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New Findings 

• What is the central question of this study?  

Does the magnitude of neuromuscular fatigue depend on the amount of work done 

(W’) at task failure when cycling above critical power (CP)?  

 

• What is the main finding and its importance?  

Creatine supplementation increases W’ and enhances supra-CP performance, but 

induces similar magnitudes of neuromuscular fatigue at task failure compared to 

placebo. Increased W’ does not lead to higher levels of neuromuscular fatigue. 

This supports the notion of a critical level of neuromuscular fatigue at task failure 

and challenges a direct causative link between W’ depletion and neuromuscular 

fatigue.  

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 1 

The present study examined the effect of creatine supplementation on neuromuscular 2 

fatigue and exercise tolerance when cycling above critical power (CP). Eleven males 3 

performed an incremental cycling test, 4-5 constant-load trials to task failure (TTF) to 4 

obtain asymptote (CP) and curvature constant (W’) of the power-duration relationship, 5 

followed by three constant-load supra-CP trials: 1) one TTF following placebo 6 

supplementation (PLA); 2) one TTF following creatine supplementation (CRE); and 3) 7 

one trial of equal duration to PLA following creatine supplementation (ISO). 8 

Neuromuscular assessment of the right knee extensors was performed pre- and post-9 

exercise to measure maximal voluntary contraction (MVC), twitch forces evoked by 10 

single (Qpot) and paired high- (PS100) and low-frequency (PS10) stimulations and 11 

voluntary activation. Creatine supplementation increased TTF in CRE vs. PLA by 12 

~11% (P = 0.017) and work done above CP by ~10% (P = 0.015), with no difference 13 

(P > 0.05) in reductions in MVC (-24 ± 8 vs. -20 ± 9%), Qpot (-39 ± 13 vs. -32 ± 14%), 14 

PS10 (-42 ± 14 vs. -36 ± 13%), PS100 (-25 ± 10 vs. -18 ± 12%) and voluntary activation 15 

(-7 ± 8 vs. -5 ± 7%) in CRE vs. PLA. No significant difference were found between ISO 16 

and both PLA and CRE (P > 0.05). These findings suggest similar levels of 17 

neuromuscular fatigue can be found following supra-CP cycling despite increases in 18 

performance time and amount of work done above CP, supporting the notion of a 19 

critical level of neuromuscular fatigue and challenging a direct causative link between 20 

W’ depletion and neuromuscular fatigue. 21 

 22 

 23 

Introduction 24 

An individual’s tolerance to high-intensity exercise can be mathematically calculated 25 

from modelling the power-duration relationship. The well-established critical power 26 

concept defines critical power (CP) as the asymptote and W’ as the curvature constant 27 

of this hyperbolic relationship (Monod & Scherrer, 1965). When using this two-28 

parameter model, one assumes that exercise above CP depletes W’, with task failure 29 

occurring when this mathematically finite amount of work is fully depleted (Monod & 30 

Scherrer, 1965; Moritani et al., 1981; Poole et al., 1988). Interestingly, W’ has long 31 

been associated with the use of an anaerobic energy store (Jenkins & Quigley, 1993; 32 

Smith et al., 1998a; Miura et al., 1999; Miura et al., 2000) although its solely anaerobic 33 



 
 

nature has been questioned due to its sensitivity to interventions altering O2 delivery 34 

(Vanhatalo et al., 2010; Dekerle et al., 2012). The depletion of W’ has been associated 35 

with the accumulation of fatigue-related metabolites (i.e. Pi, H+, ADP, La-) to a critical 36 

level (Burnley et al., 2010; Ferguson et al., 2010; 2007; Poole et al., 1988) and it is 37 

further suggested that these metabolic perturbations may also contribute to the 38 

continued reduction in muscle efficiency, proposed as the ‘fatigue cascade’ by 39 

Murgatroyd et al. (2011).   40 

 41 

More recently, a continuous decline in muscle [PCr] has been demonstrated during 42 

exercise above CP (Jones et al., 2008). It has been suggested that task failure within 43 

the severe intensity domain, i.e. when exercising above CP, occurs when a critical 44 

level of intramuscular [PCr], [Pi] and/or pH is reached (Jones et al., 2008; Vanhatalo 45 

et al., 2010). These intramuscular metabolic disturbances have been associated with 46 

the development of substantial levels of peripheral fatigue, i.e. a reduction in the force-47 

generating capacity of the muscle induced by alterations at or distal to the 48 

neuromuscular junction (Allen et al., 2008; Burnley et al., 2010). Interestingly, similar 49 

magnitudes of peripheral fatigue, i.e. reductions in evoked twitch forces (~35%), have 50 

been observed following exercise across a wide range of supra-CP intensities 51 

performed until task failure (Amann et al., 2006; Romer et al., 2007; Amann & 52 

Dempsey, 2008; Amann et al., 2009; 2011; Johnson et al., 2015; Thomas et al., 2015; 53 

Hureau et al., 2016) and led Amann et al. (2006) to introduce the concept of a “critical 54 

threshold of peripheral fatigue”. The theory behind this concept proposes that group 55 

III and IV muscle afferents detect fatigue-related metabolites within the exercising 56 

muscles and regulate the central motor drive accordingly in order to limit the 57 

magnitude of peripheral fatigue and maintain muscle and overall homeostasis of the 58 

organism.  59 

 60 

Only recently have studies combined the CP concept with neuro-stimulation 61 

techniques to further understand the neurophysiological limits of high-intensity 62 

exercise (Burnley et al., 2012; Schäfer et al., 2019). Schäfer et al. (2019) reported a 63 

positive correlation between an individual’s anaerobic work capacity (W’) and changes 64 

in neuromuscular function (i.e. maximal voluntary contraction, MVC; potentiated twitch 65 

force, Qpot; twitch forces evoked by low-frequency stimulations at 10 Hz, PS10) 66 

following cycling exercise above CP. This suggests a greater level of peripheral fatigue 67 



 
 

at task failure in individuals able to accumulate a larger amount of work above CP. 68 

However, this is yet to be explored within individuals. In line with the above, the 69 

manipulation of an individual W’ via creatine supplementation should increase the W’ 70 

of a severe intensity exercise and induce greater levels of peripheral fatigue at task 71 

failure. 72 

 73 

Indeed, creatine supplementation has the potential to test the relationship between W’ 74 

and neuromuscular fatigue reported by Schäfer et al. (2019) through manipulation of 75 

an individual’s anaerobic work capacity. Such interventions aiming to increase total 76 

creatine stores ([TCr]; i.e. sum of phosphocreatine [PCr] and free creatine [Cr]) have 77 

also been shown to enhance the muscular capacity for PCr hydrolysis leading to 78 

longer time to task failure (Smith et al., 2004; 1998b). Greater fatigue-induced 79 

metabolic disturbances (i.e. higher [Pi], [Cr], [PCr/Cr]) have also been reported 80 

following high-intensity knee-extension exercise under creatine loading compared to 81 

placebo (Smith et al., 2004; 1998b). An increase in muscle [TCr] by up to 20% (1/3 in 82 

form of PCr) following creatine supplementation has previously been demonstrated 83 

(Finn et al., 2001; Casey et al., 1996; Greenhaff et al. 1994; Harris et al., 1992). The 84 

effect of creatine supplementation on high-intensity performance has been intensively 85 

studied since the 1990s (Rossiter et al., 1996; Jacobs et al., 1997; Smith et al., 1998a; 86 

McNaughton et al., 1998; Miura et al., 1999). Improvements in time to task failure of 87 

up to 24% have been observed, with greater changes observed following shorter, 88 

more intense exercise during which the contribution of the anaerobic energy turnover 89 

becomes more predominant (Jacobs et al., 1997; Prevost et al., 1997; Smith et al., 90 

1998a; Branch, 2003). In addition, creatine supplementation increased W’ by 10-25%, 91 

without affecting CP (Smith et al., 1998a; Miura et al., 1999; Eckerson et al., 2005). 92 

These findings provide support for a significant role of muscle Cr/PCr content in high-93 

intensity performance and evidence the primarily anaerobic nature of W’. 94 

 95 

Whereas the effect of creatine on performance is well-established, very little is known 96 

about its effect on neuromuscular fatigue. Creatine supplementation has been 97 

reported to influence neuromuscular measures (Stout et al. 2000; Smith et al., 2007). 98 

Stout et al. (2000) reported a greater physical working capacity at the fatigue threshold 99 

(+ 20%), measured as the highest power output that does not result in an increase in 100 

EMG activity over time, following five days of creatine loading, which was thought to 101 



 
 

indicate a delay in the onset of neuromuscular fatigue. Similarly, Smith et al. (2007) 102 

found an increase in the electromyographic fatigue threshold during cycle ergometry 103 

(+ ~15%). However, whether creatine supplementation alters neuromuscular fatigue 104 

at task failure following exercise above CP remains unclear. The integration of the CP 105 

concept with electromyographic and mechanical measures of neuromuscular fatigue 106 

may offer further insights into the limits of exercise tolerance within the severe-intensity 107 

domain. 108 

 109 

Therefore, the aim of the present study was to provide experimental evidence for an 110 

association between the use of W’ and the development of neuromuscular fatigue 111 

using creatine supplementation. We hypothesised that: (1) creatine supplementation 112 

would improve performance (i.e. time to task failure) by increasing the amount of work 113 

done above CP; (2) a greater amount of work done above CP would increase the 114 

magnitude of neuromuscular fatigue observed at task failure; (3) the same absolute 115 

amount of work completed above CP (i.e. exercise time in control vs.  “isotime”) would 116 

lead to the same magnitude of neuromuscular fatigue regardless of creatine 117 

supplementation. 118 

   119 

 120 

Methods 121 

Ethical Approval 122 

Written informed consent was obtained from each participant. The study was approved 123 

by the University of Brighton Research Ethics & Governance Committee (ethics 124 

approval reference number 11718) and conformed to the standards set by the latest 125 

Declaration of Helsinki, except for registration in a database.  126 

 127 

Participants  128 

Eleven recreationally active, non-vegetarian male participants (mean ± SD: age, 22.6 129 

± 2.8 years; body mass, 75.8 ± 11.5 kg; peak O2 consumption (V̇O2peak), 51.7 ± 8.3 130 

ml.min-1.kg-1; peak power output (Ppeak), 311 ± 37 W) volunteered for this study. All 131 

participants were familiar with cycle ergometry and the exercise procedures used in 132 

our laboratory. 133 



 
 

 134 

Study Design 135 

Participants reported to the laboratory on nine to ten different occasions over a 5 to 6 136 

week period, with each test separated by a minimum of 24 h and performed at the 137 

same time of day (± 2 h) to control for the effect of diurnal variation (Atkinson & Reilly, 138 

1996) . The tests included a ramp incremental test for the determination of V̇O2peak, a 139 

familiarisation to the experimental protocol, four to five constant-load trials performed 140 

to task failure for the determination of CP and Wʼ and three constant-load trials to 141 

investigate the effect of creatine supplementation on neuromuscular function in the 142 

fresh state and following constant-load cycling above CP. These last three main 143 

experimental trials were separated by 5 to 7 days. 144 

 145 

All tests were performed on an electromagnetically braked, computer-controlled cycle 146 

ergometer (SRM High Performance Ergometer with eight strain gauges; Schoberer 147 

Rad Meßtechnik, Jülich, Germany). Seat height, handlebar height and distance from 148 

the seat to the handlebar were adjusted and replicated for each participant for the 149 

duration of the study. Ventilatory and pulmonary gas exchange were measured using 150 

a breath-by-breath system (Metalyzer Sport; Cortex Biophysik, Leipzig, Germany). 151 

Each session was preceded by 3 min rest, 5 min at 50 W, 3 min rest and 4 min at 20 152 

W. Participants were instructed to maintain a cadence of 80 rpm throughout all 153 

sessions and exercise was terminated when cadence dropped twice <75 rpm for >5 s 154 

despite strong verbal encouragement. Participants were instructed to report to the 155 

laboratory in a fully rested and well-hydrated state, to avoid vigorous activity within the 156 

previous 24 h, to refrain from alcohol (24 h) and caffeine consumption (12 h) before 157 

testing and to avoid its consumption throughout the supplementation period prior to 158 

each main trial.  159 

 160 

Incremental Test and Familiarisation 161 

Power for the maximal ramp incremental test was initially set to 50-125 W depending 162 

on individual fitness level and increased by 5 W every 12 s until task failure. Ppeak and 163 

V̇O2peak were defined as the highest 15 s moving average.  164 



 
 

Participants were familiarised with constant-load trials performed to task failure, 165 

neuromuscular function assessment (NMFA) and a quick transition from the cycle 166 

ergometer to the isometric rig during a separate visit. 167 

 168 

Determination of CP and W’ 169 

Participants completed a series of four to five constant-load tests in a semi-170 

randomized order to elicit task failure within ~3 and 15 min (Poole et al., 1988; Hill, 171 

1993). Participants were not informed of the elapsed time or any other performance 172 

measure throughout testing except cadence.  173 

For each participant, three different models were used to obtain estimates for CP and 174 

W’ (least-squares regression model), as follows: 175 

 176 

Non-linear power (P) vs. time to task failure (tlim): 177 

tlim = W’ / (P - CP)     (1) 178 

Linear work (W) vs. time to task failure (tlim): 179 

W = CP x tlim + W’     (2) 180 

Power (P) vs. inverse time to task failure (1/tlim): 181 

P = (1/tlim) x W’ + CP    (3) 182 

 183 

The regression model that best fitted the data for each participant (lowest standard 184 

error (SE) for CP and W’) was selected and an additional fifth trial was performed if 185 

these SEs were >2% and >10% of CP and W’, respectively (Murgatroyd et al., 2011; 186 

Dekerle et al., 2015). The 95% confidence interval for the CP estimate was calculated 187 

to ensure that power outputs for the main trials were confidently above CP. 188 

 189 

Experimental Trials  190 

Power output for the subsequent three experimental trials was predicted to fully 191 

deplete W’ within 3 min and was calculated for each participant from interpolation of 192 

the power-time relationship. Trials were performed at 97 ± 7%Ppeak 1) until task failure 193 

following placebo supplementation (PLA); 2) until task failure following creatine 194 

supplementation (CRE); and 3) for an equal duration to PLA following creatine 195 

supplementation (ISO). CRE and ISO were performed in a randomised order. 196 

Ventilation and pulmonary gas exchange were recorded continuously throughout 197 



 
 

cycling exercise. Neuromuscular function assessment was performed before and 60 198 

s post-exercise. Therefore, participants were seated on a custom-built isometric chair 199 

adjusted to enable hip and knee joint angles of 90 deg (Becker & Awiszus, 2001) and 200 

two cross-shoulder straps were used to minimize upper body movement. The EMG 201 

activity of the vastus lateralis was recorded using surface electrodes (Kendall H59P; 202 

Covidien, Mansfield, MA, USA) positioned based on the SENIAM recommendations 203 

(Hermens et al., 2000). The reference electrode was fixed to the right patella. 204 

Consistent electrode placement between sessions was ensured by marking each 205 

electrode position with indelible ink. EMG data were amplified (gain x1000), digitized 206 

at 4 kHz and band-pass filtered (2-20 kHz). All data were recorded and processed 207 

offline using a data acquisition system (PowerLab 26T with LabChart 7; ADInstrument 208 

Ltd, Oxford, UK). 209 

Single and paired square-wave electrical stimulation (200 µs pulse width) were 210 

delivered via adhesive surface electrodes to the femoral nerve (ValuTrode; Axelgaard, 211 

Fallbrook, CA, USA) using a constant-current stimulator (DS7AH; Digitimer Ltd, 212 

Welwyn Garden City, UK). Therefore, the cathode was positioned in the femoral 213 

triangle and the anode midway between the iliac crest and the greater trochanter. The 214 

stimulation threshold was determined by delivering two single stimuli separated by 5 215 

s to the femoral nerve, and current was increased progressively (+20 mA) starting at 216 

10 mA until no further increase in M-wave peak-to-peak amplitude and resting twitch 217 

force was evoked. The stimulation intensity was set at 130% to ensure full spatial 218 

motor unit recruitment. Determination of the stimulation threshold was conducted 219 

before each first NMFA of every subsequent trial. 220 

The first NMFA of each visit was preceded by a standardized isometric warm-up with 221 

the right knee extensors, involving ten 3 s isometric contractions with progressively 222 

increasing contraction intensity and maximal efforts during the last three contractions 223 

(3 s on – 7 s off; adapted from Girard et al., 2013). Additional MVCs were performed 224 

if the coefficient of variation (CV) over three MVCs was ≥5%. Each NMFA involved 225 

five isometric 3 s MVCs separated by 20 s rest. Paired stimuli at 100 Hz (PS100) were 226 

delivered during and 2 s after the last three contractions, followed by paired stimuli at 227 

10 Hz (PS10) and a single stimulus (Qpot). Real-time visual feedback was displayed 228 

throughout as recommended by Gandevia (2001) and the time window between 229 

exercise termination and the first MVC for NMFA was standardised to 60 s for every 230 

participant and every session.  231 



 
 

Peak MVC was measured as the greatest 0.5 s mean force produced before electrical 232 

stimulation and reported as the mean of five MVCs. Potentiated twitch force was 233 

defined as the greatest peak twitch force in response to supramaximal stimulation. 234 

The ratio between twitch forces evoked by low- and high-frequency paired stimuli 235 

(PS10:PS100) was calculated to determine low-frequency fatigue. Within-twitch 236 

measures [i.e. contraction time (CT), maximal rate of force development (MRFD), 237 

maximal rate of relaxation (MRR) and half-relaxation time (HRT)] were derived from 238 

each resting twitch. Voluntary activation was calculated using the interpolated paired 239 

stimulation technique (Merton, 1954). One participant was excluded from the data 240 

analysis for VA after values were identified as outliers using the interquartile range 241 

(Tukey, 1977). M-wave peak-to-peak amplitude (PPA) was measured as the absolute 242 

difference of the greatest and smallest value of the biphasic M-wave, and M-wave area 243 

was determined as the integral of the absolute value of the M-wave. For twitch forces, 244 

within-twitch parameters, VA and M-wave properties, the mean of three was reported.  245 

 246 

Supplementation, Urinary Creatinine and Body Mass 247 

All participants ingested 4x 5 g.d-1 of dextrose (PLA) during the first 5-day 248 

supplementation period. Prior to the second main trial, participants ingested 4 x 5 g.d-249 
1 of creatine monohydrate for five successive days and during the third 250 

supplementation period, participants ingested a maintenance dose of 2 g.d-1 of 251 

creatine for each day between the second and the third main trial (Hultman et al., 252 

1996). Each dose was dissolved in 200 ml of warm water and flavoured with no added 253 

sugar orange squash. Supplements were taken at regular intervals equally spread 254 

throughout the day. Participants were blinded to the supplementation condition and 255 

were asked to log the times supplements were taken for each supplementation period. 256 

The self-reported compliance across participants was 100%.  257 

Participants collected a 24 h urine sample on day 5 of the first (PLA) and second (CRE 258 

or ISO) supplementation period. Urinary volume was determined and a 1.5 ml aliquot 259 

was transferred to a labelled sample and stored frozen at -20°C until analysis (within 260 

a maximum of 4 months). Urinary creatinine concentration was determined 261 

calorimetrically using the Jaffe reaction (Jaffe, 1886).  262 

Body mass was measured during the first visit and prior to each of the three main 263 

trials. 264 



 
 

 265 

Blood Lactate Concentration 266 

Blood lactate concentration ([La-]) was determined from an arterialized fingertip 267 

capillary blood sample using lithium-heparin coated microvette tubes (CB3000, 268 

Sarsedt, Germany). Blood samples were collected at rest and immediately following 269 

the post-exercise NMFA. Prior to collection, the fingertip was cleaned with an alcohol 270 

wipe, left to air dry and punctured using a single use lancet (Accu-Chek Safe T-Pro, 271 

Roche Diagnostics, West Sussex, UK). Blood samples were analysed for [La-] using 272 

an automated, electrochemical lactate and glucose analyser (YSI 2300, Yellow 273 

Springs Instruments, Ohio, USA). 274 

 275 

Statistical Analysis 276 

All data were analysed using a standardized package (SPSS v.25 for Windows; IBM 277 

Corporation, Armonk, NY, USA) and reported as means ± SD, unless stated 278 

otherwise. Data was checked for normal distribution using the Shapiro-Wilk test and 279 

sphericity was assessed using Mauchly’s test. Two-way repeated measures ANOVA 280 

on the factors ‘condition’ (CRE, PLA, ISO) and ‘time’ (pre, post) were used to test for 281 

differences in neuromuscular and physiological measures. Post-hoc analysis was 282 

performed following a significant main or interaction effect using Bonferroni post hoc 283 

adjusted pairwise comparisons. Student’s paired-sample t-tests were used to compare 284 

performance times and work done above CP between PLA and CRE. Effect sizes are 285 

presented as partial eta squared (ηp2) for main and interaction effects and Cohen’s d 286 

was calculated to estimate effect sizes for pairwise comparisons. The level of 287 

significance was set at P < 0.05.  288 

 289 

 290 

Results 291 

Incremental Test and Determination of CP and W’ 292 

Ppeak was 311 ± 37 W and V̇O2peak achieved during the fast ramp test 51.7 ± 8.3 ml.min-293 
1.kg-1. Critical power and W’ were 191 ± 37 W (61.3 ± 5.9% Ppeak) and 19.9 ± 6.2 kJ, 294 

with associated standard errors of 2 ± 1 W and 1.1 ± 0.7 kJ. Mean power output for 295 

the main trials was 302 ± 38 W (97 ± 7% Ppeak). 296 



 
 

 297 

Experimental Trials 298 

Time to Task Failure 299 

Time to task failure improved significantly with creatine supplementation (PLA: 184 ± 300 

46 s vs. CRE: 205 ± 65 s; t10 = -2.85; P = 0.017, d = 0.373). Work done above CP 301 

increased significantly from 19.3 ± 4.0 kJ for PLA to 21.2 ± 4.2 kJ for CRE (t10 = -2.945; 302 

P = 0.015, d = 0.463). V̇O2peak was not significantly different between experimental 303 

trials (PLA: 49.5 ± 6.7 ml.min-1.kg-1 vs. CRE: 48.5 ± 6.8 ml.min-1.kg-1 vs. ISO 48.1 ± 6.5 304 

ml.min-1.kg-1; F1.299,12.989 = 1.692, P = 0.221, ηp2 = 0.145) 305 

 306 

Maximal Voluntary Force 307 

MVC decreased significantly from pre- to post-exercise by 20 ± 9% for PLA, 24 ± 8% 308 

for CRE and 20 ± 9% for ISO (F1,10 = 102.301, P < 0.001, ηp2 = 0.911), with no 309 

significant main effect for condition (F2,20 = 1.818, P = 0.188, ηp2 = 0.154) and no 310 

significant exercise x condition interaction (F2,20 = 1.752, P = 0.199, ηp2 = 0.149; Figure 311 

1; Table 1). 312 

 313 



 
 

 314 
Figure 1. Pre- to post-trial percentage change in maximal voluntary contraction (MVC; A), potentiated 315 
twitch force (Qpot; B), low-frequency (10 Hz) doublet force (PS10; C) and high-frequency (100 Hz) 316 
doublet force (PS100; D) for Placebo (PLA), Creatine (CRE) and Iso-time (ISO). 317 
 318 

 319 

Potentiated Twitch Force and Doublet Twitch Forces 320 

Potentiated twitch force, PS10 and PS100 were all significantly reduced after PLA (-321 

32 ± 14, -36 ± 13 and -18 ± 12%, respectively), CRE (-39 ± 13, -42 ± 14 and -25 ± 322 

10%, respectively) and ISO (-34 ± 16, -38 ± 17 and -24 ± 16%) (Qpot, F1,10 = 78.707, P 323 

< 0.001, ηp2 = 0.887; PS10, F1,10 = 95.505, P < 0.001, ηp2 = 0.905; PS100, F1,10 = 324 

70.312, P < 0.001, ηp2 = 0.875; Figure 1; Table1). There was no significant main effect 325 

for condition for these variables (Qpot, F2,20 = 0.332, P = 0.721, ηp2 = 0.032; PS10, F2,20 326 

= 0.833, P = 0.449, ηp2 = 0.077; PS100, F2,20 = 0.708, P = 0.505, ηp2 = 0.066) and no 327 

significant interaction effect for PS10 (F2,20 = 3.338, P = 0.056, ηp2 = 0.250) and PS100 328 
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(F2,20 = 2.122, P = 0.146, ηp2 = 0.175). However, a significant interaction effect was 329 

found for Qpot (F2,20 = 6.106, P =0.009, ηp2 = 0.379). At baseline, Qpot was significantly 330 

greater in CRE compared to PLA (t10 = -4.265; P = 0.002, d = 0.448) and ISO (t10 = 331 

2.888; P = 0.016, d = 0.326). 332 

 333 

 334 
 335 

Figure 1. Pre- to post-trial percentage change in maximal voluntary contraction (MVC; A), potentiated 336 
twitch force (Qpot; B), low-frequency (10 Hz) doublet force (PS10; C) and high-frequency (100 Hz) 337 
doublet force (PS100; D) for Placebo (PLA), Creatine (CRE) and Iso-time (ISO). 338 
 339 

 340 

M-wave properties 341 

M-wave PPA showed no significant main effect for time (F1,10 = 2.469, P = 0.147, ηp2 342 

= 0.198), condition (F2,20 = 0.226, P = 0.799, ηp2 = 0.022) or time x condition interaction 343 

(F2,20 = 0.841, P = 0.446, ηp2 = 0.078; Table 1). M-wave area was significantly greater 344 

following exercise (F1,10 = 9.483, P = 0.012, ηp2 = 0.487) with no significant difference 345 

between conditions (F2,20 = 0.258, P = 0.775, ηp2 = 0.025) and no time x condition 346 

interaction (F2,20 = 1.853, P = 0.183, ηp2 = 0.156; Table 1). 347 

 348 

Voluntary Activation 349 

Voluntary activation decreased significantly pre- to post-exercise by 5 ± 7, 7 ± 8 and 7 350 

± 9% for PLA, CRE and ISO (F1,9 = 7.529, P = 0.023, ηp2 = 0.456), with no main effect 351 

for condition (F2,18 = 1.822, P = 0.190, ηp2 = 0.168) and no interaction effect (F2,18 = 352 

1.308, P = 0.295, ηp2 = 0.127; Table 1). 353 

 354 

 355 
Table 1. Neuromuscular measures at pre-exercise (PRE) and after exhaustive constant-load cycling 356 
(POST) for placebo (PLA), creatine (CRE) and iso-time (ISO) 357 

 PLA CRE ISO 

Parameter PRE POST PRE POST PRE POST 

       

Neuromuscular fatigue 

MVC (N) 

 

566 ± 128 

 

451 ± 105* 

 

584 ± 124 

 

447 ± 113* 

 

583 ± 127 

 

472 ± 134* 



 
 

Peripheral fatigue 

Qpot (N) 

 

171 ± 23† 

 

117 ± 29* 

 

182 ± 26 

 

111 ± 30* 

 

174 ± 23† 

 

116 ± 32* 

PS10 (N) 251 ± 50 160 ± 48* 267 ± 49 158 ± 56* 259 ± 48 161 ± 52* 

PS100 (N) 242 ± 33 198 ± 41* 248 ± 37 187 ± 43* 242 ± 32 188 ± 55* 

PS10:PS100  1.04 ± 0.14 0.80 ± 0.16* 1.08 ± 0.10 0.83 ± 0.16* 1.07 ± 0.13 0.87 ± 0.21* 

CT (ms) 76 ± 8 70 ± 3* 78 ± 7 73 ± 5* 77 ± 7 73 ± 6* 

MRFD (N·ms-1) 5.98 ± 1.05 3.87 ± 1.54* 5.95 ± 1.40 3.21 ± 1.05* 5.47 ± 0.65 3.41 ± 1.02* 

MRR (N·ms-1) -1.81 ± 0.35 -1.12 ± 0.27* -1.69 ± 0.29 -0.94 ± 0.30* -1.71 ± 0.23 -0.98 ± 0.23* 

HRT (ms)§ 82.5 ± 8.1 91.6 ± 11.5* 85.8 ± 12.4 96.8 ± 9.8* 88.5 ± 11.7 94.8 ± 17.8* 

Surface EMG 

M-wave PPA (mV) 

M-wave area (µV·s-1) 

 

 7.8 ± 1.9 

33.5 ± 11.1 

 

8.1 ± 2.3 

36.8 ± 12.5* 

 

8.1 ± 2.1 

33.2 ± 7.6 

 

8.7 ± 2.7 

39.0 ± 11.4* 

 

8.0 ± 2.2 

32.7 ± 10.8 

 

8.2 ± 2.5 

35.5 ± 11.0* 

Central fatigue 

VA (%)# 

 

88 ± 6 

 

84 ± 7* 

 

93 ± 4 

 

86 ± 9* 

 

89 ± 5 

 

84 ± 10* 

Data are presented as mean ± SD (n = 12). Abbreviations: MVC, maximal voluntary contraction; Qpot, potentiated twitch force; 

PS10, low-frequency (10 Hz) doublet force; PS100, high-frequency (100 Hz) doublet force; CT, contraction time; MRFD, 

maximal rate of force development; MRR, maximal rate of relaxation; HRT, half-relaxation time; M-wave PPA, M-wave peak-

to-peak area; VA, voluntary activation; *P < 0.05 vs. PRE, †P < 0.05 vs. CRE at PRE, §main effect for condition P = 0.031; 
#n=10 

 358 

 359 

Urinary Creatinine and Body Mass 360 

Urinary creatinine excretion, urinary volume and body mass were not significantly 361 

different between the two supplementation conditions (Table 2).  362 

 363 
Table 2. Effect of creatine supplementation on urinary creatinine, urinary volume and body mass 364 

 PLA CRE Significant 
difference 

Effect size 

Urinary creatinine 

excretion 

115 ± 61 mg.dL-1 140 ± 86 mg.dL-1 t10 = -0.896 

(P = 0.391) 

d = 0.339 

Urinary volume 108 ± 43 mL.h-1 105 ± 48 mL.h-1 t10 = -0.398 

(P = 0.699) 

d = 0.066 

Body mass 75.7 ± 11.4 kg 76.1 ± 11.8 kg t10 = -1.507 

(P = 0.163) 

d = 0.052 

 365 

 366 

Blood Lactate Concentration 367 

Blood lactate concentrations increased significantly pre- to post-exercise from 1.57 ± 368 

0.34 to 9.05 ± 1.66 mmol.l-1, 1.51 ± 0.32 to 9.02 ± 2.11 mmol.l-1 and 1.53 ± 0.39 to 9.16 369 



 
 

± 2.10 mmol.l-1 for PLA, CRE and ISO (F1,10 = 200.642, P < 0.001, ηp2 = 0.953), with 370 

no main effect for condition (F2,20 = 0.077, P = 0.846, ηp2 = 0.008) and no interaction 371 

effect (F2,20 = 0.052, P = 0.949, ηp2 = 0.005). 372 

 373 

 374 

Discussion 375 

The present study is the first to demonstrate that an improvement in high-intensity 376 

cycling performance above CP following creatine supplementation does not influence 377 

the magnitude of neuromuscular fatigue at task failure. The magnitude of 378 

neuromuscular fatigue does therefore not seem to depend on the amount of work done 379 

above CP.  380 

 381 

 382 

Creatine and high-intensity cycling performance above CP 383 

 384 

Numerous studies have investigated the performance enhancing effect of creatine, in 385 

particular on high-intensity and sprint performance (Prevost et al., 1997; Jacobs et al., 386 

1997; Aaserud et al., 1998; Mujika et al., 2000; Skare et al., 2001). In the present 387 

study, time to task failure (~97% Ppeak) improved by ~11% (184 vs. 205 s, P = 0.017, 388 

d = 0.373) following 5 days of creatine supplementation. Jacobs et al. (1997) reported 389 

an improvement of 8% following short-term creatine supplementation when cycling to 390 

exhaustion at 125%V̇O2max (130 vs. 141 s, P < 0.001, d = 1.571). Prevost et al. (1997) 391 

reported a larger mean improvement in TTF of 24% at a higher exercise intensity 392 

(150%V̇O2max). A similar observation of greater improvements at higher exercise 393 

intensities was described by Smith et al. (1998a) with an increase by ~11% (93 vs. 394 

103 s) and ~7% (236 vs. 253 s) in TTF for work rates eliciting task failure in ~90-250 395 

s. The efficacy of creatine seems greater for shorter efforts, i.e. when the relative 396 

contribution of the anaerobic pathways to the total energy turnover becomes more 397 

predominant (Branch, 2003). Performance improvements might be attributed to an 398 

increase in muscular [PCr] concentration and therefore, a greater accessibility of 399 

immediate energy storage (ATP) (Greenhaff et al., 1994). Greater PCr availability 400 

within the muscle cell has been associated with slower [PCr] kinetics in single-leg 401 

exercise (Jones et al., 2009). The role of [PCr] kinetics in the regulation of 402 



 
 

mitochondrial respiration may suggest slower V̇O2 kinetics following creatine 403 

supplementation (Jones et al., 2002). However, alterations in the V̇O2 response due 404 

to creatine supplementation remain equivocal (Rico-Sanz & Marco, 2000; Jones et al., 405 

2002).Some studies failed to support performance enhancing effects of creatine 406 

supplementation during all-out cycling bouts of 15 s to 3 min (Cooke et al., 1995; 407 

Schneider et al., 1997; Finn et al., 2001; Vanhatalo & Jones, 2009). Febbraio et al. 408 

(1995) found no differences in TTF when cycling at 115 or 125%V̇O2max following 409 

creatine loading. Possible explanations for no performance enhancing effects in these 410 

studies may include differences in the exercise design (i.e. all-out vs. time to task 411 

failure), duration, sample size, and the sensitivity of the protocol to detect changes in 412 

performance and/or anaerobic capacity. 413 

 414 

W’ is mathematically equivalent to a given amount of work that can be performed 415 

above CP (Monod & Scherrer, 1965; Moritani et al., 1981; Poole et al., 1988) and is 416 

greater in CRE compared to PLA (~ +10%). One may therefore assume creatine 417 

supplementation successfully increased anaerobic work capacity in the present study. 418 

Accordingly, similar supplementation protocols have previously been shown to 419 

increase W’ by 10-25% (Smith et al., 1998a; Miura et al., 1999; Eckerson et al., 2005), 420 

with no changes in CP (Smith et al., 1998a; Miura et al., 1999). The reported 421 

improvements in performance and work done above CP support the efficacy of 422 

creatine supplementation in the present study. 423 

Interestingly, large variations between participants in performance improvements and 424 

therefore changes in work done above CP (-8 to +27%) were found. The major reason 425 

put forward to explain the discrepancy in creatine’s efficacy between participants often 426 

refers to individual differences in initial muscle [TCr] (responders vs. non-responders), 427 

so that individuals with low initial [TCr] show greater responses to creatine 428 

supplementation compared to individuals with high initial [TCr]. Greenhaff et al. (1994) 429 

classified individuals with [TCr] of close to or <120 mmol.kg-1 dry weight (dw) prior to 430 

creatine ingestion as “responders”, showing substantial increases in muscle [TCr] of 431 

~25% (+ 29 ± 3 mmol.kg-1 dw) compared to “non-responders” (5-7%; + 8-9 mmol.kg-1 432 

dw). Syrotuik & Bell (2004) have identified three responder’s types: true responders 433 

(>20 mmol.kg-1 dw from preload levels), quasi responders (>10 and <20 mmol.kg-1 dw 434 

from preload levels) and non-responders (<10 mmol.kg-1 dw from preload levels). In 435 

the present study, [TCr] was not measured. However, the significant mean change in 436 



 
 

TTF indicate good responsiveness overall to the creatine supplementation for our 437 

participants.  438 

 439 

Inferences regarding individual creatine retention in the body pool might be drawn from 440 

creatinine excretion. During the first few days of creatine supplementation, the majority 441 

of the ingested creatine remains within the body until the muscle’s capacity to extract 442 

creatine from the blood is exhausted. Despite continuous supplementation, ~90% of 443 

ingested creatine is excreted into urine (Chanutin & Guy, 1926; Terjung et al., 2000). 444 

The rate of creatine degradation to creatinine, the end product of the creatine 445 

metabolism, approximates 2 g.d-1 (Walker, 1979). The amount of creatinine excreted 446 

in the urine is directly proportional to the muscle creatine concentration (Hultman et 447 

al., 1996). An increase in urinary creatinine excretion has previously been 448 

demonstrated following 5 to 6 days of creatine supplementation (60% Hultman et al., 449 

1996; ~22% Mujika et al., 2000). In the present study, we observed no increase in 450 

urinary creatinine excretion following 5 days of creatine supplementation. This may be 451 

due to large variations in urinary creatinine excretion between participants, with 6 out 452 

of 11 showing an increase of up to +142% and 5 showing a decrease of up to -60%. 453 

Similarly, large inter-individual variations in urinary creatinine following creatine 454 

loading were also reported by Hultman et al. (1996). Syrotuik & Bell (2004) reported 455 

that individuals classified as responders showed the lowest urinary creatine 456 

concentrations at baseline and the greatest absolute increase after 5 days of 457 

supplementation compared to non-responders. However, in line with the present 458 

study, data for urinary creatinine did not show a clear trend between responders and 459 

non-responders (Syrotuik & Bell, 2004).  460 

 461 

 462 

Creatine and neuromuscular fatigue after high-intensity cycling above CP 463 

 464 

In line with our third hypothesis, no difference in neuromuscular fatigue was found 465 

following ISO and CRE, i.e. when the same total work / the same duration of exercise 466 

was performed (Figure 1). This would support for a given amount of work done above 467 

CP (equal for ISO and CRE) to induce a given level of neuromuscular fatigue. 468 

However, creatine supplementation did not lead to greater levels of neuromuscular 469 



 
 

fatigue at task failure (Figure 1) despite greater amount of work performed above CP 470 

(~ +10%), which contradicts our second hypothesis. 471 

The effect of creatine on neuromuscular fatigue is not well documented, with only a 472 

few studies investigating changes in surface EMG during submaximal and 473 

supramaximal cycling exercise following short-term creatine loading (Stout et al., 474 

2000; Smith et al., 2007). Creatine supplementation has been shown to delay the 475 

onset of neuromuscular fatigue during an incremental exercise, i.e. measured as the 476 

highest power output leading to no increase in EMG activity during a constant-load 477 

exercise bout (Stout et al., 2000; Smith et al., 2007). During exercise above this onset 478 

of neuromuscular fatigue, the predominant reliance on anaerobic glycolysis and the 479 

subsequent changes in intramuscular metabolites have been suggested to impair 480 

excitation-contraction coupling and ultimately, alter motor unit recruitment, measured 481 

as an increase in EMG amplitude, so that either additional motor units are recruited or 482 

the firing rate of already active motor units is increased (Moritani et al., 1993; Stout et 483 

al., 2000; Smith et al., 2007). Creatine supplementation might reduce the reliance on 484 

anaerobic glycolysis and thus, reduce the associated metabolic perturbations by 485 

increasing the amount of ATP provided through the creatine-kinase reaction (Volek & 486 

Kraemer, 1996; Prevost et al., 1997); this would then delay alterations in motor unit 487 

recruitment patterns. Both Stout et al. (2000) and Smith et al. (2007) did not use 488 

neurostimulation techniques to investigate neuromuscular fatigue. To the best of the 489 

authors’ knowledge, this is the first study investigating both peripheral and central 490 

components of neuromuscular fatigue following creatine supplementation, and 491 

focusing on the severe intensity domain (i.e. > CP). Thus, based on the findings 492 

mentioned above, creatine supplementation may delay the development of 493 

neuromuscular fatigue (Stout et al., 2000; Smith et al., 2007), but to attain similar levels 494 

of neuromuscular fatigue at task failure. The metabolic perturbations associated with 495 

the anaerobic glycolysis energy turnover may be lesser, but those associated with PCr 496 

breakdown would be greater during CRE, leading to similar impairment of excitation-497 

contraction coupling in both PLA and CRE. Collectively, similar levels of 498 

neuromuscular fatigue observed across all conditions in the present study provide 499 

support for a critical level of peripheral fatigue in the population tested.  500 

The present findings do not seem to align with the positive correlation reported 501 

between the size of W’ and the magnitude of neuromuscular fatigue (Schäfer et al., 502 

2019). It is worth noting this relationship was also found in the present study (Qpot vs. 503 



 
 

W’: r = 0.76 and r = 0.56 for CRE and PLA, respectively; P < 0.05). However, these 504 

correlations were found for fairly heterogeneous samples of participants, based on 505 

their W’ (Schäfer et al., 2019: 19.9 ± 6.0 kJ; CV of 30%; present study: 19.9 ± 6.2 kJ; 506 

CV of 31%), whereas the present study tested within-subject changes. It may be that 507 

the intra-individual changes in W’ induced by creatine supplementation in the present 508 

study were too small to reveal differences in neuromuscular fatigue at task failure. 509 

Other experimental interventions such as an anaerobic training programme, long 510 

enough to affect W’ more greatly, may lead to larger changes in markers of 511 

neuromuscular fatigue at task failure. This would challenge the notion of a critical level 512 

of peripheral fatigue. 513 

 514 

 515 

Limitations 516 

 517 

The authors decided against a double-blinded, fully-randomised, cross-over design 518 

due to the approximately 6-week wash-out period required following creatine 519 

supplementation (Hultman et al., 1996). The duration of the study and the variations 520 

in individual fitness levels over time could have affected the performance trials. 521 

Therefore, all participants started with the placebo trial and only the second and third 522 

main trials (CRE and ISO) were randomised. However, adequate familiarisation prior 523 

to the main trials was ensured and participants were blind to the order of the 524 

supplements until all experimentation had been completed.  525 

Full depletion of W’ was not controlled and therefore, an earlier termination of the 526 

voluntary task before ‘true’ exhaustion during PLA and CRE could have confounded 527 

the results (i.e. behavioural effect). However, it must be noted that similar 528 

neuromuscular changes were reported in Schäfer et al. (2019), who controlled for the 529 

full depletion of W’ (MVC, 20 ± 10 vs. 20 ± 9%; Qpot, 35 ± 13 vs. 32 ± 14%; PS10, 38 530 

± 13 vs. 36 ± 13%; PS100, 18 ± 9 vs. 18 ± 12%). 531 

The delayed assessment of neuromuscular measures will have likely caused an 532 

underestimation of the magnitude of neuromuscular fatigue due to substantial 533 

recovery of neuromuscular function within the first 1-3 min post-exercise (Froyd et al., 534 

2013). To control and limit a potential recovery effect, the present study standardised 535 



 
 

timings within the neuromuscular assessment protocol, and the transition time 536 

between exercise termination and start of the neuromuscular assessment (60 s). 537 

Although the muscle [TCr] was not measured in the present study, previous 538 

investigations using similar supplementation protocols reported an increase in muscle 539 

[TCr] by up to 20% and therefore, similar changes would be expected for the present 540 

study (Harris et al., 1992; Greenhaff et al., 1994; Casey et al., 1996; Hultman et al., 541 

1996; Finn et al., 2001).  542 

Because of the duration of the study’s implementation and the requirement for a high 543 

number of times to task failure to model the P-t relationship, the present study did not 544 

include the addition of 4-5 visits following creatine supplementation to re-assess W’. 545 

 546 

 547 

Conclusion 548 

In conclusion, the present study confirmed a performance enhancing effect of creatine 549 

supplementation and indicates that the level of neuromuscular fatigue is not 550 

dependent on the amount of work done above CP. These findings challenge a direct 551 

causative link between utilisation of W’ and neuromuscular fatigue and support the 552 

notion that a critical level of peripheral fatigue may exist.  553 

 554 

 555 

 556 

 557 
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