluster, the false discovery rates are
estimated separately for each cluster. The peak caller is available online at https:
//github.com/karl616/gNOMePeaks.

B.1.6 ENCODE TF ChIP-seq data

TF ChIP-seq data was obtained from ENCODE for several TFs for K562, GM12878,
HepG2, and H1-hESCs in narrow peak format listed in Tables B.1. No further
filtering or processing was performed.

B.1.7 Runtime and TF ChIP-seq comparison

Details on the data used

The used DNaseI-seq data from ENCODE and DEEP is listed in Table B.2. DHS
sites are identified using JAMM as described in Section B.1.2. TF footprints used in
the TF ChIP-seq comparison for GM12878, HepG2, H1-hESCs, and K562 have been
called using HINT-BC and are available online (http://costalab.org/publications-
2/dh-hmm/).

Command lines

TEPIC1
bash TEPIC.sh -g hs37d5.fa -b JAMM/41/LiHe/01/peaks/filtered.peaks. nar-

rowPeak -o Time_Asses_Hf01 -p pwm_vertebrates_jaspar_uniprobe_
converted.txt -a gencode.v19.protein_coding_only.gtf -c 16
TEPIC2
bash TEPIC.sh -g hs37d5.fa -b JAMM/41/LiHe/01/peaks/filtered.peaks. nar-

rowPeak -o Time_Asses_Hf01 -p pwm_vertebrates_jaspar_uniprobe_
converted.txt -a gencode.v19.protein_coding_only.gtf -c 16
PIQ
Execute the provided shell script adapted to the datasets at hand:
bash PIQ_1_3/testers/runall.k562.sh

Fimo-Prior
/create-priors sequences_50000.fa 41Hf01.wig –parse-genomic-coord –oc

Priors/41 Hf01_50000
and
/fimo –oc T41_01_50000_1 –psp Priors/41Hf01_50000/priors.wig –prior-dist

Priors/41Hf01_50000/priors.dist pwm_vertebrates_jaspar_uniprobe_converted.
meme sequences_50000.fa –max-stored-scores 200000
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Table B.1: ENCODE TF ChIP-seq data used to assess the performance of TFBS
prediction methods.

ENCODE Accession number TF ChIP-seq in K562

ENCSR000BRQ CEBPB

ENCSR000DWE CTCF

ENCSR000BLI E2F6

ENCSR000BNE EGR1

ENCSR000BMD ELF1

ENCSR000BKQ ETS1

ENCSR000BMV FOSL1

ENCSR000BLO GABPA

ENCSR000BKM GATA2

ENCSR000EFV MAX

ENCSR000BNV MEF2A

ENCSR000BMW REST

ENCSR000BKO SP1

ENCSR000BGW SPI1

ENCSR000BLK SRF

ENCSR000BRR STAT5A

ENCSR000BKT USF1

ENCSR000BKU YY1

ENCSR000BKF ZBTB33

TF ChIP-seq in GM12878

ENCFF002CGQ BATF

ENCFF002CGU CEBPB

ENCFF002CGV EBF1

ENCFF002CGW EGR1

ENCFF002CGX ELF1

ENCFF002CGY ETS1

ENCFF002CGZ FOXM1

ENCFF002CHA GABPA

ENCFF939TZS JUNB

ENCFF002CHC MEF2A

ENCFF002CHH REST

ENCFF002CHT RXRA

ENCFF002CHV SP1

ENCFF002CHQ SPI1

ENCFF002CHW SRF

ENCFF002CHX STAT5A

ENCFF002CHZ TCF12

ENCFF002CIA TCF3

ENCFF144PGS TCF7

ENCFF002CIB USF1

ENCFF002CIC YY1

ENCFF694OTE ZBED1

ENCFF002CID ZBTB33

ENCFF002CIE ZEB1

TF ChIP-seq in HepG2

ENCSR000BID BHLHE40

ENCFF002CTU BRCA1

ENCFF002CTV CEBPB

ENCSR000DUG CTCF

ENCSR000BMZ ELF1

ENCFF002CUA ESRRA
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ENCSR000BHP FOSL2

ENCSR000BMO FOXA1

ENCSR000BNI FOXA2

ENCSR000BJK GABPA

ENCSR000BLF HNF4A

ENCSR000BNJ HNF4G

ENCFF002CUD HSF1

ENCSR000BGK JUND

ENCFF002CUG MAFF

ENCFF002CUI MAFK

ENCFF002CUJ MAX

ENCFF002CUY NR2C2

ENCFF002CUM NRF1

ENCSR000BOT REST

ENCFF002CUT RFX5

ENCSR00BHU RXRA

ENCSR000BJX SP1

ENCSR000BOU SP2

ENCFF002CUV SREBF1

ENCFF001VLB SREBF2

ENCSR000BLV SRF

ENCFF002CUW TBP

ENCSR200BJG TCF12

ENCFF002CUX TCF7L2

ENCSR000BGM USF1

ENCFF002CUZ USF2

ENCSR000BHR ZBTB33

TF ChIP-seq in H1-hESC

ENCFF002CQQ BRCA1

ENCFF002CQR CEBPB

ENCFF002CIU CTCF

ENCFF002CIV EGR1

ENCFF002CIW FOSL1

ENCFF002CIX GABPA

ENCFF002CQU JUN

ENCFF002CQY JUND

ENCFF002CQZ MAFK

ENCFF002CRA MAX

ENCFF002CRC NRF1

ENCFF002CJB REST

ENCFF002CRE RFX5

ENCFF002CJH RXRA

ENCFF002CJK SP1

ENCFF002CJL SP2

ENCFF002CJN SRF

ENCFF002CRH TBP

ENCFF002CJQ TCF12

ENCFF002CJS USF1

ENCFF002CRI USF2

ENCFF002CJT YY1

Peak-Calling with JAMM:
bash JAMM.sh -s 41_Hf01.bed -o Peaks/41_Hf01 -g hg19.genomseSize.txt -f 1

-p 16
Note that the provided sample ID acts as a placeholder for all considered samples.
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Table B.2: DNaseI-seq data used for the runtime experiments as well as the TF
ChIP-seq comparisons
DEEP Sample ID Thesis Sample ID

01_HepG2_LiHG_Ct1 HepG2

41_Hf01_LiHe_Ct LiHe1

41_Hf02_LiHe_Ct LiHe2

41_Hf03_LiHe_Ct LiHe3

DEEP File Data Type

01_HepG2_LiHG_Ct1_DNase_S_1.bwa.20140719.bam Dnase-1 seq

41_Hf01_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq

41_Hf02_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq

41_Hf03_LiHe_Ct_DNase_S_1.bwa.20150120.bam Dnase-1 seq

ENCFF000SVN DNase -1 seq of K562

ENCFF000SKV DNase -1 seq of GM12878

ENCFF000SKW DNase -1 seq of GM12878

ENCFF000SKZ DNase -1 seq of GM12878

ENCFF000SLB DNase -1 seq of GM12878

ENCFF000SLD DNase -1 seq of GM12878

ENCFF000SOA DNase-1 seq of H1-hESC

ENCFF000SOC DNase-1 seq of H1-hESC

B.1.8 Data used in gene-expression models

The data used for the experiments delineated in Section 3.4.2 is shown in Table B.3.
ChIP-seq data used in the context of [S+17a] is shown in Table B.1.

B.1.9 Overview of TF-gene score matrices used to assess the stability
of TF-gene scores

Within this section, we detail all TF-gene scores introduced in Section 3.3.2.

ChIP-seq TF features (C)

ChIP-seq TF features (C) are an aggregated version of ENCODE TF ChIP-seq peak
scores. The feature matrix is exemplified in Table B.4.

ChIP-seq TF features normalized (CN)

ChIP-seq TF features normalized (CN ) are an aggregated version of ENCODE TF
ChIP-seq peak scores, normalized according to the overall number of peaks cCg . The
content of the feature matrix is shown in Table B.5.

ChIP-seq peak features (CPF)

ChIP-seq peak features (CPF) quantify the number of ChIP-seq peaks in the vicin-
ity of a genes TSS as well as the length of these peaks. CPF scores are exemplified
in Table B.6.
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Table B.3: Overview of the epigenetics and transcriptomics data used within
Schmidt et al. [S+17a].

DEEP Sample ID Thesis Sample ID

01_HepG2_LiHG_Ct1 HepG2

41_Hf01_LiHe_Ct LiHe1

41_Hf02_LiHe_Ct LiHe2

41_Hf03_LiHe_Ct LiHe3

51_Hf03_BlTN_Ct T1

51_Hf04_BlTN_Ct T2

51_Hf03_BlCM_Ct T3

51_Hf04_BlCM_Ct T4

51_Hf03_BLEM_Ct T5

51_Hf04_BLEM_Ct T6

DEEP File ID Data type

01_HepG2_LiHG_Ct1_mRNA_K_1.LXPv1.20150508_genes.fpkm_tracking Quantified mRNA

41_Hf01_LiHe_Ct_mRNA_K_1.LXPv1.20150530_genes.fpkm_tracking Quantified mRNA

41_Hf02_LiHe_Ct_mRNA_K_1.LXPv1.20150530_genes.fpkm_tracking Quantified mRNA

41_Hf03_LiHe_Ct_mRNA_K_1.LXPv1.20150530_genes.fpkm_tracking Quantified mRNA

51_Hf03_BlCM_Ct_mRNA_M_1.LXPv1.20150708_genes.fpkm_tracking Quantified mRNA

51_Hf04_BlCM_Ct_mRNA_M_1.LXPv1.20150708_genes.fpkm_tracking Quantified mRNA

51_Hf03_BlEM_Ct_mRNA_M_1.LXPv1.20150708_genes.fpkm_tracking Quantified mRNA

51_Hf04_BlEM_Ct_mRNA_M_1.LXPv1.20150708_genes.fpkm_tracking Quantified mRNA

51_Hf03_BlTN_Ct_mRNA_M_1.LXPv1.20150708_genes.fpkm_tracking Quantified mRNA

51_Hf04_BlTN_Ct_mRNA_M_1.LXPv1.20150708_genes.fpkm_tracking Quantified mRNA

01_HepG2_LiHG_Ct1_DNase_S_1.bwa.20140719.bam Dnase-1 seq

41_Hf01_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq

41_Hf02_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq

41_Hf03_LiHe_Ct_DNase_S_1.bwa.20150120.bam Dnase-1 seq

51_Hf03_BlCM_Ct_NOMe_S_1.NCSv2.20150513.GRCh37.cpg.filtered.GCH.peaks.fdr001.bed NOMe signal

51_Hf04_BlCM_Ct_NOMe_S_1.NCSv2.20150609.GRCh37.cpg.filtered.GCH.peaks.fdr001.bed NOMe signal

51_Hf03_BlEM_Ct_NOMe_S_1.NCSv2.20150513.GRCh37.cpg.filtered.GCH.peaks.fdr001.bed NOMe signal

51_Hf04_BlEM_Ct_NOMe_S_1.NCSv2.20150609.GRCh37.cpg.filtered.GCH.peaks.fdr001.bed NOMe signal

51_Hf03_BlTN_Ct_NOMe_S_1.NCSv2.20150513.GRCh37.cpg.filtered.GCH.peaks.fdr001.bed NOMe signal

51_Hf04_BlTN_Ct_NOMe_S_1.NCSv2.20150729.GRCh37.cpg.filtered.GCH.peaks.fdr001.bed NOMe signal

Table B.4: ChIP-seq TF features (C)
Chipped TF 1 ... Chipped TF n

Gene 1 aC
1,1 aC

1,n

...

Gene m aC
m,1 aC

m,n

Epi-Decay (E) and Epi-Decay-Scaled (ES)

Epi-Decay (E) and Epi-Decay-Scaled (ES) are an aggregated version of predicted
TFBS using Tepic. In case of ES scores, they are additionally scaled with the
epigenetic signal within the candidate binding site of the TF. TF ChIP-seq peak
scores, normalized according to the overall number of peaks cCg . The composition
of E , respectively ES, feature matrices is outlined in Table B.7.
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Table B.5: ChIP-seq TF features normalized (CN )
Chipped TF 1 ... Chipped TF n

Gene 1 āC
1,1 āC

1,n

...

Gene m āC
m,1 āC

m,n

Table B.6: ChIP-seq peak features (CPF)
ChIP-seq peak count ChIP-seq peak length

Gene 1 cC1 lC1

...

Gene m cCm lCm

Table B.7: Epi-Decay (E) and Epi-Decay-Scaled (ES) features
Predicted TF 1 ... Predicted TF n

Gene 1 a
E(S)
1,1 a

E(S)
1,n

...

Gene m a
E(S)
m,1 a

E(S)
m,n

Epi-Decay normalized (EN)

EN scores are the normalized version of E scores where TF-gene scores are normal-
ized for the genomic length of the aggregated candidate TFBS per gene. In addition
to the normalized TF-gene scores, also the number of candidate TFBS and their
length is considered in the feature matrix, shown in Table B.8.

Table B.8: Epi-Decay normalized (EN )
Predicted TF 1 ... Predicted TF n Number of TFBS Length of TFBS

Gene 1 āE
1,1 āE

1,n cE1 lE1

...

Gene m āE
m,1 āE

1,n cEm lEm

Epi peak-features (EPF)

Epi peak-features (EPF) quantify the number of TFBS in the vicinity of a genes
TSS as well as the length of those regions. Table B.9 holds an example of EPF
scores.

245



B SUPPLEMENTARY INFORMATION

Table B.9: Epi peak-features (EPF)
TFBS count TFBS length

Gene 1 cE1 lE1

...

Gene m cEm lEm

Epi peak-features and signal (EPFS)

Epi peak-features and signal (EPFS) extends the EPF features by an additional
column holding the epigenetic signal within the aggregated TFBS. EPFS features
are illustrated in Table B.10.

Table B.10: Epi peak-features and signal(EPFS)
TFBS count TFBS length Epigenetic signal

Gene 1 cE1 lE1 fE
1

...

Gene m cEm lEm fE
m

Epi-Decay-Scaled normalized (ESN)

Epi-Decay-Scaled normalized (ESN ) extends the EN features by an additional
column holding the epigenetic signal within the aggregated TFBS. ESN features
are illustrated in Table B.11.

Table B.11: Epi-Decay-Scaled normalized (ESN )
Predicted TF 1 ... Predicted TF n Number of TFBS Length of TFBS Epigenetic signal

Gene 1 āE1,1 āE1,n cE1 lE1 fE1

...

Gene m āEm,1 āE1,n cEm lEm fEm

B.1.10 Example for feature matrix permutation

In Schmidt et al. [SS18] we follow the permutation strategy suggested by Bessiere
et al. [B+18a]. They suggested to randomize the feature matrix independently for
each row, i.e. per gene. Thereby, TF specific signal would be lost, but confounders
that affect all TF-genes scores for a distinct gene would be preserved. In Figure B.1
the effect of the permutation is illustrated.
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Figure B.1: Illustration of the feature matrix permutation suggested by Bessiere
et al. [B+18a].

B.1.11 TF ChIP-seq data used for expression models to assess model
reliability

The TF ChIP-seq used in Schmidt et al. [SS18], to learn predictive gene-expression
models is shown in Table B.12.

B.1.12 Gold standard set used for primary human hepatocytes

According to the human protein atlas [U+15], the following TFs that are available
in the latest TF-motif collection of Tepic (version 2.1) are expressed by at least
5FPKM in primary human hepatocytes:
ID2, E2F4, MAX, CEBPB, SREBF2, NR3C1, CEBPZ, TOPORS, GATA4,

ELK1, TBX15, SRF, ETS1, ARNT, MAZ, HERPUD1, HSF1, ZBTB18, CENPB,
TGIF1, YY1, NFIX, SMAD2, CDC5L, ESR1, HES1, CEBPD, RFX5, SPI1, ELF2,
NR4A1, HMGN3, CTCF, NFATC3, SOX5, SP3, IRF8, FUBP1, NR1D1, CCNT2,
RARA, ELK4, NR2F6, USF1, SP1, TFDP1, PBX2, RAD21, IRF1, FOSL2, ZBED1,
MEF2A, ESRRA, PBX3, GATA6, SETDB1, STAT6, RXRA, FOXO1, NFE2L2,
KLF4, NR4A3, HMGA1, GTF2I, MYC, TCF12, JUNB, ZFX, NFKB2, BACH1,
NR1H2, HBP1, CREB1, NR5A2, FOXO3, ZNF410, PPARG, PPARA, FOSB,
PTEN, STAT3, BHLHE40, GABPA, HNF4A, ELK3, MBD2, ETS2, THRB, ATF4,
JUND, RELA, DBP, FOXJ3, EPAS1, KLF6, CCDC6, ERF, JDP2, NFYA, NFIA,
EGR1, NR1H4, SMAD4, HDAC2, TP53, HNF4G, CREB3, MLX, IRF2, NFYC,
STAT2, HLX, HNF1A, CUX2, ZNF263, ELF3, SMAD3, HIF1A, TRIM28, NFE2L1,
MEF2C, USF2, AR, FOS, SNAI2, DDIT3, NFIB, CHD2, KLF12, SREBF1, HLF,
ZEB1, ELF1, AHR, SMC3, ARHGEF12, FOXA1, REST, NFKB1, RORA, TCF4,
NR1I2, NR2F2, MXI1, NR2F1, IRF9, NFIC, RREB1, CREM, BPTF, IRF6, SIN3A,
CREB3L2, JUN, CEBPA, ZNF143, XBP1, SMAD1, ZNF384, ZBTB16, BCL6,
TEAD1, NFIL3, MLXIPL, STAT1, FOXA3, BBX, SP100, ATF1, ATF7, TFCP2,
TEF, FOXA2, NR1I3, EP300, PATZ1, CEBPG, HLTF, NR4A2, ATF3, ONE-
CUT1, MAF, ZBTB14, ITGB2, NFYB, ZBTB7B, MAFF, ZBTB33, FOXP1, ATF2,
ZNF281, ZNF691, PROX1, CUX1, MAFB, TCF7L2, GRHL1, IRF3, RBPJ, ATF6.

B.1.13 Data used for Hi-C models

The Hi-C data used in Section 3.4.5 is listed in Table B.13. In addition to DNaseI-
seq, RNA-seq, and TF ChIP-seq experiments from Table B.2 and B.12, the data
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Table B.12: TF ChIP-seq data used in Schmidt et al. [SS18].
ENCODE Accession number TF ChIP-seq in K562

ENCSR000BNU ATF3

ENCSR000BRT CBX3

ENCSR000BRQ CEBPB

ENCSR077DKV CREM

ENCSR000DWE CTCF

ENCSR000BLI E2F6

ENCSR000BNE EGR1

ENCSR000BMD ELF1

ENCSR000BKQ ETS1

ENCSR000BMV FOSL1

ENCSR000BLO GABPA

ENCSR000BKM GATA2

ENCSR000EFV MAX

ENCSR000BNV MEF2A

ENCSR000BRS NR2F2

ENCSR000BQY PML

ENCSR000BKV RAD21

ENCSR000BMW REST

ENCSR920BLG SIN3A

ENCSR000BGX SIX5

ENCSR000FCD SMAD5

ENCSR000BKO SP1

ENCSR000BGW SPI1

ENCSR000BLK SRF

ENCSR000BRR STAT5A

ENCSR000BKS TAF1

ENCSR863KUB TCF7

ENCSR000BRK TEAD4

ENCSR000BNN THAP1

ENCSR000BKT USF1

ENCSR000BKU YY1

ENCSR000BKF ZBTB33

ENCSR000BME ZBTB7A

TF ChIP-seq in HepG2

ENCFF002CTS ARID3A

ENCSR000BID BHLHE40

ENCFF002CTU BRCA1

ENCFF002CTV CEBPB

ENCSR000DUG CTCF

ENCSR000BMZ ELF1

ENCFF002CUA ESRRA

ENCSR000ARI EZH2

ENCSR000BHP FOSL2

ENCSR000BMO FOXA1

ENCSR000BNI FOXA2

ENCSR000BJK GABPA

ENCSR000BMC HDAC2

ENCSR000BLF HNF4A

ENCSR000BNJ HNF4G

ENCFF002CUD HSF1

ENCFF002CTY JUN

ENCSR000BGK JUND

ENCFF002CUG MAFF

ENCFF002CUI MAFK

ENCFF002CUJ MAX

ENCSR000BQX NFIC

ENCFF002CUY NR2C2
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ENCFF002CUM NRF1

ENCSR000BOT REST

ENCFF002CUT RFX5

ENCSR00BHU RXRA

ENCSR000BJX SP1

ENCSR000BOU SP2

ENCFF002CUV SREBF1

ENCFF001VLB SREBF2

ENCSR000BLV SRF

ENCSR000BJN TAF1

ENCFF002CUW TBP

ENCSR200BJG TCF12

ENCFF002CUX TCF7L2

ENCSR000BGM USF1

ENCFF002CUZ USF2

ENCSR000BHR ZBTB33

TF ChIP-seq in H1-hESC

ENCFF002CIR ATF2

ENCFF002CIS ATF3

ENCFF002CQP BACH1

ENCFF002CIT BCL11A

ENCFF002CQQ BRCA1

ENCFF002CQR CEBPB

ENCFF002CQS CHD1

ENCFF002CQT CHD2

ENCFF002CQW CTBP2

ENCFF002CIU CTCF

ENCFF002CIV EGR1

ENCFF002CJC EP300

ENCFF002CDT EZH2

ENCFF002CIW FOSL1

ENCFF002CIX GABPA

ENCFF002CQX GTF2F1

ENCFF002CIY HDAC2

ENCFF002CQU JUN

ENCFF002CQY JUND

ENCFF002CDU KDM5A

ENCFF002CQZ MAFK

ENCFF002CRA MAX

ENCFF002CRB MXI1

ENCFF002CQV MYC

ENCFF002CJA NANOG

ENCFF002CRC NRF1

ENCFF002CJE POLR2A

ENCFF002CJF POU5F1

ENCFF002CRD RAD21

ENCFF002CJG RAD21

ENCFF002CDV RBBP5

ENCFF002CJB REST

ENCFF002CRE RFX5

ENCFF002CJH RXRA

ENCFF002CRF SIN3A

ENCFF002CJJ SIX5

ENCFF002CJK SP1

ENCFF002CJL SP2

ENCFF002CJM SP4

ENCFF002CJN SRF
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ENCFF002CRG SUZ12

ENCFF002CJO TAF1

ENCFF002CJP TAF7

ENCFF002CRH TBP

ENCFF002CJQ TCF12

ENCFF002CJR TEAD4

ENCFF002CJS USF1

ENCFF002CRI USF2

ENCFF002CJT YY1

ENCFF002CRJ ZNF143

TF ChIP-seq in GM12878

ENCFF002CGO ATF2

ENCFF002CGP ATF3

ENCFF002CGQ BATF

ENCFF002CGR BCL11A

ENCFF002CGS BCL3

ENCFF002CGT BCLAF1

ENCFF809BIO CBFB

ENCFF002CGU CEBPB

ENCFF804OVD CREM

ENCFF002CGV EBF1

ENCFF515PNJ EED

ENCFF002CGW EGR1

ENCFF002CGX ELF1

ENCFF002CHI EP300

ENCFF002CGY ETS1

ENCFF191HSP ETV6

ENCFF002CGZ FOXM1

ENCFF002CHA GABPA

ENCFF002CHB IRF4

ENCFF939TZS JUNB

ENCFF002CHC MEF2A

ENCFF002CHD MEF2C

ENCFF002CHE MTA3

ENCFF002CHF NFATC1

ENCFF002CHG NFIC

ENCFF002CHJ PAX5

ENCFF002CHK PAX5

ENCFF002CHL PBX3

ENCFF002CHM PML

ENCFF002CHO POLR2A

ENCFF002CHP POU2F2

ENCFF002CHR RAD21

ENCFF002CHH REST

ENCFF002CHS RUNX3

ENCFF002CHT RXRA

ENCFF002CHU SIX5

ENCFF374VLY SMAD5

ENCFF002CHV SP1

ENCFF002CHQ SPI1

ENCFF002CHW SRF

ENCFF002CHX STAT5A

ENCFF002CHY TAF1

ENCFF002CHZ TCF12

ENCFF002CIA TCF3

ENCFF144PGS TCF7

ENCFF002CIB USF1

ENCFF002CIC YY1

ENCFF694OTE ZBED1

ENCFF002CID ZBTB33

ENCFF002CIE ZEB1
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from Table B.14 has been used as well. DNaseI-seq data has been processed as
described in Section B.1.2.

Table B.13: Hi-C data obtained from Rao et al.. [R+14b] used in Section 3.4.5,
available at GEO under ID GSE63525.

Supplement Identifier Cell-line Available resolutions

GSE63525_GM12878_primary_HiCCUPS_looplist.txt.gz GM12878 10kb

GSE63525_HUVEC_HiCCUPS_looplist.txt.gz HUVEC 5kb, 10kb, 25kb

GSE63525_HeLa_HiCCUPS_looplist.txt.gz HeLa 5kb, 10kb, 25kb

GSE63525_IMR90_HiCCUPS_looplist.txt.gz IMR90 5kb, 10kb

GSE63525_K562_HiCCUPS_looplist.txt.gz K562 5kb, 10kb, 25kb

B.2 Appendix Chapter 4

The NOMe-seq and and RNA-seq expression data used in Chapter 4 is identical to
the one used in Chapter 3, listed in Table B.3. Differential gene-expression infor-
mation was obtained from the DEEP RNA-seq analysis pipelines, and is available
in the Supplementary Material of Durek et al. [D+16e]. No additional data has
been considered.

B.3 Appendix Chapter 5

The text presented here describing the methods used in our manuscript Gérard et
al. [GSo18] is based on the articles method section.

B.3.1 Data generated in scope of the project

For all experiments, the ST2 mouse cell line was used. It is a bone marrow stro-
mal cell line, generated from Whitlock-Witte type long-term bone marrow cul-
tures of BC8 mice. In the controlled environment with a temperature of 37°C and
5% CO2 concentration, the cells were cultivated using a Roswell Park Memorial
Institute 1640 medium (Gibco, Life Technologies, 32404014), which "was supple-
mented with 10% fetal bovine serum (FBS) (Gibco, Life Technologies, 10270-106,
lot #41F8430K) and 1% L-Glutamine (Lonza, BE17-605E)" [GSo18] within 10
cm2 dishes. The experiments were performed with cells that passaged less than 10
times. ST2 cells were seeded 4 days before the differentiation into adipocytes and
osteoblasts and reached 100% confluency after 48h. They were further maintained
for 48h post-confluency. The addition of differentiation medium I, which con-
sists of "growth medium, 0.5mM isobutylmethylxanthine (IBMX) (Sigma-Aldrich,
I5879), 0.25µM dexamethasone (DEXA) (Sigma-Aldrich, D4902) and 5µg/ml in-
sulin (Sigma-Aldrich, I9278)" [GSo18], caused the initiation of adipogenesis. From
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Table B.14: Additional ENCODE data used in Section 3.4.5
ENCODE accession number Data Type

ENCFF000DJU Quantified mRNA of IMR90

ENCFF000SOC DNase-1 seq of IMR90

ENCFF000DNW Quantified mRNA of HeLa

ENCFF000SPR DNase-1 seq of HeLa

ENCFF000DUQ Quantified mRNA of HUVEC

ENCFF001DNS DNase-1 seq of HUVEC

ENCFF916QPX ChromHMM states for K562

ENCFF869GUF ChromHMM states for GM12878

ENCFF147PPH ChromHMM states for IMR90

ENCFF654HNG ChromHMM states for HeLa

ENCFF3970PB ChromHMM states for HUVEC

TF ChIP-seq in HUVEC

ENCFF001XSL CTCF

ENCFF221BNG FOS

ENCFF222CSK GATA2

ENCFF001VLI JUN

ENCFF001VLK MAX

ENCFF001USZ MYC

TF ChIP-seq in IMR90

ENCFF940YUU BHLHE40

ENCFF001VLN CEBPB

ENCFF001VLM CHD1

ENCFF0700IO CTCF

ENCFF306SXM ELK1

ENCFF714YWI FOS

ENCFF886HLJ MAFK

ENCFF001VLR MAZ

ENCFF001VLS MXI1

ENCFF917EWZ NFE2L2

ENCFF001VLU RAD21

ENCFF001VLO RCOR1

ENCFF001VLV RFX5

ENCFF551KOG SMC3

ENCFF882BWU USF2

TF ChIP-seq in HeLa

ENCFF001VHU BDP1

ENCFF001VHV BRCA1

ENCFF001VHW BRF1

ENCFF002CRY BRF2

ENCFF002CSA CEBPB

ENCFF843RWM CHD1

ENCFF001VIB CHD2

ENCFF001USV CTCF

ENCFF304NNT DEK

ENCFF817LEL E2F1

ENCFF001VIG E2F4

ENCFF002CSI E2F6

ENCFF002CSJ ELK1

ENCFF001VII ELK4

ENCFF001VIZ EP300

ENCFF002CDX EZH2

ENCFF001VHZ FOS

ENCFF002CJX GABPA

ENCFF001VIL GTF2F1

ENCFF001VJN GTF3C2
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ENCFF002CSM HA-E2F1

ENCFF001VIN HCF1

ENCFF001VIP IRF3

ENCFF002CSP JUND

ENCFF002CSD JUN

ENCFF001VIK KAT2A

ENCFF910DMQ MAFF

ENCFF796KTU MAFK

ENCFF002CSR MAX

ENCFF002CSS MAZ

ENCFF0022CST MXI1

ENCFF002DAT MYC

ENCFF866SGX NEF2L2

ENCFF002CSU

ENCFF002CSV NFYB

ENCFF002CTM NR2C2

ENCFF001VIY NRF1

ENCFF002DAV POLR2A

ENCFF002CSZ POLR2AphosphoS2

ENCFF002CTD POLR3A

ENCFF001VJC PRDM1

ENCFF002CTB RAD21

ENCFF001VIF RCOR1

ENCFF002CJY REST

ENCFF002CTC RFX5

ENCFF002CRZ SMARCA4

ENCFF002CSN SMARCB1

ENCFF002CRT SMARCC1

ENCFF001VHT SMARCC2

ENCFF002CTE SMC3

ENCFF479OQC SREBF2

ENCFF001VJI STAT1

ENCFF001VJJ STAT3
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ENCFF002CTK TCF7L2

ENCFF922BGZ UBTF
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day 2 until the end of the differentiation, the differentiation medium II, which con-
sists of "growth medium, 500nM rosiglitazone (RGZ) (Sigma-Aldrich, R2408) and
5µg/ml insulin (Sigma-Aldrich, I9278) was added and replaced in a 2 day-cycle. The
growth medium supplemented with 100ng/ml bone morphogenetic protein-4 (BMP-
4) (PeproTech, 315-27)" [GSo18] was used to trigger osteoblastogenesis. As in case
of adipogenesis, the media was replaced in a 2 day-cycle. Real-time quantitative
polymerase chain reaction of well known marker genes was used to verify success-
ful differentiation of ST2 cells into adipocytes and osteoblasts. Furthermore, the
cell morphology and the results of Oil Red O staining informed about the cellular
differentiation.
Using 1000µl of TRIsure reagents (Bioline, BIO-38033) and 200µl of chloroform

(Carl Roth, 6340.1), total RNA was extracted and separated from DNA as well as
from proteins. The RNA was precipitated from the aqueous phase, by adding 400µl
of 100% isopropanol (Carl Roth, 6752.4) and incubation at −20°C. 1µg of total
RNA was used in reverse transcription into "cDNA using 0.5mM dNTPs (Ther-
moFisher Scientific, R0181), 2.5µM oligo dT-primer (Eurofins MWG GmbH, Ger-
many), 1U/µl Ribolock RNase inhibitor (ThermoFisher Scientific, EO0381) and
1U/µl M-MulV Reverse transcriptase (ThermoFisher Scientific, EP0352) for 1 h
at 37°C." [GSo18] Alternatively, also 5 U/µl RevertAid Reverse transcriptase for
1h at 42°C have been used. In either case, the PCR was terminated by raising the
temperature to 70°C for 10 min. RNA-seq was performed at the Genomics Core
Facility at EMBL Heidelberg, using an Illumina NextSeq machine with single-end
and unstranded reads.
To profile Histone modifications, chromatin was cross-linked with 1% formalde-

hyde (Sigma-Aldrich, F87759-25ML) in the culture media for 8 minutes at room
temperature. The cross-linking was stopped with 125mM glycine (Carl Roth,
3908.3), which was active for 5 minutes at room temperature as well, before the
reagents were removed and the cells were washed two times using ice-cold PBS
(Lonza, BE17-516F) which contained the completeTM mini Protease Inhibitor (PI)
Cocktail (Roche, 11846145001).
After washing, "cells were lysed in 1.7ml of ice-cold lysis buffer [5mM 1, 4-

Piperazine-diethanesulfonic acid (PIPES) pH 8.0 (Carl Roth, 9156.3); 85mM potas-
sium chloride (KCl) (PanReac AppliChem, A2939); 0.5% 4-Nonylphenyl-
polyethylene glycol (NP-40) (Fluka Biochemika, 74385)]" [GSo18], which contained
PI as well. After that, cells were incubated on ice for 30 minutes before they
were centrifuged at 660 x g for 10 min at 7°C. The remaining "pellet was resus-
pended in 400µl of ice-cold shearing buffer [50 mM Tris Base pH 8.1 (Carl Roth,
4855.2); 10 mM ethylenediamine tetraacetic acid (EDTA) (Carl Roth, CN06.3);
0.1% SDS (PanReac Applichem, A7249); 0.5% Sodium deoxycholate (Fluka Bio-
chemika, 30970)]" [GSo18], that contained PI.
Using a UCD-200TM-EX sonicator, the chromatin was sheared. The sonica-

tion went on for 20 cycles, where a cycle is composed of a 30seconds break and
30seconds of sonication. For osteoblasts after 9 days of differentiation, 25 of such
sonication cycles were performed. The sheared chromatin was centrifuged at 20817
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x g for 10 min at 7°C and diluted in a ratio of 1 : 10 using an enhanced "RIPA
buffer [140mM NaCl (Carl Roth, 3957.2); 10mM Tris pH 7.5 (Carl Roth, 4855.2);
1mM EDTA (Carl Roth, CN06.3); 0.5mM ethylene glycol-bis(β-amino-ethyl ether)-
N,N,N’,N’-tetraacetic acid (EGTA) (Carl Roth, 3054.3); 1% Triton X-100 (Carl
Roth, 3051.2); 0.01% SDS (PanReac Applichem, A7249); 0.1% sodium deoxycholate
(Fluka Biochemika, 30970)]" [GSo18] containing PI. To perform the immunopre-
cipitation of H3K4me3 10µg of the sheared chromatin were used. For H3K27ac as
well as for H3K36me3 15µg of sheared chromatin were used. The input consisted
of 4µg. The antibodies were incubated overnight with the chromatin samples. For
H3K4me3, a Millipore antibody 17-614 was used, for H3K27ac and H3K36me3 Ab-
cam antibodies were used, that is ab4729 and ab9050, respectively. The antibodies
were captured with 25µl of PureProteome Protein A Magnetic (PAM) Bead System
from Millipore. The reaction took place on a rotating wheel for 2h at 4°C. The next
day, the antibodies were captured using 25µl of PureProteome Protein A Magnetic
(PAM) Bead System (Millipore, LSKMAGA10) for 2h at 4°C on a rotating wheel.
A DynaMag-2 magnetic stand developed by Life Technologies (12321D) was used
to catch the PAM beads. After discarding the supernatant, the beads were washed
two times with "800µl of Immunoprecipitation wash buffer 1 (IPWB1) [20 mM Tris,
pH 8.1 (Carl Roth, 4855.2); 50 mM NaCl (Carl Roth, 3957.2); 2 mM EDTA (Carl
Roth, CN06.3); 1% Triton X-100 (Carl Roth, 3051.2); 0.1% SDS (PanReac Ap-
plichem, A7249)], once with 800µl of Immunoprecipitation wash buffer 2 (IPWB2)
[10mM Tris, pH 8.1 (Carl Roth, 4855.2); 150mM NaCl (Carl Roth, 3957.2); 1mM
EDTA (Carl Roth, CN06.3), 1% NP-40 (Fluka Biochemika, 74385), 1% sodium
deoxycholate (Fluka Biochemika, 30970), 250mM of lithium chloride (LiCl) (Carl
Roth, 3739.1)] and twice with 800µl of Tris-EDTA (TE) buffer [10mM Tris, pH 8.1
(Carl Roth, 4855.2); 1mM EDTA (Carl Roth, CN06.3), pH 8.0] and incubated with
100µl of ChIP elution buffer [0.1 M sodium bicarbonate (NaHCO3) (Sigma-Aldrich,
S5761); 1% SDS (PanReac Applichem, A7249)]." [GSo18] The addition of 10µg
of RNase A (ThermoFisher, EN0531) and 20µg of proteinase K (ThermoFisher,
EO0491) at 65°C overnight, caused the cross-linking to be suspended. Chromatin
purification was performed using a MinElute Reaction Cleanup Kit from Qiagen
(28206).
As for RNA-seq, the ChIP-seq data has been sequenced on an Illumina HiSeq 2000

machine, using single-end, unstranded reads in the Genomics Core Facility in EMBL
Heidelberg resulting in 979.572.918 raw reads. An analysis of read quality using
fastqc version 0.11 [And] showed the presence of adapters, which were cleaned
using version 1.5 of AdapterRemoval [Lin12]
Basic processing computational processing of the fastq files was done using the

PALEOMIX pipeline [S+14a] (version1.0.1). We required reads to have a minimum
length of 25 bp and Phred scores > 2. Filtering according to these criteria removed
31.909.435 reads and left us with 947.663.483, which were aligned with BWA [LD09]
(version v0.7.10) against the mouse genome GRCm38.p3 (mm10).
For validating, merging BAM files, and marking duplicates, we used the suite

tool Picard (version 1.119) [Ins18].
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Duplicate reads in the BAM files were marked with Picard tools (version 1.119)
[Ins18], but were not removed. However, reads with a mapping quality < 30 were
removed, thus only 661.364.143 reads were used for peak-calling. For peak-calling
different tools were used for different histone marks. In detail MACS [Z+08a] ver-
sion 2.1.0 was used for H3K4me3, HOMER [H+10] was applied to H3K27ac, and
SICER [Z+09] version 1.1 was used to call H3K36me3 peaks.

Raw data can be obtained from the European Nucleotide Archive with the ac-
cession number PRJEB20933. Ready to use ChIP-seq tracks are available at the
UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTracks?hubUrl=
https://biostat2.uni.lu/dgerard/hub.txt&genome=mm10).

B.3.2 TF ChIP-seq data used for the TF affinity binarization
experiments

We obtained TF-ChIP-seq data from ENCODE for K562, GM12878 and HepG2 as
listed in Table B.15. In addition, we downloaded H3K27ac data from ENCODE,
specifically ENCFF001SWK and ENCFF805KGN for HepG2, ENCFF301TVL and
ENCFF001SZE for K562 as well as ENCFF001SUG and ENCFF804NCH for
GM12878.

B.3.3 Identification of super-enhancers from H3K27ac data

As mentioned before, version 4.7.2 of HOMER was used to call peaks for H3K27ac.
Using the genomeCoverageBed command of BedTools [QH10] version 2.24.0, the
coverage for individual SEs was computed and combined into a single region uti-
lizing the commands unionBedGraphs and mergeBed. The coverage within these
merged super-enhancers was computed using the script annotatePeaks.pl with
the parameters -size and -noann. In the end, the merged super-enhancers were
clustered with STEM, version 1.3.8 to identify temporal profiles of super-enhancer
activity.

B.3.4 Experimental validation of suggested regulators

Generation of stable cell lines

ST2 cells were transduced with lentiviral particles (Sirion Biotech) with a MOI
of 2, including a reverse tetracycline transactivator controlled by the mouse cy-
tomegalovirus promoter to integrate the CopGFP, Ahr, and Glis1 genes regulated
by a Tet-On 3G promoter. Effectively transduced cells were chosen by the addition
of 1µg/ml of puromycin to the growth medium. The induced genes were activated
by the addition of 1µg/ml doxycycline (Takara, 631311).

Gene silencing

Undifferentiated ST2 cells (day-1) were transfected with Lipofectamine RNAiMAX
(Life Technologies, 13778150) according to manufacturer’s instructions using 50nM
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Table B.15: ENCODE TF ChIP-seq data used to assess the influence of the p-
value threshold in the binarziation of TF affinities.

ENCODE accession number Data Type

ENCFF000DJU Quantified mRNA of IMR90

ENCFF000SOC DNase-1 seq of IMR90

ENCFF000DNW Quantified mRNA of HeLa

ENCFF000SPR DNase-1 seq of HeLa

ENCFF000DUQ Quantified mRNA of HUVEC

ENCFF001DNS DNase-1 seq of HUVEC

ENCFF916QPX ChromHMM states for K562

ENCFF869GUF ChromHMM states for GM12878

ENCFF147PPH ChromHMM states for IMR90

ENCFF654HNG ChromHMM states for HeLa

ENCFF3970PB ChromHMM states for HUVEC

TF ChIP-seq in HUVEC

ENCFF001XSL CTCF

ENCFF221BNG FOS

ENCFF222CSK GATA2

ENCFF001VLI JUN

ENCFF001VLK MAX

ENCFF001USZ MYC

TF ChIP-seq in IMR90

ENCFF940YUU BHLHE40

ENCFF001VLN CEBPB

ENCFF001VLM CHD1

ENCFF0700IO CTCF

ENCFF306SXM ELK1

ENCFF714YWI FOS

ENCFF886HLJ MAFK

ENCFF001VLR MAZ

ENCFF001VLS MXI1

ENCFF917EWZ NFE2L2

ENCFF001VLU RAD21

ENCFF001VLO RCOR1

ENCFF001VLV RFX5

ENCFF551KOG SMC3

ENCFF882BWU USF2

TF ChIP-seq in HeLa

ENCFF001VHU BDP1

ENCFF001VHV BRCA1

ENCFF001VHW BRF1

ENCFF002CRY BRF2

ENCFF002CSA CEBPB

ENCFF843RWM CHD1

ENCFF001VIB CHD2

ENCFF001USV CTCF

ENCFF304NNT DEK

ENCFF817LEL E2F1

ENCFF001VIG E2F4

ENCFF002CSI E2F6

ENCFF002CSJ ELK1

ENCFF001VII ELK4

ENCFF001VIZ EP300

ENCFF002CDX EZH2

ENCFF001VHZ FOS

ENCFF002CJX GABPA

ENCFF001VIL GTF2F1

ENCFF001VJN GTF3C2

ENCFF002CSM HA-E2F1
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ENCFF001VIN HCF1

ENCFF001VIP IRF3

ENCFF002CSP JUND

ENCFF002CSD JUN

ENCFF001VIK KAT2A

ENCFF910DMQ MAFF

ENCFF796KTU MAFK

ENCFF002CSR MAX

ENCFF002CSS MAZ

ENCFF0022CST MXI1

ENCFF002DAT MYC

ENCFF866SGX NEF2L2

ENCFF002CSU NFYA

ENCFF002CSV NFYB

ENCFF002CTM NR2C2

ENCFF001VIY NRF1

ENCFF002DAV POLR2A

ENCFF002CSZ POLR2AphosphoS2

ENCFF002CTD POLR3A

ENCFF001VJC PRDM1

ENCFF002CTB RAD21

ENCFF001VIF RCOR1

ENCFF002CJY REST

ENCFF002CTC RFX5

ENCFF002CRZ SMARCA4

ENCFF002CSN SMARCB1

ENCFF002CRT SMARCC1

ENCFF001VHT SMARCC2

ENCFF002CTE SMC3

ENCFF479OQC SREBF2

ENCFF001VJI STAT1

ENCFF001VJJ STAT3

ENCFF001VJG SUPT20H

ENCFF002CKA TAF1

ENCFF002CTI TBP

ENCFF002CTK TCF7L2

ENCFF922BGZ UBTF

ENCFF002CTN USF2

ENCFF738BNS ZHX1

ENCFF002CTO ZKSCAN1

ENCFF002CTP ZNF143

ENCFF002CTQ ZNF274

ENCFF002CTR ZZZ3
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of gene-specific siRNAs against mouse Ahr (siAhr) (Dharmacon, M-044066-01-
0005), Glis1 (siGlis1) (Dharmacon, M-065576-01-0005) or 50nM of a negative con-
trol siRNA duplexes (siControl). Using 50nM of siRNAs from Dharmacon, specif-
ically designed against Ahr (M-044066-01-0005), Glis1 (M-065576-01-0005) and a
negative control of siRNA duplexes (D-001206-14-05), the respective genes were
silenced. Lipofectamine RNAiMAX (13778150) from Life Technologies was used to
transfect the cells. 48h after transfection, cells were collected.

RT-qPCR

An Applied Biosystems 7500 Fast Real-Time PCR System was used to perform RT-
qPCR experiments, together with a Thermo Scientific Absolute Blue qPCR SYBR
Green Low ROX Mix (AB4322B). For each RT-qPCR run, 5µl of cDNA, 5µl of
primer pairs (2µM) and 10µl of the Absolute Blue qPCR mix were used and the
reactions took place under the following conditions: 95°C for 15 min followed by 40
cycles of 95°C for 15s, 55°C for 15s and 72°C for 30s. Gene-expression levels were
calculated according to the 2(∆∆Ct) method where

∆∆Ct = (∆Ct(tg)−∆Ct(hg))test − (∆Ct(tg)−∆Ct(hg))control. (B.3)

Here, tg is the target gene, hg is a housekeeping gene, which in this study was
Rpl13a. As controls, the control samples indicated above have been used.

B.4 Appendix Chapter 6

This Section is a slightly adapted from the Methods Section of Nordström et
al. [N+19].

B.4.1 Sequencing and pre-processing of NGS data

Fastq files generated from HepG2 were trimmed for Adapter sequence and low
quality tails (Q< 20) were trimmed from Hepg2 fastq files with TrimGalore!,
and mapped to the human reference genome hg19 [C+15b]. To map WGBS as well
as NOMe-seq data, GSNAP [WN10] was used. DNaseI-seq and ATAC-seq data,
was mapped with GEM [MS+12].

B.4.2 WGBS and NOMe-seq

Reads that could not be mapped have been removed with samtools [L+09]. For
further processing, the Bis-SNP pipeline [L+12c] was used. Remapping of the reads
was focused on regions nearby known SNPs, provided by the Single Nucleotide Poly-
morphisms database (dbSNP), Build ID: 138 [S+00a]. Picard tools [Ins18] was used
to mark duplicates, overlapping sections between two paired reads were removed
with bamUtils ([B+13b]). Methylation levels were assessed for all cytosines and
extracted with a modified version of the Bis-SNP vcf2bed.pl helper-script. Bed files
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containing methylation counts for NOMe-seq data were generated for all cytosines
in a GCH and HCG context, for WGBS data in a CG context.

B.4.3 DNaseI-seq and ATAC-seq

As for WGBS and NOMe-seq reads, duplicates were with Picard tools. Accessible
regions were identified with MACS2 [Liu18].
In contrast to ChIP-seq peak calling, cutting with DNaseI and the inclusion of

adapters with the TN5 transposase focuses on the start and end of fragments.
To account for that, the following MASC2 parameters were set: –shift -100,
–extsize 200, –nomodel and –keep-dup all.

B.4.4 Finding open chromatin regions with NOMe data

NOMe-seq peak calling was performed as explained in Section B.1.5.

B.4.5 Processing of RNA-seq data

In this project, the same RNA-seq processing pipelines was used as introduced in
Section B.1.3.

B.4.6 Access to the HepG2 data sets used in this study

The HepG2 data generated in this study can be obtained via EGAD00001002527.
The corresponding IDs are:

• EGAX00001422533 for NOMe-seq,

• EGAX00001422534 for DNaseI-seq,

• EGAX00001422548 for ATAC-seq.

Due to brevity, the external data IDs used for validation of the sequence bias, and
shape predictions as well as for the methylation signal assessment are not provided
here. We refer the reader to the Supplement of Nordström et al. [N+19], were these
details are provided.

B.4.7 Motif, shape and methylation analysis on additional data sets

Karl Nordström has analysed additional DEEP and Blueprint DNaseI-seq, ATAC-
seq, and NOMe-seq samples. The results, shown in Figures B.2, B.3, B.4, B.5,
indicate that the observed signatures are not specific to the DEEP HepG2 sample,
but are rather assay specific.

260



B.4 Appendix Chapter 6

53_Mf05_LPFi_Ct 53_Mf06_LPFi_RA 53_Mf07_LPFi_Ct 53_Mf08_LPFi_RA

42_Mf07_LiHe_PS 42_Mf09_LiHe_Sh 42_Mf10_LiHe_CS 42_Mf16_LiHe_CC 42_Mf18_LiHe_CC 44_Mm01_WEAd_C2

41_Mm11_LiHe_OS 41_Mm12_LiHe_OS 42_Mf01_LiHe_Ct 42_Mf02_LiHe_Ct 42_Mf05_LiHe_Sh 42_Mf06_LiHe_CS

41_Mf30_LiHe_OC 41_Mf31_LiHe_OS 41_Mf32_LiHe_OC 41_Mf35_LiHe_OS 41_Mm09_LiHe_OC 41_Mm10_LiHe_OC

41_Hm04_LiHe_St 41_Hm07_LiHe_St 41_Hm08_LiHe_St 41_Hm09_LiHe_Ct 41_Hm16_LiHe_Ct 41_Hm25_LiHe_Ct

01_HepG2_LiHG_Ct2 01_HepaRG_LiHR_D31 41_Hf03_LiHe_Ct 41_Hf05_LiHe_St 41_Hf11_LiHe_St 41_Hf17_LiHe_St

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

B
its

DNase I

Figure B.2: Motifs of the sequence bias of the DNaseI enzyme computed for ad-
ditional DNaseI-seq samples from DEEP. Sample IDs are provided in
the Figure. All samples were processed identically to the HepG2 data
discussed in Chapter 6. Figure from Nordström et al. [N+19].

261



B SUPPLEMENTARY INFORMATION

monocytes

RPMI_1h RPMI_24h RPMI_4h RPMI_6d

LPS_1h LPS_24h LPS_4h LPS_6d

BG_1h BG_24h BG_4h BG_6d

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

−
15

−
13

−
11 −

9
−

7
−

5
−

3
−

1
+

 2
+

 4
+

 6
+

 8
+

 1
0

+
 1

2
+

 1
4

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

B
its

ATAC

Figure B.3: Sequence bias for additional ATAC-seq samples from Blueprint.
The used samples are: BG_1h(GSM2325679), BG_24h
(GSM2325681), BG_4h (GSM2325680), BG_6d (GSM2325682),
LPS_1h (GSM2325683), LPS_24h (GSM2325685), LPS_4h
(GSM2325684), LPS_6d (GSM2325686), monocytes (GSM2325687),
RPMI_1h (GSM2325688), RPMI_24h (GSM2325690), RPMI_4h
(GSM2325689), RPMI_6d (GSM2325691). All samples were pro-
cessed identically to the HepG2 data discussed in Chapter 6. Figure
from Nordström et al. [N+19].
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Figure B.4: Sequence bias for additional NOMe-seq samples from DEEP. Sample
IDs are provided in the Figure. All samples were processed identically
to the HepG2 data discussed in Chapter 6. Figure from Nordström
et al. [N+19].
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Figure B.5: Prediction of DNA shape and DNA methylation patterns for ad-
ditional samples. DEEP sample IDs are provided in the legend.
Additionally the Blueprint samples: BG_1h(GSM2325679), BG_24h
(GSM2325681), BG_4h (GSM2325680), BG_6d (GSM2325682),
LPS_1h (GSM2325683), LPS_24h (GSM2325685), LPS_4h
(GSM2325684), LPS_6d (GSM2325686), monocytes (GSM2325687),
RPMI_1h (GSM2325688), RPMI_24h (GSM2325690), RPMI_4h
(GSM2325689), RPMI_6d (GSM2325691) have been used. Figure
from Nordström et al. [N+19].
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B.5.1 IHEC data IDs and CL mapping

DEEP data is listed in Table B.16, ENCODE data is provided in Table B.17,
Blueprint data is contained in Table B.18, and Roadmap data is listed in Table B.19
and .

Table B.16: DEEP data IDs and CL mapping
Sample/Experiment ID Consortia Tissue Cell Ontology Term

41_Hf01_LiHe_Ct DEEP Hepatocyte CL:0000182166

41_Hf02_LiHe_Ct DEEP Hepatocyte CL:0000182166

41_Hf03_LiHe_Ct DEEP Hepatocyte CL:0000182166

41Hm09_LiHe_Ct DEEP Hepatocyte CL:0000182166

41_Hm16_LiHe_Ct DEEP Hepatocyte CL:0000182166

41_Hm25_LiHe_Ct DEEP Hepatocyte CL:0000182166

41_Hf05_LiHe_St DEEP Hepatocyte CL:0000182166

41_Hf11_LiHe_St DEEP Hepatocyte CL:0000182166

41_HF14_LiHe_St DEEP Hepatocyte CL:0000182166

41_Hf17_LiHe_St DEEP Hepatocyte CL:0000182166

41_Hm07_LiHe_St DEEP Hepatocyte CL:0000182166

41_Hm08_LiHe_St DEEP Hepatocyte CL:0000182166

B.5.2 Quantification of IHEC RNA-seq data

Gene-expression was quantified using Salmon, version 0.8.2., the Gencode transcript
index v26, and the Gencode genome annotation v26.
For single end reads, we used the command:
./salmon quant -i gencode.v26.transcripts.index/ -l A -r <Sample>_R1.fastq.gz

-p 12 -o quants/<Sample> –seqBias –gcBias -g gencode.v26.annotation.gtf

For paired end reads, we used the command:
./salmon quant -i gencode.v26.transcripts.index/ -l A -1 <Sample>_R1.fastq.gz

-2 <Sample>_R2.fastq.gz -p 12 -o quants/<Sample> –seqBias –gcBias
-g gencode.v26.annotation.gtf

B.5.3 GTEx and TCGA data and CL mapping

An overview of sample counts, and CL IDs for GTEx and TCGA data is provided
in Table B.20. Due to data sharing restrictions, we can not provide the distinct
IDs for the considered RNA-seq samples. The processed gene-expression data was
provided to us by the Genome Institute of Singapore. The data was processed as
described in Section 7.4.2 by Engin Cukuroglu.
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Table B.17: ENCODE data IDs and CL mapping
Sample/Experiment ID Consortia Tissue Cell Ontology Term

ENCSR000EYS ENCODE Endothelial cell of umbilical vein CL:00026182022

ENCSR000CPK ENCODE keratinocyte CL:0000312254

ENCSR000CPI ENCODE keratinocyte CL:0000312254

ENCSR000EYT ENCODE keratinocyte CL:0000312254

ENCSR000COO ENCODE fibroblast of lung CL:00025531958

ENCSR000CPM ENCODE fibroblast of lung

ENCSR000COP ENCODE Foreskin fibroblast CL:10016081592

ENCSR000CTV ENCODE B cell CL:0000236210

ENCSR000CUC ENCODE CD14-positive monocyte CL:00010541126

ENCSR444WHQ ENCODE Skeletal muscle myoblast CL:0000515430

ENCSR000CUA ENCODE Hematopoietic multipotent progenitor cell CL:0000837754

ENCSR797BPP ENCODE Fibroblast of arm CL:20000151188

ENCSR233IJT ENCODE Astrocyte CL:0000127114

ENCSR276MMH ENCODE Adrenal gland CL:10016011602

ENCSR801MKV ENCODE Adrenal gland CL:10016011602

ENCSR954PZB ENCODE Adrenal gland CL:10016011602

ENCSR532LJV ENCODE Thyroid gland CL:00022581668

ENCSR023ZXN ENCODE Thyroid gland CL:00022581668

ENCSR653ZJF ENCODE Transverse colon CL:1000283774

ENCSR630VJN ENCODE Transverse colon CL:1000283774

ENCSR800WIY ENCODE Transverse colon CL:1000283774

ENCSR967JPI ENCODE Gastrocnemius medialis CL:0000188171

ENCSR071ZLM ENCODE Uterus CL:00021491532

ENCSR113HQM ENCODE Uterus CL:00021491532

ENCSR042GYH ENCODE Ovary CL:00020941469

ENCSR029KNZ ENCODE Testis CL:00022381649

ENCSR701TST ENCODE Prostate gland CL:20000591211

ENCSR968WKR ENCODE Bipolar spindle neuron CL:000010390

ENCSR908ZAS ENCODE Hepatocyte CL:0000182166

ENCSR828TEI ENCODE Myotube CL:00023721780

ENCSR244ISQ ENCODE Neural progenitor cell CL:000004739

ENCSR000EYP ENCODE H1-hESC CL:000003429

ENCSR000COU ENCODE H1-hESC CL:000003429

ENCSR000COW ENCODE H1-hESC CL:000003429

ENCSR000COV ENCODE H1-hESC CL:000003429

ENCSR490SQH ENCODE H7-hESC CL:000003429
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Table B.18: Blueprint data IDs and CL mapping
Sample/Experiment ID Consortia Tissue Cell Ontology Term

C0066P12 Blueprint CD8-positive, alpha-beta T cell CL:00006255

C005PS12 Blueprint CD14-positive, CD16-negative classical monocyte CL:00020571427

S00DFM11 Blueprint Acute Lymphocytic Leukemia CL:00020921467

S00HSH11 Blueprint macrophage - T=6days LPS CL:0000235209

S00JRB11 Blueprint macrophage - T=6days LPS CL:0000235209

S00BYT11 Blueprint macrophage - T=6days LPS CL:0000235209

S00CS011 Blueprint macrophage - T=6days LPS CL:0000235209

C006NSB1 Blueprint CD34-negative, CD41-positive, CD42-positive megakaryocyte cell CL:00020051368

S004BT Blueprint CD34-negative, CD41-positive, CD42-positive megakaryocyte cell CL:00020051368

S008H111 Blueprint CD4-positive, alpha-beta T cell CL:0000624532

S002R512 Blueprint erythroblast CL:0000765677

S002S312 Blueprint erythroblast CL:0000765677

S001S714 Blueprint Macrophage CL:0000235209

S001MJ12 Blueprint Inflammatory macrophage CL:0000863793

S0022I14 Blueprint Inflammatory macrophage CL:0000863793

S00HRJ11 Blueprint macrophage - T=6days untreated CL:0000235209

S00BXV11 Blueprint macrophage - T=6days untreated CL:0000235209

S00CR211 Blueprint macrophage - T=6days untreated CL:0000235209

S00JQD11 Blueprint macrophage - T=6days untreated CL:0000235209

S013M311 Blueprint Acute Myeloid Leukemia CL:0000766678

S00D0F11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00D6311 Blueprint Acute Myeloid Leukemia CL:0000766678

S005EJ11 Blueprint Acute Myeloid Leukemia CL:0000766678

S013QW11 Blueprint Acute Myeloid Leukemia CL:0000766678

S005FH11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00XXH11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00CXR11 Blueprint Acute Myeloid Leukemia CL:0000766678

S013N111 Blueprint Acute Myeloid Leukemia CL:0000766678

S00CYP11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00D5511 Blueprint Acute Myeloid Leukemia CL:0000766678

S00D3911 Blueprint Acute Myeloid Leukemia CL:0000766678

S00XUN11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00XYF11 Blueprint Acute Myeloid Leukemia CL:0000766678

S013PY11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00Y1311 Blueprint Acute Myeloid Leukemia CL:0000766678

S00XWJ11 Blueprint Acute Myeloid Leukemia CL:0000766678

S013RU11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00D1D11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00Y0511 Blueprint Acute Myeloid Leukemia CL:0000766678

S00D4711 Blueprint Acute Myeloid Leukemia CL:0000766678

S00XVL11 Blueprint Acute Myeloid Leukemia CL:0000766678

S013SS11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00Y6U11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00CWT11 Blueprint Acute Myeloid Leukemia CL:0000766678

S00Y4Y11 Blueprint Acute Myeloid Leukemia CL:0000766678

S0022I12 Blueprint Macrophage CL:0000235209

C005VG11 Blueprint Macrophage CL:0000235209

S00B0N11 Blueprint Chronic Lymphocytic Leukemia CL:00025431948

S00B2J11 Blueprint Chronic Lymphocytic Leukemia CL:00025431948

S00C0J11 Blueprint macrophage - T=6days B-glucan CL:0000235209

S00HTF11 Blueprint macrophage - T=6days B-glucan CL:0000235209

S00JS911 Blueprint macrophage - T=6days B-glucan CL:0000235209

S00CTZ11 Blueprint macrophage - T=6days B-glucan CL:0000235209

C0010KB1 Blueprint CD14-positive, CD16-negative classical monocyte CL:00010541126

C001UYB4 Blueprint CD14-positive, CD16-negative classical monocyte CL:00010541126

C0011IB1 Blueprint CD14-positive, CD16-negative classical monocyte CL:00010541126
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Table B.19: Roadmap data IDs and CL mapping
Sample/Experiment ID Consortia Tissue Cell Ontology Term

ENCSR637GBV Roadmap Skin fibroblast CL:00026202024

ENCSR655XQF Roadmap Skin fibroblast CL:00026202024

ENCSR022MON Roadmap Skin fibroblast CL:00026202024

ENCSR982VYI Roadmap Skin fibroblast CL:00026202024

ENCSR361DRG Roadmap Fibroblast of skin of abdomen CL:20000131190

ENCSR681ALA Roadmap Fibroblast of skin of abdomen CL:20000131190

ENCSR762CJN Roadmap Trophoblast cell CL:0000351287

ENCSR406YML Roadmap Muscle of arm CL:0000188171

ENCSR364IBB Roadmap Muscle of arm CL:00001881

ENCSR317LMH Roadmap Muscle of arm CL:00001881

ENCSR620ZNQ Roadmap Muscle of arm CL:00001881

ENCSR305NXN Roadmap Muscle of arm CL:00001881

ENCSR677MYO Roadmap Muscle of arm CL:00001881

ENCSR990LHE Roadmap Muscle of arm CL:00001881

ENCSR922VBO Roadmap Stomach CL:1000313832

ENCSR721HDG Roadmap Stomach CL:1000313832

ENCSR702IGQ Roadmap Stomach CL:1000313832

ENCSR549DVY Roadmap Stomach CL:1000313832

ENCSR783BUO Roadmap Stomach CL:1000313832

ENCSR951NPS Roadmap Stomach CL:1000313832

ENCSR123ZCX Roadmap Stomach CL:1000313832

ENCSR774SEX Roadmap Stomach CL:1000313832

ENCSR729ZII Roadmap Muscle of back CL:0000188171

ENCSR806ESH Roadmap Muscle of back CL:0000188171

ENCSR995ORR Roadmap Muscle of back CL:0000188171

ENCSR891JVD Roadmap Muscle of back CL:0000188171

ENCSR652AWW Roadmap Muscle of back CL:0000188171

ENCSR027EJD Roadmap Muscle of back CL:0000188171

ENCSR576UKA Roadmap Muscle of back CL:0000188171

ENCSR094RGI Roadmap Muscle of back CL:0000188171

ENCSR239BBI Roadmap Muscle of back CL:0000188171

ENCSR522XTV Roadmap Muscle of back CL:0000188171

ENCSR719HRO Roadmap Small intestine CL:10015981554

ENCSR621FYE Roadmap Small intestine CL:10015981554

ENCSR150JIX Roadmap Small intestine CL:10015981554

ENCSR446RKD Roadmap Small intestine CL:10015981554

ENCSR523EDD Roadmap Small intestine CL:10015981554

ENCSR096USV Roadmap Muscle of leg CL:0000188171

ENCSR860DST Roadmap Muscle of leg CL:0000188171

ENCSR144UVO Roadmap Muscle of leg CL:0000188171

ENCSR545WAC Roadmap Muscle of leg CL:0000188171

ENCSR174ESD Roadmap Muscle of leg CL:0000188171

ENCSR086DZF Roadmap Muscle of leg CL:0000188171

ENCSR561WEX Roadmap Muscle of leg CL:0000188171

ENCSR447UE Roadmap Muscle of leg CL:0000188171

ENCSR286KWP Roadmap Large intestine CL:1000320881

ENCSR859KGW Roadmap Large intestine CL:1000320881

ENCSR777ONH Roadmap Large intestine CL:1000320881

ENCSR930URM Roadmap Large intestine CL:1000320881

ENCSR857VKL Roadmap Large intestine CL:1000320881

ENCSR363BVC Roadmap Large intestine CL:1000320881

ENCSR861SOG Roadmap Left lung CL:00020621433

ENCSR733MWN Roadmap Left lung CL:00020621433

ENCSR592EZK Roadmap Left lung CL:00020621433

ENCSR499NEL Roadmap Left lung CL:00020621433

ENCSR222IGR Roadmap Left lung CL:00020621433

ENCSR572FXC Roadmap Left lung CL:00020621433

268



B.5 Appendix Chapter 7

ENCSR907KDH Roadmap Kidney CL:10004971165

ENCSR212AMA Roadmap Kidney CL:10004971165

ENCSR896QPD Roadmap Kidney CL:10004971165

ENCSR495UXA Roadmap Kidney CL:10004971165

ENCSR554KBK Roadmap Right lung CL:00020621433

ENCSR074APH Roadmap Right lung CL:00020621433

ENCSR560MDQ Roadmap Right lung CL:00020621433

ENCSR176WMG Roadmap Right lung CL:00020621433

ENCSR044JAQ Roadmap Right lung CL:00020621433

ENCSR367QHR Roadmap Thymus CL:00022931702

ENCSR158XIJ Roadmap Thymus CL:00022931702

ENCSR069CMT Roadmap Thymus CL:00022931702

ENCSR175CNQ Roadmap Thymus CL:00022931702

ENCSR047LIJ Roadmap Heart CL:00024941900

ENCSR863BUL Roadmap Heart CL:00024941900

ENCSR328PVI Roadmap Renal cortex interstitium CL:10005961200

ENCSR899SWV Roadmap Renal cortex interstitium CL:10005961200

ENCSR436ZKE Roadmap Renal cortex interstitium CL:10005961200

ENCSR335GET Roadmap Adrenal gland CL:10016011602

ENCSR120NEA Roadmap Adrenal gland CL:10016011602

ENCSR688YOZ Roadmap Adrenal gland CL:10016011602

ENCSR7400OPV Roadmap Adrenal gland CL:10016011602

ENCSR424TSZ Roadmap Renal Pelvis CL:10004971165

ENCSR204XBB Roadmap Renal Pelvis CL:10004971165

ENCSR929KRW Roadmap Renal Pelvis CL:10004971165

ENCSR702IMR Roadmap Left Kidney CL:10004971165

ENCSR015EMF Roadmap Left renal cortex interstitium CL:10005961200

ENCSR125NGM Roadmap Left renal cortex interstitium CL:10005961200

ENCSR759WPF Roadmap Left renal cortex interstitium CL:10005961200

ENCSR413LXW Roadmap Left renal cortex interstitium CL:10005961200

ENCSR029FTY Roadmap Left renal pelvis CL:10004971165

ENCSR321ROU Roadmap Left renal pelvis CL:10004971165

ENCSR410DUZ Roadmap Left renal pelvis CL:10004971165

ENCSR160UAZ Roadmap Left renal pelvis CL:10004971165

ENCSR552YAE Roadmap Right renal pelvis CL:10004971165

ENCSR352GCS Roadmap Right renal pelvis CL:10004971165

ENCSR543TQW Roadmap Right renal pelvis CL:10004971165

ENCSR928CEQ Roadmap Right renal pelvis CL:10004971165

ENCSR899NLW Roadmap Spinal cord CL:00050002081

ENCSR333FZW Roadmap Spinal cord CL:00050002081

ENCSR822AOE Roadmap Right renal cortex interstitium CL:10005961200

ENCSR884EVS Roadmap Right renal cortex interstitium CL:10005961200

ENCSR400DJE Roadmap Right renal cortex interstitium CL:10005961200

ENCSR265NZF Roadmap Spleen CL:000265120

ENCSR817TLH Roadmap Psoas muscle CL:0000188171

ENCSR531RKI Roadmap Muscle of trunk CL:0000188171

ENCSR727VTD Roadmap Ovary CL:00020941469

ENCSR725TPW Roadmap Ovary CL:00020941469

ENCSR629VMZ Roadmap Pancreas CL:10015991552

ENCSR571BML Roadmap Pancreas CL:10015991552

ENCSR755LFM Roadmap Testis CL:00022381649

ENCSR711NGL Roadmap Forelimb muscle CL:0000188171

ENCSR516VDS Roadmap Hindlimb muscle CL:0000188171

ENCSR911GQI Roadmap H1-hESC CL:000003429

ENCSR844HLP Roadmap H1-hESC CL:000003429
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Table B.20: Sample counts per tissue and consortia as well as CL terms for TCGA
and GTEx data

Tissue Consortia Counts Cell Ontology Term

Thyroid TCGA 59 CL:0000452

Thyroid GTEx 355 CL:0000452

Liver TCGA 50 CL:0000182

Liver GTEx 176 CL:0000182

Kidney TCGA 72 CL:1000497

Kidney GTEx 36 CL:1000497

Colon TCGA 41 CL:1001588

Colon GTEx 376 CL:1001588

Prostate TCGA 52 CL:0002231

Prostate GTEx 119 CL:0002231

B.6 Appendix Chapter 8

B.6.1 Data used within the project

Within the scope of the StitchIt project, we utilized paired DNaseI-seq and RNA-
seq data from ENCODE, Blueprint, and Roadmap, listed in Tables B.21 to B.23.
We utilized all fastq files available using the provided data accession IDs. The
processed datasets are available at Zenodo (10.5281/zenodo.2547384).

RNA-seq processing

The same RNA-seq processing pipeline as introduced in Section B.5 has been used
in context of this project as well: Gene-expression was quantified using Salmon,
version 0.8.2., the Gencode transcript index v26, and the Gencode genome annota-
tion v26.

For single end reads, we used the command:
./salmon quant -i gencode.v26.transcripts.index/ -l A -r <Sample>_R1.fastq.gz

-p 12 -o quants/<Sample> –seqBias –gcBias -g gencode.v26.annotation.

For paired end reads, we used the command:
./salmon quant -i gencode.v26.transcripts.index/ -l A -1 <Sample>_R1.fastq.gz

-2 <Sample>_R2.fastq.gz -p 12 -o quants/<Sample> –seqBias –gcBias
-g gencode.v26.annotation.gtf
Discretized gene-expression values were computed using the POE method [GP03].
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Table B.21: Blueprint and internal sample IDs of paired DNaseI-seq and RNA-seq
data

Matched Sample Internal Sample ID Description

C0066P12 B_C0066P12 CD8-positive, alpha-beta T cell

C005PS12 B_C005PS12 CD14-positive, CD16-negative classical monocyte

S00DFM11 B_S00DFM11 Acute Lymphocytic Leukemia

S00HSH11 B_S00HSH11 macrophage - T=6days LPS

S00JRB11 B_S00JRB11 macrophage - T=6days LPS

S00BYT11 B_S00BYT11 macrophage - T=6days LPS

S00CS011 B_S00CS011 macrophage - T=6days LPS

C006NSB1 B_C006NSB1 CD34-negative, CD41-positive, CD42-positive megakaryocyte cell

S004BT B_S004BT12 CD34-negative, CD41-positive, CD42-positive megakaryocyte cell

S008H111 B_S008H111 CD4-positive, alpha-beta T cell

S002R512 B_S002R512 erythroblast

S002S312 B_S002S312 erythroblast

S001S714 B_S001S714 macrophage

S001MJ12 B_S001MJ12 inflammatory macrophage

S0022I14 B_S0022I14 inflammatory macrophage

S00HRJ11 B_S00HRJ11 macrophage - T=6days untreated

S00BXV11 B_S00BXV11 macrophage - T=6days untreated

S00CR211 B_S00CR211 macrophage - T=6days untreated

S00JQD11 B_S00JQD11 macrophage - T=6days untreated

S013M311 B_S013M311 Acute Myeloid Leukemia

S00D0F11 B_S00D0F11 Acute Myeloid Leukemia

S00D6311 B_S00D6311 Acute Myeloid Leukemia

S005EJ11 B_S005EJ11 Acute Myeloid Leukemia

S013QW11 B_S013QW11 Acute Myeloid Leukemia

S005FH11 B_S005FH11 Acute Myeloid Leukemia

S00XXH11 B_S00XXH11 Acute Myeloid Leukemia

S00CXR11 B_S00CXR11 Acute Myeloid Leukemia

S013N111 B_S013N111 Acute Myeloid Leukemia

S00CYP11 B_S00CYP11 Acute Myeloid Leukemia

S00D5511 B_S00D5511 Acute Myeloid Leukemia

S00D3911 B_S00D3911 Acute Myeloid Leukemia

S00XUN11 B_S00XUN11 Acute Myeloid Leukemia

S00XYF11 B_S00XYF11 Acute Myeloid Leukemia

S013PY11 B_S013PY11 Acute Myeloid Leukemia

S00Y1311 B_S00Y1311 Acute Myeloid Leukemia

S00XWJ11 B_S00XWJ11 Acute Myeloid Leukemia

S013RU11 B_S013RU11 Acute Myeloid Leukemia

S00D1D11 B_S00D1D11 Acute Myeloid Leukemia

S00Y0511 B_S00Y0511 Acute Myeloid Leukemia

S00D4711 B_S00D4711 Acute Myeloid Leukemia

S00XVL11 B_S00XVL11 Acute Myeloid Leukemia

S013SS11 B_S013SS11 Acute Myeloid Leukemia

S00Y6U11 B_S00Y6U11 Acute Myeloid Leukemia

S00CWT11 B_S00CWT11 Acute Myeloid Leukemia

S00Y4Y11 B_S00Y4Y11 Acute Myeloid Leukemia

S0022I12 B_S0022I12 macrophage

C005VG11 B_C005VG11 macrophage

S00B0N11 B_S00B0N11 Chronic Lymphocytic Leukemia

S00B2J11 B_S00B2J11 Chronic Lymphocytic Leukemia

S00C0J11 B_S00C0J11 macrophage - T=6days B-glucan

S00HTF11 B_S00HTF11 macrophage - T=6days B-glucan

S00JS911 B_S00JS911 macrophage - T=6days B-glucan

S00CTZ11 B_S00CTZ11 macrophage - T=6days B-glucan

C0010KB1 B_C0010KB1 CD14-positive, CD16-negative classical monocyte

C001UYB4 B_C001UYB4 CD14-positive, CD16-negative classical monocyte

C0011IB1 B_C0011IB1 CD14-positive, CD16-negative classical monocyte
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Table B.22: Roadmap IDs and internal ID of paired DNaseI-seq and RNA-seq
data

Sample ID Internal Sample ID Description

ENCBS336CDQ R_ENCBS336CDQ skin fibroblast

ENCBS890NFL R_ENCBS890NFL skin fibroblast

ENCBS180EDA R_ENCBS180EDA skin fibroblast

ENCBS405WVO R_ENCBS405WVO fibroblast of skin of abdomen

ENCBS599YIE R_ENCBS599YIE fibroblast of skin of abdomen

ENCBS048TNH R_ENCBS754TWW_ENCBS048TNH IMR-90

ENCBS376RZJ R_ENCBS150HBC_ENCBS376RZJ trophoblast cell

ENCBS090AGL R_ENCBS090AGL muscle of arm

ENCBS516CJQ R_ENCBS516CJQ muscle of arm

ENCBS054WKY R_ENCBS054WKY muscle of arm

ENCBS586CPQ R_ENCBS586CPQ muscle of arm

ENCBS261IIB R_ENCBS261IIB muscle of arm

ENCBS180RZG R_ENCBS180RZG muscle of arm

ENCBS892WJE R_ENCBS892WJE muscle of arm

ENCBS578HBL R_ENCBS578HBL stomach

ENCBS441WEO R_ENCBS441WEO stomach

ENCBS220QDW R_ENCBS220QDW stomach

ENCBS246MHN R_ENCBS246MHN stomach

ENCBS291NHF R_ENCBS291NHF stomach

ENCBS878MRX R_ENCBS878MRX stomach

ENCBS159PIU R_ENCBS159PIU stomach

ENCBS716QQK R_ENCBS716QQK stomach

ENCBS384LIR R_ENCBS384LIR muscle of back

ENCBS174IGM R_ENCBS174IGM muscle of back

ENCBS345TTL R_ENCBS345TTL muscle of back

ENCBS136SDO R_ENCBS136SDO muscle of back

ENCBS645HGQ R_ENCBS645HGQ muscle of back

ENCBS020XIW R_ENCBS020XIW muscle of back

ENCBS897YOR R_ENCBS897YOR muscle of back

ENCBS479AOA R_ENCBS479AOA muscle of back

ENCBS825MQT R_ENCBS825MQT muscle of back

ENCBS136EGD R_ENCBS136EGD muscle of back

ENCBS853LFM R_ENCBS853LFM small intestine

ENCBS615YKY R_ENCBS615YKY small intestine

ENCBS529UES R_ENCBS529UES small intestine

ENCBS623YHX R_ENCBS623YHX small intestine

ENCBS133LAN R_ENCBS133LAN small intestine

ENCBS611ZBY R_ENCBS611ZBY muscle of leg

ENCBS517FUR R_ENCBS517FUR muscle of leg

ENCBS023IXF R_ENCBS023IXF muscle of leg

ENCBS947JRD R_ENCBS947JRD muscle of leg

ENCBS011TVS R_ENCBS011TVS muscle of leg

ENCBS099OIO R_ENCBS099OIO muscle of leg

ENCBS143XQJ R_ENCBS143XQJ muscle of leg

ENCBS984JKS R_ENCBS984JKS muscle of leg

ENCBS997WGU R_ENCBS997WGU large intestine

ENCBS588ZWT R_ENCBS588ZWT large intestine

ENCBS445IVN R_ENCBS445IVN large intestine

ENCBS699KFK R_ENCBS699KFK large intestine

ENCBS867ILV R_ENCBS867ILV large intestine

ENCBS383OVQ R_ENCBS383OVQ large intestine

ENCBS078XUR R_ENCBS078XUR left lung

ENCBS574MIZ R_ENCBS574MIZ left lung

ENCBS859ASH R_ENCBS859ASH left lung

ENCBS143LJK R_ENCBS143LJK left lung

ENCBS516MKG R_ENCBS516MKG left lung

ENCBS117CVU R_ENCBS117CVU left lung
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ENCBS478OZL R_ENCBS478OZL kidney

ENCBS263ZZU R_ENCBS263ZZU kidney

ENCBS434EOI R_ENCBS434EOI kidney

ENCBS034SKE R_ENCBS034SKE kidney

ENCBS917VNB R_ENCBS917VNB right lung

ENCBS993PWO R_ENCBS993PWO right lung

ENCBS467PJB R_ENCBS467PJB right lung

ENCBS421OZO R_ENCBS421OZO right lung

ENCBS122USS R_ENCBS122USS right lung

ENCBS484BGT R_ENCBS484BGT thymus

ENCBS948PMG R_ENCBS948PMG thymus

ENCBS054CPR R_ENCBS054CPR thymus

ENCBS198CXJ R_ENCBS198CXJ thymus

ENCBS172XKB R_ENCBS172XKB heart

ENCBS407ALA R_ENCBS407ALA heart

ENCBS620YJZ R_ENCBS620YJZ renal cortex interstitium

ENCBS448HVV R_ENCBS448HVV renal cortex interstitium

ENCBS026RJE R_ENCBS026RJE renal cortex interstitium

ENCBS232ONZ R_ENCBS232ONZ adrenal gland

ENCBS660CJK R_ENCBS660CJK adrenal gland

ENCBS200XAZ R_ENCBS200XAZ adrenal gland

ENCBS119WRO R_ENCBS119WRO adrenal gland

ENCBS262QPN R_ENCBS262QPN renal pelvis

ENCBS142XDW R_ENCBS142XDW renal pelvis

ENCBS785KTZ R_ENCBS785KTZ renal pelvis

ENCBS610XAP R_ENCBS610XAP left kidney

ENCBS376PWL R_ENCBS376PWL left renal cortex interstitium

ENCBS674SNK R_ENCBS674SNK left renal cortex interstitium

ENCBS281CNH R_ENCBS281CNH left renal cortex interstitium

ENCBS636QOC R_ENCBS636QOC left renal cortex interstitium

ENCBS055ULH R_ENCBS055ULH left renal pelvis

ENCBS257BTU R_ENCBS257BTU left renal pelvis

ENCBS226ZND R_ENCBS226ZND left renal pelvis

ENCBS754ANY R_ENCBS754ANY left renal pelvis

ENCBS145EYH R_ENCBS145EYH right renal pelvis

ENCBS935VKR R_ENCBS935VKR right renal pelvis

ENCBS855RFN R_ENCBS855RFN right renal pelvis

ENCBS827OFK R_ENCBS827OFK right renal pelvis

ENCBS373RUA R_ENCBS373RUA spinal cord

ENCBS300UPT R_ENCBS300UPT spinal cord

ENCBS100DZU R_ENCBS100DZU right renal cortex interstitium

ENCBS183TBX R_ENCBS183TBX right renal cortex interstitium

ENCBS818WCN R_ENCBS818WCN right renal cortex interstitium

ENCBS599HUG R_ENCBS599HUG spleen

ENCBS008QPC R_ENCBS008QPC psoas muscle

ENCBS992XAC R_ENCBS992XAC muscle of trunk

ENCBS645JEU R_ENCBS645JEU ovary

ENCBS341OKA R_ENCBS341OKA ovary

ENCBS507RPJ R_ENCBS507RPJ pancreas

ENCBS914JTX R_ENCBS914JTX pancreas

ENCBS796DWQ R_ENCBS796DWQ testis

ENCBS988KQJ R_ENCBS988KQJ forelimb muscle

ENCBS105LQM R_ENCBS105LQM hindlimb muscle

ENCBS945MCY R_ENCBS559QNR_ENCBS568FYY_ENCBS945MCY H1-hESC

273



B SUPPLEMENTARY INFORMATION

Table B.23: ENCODE IDs and internal IDs of paired DNaseI-seq and RNA-seq
data

Experiment ID Internal Sample ID Description

ENCSR000EKF E_112ENC_124GGK_774AAA_719AAA_743IPG Endothelial cell of umbilical vein

ENCSR000EPQ
E_589ENC_591ENC_818IBE_567ENC_565ENC_

569ENC_564ENC_563ENC_586ENC
keratinocyte

ENCSR000ELY fibroblast of lung

ENCSR000EPR E_340AAA_936GPP_612ENC_613ENC fibroblast of lung

ENCSR000EME E_074ENC_911DVL_753AAA_754AAA foreskin fibroblast

ENCSR000EMJ E_852WTL_483ENC B cell

ENCSR000ELE E_477CHZ_628ENC_626ENC CD14-positive monocyte

ENCSR000EOO E_328AAA skeletal muscle myoblast

ENCSR000EOO E_665DRD skeletal muscle myoblast

ENCSR000EMK E_485ENC Hematopoietic multipotent progenitor cell

ENCSR217TAW E_367AAA fibroblast of arm

ENCSR217TAW E_372AAA fibroblast of arm

ENCSR000EPM E_021ENC astrocyte

ENCSR000EPM E_0052WQU astrocyte

ENCSR191FOV E_371OZD_227VDO adrenal gland

ENCSR865ICK E_423TBO_548ULT adrenal gland

ENCSR848XIY E_942WBM_724UYV adrenal gland

ENCSR158VAT E_658GLE_376ASB thyroid gland

ENCSR902XFY E_624WYQ_702NUN thyroid gland

ENCSR979ZJS E_174MRL_767MGS transverse colon

ENCSR790FIS E_409AIP_668MJW transverse colon

ENCSR504WYA E_767POE_974EYF transverse colon

ENCSR171ETY E_921WWM_472LWI gastrocnemius medialis

ENCSR209TXI E_020UWI_887WTT uterus

ENCSR237WJY E_310EYM_210YNQ uterus

ENCSR855DJV E_279OPH_711CPB ovary

ENCSR475SYH E_197JOA_315DHM testis

ENCSR456SOX E_524RBS_291PVB prostate gland

ENCSR626RVD E_369AAA bipolar spindle neuron

ENCSR626RVD E_374AAA bipolar spindle neuron

ENCSR364MFN E_077RUJ hepatocyte

ENCSR364MFN E_520VFV hepatocyte

ENCSR000EOP E_526EMC myotube

ENCSR000EOP E_236AFP_140MNV myotube

ENCSR000EPD E_234AAA LHCN-M2

ENCSR000EPD E_869RCC_231OMQ LHCN-M2

ENCSR963ALV E_018TPT neural progenitor cell

ENCSR963ALV E_044KWE neural progenitor cell

ENCSR000EJN
E_111ENC_780AAA_716AAA_051SJH_

731AAA_734AAA_733AAA_732AAA
H1-hESC

ENCSR000EMZ E_293AAA H7-hESC

ENCSR000EMZ E_297CQV_291AAA_624XJG H7-hESC
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DNaseI-seq processing

DNaseI-seq reads were aligned to the hg38 reference genome with bowtie, version
1.2.1.1, and samtools version 1.2.
For single end reads, this was done using the command call:
.bowtie –threads 10 -S GRCh38_no_alt/GC_A_000001405.15_GRCh38_no_alt

_analysis_set <Sample>_R1.fastq.gz | samtools view -b -o <Sample>.bam -) 2
> Sample > bowtie_statistics.txt

and for paired end reads using:
./bowtie –threads 10 -S GRCh38_no_alt/GCA_000001405.15_GRCh38_no_alt_

analysis_set -1 <Sample>_R1.fastq.gz -2 <Sample>_R2.fastq.gz | samtools view
-b -o <Sample>.bam -) 2> <Sample> .bowtie_statistics.txt

In case that multiple fasta files exist for one sample, they were concatenated using
the linux cat command prior to alignment, if applicable, separately per strand.
DNase Hypersensitive Sites were identified with JAMM, version 1.0.7.5 and sam-
tools version 1.2.
For single end reads, we used the commands:
bedtools bamtobed -i <Sample>.bam > JAMM-Input/<Sample>.bed
bash JAMM.sh -s JAMM-Input -g hg38_chrSize.txt -o <Sample>_peaks -f 1 -p

8
rm -r JAMM-Input/

For paired end reads, we run the commands:
samtools sort -n -O bam -@10 -T Bam-Sort-Pre <Sample>.bam | samtools view

-bf 0x2 - | bedtools bamtobed -bedpe -i stdin > JAMM-Input/<Sample>.bed
bash JAMM.sh -s JAMM-Input -g hg38_chrSize.txt -o <Sample>_peaks -f 1 -p

8 -t paired
rm -r JAMM-Input/
As described in the JAMM github, we computed the enrichment of DNaseI-seq

signal within the peak by dividing column 7 by column 9 of the JAMM output
files:
awk ’print $1 $2 $3 $7 $9’ <Sample>/peaks/filtered.peaks.narrowPeak > <Sam-

ple>/peaks/filtered.peaks.narrowPeak.adoptedCoverage

Bigwig files were generated using the DEEPtools bamCoverage program, version
2.4.2 with the command
bamCoverage -b <Sample>.bam.sorted.bam -o <Sample>.bw -p 4

-normalizeUsingRPKM

B.6.2 Details on executing the tested methods

STITCHIT

To run STITCHIT, the user needs to provide discretized (-d) and original expression
data (-o), a gene annotation file (-a), a chromosome size file (-s), as well as big wig

275



B SUPPLEMENTARY INFORMATION

files with the epigenetic signal to consider (-b). Using the command:
./build/core/STITCHIT -b <Consortium>/DNase_bw/ -a ../../../nobackup/

References/gencode.v26.annotation.gtf -d <Consortium>/_Discretised_Complet.txt
-o <Consortium>_expression.txt -s data/hg38_chrSize.txt -w 25000 -c 12 -p 0.05
-g <geneID> -z 10 -f ../../../archive00/Segmentation_<Consortium>/ -r 500000
-t 2000
a call to STITCHIT can be invoked.
The parameter -w denotes the size of the window extension up an downstream

of the gene, -c denotes the number of used CPU, -p is the significance threshold for
the correlation test, -g is the parameter to denote the target gene ID, -z indicates
the width of the initial binning, -f denotes the output path, -r is the maximum size
of the entire search region and -t refers to the maximum size of a segment.

Unsupervised peak based assignment

We compute these quantities using the TEPIC [12] tool using the following com-
mands
5kb:
bash TEPIC.sh -g hg38.noPrefix.masked.fa -b <Sample>_peaks/peaks/filtered.

peaks.narrowPeak.adoptedCoverage -o <Sample>_5kb -p ../PWMs/human_
jaspar_hoc_kellis.PSEM -c 12 -n 4 -w 5000 -a gencode.v26.annotation.gtf -f gen-
code.v26.annotation.gtf -q TRUE
50kb:
bash TEPIC.sh -g hg38.noPrefix.masked.fa -b <Sample>_peaks/peaks/filtered.

peaks.narrowPeak.adoptedCoverage -o <Sample>_50kb -p ../PWMs/human_
jaspar_hoc_kellis.PSEM -c 12 -n 4 -w 50000 -a gencode.v26.annotation.gtf -f gen-
code.v26.annotation.gtf -q TRUE
gene body:

bash TEPIC.sh -g hg38.noPrefix.masked.fa -b <Sample>_peaks/peaks/filtered.
peaks.narrowPeak.adoptedCoverage -o <Sample>_ -p ../PWMs/human_
jaspar_hoc_kellis.PSEM -c 12 -n 4 -w 5000 -a gencode.v26.annotation.gtf -f gen-
code.v26.annotation.gtf -q TRUE -y

B.6.3 Details on various STITCHIT validation experiments

Integration of GeneHancer elements

Note that this approach does not depend on any size or region cut-offs. We provide
a script to parse the GeneHancer tsv file into a simple tab delimited format: chr
tab start tab end tab ENSG-ID tab gene name The script can be used with the
command:
python rewriteGeneHancer.py <Original GeneHancer dump>

ENSGIds_GeneName.txt > <Destination.txt>
Subsequently, candidate regions can be computed via:
./build/core/GENEHANCER -b <Consortium>/DNase_bw/ -a /gencode.v26.

annotation.gtf -o <Consortium>_expression.txt -s data/hg38_chrSize.txt
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-w 25000 -p 0.05 -g <geneID> -f GeneHancer_<Consortium> -r 500000 -k gene-
hancer_database_06.07.2018_EnsembleMatch.sorted.bed

Merging DHS sites across samples

We used the linux cat and sort commands together with the BEDTools merge
command
cat <Consortium>/*/peaks/filtered.peaks.narrowPeak.adoptedCoverage
sort -s -k1,1 -k2,2n Merged_<Consortium>.bed >

Merged_<Consortium>.sorted.bed
bedtools merge -i Merged_<Consortium>.sorted.bed >

Merged_<Consortium>.sorted.merged.bed

to generate the merged DHS sites and subsequently generated the feature matrices
using:
./build/core/UNIFIED_PEAKS -b <Consortium>/DNase_wig_Normalized/ -

a gencode.v26.annotation.gtf -o <Consortium>_expression.txt -s data/hg38_chrS
ize.txt -w 25000 -p 0.05 -g <geneID> -f UnifiedPeaks_<Consortium> -r 500000
-k Merged_<Consortium>_Peaks.sorted.merged.bed

Overlap with GeneHancer

Using BEDTools intersect we computed the overlap between all candidate reg-
ulatory sites identified with StitchIt and the two-level learning with all unique
entries contained in the GeneHancer database that are within the searched 25kb
search window and downstream of each gene (193, 298 distinct regions). The same
is done for regions based on the UnifiedPeaks approach, thereby assessing how
many known REMs from GeneHancer can be recovered.

Overlap with non-coding mutations from the COSMIC database

The COSMIC database is a vast collection of somatic mutations occurring in cancer.
We assembled a collection MC containing non-coding mutations, extracted from
the file CosmicNCV.tsv.gz. Using MC , we compute a length normalized score eC
describing the enrichment of mutations in the REMs as

eC =
OM (MC ,R) ·OR(MC , R)

LR(MC ,R)
, (B.4)

where OM (MC , R) is the number of mutations in m ∈ MC overlapping a can-
didate REM r ∈ R, OR(MC , R) is the number of regions r ∈ R overlapping a
mutation m ∈ MC , and LR(MC ,R) is the total genomic space covered by all
regions r ∈ R overlapping a mutation m ∈ MC . Normalizing by OR(MC ,R)

LR(MC ,R) is nec-
essary to account for the length difference between StitchIt, UnifiedPeaks,
and GeneHancer segments. This normalization factor, which we call resolu-
tion, is large, if OR(MC , R) is big, that is there are many overlapping REMs, and
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LR(MC ,R) is small, that is the covered genomic space is small. The resolution is
small, if OR(MC , R) is small, that is there are only a few overlapping REMs, and
LR(MC ,R) is big, that is the covered genomic space is large. Thus, the normaliza-
tion adjusts the number of retrieved mutations such that if two methods identify
the same number of mutations OM (MC , R), the method with a better resolution,
i.e. there are many distinct REMs covering only a small part of the genome, is
preferred.
Here, the score e is computed for all REMs suggested by all methods as well as

for ten randomly shuffled region sets containing the same number of regions as the
original sets, respectively. The COSMIC analysis was only performed on Blueprint
data due to the large number of included acute myeloid leukemia samples.

GWAS hits

We compiled a collectionMG comprising all GWAS sites contained in the EMBL-
EBI GWAS Catalog [M+16a]. Using MG, we compute a length normalized score
eG denoting the enrichment of GWAS hits in candidate regulatory sites as above:

eG =
OM (MG,R) ·OR(MG, R)

LR(MG,R)
, (B.5)

where OM (MG,R) is the number of mutations inm ∈MG overlapping a candidate
REM r ∈ R and OR(MG,R) refers to the number of regions r ∈ R overlapping
overlap a GWAS hit m ∈MG.

eQTL analysis

We obtained all eQTLS Q contained in the ExSNP database ([Y+16]), which we
mapped to hg38 using dbSNP [S+01]. To assess how many of those eQTLs overlap
regulatory sites that are assigned to the same target gene as the eQTL, we compared
the gene-locus assignment from all q ∈ Q with our predictions in terms of a length-
normalized enrichment score eQ:

eQ =
TP ·OR(Q, R)

LR(Q,R)
, (B.6)

where TP refers to true positives, i.e. eQTLs q ∈ Q that overlap a suggested REM
that is linked to the same gene as q itself, OR(Q, R) refers to the number of regions
r ∈ R that overlap any eQTL site q ∈ Q and LR(Q,R) denotes the entire genomic
space covered by overlapping REMs.

ChIA-Pet & Capture Hi-C data

ChIA-Pet data for K562 and MCF-7 was downloaded from the 4DGenome database
[W+15] and lifted to hg38 using the UCSC liftover tool. Capture Hi-C data for
GM12878 was obtained from Mifsud et al. [M+15a] and also lifted to hg38. The
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conformation data allows us to calculate how many contacts captured by the ChIA-
Pet or Promoter Capture data are matching to the associations inferred by the
approaches tested in this study. To match chromatin interaction data to our sug-
gested REMs, we consider the entire gene-body of the linked gene as the second
coordinates. We count a REM as contained in the conformation datasets if either
the gene or the coordinate of the associated REM overlaps one coordinate of the
verified interaction and the second coordinate of the interaction site overlaps the
remaining coordinate of the association. Interactions that could not be detected by
any of the tests, due to an exceeding genomic distance to the target gene or due
to the absence of any DNaseI-seq signal in the cell line related to the sample, are
excluded from consideration.

B.6.4 Generation of a CRISPR-Cas9 library for Doxorubicin resistance

We use a recently published genome-wide CRISPR perturbation library consisting
of partially randomized degenerated oligonucleotides (5’-NNDNNNNNHNNNNHD-
HNVVR-3’) with flanking 3Cs homology regions, that was created using ssDNA of
template-plasmids and site-specific mutagenesis targeting coding and non-coding re-
gions of the human genome in hTERT-RPE1 cells from ATCC (CRL-4000) [W+19b].
In brief, pooled gRNAs with oligonucleotide diversity of 7.3 · 1010 targeting coding
and non-coding regions of the human genome were used for a doxorubicin resis-
tance screen in hTERT-RPE1 cells. Specifically, a total of 5.5 · 108 immortalized
hTERT-RPE1 cells with doxycycline inducible Cas9 expression were transduced
with lentiviral particles with a multiplicity of infection (MOI) of 1. The experiment
was performed in three independent replicates. Cells were cultured for 7 days in
standard media with 1µM doxocycline and 10µg/ml puromycin. Doxorubicin resis-
tance selection took place from day 7 on by addition of 1µM doxorubicin. Fresh me-
dia and doxorubicin were supplemented every 4 days and cells surviving doxorubicin
treatment were harvested after 3 weeks. Genomic DNA was extracted using Pure-
LinkâĎć Genomic DNA Mini Kit and gRNA sequences were PCR-amplified and
high-throughput sequenced on an Illumina NextSeq500 sequencer according to the
manufacturer’s protocol. Illumina sequencing data was processed with bcl2fastq
v2.17 and cutadapt v1.15 and custom python scripts. 4232 overlapping gRNAs
were found in all three replicates and experimentally validated with a new 3Cs-
gRNA library (4232 gRNAs only) and a repeated CRISPR screen under established
conditions (coverage 1000, MOI 0.5). An enrichment of at least two-fold after 21
days of doxorubicin treatment (compared to untreated control) was considered as
a hit. 795 gRNAs were further investigated regarding target sites in the human
genome using Cas-OFFinder v2.4 and GRCh38.86 with the limitation to find up
to 2 mismatches [C+14c, H+13a, P+13b]. Overall, 226 unique gRNAs could be
mapped to the coding and non-coding part of the genome, resulting in 332 unique
genomic target sites. In order to link putative regulatory sites detected by the gR-
NAs to genes, the 332 distinct genomic targets sites were extended by a window of
100bp up and downstream of the gRNA binding site. The extended windows are
intersected with StitchIt regions. All predicted non-coding interactions as well as
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additional ChIA-Pet and GeneHancer support are shown in Table B.27.

B.6.5 Additional Figures and Tables
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Figure B.6: Scatterplots contrasting the performance of gene-expression models
using either a 5kb, a 50kb, or a gene-body window, on Blueprint (a),
Roadmap (b) and ENCODE (c) data.
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Figure B.7: Venn Diagramms indicating the overlap in terms of covered genes for
STITCHIT, Unified Peaks, and GeneHancer data respectivel

Table B.24: Regression coefficients and OLS p-values for regulatory sites of EGR1
identified with StitchIt (S1-S10) and the UnifiedPeaks (U1-U11)
chr start end Reem ID coefficient OLS p-value

chr5 138442350 138442489 S4 0.12347378 0.13772486

chr5 138449000 138449499 S7 0.06534721 0.52094523

chr5 138450250 138450399 S10 -0.03976734 0.65534283

chr5 138454490 138456489 S9 0.061487 0.55857386

chr5 138457200 138457409 S6 0.07735484 0.40351668

chr5 138465700 138465949 S2 0.21150264 0.05986547

chr5 138469650 138470349 S10 0.45303257 0.00021482

chr5 138475650 138476489 S5 0.11132624 0.22930495

chr5 138486600 138486749 S3 -0.15254059 0.15120576

chr5 138486950 138487099 S8 -0.06192892 0.56018674

chr5 138443499 138444336 U11 -0.02633325 0.84467668

chr5 138446871 138447822 U10 0.04075988 0.76654673

chr5 138454281 138454728 U4 0.19843172 0.11272934

chr5 138454842 138455474 U7 0.07477763 0.58821766

chr5 138462649 138471619 U1 0.4100908 0.00147926

chr5 138471717 138473719 U9 -0.04813992 0.77152777

chr5 138473888 138474432 U5 0.11320651 0.45458859

chr5 138475851 138476436 U3 0.21427014 0.12540462

chr5 138476499 138477251 U6 0.10563739 0.4268543

chr5 138483081 138483386 U8 0.00735699 0.95430046

chr5 138486580 138487561 U2 -0.25307334 0.09496258
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Table B.25: TFBS predictions computed using Fimo in StitchIt REM S9 for
EGR1

Motif position score p-value q-value

BHLHE40 chr5:138469650-138470349 15.3654 1.97E-06 0.00254

SP8 chr5:138469650-138470349 15.7237 2.18E-06 0.0028

BCL6 chr5:138469650-138470349 15.7097 2.22E-06 0.00302

TEAD1 chr5:138469650-138470349 13.4355 2.92E-06 0.00402

TEAD4 chr5:138469650-138470349 12.9516 2.92E-06 0.00403

STAT4 chr5:138469650-138470349 15 4.65E-06 0.00636

STAT3 chr5:138469650-138470349 14.898 5.56E-06 0.00764

BHLHE41 chr5:138469650-138470349 14.3846 1.20E-05 0.00799

BHLHE41 chr5:138469650-138470349 13.9038 1.35E-05 0.00799

STAT3 chr5:138469650-138470349 14.0816 1.25E-05 0.00857

STAT1 chr5:138469650-138470349 15.2727 6.68E-06 0.00915

E2F6 chr5:138469650-138470349 14.7759 7.24E-06 0.00918

SP3 chr5:138469650-138470349 13.7561 8.16E-06 0.0103

SOX3 chr5:138469650-138470349 14.6724 8.14E-06 0.011

HES2 chr5:138469650-138470349 12.6984 9.83E-06 0.0131

KLF16 chr5:138469650-138470349 13.7241 1.16E-05 0.0136

ID2 chr5:138469650-138470349 14.3443 1.21E-05 0.0148

TFE3 chr5:138469650-138470349 12.7347 1.48E-05 0.0174

NR5A2 chr5:138469650-138470349 13.3448 1.40E-05 0.0174

STAT1 chr5:138469650-138470349 12.4909 2.57E-05 0.0176

BACH1::MAFK chr5:138469650-138470349 9.75 2.87E-05 0.018

BACH1::MAFK chr5:138469650-138470349 10.2105 2.42E-05 0.018

SOX6 chr5:138469650-138470349 13.8714 1.34E-05 0.0182

KLF12 chr5:138469650-138470349 12.1475 1.42E-05 0.0182

TFAP2B(VAR.3) chr5:138469650-138470349 12.3934 2.63E-05 0.0187

TFAP2B(VAR.3) chr5:138469650-138470349 11.6885 3.56E-05 0.0187

TFAP2C chr5:138469650-138470349 11.5102 5.45E-05 0.0197

TFAP2C chr5:138469650-138470349 12.0612 3.64E-05 0.0197

TFAP2C chr5:138469650-138470349 11.8061 4.42E-05 0.0197

TFAP2C chr5:138469650-138470349 11.0204 7.52E-05 0.0204

NFKB2 chr5:138469650-138470349 11.2576 2.33E-05 0.0204

NFKB2 chr5:138469650-138470349 10.3636 3.25E-05 0.0204

ARNTL chr5:138469650-138470349 13.1639 1.83E-05 0.0208

ARNTL chr5:138469650-138470349 12.541 3.11E-05 0.0208

ZNF263 chr5:138469650-138470349 12.2857 1.64E-05 0.0211

RREB1 chr5:138469650-138470349 8.16514 1.64E-05 0.0212

KLF13 chr5:138469650-138470349 9.2931 1.60E-05 0.0213

TFAP2C chr5:138469650-138470349 10.5714 0.000101 0.022

SP2 chr5:138469650-138470349 12.9828 1.78E-05 0.022

KLF1 chr5:138469650-138470349 13.3636 1.70E-05 0.022

TFAP2C(VAR.3) chr5:138469650-138470349 11.1897 4.16E-05 0.0224

TFAP2C(VAR.3) chr5:138469650-138470349 11.0517 4.41E-05 0.0224

BHLHE40 chr5:138469650-138470349 13.1538 3.53E-05 0.0227

KLF14 chr5:138469650-138470349 11.7931 1.99E-05 0.0229

TFAP2A(VAR.3) chr5:138469650-138470349 9.65574 8.86E-05 0.0237

TFAP2A(VAR.3) chr5:138469650-138470349 9.54098 9.20E-05 0.0237

TFAP2A(VAR.3) chr5:138469650-138470349 11.2459 4.61E-05 0.0237

TFAP2A(VAR.3) chr5:138469650-138470349 10.5082 6.20E-05 0.0237

FOXH1 chr5:138469650-138470349 13.6923 1.81E-05 0.0249

TFAP2B chr5:138469650-138470349 10.8909 8.38E-05 0.0251

TFAP2B chr5:138469650-138470349 10.7636 9.03E-05 0.0251

TFAP2B chr5:138469650-138470349 11.7455 4.81E-05 0.0251

TFAP2B chr5:138469650-138470349 11.7273 4.87E-05 0.0251

TFAP2B chr5:138469650-138470349 10.3818 0.000114 0.0254

STAT5A::STAT5B chr5:138469650-138470349 12.3878 3.71E-05 0.0255

STAT5A::STAT5B chr5:138469650-138470349 13.1429 2.45E-05 0.0255

TFEC chr5:138469650-138470349 12.8171 1.99E-05 0.0262

NR5A2 chr5:138469650-138470349 11.2241 4.22E-05 0.0263282
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SP2 chr5:138469650-138470349 11.2759 4.49E-05 0.0276

TCF7L2 chr5:138469650-138470349 13.1273 2.04E-05 0.0278

TFAP2B chr5:138469650-138470349 9.89091 0.000151 0.028

SP4 chr5:138469650-138470349 7.56364 2.32E-05 0.0286

REL chr5:138469650-138470349 12.8283 2.11E-05 0.0291

KLF13 chr5:138469650-138470349 6.01724 4.53E-05 0.0301

TFEB chr5:138469650-138470349 12.7692 2.25E-05 0.0302

EGR1 chr5:138469650-138470349 9.51923 9.51E-05 0.031

EGR1 chr5:138469650-138470349 9.90385 8.01E-05 0.031

EGR1 chr5:138469650-138470349 10.9423 4.92E-05 0.031

EGR1 chr5:138469650-138470349 10.6731 5.61E-05 0.031

PPARG::RXRA chr5:138469650-138470349 12.3153 2.48E-05 0.0313

EGR1 chr5:138469650-138470349 8.84615 0.000127 0.0329

TFAP2C chr5:138469650-138470349 9.59184 0.000182 0.033

HEY1 chr5:138469650-138470349 11.7455 5.63E-05 0.0341

HEY1 chr5:138469650-138470349 11.4727 7.01E-05 0.0341

TFAP2A(VAR.2) chr5:138469650-138470349 10.4 0.000115 0.0346

TFAP2A(VAR.2) chr5:138469650-138470349 10.1636 0.000132 0.0346

TFAP2A(VAR.2) chr5:138469650-138470349 11.6182 5.38E-05 0.0346

TFAP2A(VAR.2) chr5:138469650-138470349 10.8727 8.68E-05 0.0346

ZNF263 chr5:138469650-138470349 8.61224 0.000111 0.0359

ZNF263 chr5:138469650-138470349 9.63265 6.77E-05 0.0359

ZNF263 chr5:138469650-138470349 8.69388 0.000107 0.0359

KLF5 chr5:138469650-138470349 10.8776 8.24E-05 0.0381

KLF5 chr5:138469650-138470349 10.3265 9.83E-05 0.0381

KLF5 chr5:138469650-138470349 11.0204 7.50E-05 0.0381

KLF5 chr5:138469650-138470349 9.69388 0.00012 0.0381

STAT4 chr5:138469650-138470349 11.6552 5.63E-05 0.0385

USF2 chr5:138469650-138470349 11.6939 5.47E-05 0.0386

USF2 chr5:138469650-138470349 11.5306 6.01E-05 0.0386

SP1 chr5:138469650-138470349 12.5 3.08E-05 0.0388

TFAP2C(VAR.3) chr5:138469650-138470349 7.15517 0.000151 0.0394

TFAP2C(VAR.3) chr5:138469650-138470349 7.05172 0.000155 0.0394

TFE3 chr5:138469650-138470349 11.0612 7.33E-05 0.0431

TFAP2A(VAR.2) chr5:138469650-138470349 9.29091 0.000213 0.0443

TFAP2A(VAR.2) chr5:138469650-138470349 8.96364 0.000252 0.0443

HEY2 chr5:138469650-138470349 10.7759 7.56E-05 0.0459

HEY2 chr5:138469650-138470349 10.7241 7.68E-05 0.0459

ZFX chr5:138469650-138470349 10.5 7.65E-05 0.0461

ZFX chr5:138469650-138470349 10.4545 7.78E-05 0.0461

TCFL5 chr5:138469650-138470349 9.8871 8.31E-05 0.0467

TCFL5 chr5:138469650-138470349 9.8871 8.31E-05 0.0467

TFAP2B(VAR.3) chr5:138469650-138470349 6.91803 0.000164 0.0475

TFAP2B(VAR.3) chr5:138469650-138470349 6.44262 0.000181 0.0475

NR5A2 chr5:138469650-138470349 8.94828 0.000115 0.0479

SP1 chr5:138469650-138470349 10.6346 7.65E-05 0.0482

HIC2 chr5:138469650-138470349 11.4182 3.72E-05 0.0483
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Table B.26: TFBS predictions computed using Fimo in StitchIt REM S3 for
EGR1

motif position score p-value q-value

ZNF263 chr5:138486600-138486749 16.4694 1.18E-06 0.000244

ZNF263 chr5:138486600-138486749 14.7755 3.66E-06 0.000272

ZNF263 chr5:138486600-138486749 14.6531 3.96E-06 0.000272

ZNF263 chr5:138486600-138486749 13.0408 1.06E-05 0.000365

ZNF263 chr5:138486600-138486749 13.2041 9.64E-06 0.000365

ZNF263 chr5:138486600-138486749 13.4694 8.23E-06 0.000365

ZNF263 chr5:138486600-138486749 11.9388 2.00E-05 0.000446

ZNF263 chr5:138486600-138486749 11.9388 2.00E-05 0.000446

ZNF263 chr5:138486600-138486749 11.7959 2.16E-05 0.000446

ZNF263 chr5:138486600-138486749 12.0816 1.84E-05 0.000446

ZNF263 chr5:138486600-138486749 10.4286 4.51E-05 0.000846

ZNF263 chr5:138486600-138486749 10.2449 4.96E-05 0.000853

ZNF263 chr5:138486600-138486749 9.61224 6.84E-05 0.00102

ZNF263 chr5:138486600-138486749 9.59184 6.91E-05 0.00102

ZNF263 chr5:138486600-138486749 9.06122 8.98E-05 0.00124

ZNF263 chr5:138486600-138486749 8.08163 1.43E-04 0.00185

ZNF263 chr5:138486600-138486749 7.91837 1.54E-04 0.00188

ZNF263 chr5:138486600-138486749 7.71429 1.70E-04 0.00195

ZNF263 chr5:138486600-138486749 7.10204 2.24E-04 0.00237

ZNF263 chr5:138486600-138486749 7.04082 2.30E-04 0.00237

ZNF263 chr5:138486600-138486749 6.63265 2.75E-04 0.0027

ZNF263 chr5:138486600-138486749 6.02041 3.57E-04 0.00335

PRDM1 chr5:138486600-138486749 12.6727 1.96E-05 0.00434

ZNF263 chr5:138486600-138486749 4.87755 5.71E-04 0.00512

ZNF263 chr5:138486600-138486749 4.7551 5.99E-04 0.00516

ZNF263 chr5:138486600-138486749 4.4898 6.65E-04 0.0055

ZNF263 chr5:138486600-138486749 4.18367 7.49E-04 0.00578

ZNF263 chr5:138486600-138486749 4.16327 7.55E-04 0.00578

ZNF263 chr5:138486600-138486749 3.97959 8.10E-04 0.00598

ZNF263 chr5:138486600-138486749 3.61224 9.31E-04 0.00601

ZNF263 chr5:138486600-138486749 3.65306 9.17E-04 0.00601

ZNF263 chr5:138486600-138486749 3.71429 8.96E-04 0.00601

ZNF263 chr5:138486600-138486749 3.61224 9.31E-04 0.00601

ZNF263 chr5:138486600-138486749 3.30612 1.04E-03 0.00653

ZNF263 chr5:138486600-138486749 2.97959 1.18E-03 0.00694

ZNF263 chr5:138486600-138486749 2.97959 1.18E-03 0.00694

ZIC1 chr5:138486600-138486749 8.65957 3.09E-05 0.00812

ZNF263 chr5:138486600-138486749 2.22449 0.00154 0.00883

ZNF263 chr5:138486600-138486749 1.97959 1.68E-03 0.009

ZNF263 chr5:138486600-138486749 1.93878 1.70E-03 0.009

ZNF263 chr5:138486600-138486749 2 1.66E-03 0.009

ZNF263 chr5:138486600-138486749 1.26531 2.14E-03 0.011

IRF1 chr5:138486600-138486749 9.41935 5.63E-05 0.0118

ZIC4 chr5:138486600-138486749 11.0182 4.77E-05 0.0125

IRF1 chr5:138486600-138486749 6.98387 1.43E-04 0.0149

PRDM1 chr5:138486600-138486749 6.27273 4.05E-04 0.0158

PRDM1 chr5:138486600-138486749 8.54545 1.60E-04 0.0158

PRDM1 chr5:138486600-138486749 7.8 2.20E-04 0.0158

PRDM1 chr5:138486600-138486749 6.47273 3.75E-04 0.0158

PRDM1 chr5:138486600-138486749 5.74545 4.93E-04 0.0158

PRDM1 chr5:138486600-138486749 5.70909 5.00E-04 0.0158

ZNF263 chr5:138486600-138486749 -0.142857 3.35E-03 0.0169

NFAT5 chr5:138486600-138486749 10.9516 7.18E-05 0.0177

IRF1 chr5:138486600-138486749 5.20968 0.000264 0.0184

TFAP2C chr5:138486600-138486749 10.7041 9.34E-05 0.0196

TFAP2C chr5:138486600-138486749 10.0204 1.43E-04 0.0196

ZIC3 chr5:138486600-138486749 7.7 7.91E-05 0.0199

NFATC2 chr5:138486600-138486749 12.2022 7.93E-05 0.021284
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ZNF263 chr5:138486600-138486749 -1.06122 4.42E-03 0.0218

ZNF263 chr5:138486600-138486749 -1.18367 4.59E-03 0.022

SPZ1 chr5:138486600-138486749 9.97273 0.000149 0.0222

SPZ1 chr5:138486600-138486749 9.7 1.71E-04 0.0222

PRDM1 chr5:138486600-138486749 4.2 8.47E-04 0.0234

SP2 chr5:138486600-138486749 6.05172 3.42E-04 0.0275

SP2 chr5:138486600-138486749 6.41379 3.06E-04 0.0275

SP2 chr5:138486600-138486749 8.13793 1.71E-04 0.0275

TFAP2B chr5:138486600-138486749 10.5455 1.03E-04 0.0285

TFAP2B chr5:138486600-138486749 9.29091 2.10E-04 0.0289

ZNF263 chr5:138486600-138486749 -2.28571 6.27E-03 0.0294

PRDM1 chr5:138486600-138486749 3.07273 1.22E-03 0.0298

ZNF263 chr5:138486600-138486749 -2.4898 0.00663 0.0304

SPZ1 chr5:138486600-138486749 8.26364 0.000371 0.0322

SP1 chr5:138486600-138486749 4.32692 3.89E-04 0.0325

SP1 chr5:138486600-138486749 3.34615 4.53E-04 0.0325

SP1 chr5:138486600-138486749 2.38462 0.00052 0.0325

SP1 chr5:138486600-138486749 6 0.000288 0.0325

SPI1 chr5:138486600-138486749 0.381818 1.27E-04 0.0327

CDX2 chr5:138486600-138486749 10.0339 1.43E-04 0.0337

IRF1 chr5:138486600-138486749 2.29032 0.000653 0.0341

ELF3 chr5:138486600-138486749 6.37931 1.29E-04 0.0345

ZNF263 chr5:138486600-138486749 -3.06122 0.00772 0.0347

TEAD4 chr5:138486600-138486749 10.4677 1.44E-04 0.0347

SPIC chr5:138486600-138486749 9.50704 1.46E-04 0.0378

SP2 chr5:138486600-138486749 2.58621 8.62E-04 0.0383

SP2 chr5:138486600-138486749 2.51724 0.000876 0.0383

SP2 chr5:138486600-138486749 2.15517 9.51E-04 0.0383

RARA chr5:138486600-138486749 -14.1515 1.62E-04 0.039

EGR1 chr5:138486600-138486749 8.28846 1.59E-04 0.0392

ELF5 chr5:138486600-138486749 10.2909 1.51E-04 0.0393

EGR1 chr5:138486600-138486749 6.19231 0.000345 0.0425

FOSL2 chr5:138486600-138486749 8.41818 0.000159 0.0427

PRDM1 chr5:138486600-138486749 1.09091 2.16E-03 0.0433

PRDM1 chr5:138486600-138486749 1.21818 0.00208 0.0433

TBP chr5:138486600-138486749 9.76389 0.00019 0.0464

IRF1 chr5:138486600-138486749 0.193548 1.17E-03 0.0488

GATA4 chr5:138486600-138486749 9.17241 1.90E-04 0.0495
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Table B.27: Details to StitchIt REMs overlapping with gRNA binding sites
and indications whether the interaction is supported by ChIA-Pet
or GeneHancer data

chr REM start REM end GeneID coef p-value ChIA-Pet GeneHancer gRNA start end

chr3 147409152 147409401 ENSG00000152977 0.378326275 1.74E-005 X CCGGCACCCATTCATCAAGG 147409223 147409423

chr11 43949847 43950306 ENSG00000244953 -0.274825376 2.95E-005 TTATAGAGTTTCCTTTGCCA 43950223 43950423

chr17 28404050 28404239 ENSG00000265254 0.481973601 0.001400099 TTTAAGAACATATTAATCGG 28404183 28404383

chr3 134378494 134378603 ENSG00000114019 0.328670581 0.002697551 X CTGCCTGTTGCCAAAAGCAG 134378350 134378550

chr3 134378494 134378603 ENSG00000114019 0.328670581 0.002697551 X CTGCCTGTTGCCAAGAGCAG 134378350 134378550

chr17 42093046 42093155 ENSG00000187595 0.187034942 0.002857962 TGGCAGAATTATTTGTAACA 42093081 42093281

chr17 48740854 48740893 ENSG00000244514 -0.598451082 0.004260338 CCATTTTTTCCCCCGATAGA 48740701 48740901

chr14 23008203 23008892 ENSG00000279656 -0.375730282 0.008893199 X AATAGGGCTCCTATAACACA 23008590 23008790

chr3 114219101 114219600 ENSG00000174255 0.322885945 0.009562447 TCAAGTAAAGGTGTGCACAG 114219495 114219695

chr6 149919000 149920999 ENSG00000131015 -0.169969304 0.01740522 GCACTTGTAGCGGCGTTAAA 149920916 149921116

chr6 149230595 149230744 ENSG00000283608 -0.580879058 0.018230986 GGGAGCCTCCTTGCGCTACA 149230624 149230824

chr6 35460847 35461346 ENSG00000007866 -0.166890804 0.021030043 GTGCACATATGGGCTAGGCG 35461211 35461411

chr15 93351647 93351956 ENSG00000257060 -0.145040624 0.026855206 GCTTACTGCACCAATCACCA 93351822 93352022

chr20 45993548 45993757 ENSG00000100985 -0.167059874 0.03118279 X X CCTACTCCTCAATTTCCCCA 45993723 45993923

chrX 19894200 19894299 ENSG00000173681 -0.122213972 0.033450487 CCTACCCCACCAAAATCCCA 19894067 19894267

chr20 50212698 50212807 ENSG00000277449 0.271475446 0.037002049 CCTCTCGCCAGCCATCTCAA 50212667 50212867

chr10 73358503 73358702 ENSG00000233144 0.23456791 0.037403606 CGGAGGCCTCCGACTAGAAG 73358365 73358565

chr9 99202096 99202205 ENSG00000119523 -0.209406396 0.038562862 X CATATCCTTAAGAATTAGCA 99201985 99202185

chr3 147409146 147409405 ENSG00000174963 0.377582252 0.042256958 X CCGGCACCCATTCATCAAGG 147409223 147409423

chr9 92116298 92116447 ENSG00000232179 -0.296081695 0.057251487 X TGGCAGAATTATTTGTAACA 92116300 92116500

chr9 130742706 130743055 ENSG00000224797 -0.159784083 0.069104178 AAATCAAGATCTTAACAAAA 130742909 130743109

chr18 31917003 31917152 ENSG00000153339 0.166626727 0.081261789 CCATCAATATATATGTCACA 31916875 31917075

chr1 212621054 212622333 ENSG00000162772 0.853205857 0.083075455 X X TGAATTTCCTCGAATTTGCA 212621220 212621420

chr15 48651001 48651350 ENSG00000273925 -0.164491956 0.089737634 ATTCATAAAATCAAAAAGAG 48650897 48651097

chr10 73358499 73358698 ENSG00000156042 0.53519506 0.092722936 X CGGAGGCCTCCGACTAGAAG 73358365 73358565

chr9 92116448 92116507 ENSG00000232179 0.189450866 0.106388303 X TGGCAGAATTATTTGTAACA 92116300 92116500

chr5 140090947 140091606 ENSG00000185129 -0.157041833 0.116161307 GCAGTAAATGTGGTGAGAGG 140091078 140091278

chr16 30020947 30021106 ENSG00000149926 0.475787434 0.120981011 AATGCATCAGCGCAGCACAG 30020911 30021111

chr10 113850401 113850600 ENSG00000196865 -0.219384309 0.1481812 CTGCCTGCTGGCTCAAAGCA 113850460 113850660

chr8 120445460 120445499 ENSG00000172167 -2.588460612 0.155609711 X CCTGCTCCTGGTGATATGGG 120445381 120445581

chr3 186615799 186616898 ENSG00000090512 0.152998161 0.155877699 CCTTCCCCACTTCCTCGACA 186616458 186616658

chr8 120445450 120445459 ENSG00000172167 3.125332421 0.15810417 CCTGCTCCTGGTGATATGGG 120445381 120445581

chr10 89411649 89412148 ENSG00000152779 -0.426390776 0.159552393 GCGACTCTCCAAAAGCGCAA 89411571 89411771

chr17 81635351 81635400 ENSG00000182612 0.24330982 0.162623163 X GAACCTAGCATTTATTTGAA 81635398 81635598

chr3 186616353 186616852 ENSG00000145192 0.180161833 0.164895397 X CCTTCCCCACTTCCTCGACA 186616458 186616658

chr9 92116398 92116457 ENSG00000225511 -0.159616831 0.169251307 TGGCAGAATTATTTGTAACA 92116300 92116500

chr20 49830125 49831194 ENSG00000237788 0.188372895 0.176663252 CTATCTCCCTCTTCATCACA 49831024 49831224

chr17 65181452 65181551 ENSG00000108370 0.165611915 0.176843689 X X CAAGGTATTGAAGCTAAAAG 65181462 65181662

chr8 93022850 93022899 ENSG00000205133 0.195155507 0.184574517 ACTATTCCTTACAAGTAAAG 93022700 93022900

chr8 93022850 93022899 ENSG00000205133 0.195155507 0.184574517 ACTTTTCCTTACCAGTAAAG 93022700 93022900

chr8 93022850 93022899 ENSG00000205133 0.195155507 0.184574517 TCTATTCCTTACCAGTAAAG 93022700 93022900

chr12 102127943 102128052 ENSG00000075188 -0.121815411 0.187684234 TCTAAGTCCACACAGTCAAA 102127745 102127945

chr10 73358351 73358550 ENSG00000138279 0.214164144 0.190596661 CGGAGGCCTCCGACTAGAAG 73358365 73358565

chr16 30021099 30021208 ENSG00000149927 0.181801372 0.19075819 X X AATGCATCAGCGCAGCACAG 30020911 30021111

chr17 28404306 28404455 ENSG00000076351 0.25608548 0.1930928 X TTTAAGAACATATTAATCGG 28404183 28404383

chr16 30021001 30021100 ENSG00000149929 -0.115797749 0.198426634 AATGCATCAGCGCAGCACAG 30020911 30021111

chr7 142929543 142929602 ENSG00000165131 -0.083241641 0.211633889 CTTCCGCCCTCGGCTTGGCA 142929574 142929774

chr8 120445350 120445449 ENSG00000172167 -1.026563442 0.225818351 CCTGCTCCTGGTGATATGGG 120445381 120445581

chr17 28404357 28404646 ENSG00000258924 0.196362209 0.260259001 TTTAAGAACATATTAATCGG 28404183 28404383

chr2 64089353 64089652 ENSG00000228079 0.255300707 0.263143276 TAAGAATCCCTCCTGATGAA 64089573 64089773

chr4 139651558 139651647 ENSG00000085871 0.120460039 0.264610385 X CTGCCTGCCCGGTCTCCCAA 139651536 139651736

chr18 24627802 24627951 ENSG00000265485 -0.072310988 0.27634866 TATATTAATACCATATAGAG 24627862 24628062

chr7 140331753 140332692 ENSG00000157800 0.09489202 0.282261166 CTGGCCCCCAAATCAATACA 140331748 140331948

chr7 128938897 128939156 ENSG00000275106 -0.310745846 0.296485428 X GGACCCATAACTACTCGGGG 128939109 128939309

chr17 42093194 42093353 ENSG00000108771 0.150817299 0.297490601 TGGCAGAATTATTTGTAACA 42093081 42093281

chrX 40943902 40943981 ENSG00000216866 -0.239128373 0.299841717 GCTGGGAACCTGGCTATAAA 40943875 40944075
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chr20 50212804 50212903 ENSG00000172216 0.122891307 0.301708705 X CCTCTCGCCAGCCATCTCAA 50212667 50212867

chr17 80399898 80400827 ENSG00000263069 0.092610397 0.308724059 CCTGCCGTCATTATACACCA 80400448 80400648

chr2 64089653 64089902 ENSG00000228079 0.162027634 0.315780086 TAAGAATCCCTCCTGATGAA 64089573 64089773

chr22 35728996 35729045 ENSG00000100320 -0.072352143 0.318897319 TGAATGCCAAAGGCACCAGG 35728951 35729151

chr19 11111302 11111451 ENSG00000130164 0.119137874 0.319741622 X CCTGACGTCATTATTCACCA 11111224 11111424

chr1 202938350 202939879 ENSG00000199471 -0.095500771 0.330872399 CCGCTAGTATAAGAAAAGGG 202938430 202938630

chr1 40036653 40036742 ENSG00000131236 0.133279466 0.33534476 X CTATCTTGCTTCCCTTCCAA 40036552 40036752

chr17 77894027 77894456 ENSG00000204283 0.063671599 0.3376392 X CTGAGGAGTTGCTCGAGACA 77894331 77894531

chr18 3632150 3633249 ENSG00000262001 0.163875499 0.358751563 X TAAAGCCCATAACTTCCCCA 3632948 3633148

chrX 1352046 1352755 ENSG00000185291 0.451293933 0.363103106 CGACAAACTTATCTGTGCAG 1352368 1352568

chr9 92116248 92116557 ENSG00000234537 0.119489106 0.371706339 TGGCAGAATTATTTGTAACA 92116300 92116500

chr16 4045102 4045201 ENSG00000263159 -0.186393535 0.372966401 GCTTTAGACAAAGTTCTGAA 4044989 4045189

chr13 87671045 87671194 ENSG00000165300 0.105043238 0.37437256 X CGTGACAGCAGCATACTGAA 87671002 87671202

chr18 26135692 26136551 ENSG00000154611 -0.091288986 0.381219399 CTATAAGAAAAGCATCAACA 26136043 26136243

chr17 48740203 48741002 ENSG00000159184 0.132337474 0.382191782 CCATTTTTTCCCCCGATAGA 48740701 48740901

chr18 3632800 3632949 ENSG00000266401 0.107568527 0.391771083 TAAAGCCCATAACTTCCCCA 3632948 3633148

chr8 133596053 133596182 ENSG00000261220 -0.427016955 0.393951973 GTACTACCTGATGTGCAGGA 133595904 133596104

chr5 58872901 58873220 ENSG00000152932 0.056573482 0.406340934 CATTGACCCTTACTGTTCAA 58872898 58873098

chr3 75585049 75587048 ENSG00000272710 0.148841707 0.408538957 CATGTTTATACTGTACACAA 75585784 75585984

chr9 5402973 5403052 ENSG00000107020 0.163367021 0.409134247 CAATTTATTTCACCAATACG 5403047 5403247

chr9 92116205 92116444 ENSG00000275756 0.116715855 0.4091644 TGGCAGAATTATTTGTAACA 92116300 92116500

chr1 119894503 119894552 ENSG00000134250 -0.101041335 0.438858365 CCTTGGTCAGGTATTCCCAG 119894425 119894625

chr17 28404106 28404205 ENSG00000004139 -0.070742446 0.529379867 X TTTAAGAACATATTAATCGG 28404183 28404383

chr7 100337602 100337851 ENSG00000214300 0.079248513 0.534001349 CCTACCCCACCAAAATCCCA 100337475 100337675

chr1 89013053 89013142 ENSG00000137944 -1.084471206 0.55306902 CCTTTAGTTCTAACAATGAA 89013039 89013239

chr5 54204945 54206704 ENSG00000185305 0.334802559 0.558465875 ACATAAAACAAACCAAACAG 54205969 54206169

chr15 48650851 48650950 ENSG00000259705 -0.050045296 0.569712888 ATTCATAAAATCAAAAAGAG 48650897 48651097

chr5 80110701 80111360 ENSG00000251675 0.057448286 0.58134695 CTGCCTGTTGCCAAAAGCAG 80110714 80110914

chr5 168344651 168344750 ENSG00000113645 0.058299594 0.59243178 CGGGTTCATATTCCAACGGG 168344628 168344828

chr3 186615655 186616594 ENSG00000283149 -0.059454239 0.612820317 CCTTCCCCACTTCCTCGACA 186616458 186616658

chr7 64682453 64683002 ENSG00000196247 -0.064595919 0.614693193 X CAGCCTCGATAACAGAGGCG 64682966 64683166

chr14 22562545 22563054 ENSG00000129562 -0.113703126 0.624236905 X TAAGACCCTATTCTTAAAGG 22562628 22562828

chr3 136056184 136057903 ENSG00000227267 0.076150156 0.630676323 TGAAAAGAACATCTACAGAG 136056679 136056879

chr3 120004050 120004099 ENSG00000239835 -0.079857132 0.650189715 CTGCCTGTTGCCAAGAGCAG 120003957 120004157

chr1 105967694 105968103 ENSG00000237480 -0.042757719 0.65098277 CTGCCTGTTGCCAAAAGCAG 105967567 105967767

chr6 143494051 143494100 ENSG00000001036 -0.130859432 0.656522987 CCAGGGATACAAATGCCCAG 143493996 143494196

chr7 53810509 53810748 ENSG00000205628 -0.135075699 0.659476595 ATTTATAAAATCAAAAAGAG 53810447 53810647

chr17 69512649 69513048 ENSG00000267653 -0.06683863 0.68457981 GCAGACCTTTGGTCTTCAAG 69512872 69513072

chr9 92116298 92116357 ENSG00000225511 0.050525643 0.694387813 TGGCAGAATTATTTGTAACA 92116300 92116500

chr17 42092854 42093093 ENSG00000108771 0.139988791 0.698998094 TGGCAGAATTATTTGTAACA 42093081 42093281

chrX 56546449 56546548 ENSG00000188021 0.056264059 0.732447423 TATATTGATACCATATAGAG 56546443 56546643

chr2 14517151 14517250 ENSG00000237261 -0.073140366 0.754529835 ATTTATAAAATCAAAAAGAG 14517042 14517242

chr5 134925755 134925854 ENSG00000279799 -0.388412602 0.771901659 TGGGGCCCTCTATTGCTGAG 134925638 134925838

chr3 186616546 186616855 ENSG00000275696 0.031154766 0.793696223 CCTTCCCCACTTCCTCGACA 186616458 186616658

chr17 28404146 28404255 ENSG00000076351 -0.207575338 0.809089792 X TTTAAGAACATATTAATCGG 28404183 28404383

chr16 89746000 89747399 ENSG00000158805 -0.040492179 0.846043817 CCACAGTCATGCTCTCAGGA 89746101 89746301

chr8 61642000 61642099 ENSG00000222898 -0.018021703 0.861076186 GGAAAATAAAATCTACGGCA 61641927 61642127

chr5 134925653 134925752 ENSG00000113621 0.040834188 0.911680302 TGGGGCCCTCTATTGCTGAG 134925638 134925838

chr8 120445500 120445649 ENSG00000172167 -0.035488991 0.91619706 CCTGCTCCTGGTGATATGGG 120445381 120445581

chr7 100337297 100337776 ENSG00000201913 -0.013467722 0.936116363 CCTACCCCACCAAAATCCCA 100337475 100337675

chr13 22795106 22795195 ENSG00000237952 -0.008976307 0.940049237 CGTGACAGCAGCATACTGAA 22795183 22795383

chr10 95880848 95881147 ENSG00000270099 -0.012167852 0.946159672 CTTCCTTTACCCAATTCAGA 95880698 95880898

chr10 50601356 50601745 ENSG00000198964 0.04615091 0.946432153 X X GTTCCAAGCATGCTGCAAAG 50601626 50601826

chr11 90142515 90143154 ENSG00000077616 -0.003950993 0.947656188 ACATAAAACAAACCAAACAG 90142646 90142846

chr14 22562706 22563205 ENSG00000277734 0.007592207 0.956742813 X TAAGACCCTATTCTTAAAGG 22562628 22562828
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