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Abstract

Introduction:  Galactosemia describes four diseases resulting from mutations in genes which code for 

enzymes involved in the metabolism of galactose and its derivatives.  It has a wide range of 

symptoms ranging from the relatively mild (early onset cataracts) to severe damage to the liver, 

brain and ovaries which results in significant physical and cognitive disability.  The only treatment is 

the removal or reduction of galactose in the diet.  This treatment is unsatisfactory, particularly in the 

most severe forms of the disease.  Considerable research efforts are being made to develop specific 

therapies for galactosemia.  These include gene therapies, pharmacological chaperones, drugs to 

block the production of potentially toxic metabolites and enzyme replacement therapy.  However, 

these are unlikely to be translated into the clinic for at least a decade.

Areas covered:  This review considers existing drugs, nutrients and treatments which could be 

relatively rapidly repurposed for the treatment of galactosemia.  If successful, these would enable an 

improvement in the prognosis for galactosemia patients.

Expert opinion:  Dietary antioxidants which are already widely used and generally considered safe 

(e.g. resveratrol, purple sweet potato colour) should be tested for their efficacy in galactosemia.  

Pharmaceutical antioxidants (e.g. idebenone) should also be considered.  Phosphate 

supplementation, along with careful monitoring of phosphate levels in the patient’s diet should also 

be considered.  Efforts to develop specific therapies for galactosemia should continue.

Keywords:  dietary antioxidant; idebenone; inherited metabolic disease; phosphate 

supplementation; purple sweet potato colour; resveratrol
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Highlights

 Galactosemia describes four inherited metabolic diseases of galactose metabolism

 Current treatments for galactosemia are inadequate

 Dietary antioxidants such as resveratrol may be useful in the treatment of galactosemia

 Phosphate supplementation should be considered in galactosemic patients

 eIF2α Phosphatase inhibitors may be useful to reduce premature ovarian insufficiency

 Efforts to develop more specific therapies for this disease should continue
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1. Introduction

Galactosemia is a term which describes four diseases resulting from mutations in the genes encoding 

enzymes of galactose metabolism [1,2].  The Leloir pathway facilitates the conversion of galactose to 

the glycolytic intermediate glucose 6-phosphate (Figure 1) [3].  It is also important in the synthesis of 

UDP-sugars, which are important precursors for the synthesis of glycolipids and glycoproteins.  The 

disaccharide lactose is a significant source of galactose in the diets of babies and Caucasian adults.  

This disaccharide, which occurs in milk, is hydrolysed releasing D-glucose and β-D-galactose.  In 

aqueous solution, the two anomers of D-galactose (α-D-galactose and β-D-galactose) interconvert at 

an appreciable rate [4].  However, this rate is not enough to supply the Leloir pathway whose first 

enzyme, galactokinase (GALK1; EC 2.7.1.6), only recognises the α-anomer of D-galactose.  Galactose 

mutarotase (aldose 1-epimerase, GALM; EC 5.1.3.3) catalyses the interconversion of the D-galactose 

anomers [5,6].  Mutations in the GALM gene can result in the most recently discovered form of the 

disease, Type IV galactosemia, which appears to behave more like a complex genetic disorder than a 

simple, Mendelian disease [7,8].  The Leloir pathway is generally considered to begin with the 

phosphorylation of α-D-galactose at the expense of ATP in a reaction catalysed by galactokinase 

[9,10].  Type II galactosemia (OMIM #230200) is caused by mutations in the GALK1 gene [11,12].  

The product of this reaction α-D-galactose 1-phosphate participates in an exchange reaction with 

UDP-glucose, generating α-D-glucose 1-phosphate and UDP-galactose.  This reaction is catalysed by 

galactose 1-phosphate uridylyltranferase (GALT; EC 2.7.7.10) and mutations in the corresponding 

gene are associated with type I galactosemia (or classic galactosemia; OMIM #230400) [13-15].  

UDP-glucose is regenerated in an isomerisation reaction catalysed by UDP-galactose 4’-epimerase 

(GALE; EC 5.1.3.2).  This enzyme can also catalyse the epimerisation of the N-acetyl derivatives of D-

glucose and D-galactose [16].  Type III galactosemia (OMIM #230350) is caused by mutations in the 

GALE gene [17,18].  The production of α-D-glucose 1-phosphate is generally considered to complete 

the Leloir pathway.  However, one final reaction is required before the carbon atoms in the original 

galactose molecule can enter glycolysis:  α-D-glucose 1-phosphate is isomerised to D-glucose 6-
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phosphate in a reaction catalysed by phosphoglucomutase (PGM; EC 5.4.2.2) [19].  To date, no form 

of galactosemia has been associated with this enzyme.  However, congenital disorder of 

glycosylation, type It (OMIM #614921) is associated with PGM1 deficiency.  The glycosylation 

disorders have some similarity with those seen in galactosemia types I and III [20].

The symptoms of galactosemia are highly variable [21-25].  The most severe forms result in 

significant cognitive and physical disability in childhood and can result in death of the infant if 

untreated.  The mildest forms result in perturbations of blood chemistry which are not currently 

associated with any adverse effects on the patient.  Almost all forms, except the very mildest, result 

in childhood onset cataracts.  These result from the build-up of galactose in the lens.  This is 

converted to the sugar alcohol galactitol (dulcitol) by the action of aldose reductase (EC 1.1.1.21).  

Unlike galactose, galactitol cannot be transported across the cell membrane and thus accumulates in 

the lens cells, upsetting the osmotic balance of these cells [26].  The most severe symptoms are 

associated with type I and some instances of type III galactosemia.  Type III galactosemia probably 

has the widest phenotypic range [27].  In addition to severely disabling and life-threatening 

outcomes, it can also result in very mild symptoms which cause little of no harm.  Types II and IV 

have similar symptoms.  Typically patients with these types of galactosemia have early onset 

cataracts, normally in early childhood [8,28,29].  The severity of the symptoms depend on the exact 

mutation(s) present in the patient along with the patient’s environment.  In this context, the 

environment includes the health care available to the patient:  early identification of the disease and 

intervention can slow or prevent the development of some symptoms.

The only recognised treatment for all types of galactosemia is the exclusion, or reduction, of 

galactose from the diet [21].  There is currently considerable debate about the necessity for 

strictness in the dietary regime, particularly in adult patients [30].  Despite the potentially 

devastating symptoms of type I galactosemia, a number of patients have recently been reported to 
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maintain levels of cognitive function sufficient to enable them to graduate with university degrees 

[31].

The molecular and cellular pathology of galactosemia is not well understood, except for the 

development of cataracts (see above).  This lack of understanding hinders attempts to develop more 

effective treatments.  In affected individuals, the liver, brain and ovaries are often the most affected 

organs [21,32].  Movement disorders have been reported in some patients [33].  The liver is the 

main site for the Leloir pathway and it is believed that the accumulation of galactose 1-phosphate is 

toxic to cells.  The mechanism of this toxicity has not been definitively determined.  It should also be 

noted that galactose itself is toxic at higher concentrations (>5 mM) and several studies have 

demonstrated that the administration of high levels of galactose to healthy animals results in similar 

pathology to galactosemia [34,35].  Disturbances in glycoprotein and glycolipid synthesis may partly 

explain the effects on the brain and ovaries [36,37].  Increased cellular free radical load is also 

associated with the galactosemic phenotype [38].  This is likely to represent a secondary 

consequence of metabolic disturbances which then causes further, non-specific damage to cellular 

components.

While the dietary restriction of galactose is helpful in most patients, it often only slows and reduces 

the severity of the symptoms.  Even with a galactose restricted diet many patients suffer physical 

and mental disability [39].  A number of other therapies have been proposed [40].  These include the 

inhibition of GALK1.  While this would, presumably, cause similar symptoms to type II galactosemia, 

it would prevent the build-up of galactose 1-phosphate which is thought to be responsible for some 

of the more severe pathology in types I and III [29,41].  A number of effective and selective inhibitors 

have been identified, but none are in clinical use yet [41].  Enzyme replacement therapy works by 

delivering pure, recombinant enzyme to the affected tissues.  In theory, this could be applied in 

galactosemia.  However, it may be necessary to overcome delivery problems to the brain where the 

blood-brain barrier typically prevents the passage of larger molecules like proteins.  Gene therapy is 
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also possible in theory, but again there may be a need to deliver larger hydrophilic molecules across 

the blood brain barrier in order to restore activity in this organ.  Since many of the disease-

associated variants of GALT, GALK1, GALE and GALM are less thermally stable than the wild-type 

protein, small molecule pharmacological chaperones could be deployed to assist their folding and 

increase enzymatic activity [8,42-44].  To date, no suitable molecules have been reported, although a 

promising binding site in GALT has been identified by in silico methods [40,42].  All these approaches 

have considerable promise.  Most would all wholly or partly restore the activity of the affected 

enzyme and, presumably, alleviate the majority of the symptoms.  However, they are all many years 

from being implemented in patients.  Considerable basic science work is required on all these 

approaches before the lengthy process of clinical trials and gaining regulatory approval could begin.  

This review focuses on existing drugs (and drug-like molecules) which might be redeployed to treat 

galactosemia.

2. Antioxidants - dietary

Since oxidative stress has been identified as a common occurrence in cells from galctosemic patients 

and in animal models of galactosemia, it has been suggested that reducing this stress may have 

benefit to patients [38,45].  This proposition is also supported by animal studies on galactose 

toxicity.  Injection of galactose into rat cerebellums caused an increase in reactive oxygen species, 

damage to proteins and reduction in cognitive function.  These effects were suppressed by the co-

administration of the antioxidants ascorbic acid (vitamin C; CAS:  50-81-7; Figure 2) or α-tocopherol 

(vitamin E; CAS:  59-02-9; Figure 2) [35].  Ascorbate and the plant-derived xanthanoid α-mangostin 

(CAS:  6147-11-1; Figure 2) protected against oxidative stress and reduced the severity of the 

galactosemia-like phenotype in a Drosophila melanogaster model of the disease [38].  A number 

plant extracts and plant-derived compounds have been shown to have similar effects in animals 

exposed to excess galactose.  Particularly impressive results have been obtained with purple sweet 
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potato colour, an extract containing anthocyanins and phenolic compounds [46-50].  In parallel to 

oxidative stress, high galactose concentrations induce cellular senescence, a condition in which cells 

permanently cease to divide without undergoing any form of cell death [51].  Some antioxidant 

compounds, for example the plant alkaloid matrine (CAS:  519-02-8; Figure 2), inhibit the induction 

of senescence in animal models of galactose toxicity [52].

The ideal dietary antioxidant to use in galactosemia would be readily available, safe to use for 

extended periods, cross the blood-brain barrier and would combine free radical quenching 

properties with anti-senescent activity.  Purple sweet potato extracts, along with drinks derived from 

this vegetable are widely consumed in Japan with no significant ill-effects reported [53,54].  The 

anthocyanins in the extract are known to be absorbed by mammals and to increase antioxidant 

activity in the blood plasma [55].  There is also some evidence that it inhibits senescence [56].  The 

combination of these two effects would make purple sweet potato colour potentially attractive as a 

therapy for galactosemia [57].

Resveratrol (CAS:  501-36-0; Figure 2), a stillbenoid found in grapes and other fruits, also protects 

against galactose toxicity, partly by reducing oxidative stress [58].  In addition to its antioxidant 

activity, resveratrol has several protein targets.  These include inhibition of NRH-quinone 

oxidoreductase 2 (NQO2) and activation of the histone deacetylase sirtuin-1 (SIRT-1) [59,60].  It is 

considered generally safe, with minimal side-effects at doses up to several hundred milligrams per 

day [61].  There are some concerns that doses in the grams per day range may be harmful and, as 

will all drugs, interactions with other drugs and inhibition of the cytochrome P450 system should be 

considered [61-63].  Resveratrol also demonstrates impressive anti-senescent effects.  Not only does 

it inhibit senescence, but can also reverse the process through modulation of RNA splicing.  This 

enables cells to exit from senescence, increase telomere length and resume proliferation [64].  It is 

known to cross the blood-brain barrier and has been proposed as a treatment for some neurological 

diseases [65,66].  These combined properties make resveratrol an attractive proposition for use in 
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galactosemia patients.  However, other dietary antioxidants may also be effective; further testing 

may help determine which are the most promising for clinical trials.  The recent development of a 

credible mouse model for type I galactosemia could help with this, and other evaluations of possible 

treatments [67].  Even before such results are available, it should be noted that high antioxidant 

diets are generally considered to deliver a range of health benefits [68].  Therefore, there would be 

little risk and some potential benefit in recommending such diets to galactosemia patients.

3. Antioxidants – pharmaceutical

Manganese containing porphyrins with antioxidant activity has been used to ameliorate the 

galactosemic phenotype in a D. melanogaster model of the disease [69].  These compounds, which 

were developed by Aeolus Pharmaceuticals, mimic the activity of the enzyme superoxide dismutase 

(EC 1.15.1.1), catalysing the reduction of reactive oxygen species.  They have been suggested for 

treatments in a wide range of diseases, including cancers, strokes, radiation injury, amyotrophic 

lateral sclerosis and diabetes [70].  Mouse model studies showed significant promise for one of 

these compounds (MnTDE-2-ImP5+; AEOL-10150; CAS:  286475-30-7; Figure 3) in amyotrophic lateral 

sclerosis and human clinical trials were initiated [71].  However, this compound is not currently used 

for this disease.  It has been granted orphan drug status for the treatment of idiopathic pulmonary 

fibrosis [72].  Despite the compound’s relatively large size, it crosses the blood-brain barrier and it 

also appears to have relatively low toxicity in humans [70].  The compound used in the galactosemia 

study was slightly different (MnTE-2-PyP5+; AEOL-10113; CAS:  219818-60-7; Figure 3).  However, the 

promising results of this group of compounds in radiation protection and idiopathic pulmonary 

fibrosis suggest that clinical trials for galactosemia would be warranted, particularly for MnTE-2-

PyP5+.
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Antioxidants are used in other genetic diseases.  Idebenone (CAS:  58186-27-9; Figure 3), is a 

coenzyme Q10 (CoQ; ubiquinone; CAS:  303-98-0) mimic developed by the Takeda Pharmaceutical 

Company. It is used in the treatment of 

4. Phosphate supplementation

Types I and III galactosemia result in a cellular build-up of galactose 1-phosphate.  This molecule is 

considered to be toxic to cells, although no molecular target(s) have been conclusively identified.  

Another detrimental effect of the accumulation of this compound is the reduction in the amount of 

phosphate available to other metabolic processes.  Phosphate is essential for energy metabolism 

involving ATP, the synthesis of nucleic acids and phospholipids, and the control of protein activity by 

phosphorylation.  Disruption of any of these processes is likely to be detrimental to the cell and the 

organism.

Deletion of the gene encoding GALT in budding yeast Saccharomyces cerevisiae (GAL7) resulted in 

depletion in cellular inorganic phosphate levels [84].  Similar effects have been observed in the 

serum of patients with galactosemia and hereditary frustose intolerance (OMIM #229600), another 

disease which results in the accumulation of a sugar phosphate [85].  In the yeast model, this 

phosphate depletion resulted in altered glycogen metabolism, presumably because phosphate ions 

are required for the enzymatic breaking of α(1→4) glycosidic bonds in this polysaccharide.  Reversal 

of phosphate depletion either by deletion of the galactokinase gene (GAL1) or supplementation of 

the media with phosphate ions prevented the reduction of cellular phosphate levels and restored 

normal glycogen metabolism [84].  This suggests that phosphate supplementation in galactosemia 

patients would be worth investigating.

Phosphate supplementation is already used in a variety of conditions, including the treatment of 

some alcoholics and patients undergoing renal dialysis or kidney transplants, diabetic ketoacidosis, 
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burns and sepsis [86].  It is generally considered safe, although care needs to be taken if some other 

medicines are being used at the same time [87,88].  Pharmaceutical preparations already exist in 

both dissolvable tablets and injectable forms.  Therefore the investigation of phosphate 

supplementation as a possible therapy for galactosemia may prove fruitful and is unlikely to present 

significant risks to patients.  It should also be noted that milk (and milk products) are good sources of 

dietary phosphate [89].  These are, of course, eliminated or substantially reduced in the 

galactosemic diet.  Therefore, it may be the case that some patients are on reduced phosphate 

intake diets which would further reduce the availability of phosphate in their cells.

5.  Treatment of movement disorders in galactosemia

Movement disorders occur in some patients with type I galactosemia [33].  Dystonia (sustained, 

uncontrolled muscle contractions  is the most commonly observed symptom and weaknesses which 

results in reduced dexterity and balance is also seen [33,90].  Treatment is not always given, 

although patients are often supported by physiotherapy and occupational therapy.  One patient has 

been reported to have been treated with trihexyphenidyl (CAS:  144-11-6; Figure 4) and botulinum 

toxin in addition to a lycra suit [33].  Trihexyphenidyl is used in the treatment of Parkinson’s disease 

and other conditions which result in involuntary movements and botulinum toxin is used as a muscle 

relaxant in a variety of diseases.  Wider consideration of the use of existing drugs to treat dystonia 

and ataxia may be worth considering for galactosemia patients.

The molecular causes of these movement disorders remain unknown.  Work on the D. melanogaster 

model suggests that galactose 1-phosphate accumulation is not required for the development of this 

aspect of the galactosemic phenotype [91].  Disturbances to the UDP-sugar pools and subsequent 

disruption of the glycosylation of neuronal proteins may be important in this model [92,93].  UDP-

glucose pyrophosphorylase (UGP; EC 2.7.7.9) has been suggested as a possible drug target based on 

these studies [93].  Currently, no drugs are in clinical use which target this enzyme.
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In rats fed with excess galactose, high levels of sodium ions were observed in the endoneurial fluid.  

This was proposed to result in osmotic withdrawal of water from the neurons [94].  The build-up of 

sodium ions can be reversed by the aldose reductase inhibitor, Ponalrestat (Statil, ICI 128436; CAS:  

72702-95-5; Figure 4) [95].  This protects the Schwann cells and reduces the osmotic uptake of water 

into neurons [96].  To date, no causal link has been formally made between the build-up of sodium 

ions and the damage to nerves in galactosemia (or galactose toxicity).  Therefore, it is uncertain if 

reversing this build-up using aldose reductase inhibitors would be therapeutically beneficial for 

galactosemia patients.  However, aldose reductase inhibitors have been suggested as a treatment 

for galactosemic cataracts [97,98].  If this was widely adopted, it might also have beneficial effects 

on the nervous system.

6.  Treatment for premature ovarian insufficiency in galactosemia

The biochemical origins of ovarian failure of galactosemic women are uncertain [99].  It was thought 

that failure of correct glycosylation of follicle stimulating hormone (FSH) may play a role in ovarian 

failure [100].  However, more recent studies have shown no evidence of alterations to FSH in some 

patients and no link between aberrant glycosylation of this hormone and fertility loss in 

galactosemic patients [101-103].  Studies using a rat model of galactosemia, which recapitulates the 

loss of fertility phenotype seen in humans, suggest that disruption of some signalling pathways may 

also be important.  Of particular interest, the phosphoinositide 3-kinase (PI3K; EC 2.7.1.137)/Akt 

(protein kinase B; EC 2.7.11.1) growth signalling pathway is down-regulated in a mouse model of 

type I galactosemia [104].  These effects can be reversed by salubrinal (CAS:  405060-95-9; Figure 4), 

an inhibitor of the eukaryotic initiation factor 2α (eIF2α) phosphatase (EC 3.1.3.16), which alleviates 

endoplasmic reticulum stress and reduces the unfolded protein response [105,106].  This 

pharmacological intervention protects the mouse model from primordial follicle loss and increases 

fertility [107].  Salubrinal is not used clinically as an eIF2α phosphatase inhibitor.  Another 
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compound, guanabenz (CAS:  5051-62-7; Figure 4), inhibits eIF2α phosphatase and is already in 

clinical use to treat hypertension [108].  It is not yet known if this compound has a similar effect on 

PI3K/Akt signalling, endoplasmic reticulum stress and fertility in galactosemic mammals.  If it did 

have similar effects, it should be considered as a possible treatment for premature ovarian 

insufficiency in galactosemic patients.  Given its role in modulating signalling and cellular stress, and 

its ability to cross the blood-brain barrier, it is possible that it would have wider, beneficial effects in 

other tissues [109,110].  As such it might represent a more general treatment for type I 

galactosemia.

A recent study has demonstrated a protective effect of the steroid dehydroepiandrosterone (DHEA; 

CAS:  53-43-0; Figure 4) on rats fed excess galactose [111].  Untreated rats have lower fertility than 

those fed DHEA in addition to galactose.  This protection was associated with increased expression 

of Ki67 and reduced amounts of cleaved caspase 3 [111].  This, presumably, reduces apoptosis.  

DHEA occurs naturally in humans as a precursor in sex hormone biosynthesis [112].  It is used 

pharmacologically as a component of hormonal treatments for menopause [113].  There is some 

uncertainty about the long term safety of DHEA use, but its widespread use as a medicine and a 

health supplement suggest that it could be considered for the treatment of premature ovarian 

insufficiency in female galactosemia patients [114].

6. Expert opinion

The current treatment for galactosemia, dietary restriction of galactose, is inadequate and widely 

recognised as such.  Exciting possibilities for treatment are in the pipeline:  gene therapy, gene 

editing, enzyme replacement therapy and small molecule therapies.  However, the time to develop 

these concepts and translate them into therapies is likely to be many years, perhaps more than a 

decade.  Repurposing existing treatments offers the potential to improve therapy on a much shorter 

timescale.  Existing therapies for other diseases have generally been tested for toxicity and side-
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effects.  Drugs which are in use for other diseases have already been formulated for delivery to 

patients.  These treatments are likely to be most effective when used alongside a galactose 

restricted diet.  Furthermore, they are unlikely to be as effective as bespoke treatments for 

galactosemia.  Therefore, efforts to develop these should continue.

The following recommendations are made:

1. Patients with galactosemia should be advised to follow a diet high in antioxidants while not 

compromising the galactose restriction (i.e. food should be selected with high levels of 

antioxidant, but no galactose).  Ascorbate, α-tocopherol, resveratrol and anthocyanins may 

be particularly useful compounds to prioritise.

2. Purple sweet potato colour, other plant-based antioxidants shown to mitigate galactose 

toxicity, idebenone and metformin should be tested in cellular and animal models of 

galactosemia.  Any substances which show promise in these models should be considered 

for clinical trials.

3. Clinical trials on the use of resveratrol alongside dietary restriction of galactose should be 

considered.

4. Clinical trials on the use of MnTE-2-PyP5+ alongside dietary restriction of galactose should be 

considered.

5. Further research to understand the molecular causes of free radical generation in 

galactosemia is required.  This would help clarify the antioxidants most likely to work and 

which should be prioritised for testing.

6. Clinical trials on the use of phosphate supplementation alongside dietary restriction of 

galactose should be considered.

7. In the planning of diets for galactosemia patients, the phosphate content should be 

considered.
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8. Further research is required to understand the biochemical and physiological causes of 

movement disorders in galactosemic patients.  This may facilitate the repurposing of drugs 

used in other diseases which result in movement disorders.

9. Aldose reductase inhibitors may have benefits beyond the prevention of reversal of 

cataracts.  These should be investigated further with a particular emphasis on the 

consequences for nerve cells and the control of movement.

10. Further research to understand the molecular pathology of premature ovarian insufficiency 

in galactosemia is required.

11. Guanabenz should be tested to see if it has similar effects to salubrinal.  If it does increase 

fertility in the mouse model, it should be considered for human trials.  

Dehydroepiandrosterone should also be considered for human trials.

12. Current research on more specific treatments for galactosemia should continue.  While the 

recommendations above may improve the outcomes for galactosemia patients, they are still 

likely to be unsatisfactory.

These suggestions have the potential to deliver incremental benefits for patients with galactosemia.  

Some may continue to be useful once more specific therapies are available.  Some may also be 

applicable to other inherited metabolic diseases which currently lack adequate therapies.  In 

particular, if antioxidant therapy proved useful in galactosemia, it is likely to be valuable in other 

conditions in which free radical accumulation is a factor.  Therefore, testing these ideas in 

galactosemia, may also result in improved therapies for other inherited metabolic diseases.
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Figure legends

Figure 1:  The metabolic conversion of D-galactose into the glycolytic intermediate glucose 6-

phosphate.  Galactose exists in solution in equilibrium between the α- and β-anomers.  Their 

interconversion is catalysed by galactose mutarotase (GALM).  Only the α-anomer enters the Leloir 

pathway, which begins with the phosphorylation of galactose, catalysed by galactokinase (GALK1).  

This is converted to glucose 1-phosphate (normally regarded as the product of the Leloir pathway) 

by the action of galactose 1-phosphate uridylyltransferase (GALT).  UDP-galalctose is recycled to 

UDP-glucose by the action of UDP-galactose 4’-epimerase (GALE).  To enter glycolysis, glucose 1-

phosphate must be isomerised to glucose 6-phosphate.  This reaction is catalysed by 

phosphoglucomutase (PGM).  The types of galactosemia associated with the enzymes are shown in 

italics under the enzyme name.

Figure 2:  Dietary antioxidants with potential for treating galactosemia

Figure 3:  Pharmaceutical antioxidants with potential for treating galactosemia

Figure 4:  Drugs which might be repurposed for (a) the treatment of movement disorders and (b) the 

treatment of premature ovarian insufficiency in galactosemia.
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