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Summary

The human-directed, global selection for glyphosate resistance in weeds has revealed a

fascinating diversity of evolved resistance mechanisms, including herbicide sequestration in the

vacuole, a rapid cell death response, nucleotide polymorphisms in the herbicide target (5-

enolpyruvylshikimate-3-phosphate synthase, EPSPS) and increased gene copy number of

EPSPS. For this latter mechanism, two distinct molecular genetic mechanisms have been

observed, a tandem duplication mechanism and a large extrachromosomal circular DNA

(eccDNA) that is tethered to the chromosomes and passed to gametes at meiosis. These

divergent mechanisms have a range of consequences for the spread, fitness, and inheritance of

resistance traits, and, particularly in the case of the eccDNA, demonstrate howevolved herbicide

resistance can generate new insights into plant adaptation to contemporary environmental

stress.

I. Introduction

The herbicide glyphosate, introduced in the mid-1970s,
inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS),
a critical gene in aromatic amino acid synthesis. It is
commonly used for nonselective weed control in many
agricultural and nonagricultural settings, including transgenic
glyphosate resistant crops. Since the mid-1990s, an increasing
reliance on glyphosate has resulted in considerable selection for
glyphosate resistance (Heap & Duke, 2018). Currently, 42

weed species have evolved glyphosate resistance across six
continents.

Early evidence and speculation suggested that evolution of
glyphosate resistance in weeds would be extremely rare. But the
broad adoption of transgenic glyphosate-resistant crops and
increases in glyphosate use have resulted in an unprecedented
selection experiment that has revealed a diverse array of routes to
resistance, including novel molecular genetic mechanisms. Here,
we review those mechanisms, their inheritance and phenotypic
consequences and consider the remaining unanswered questions

1770 New Phytologist (2019) 223: 1770–1775 � 2019 The Authors

New Phytologist� 2019 New Phytologist Trustwww.newphytologist.com

Review

https://orcid.org/0000-0003-1485-7665
https://orcid.org/0000-0003-1485-7665
https://orcid.org/0000-0001-7111-6287
https://orcid.org/0000-0001-7111-6287
https://orcid.org/0000-0002-3136-5286
https://orcid.org/0000-0002-3136-5286


that address important fundamental and applied questions in plant
adaptation.

II. Glyphosate resistance mechanisms

Herbicide resistance mechanisms can be classified as either target-
site (mutations affecting herbicide inhibition of target-site pro-
teins) or nontarget-site mechanisms (any mechanism that reduces
the quantity and rate of herbicide accumulation at the target site).
Glyphosate selection has revealed a wider range of molecular
mechanisms of resistance (Fig. 1) than for any other herbicide
mode of action (reviewed by Sammons & Gaines, 2014).

Target-sitemutations inEPSPS have been documented at amino
acid position Pro106 (reviewed by Sammons & Gaines, 2014), at
Thr102 (Li et al., 2018), at Thr102Ile and Pro106Ser in combi-
nation (the TIPS mutation, Yu et al., 2015), and recently a triple
mutation involving Thr102Ile, Ala103Val, and Pro106Ser (Perotti
et al., 2019). The simultaneous occurrence of multiple mutations
within the same allele appears to be unique to glyphosate resistance
and EPSPS. The TIPS and TIAVPSmutations confer much higher
resistance to glyphosate than single mutations at Pro106, although
it is not certain if the Ala103Val mutation adds additional
resistance or affects EPSPS enzyme kinetics in the absence of
glyphosate.
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Fig. 1 (a) Observed and predicted glyphosate resistancemechanisms. In sensitive plants, glyphosate (blue circles) enters the cytoplasm and is transported into
the chloroplast to the target site enzyme,EPSPS (1).Mutations changingoneor twoaminoacids inEPSPS can confer target-site resistance, first reported in 2002
(2). Extra gene copies of EPSPS can produce extrasensitive EPSPS, requiring proportionallymore glyphosate to cause complete inhibition, first reported in 2010
(3). Glyphosate can be transported and sequestered in the vacuole, with the mechanism first reported in 2010 and the observation of reduced glyphosate
translocationfirst reported in1999 (4). Someevidence to suggestglyphosatemetabolismhasbeen reported,butno specificgeneshavebeen identified inweeds
to date (5).Wepredict thatmechanismsmight exist to reduceglyphosate import into the chloroplast (6) and/or rapidly export glyphosateout of the chloroplast
(7), but neithermechanismhasbeenobserved todate. (b)EPSPSgeneduplication inKochia scopariaoccurs as a45–70 kbp tandemduplicationat a single locus,
withpredictable inheritanceandpotential for changes in copynumber inprogenyas a result of unequal recombination; theduplicationmayhavebeen triggered
by insertion of amobile genetic element next to EPSPS. (c) EPSPS gene duplication inAmaranthus palmeri occurs as a 300 kbp extrachromosomal circular DNA
(eccDNA) carrying a single copy of EPSPS; the eccDNA is tethered via a protein to the chromatin and inherited biparentally, but the inheritance can show
transgressive segregation ofEPSPS copynumber as a result of instability of the eccDNA.Theorigin of the eccDNA is unknown, and copynumberof eccDNAcan
vary somatically from cell to cell.
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Thus far, glyphosate resistance in weeds due to enhanced
capacity to metabolize glyphosate has not been demonstrated.
Enhanced glyphosate metabolism has been reported (e.g. Carvalho
et al., 2012) but further characterization is needed. Intriguingly, an
overexpressed aldo-keto reductase gene was shown to confer a level
of glyphosate resistance in rice, although no evidence of glyphosate
metabolites from this transgene was provided (Vemanna et al.,
2017). Several candidate differentially regulated transcripts were
identified using RNA-Seq in Ipomoea purpurea, including a
cytochrome P450 gene (Leslie & Baucom, 2014). Further research
into enhanced glyphosatemetabolism in glyphosate resistant weeds
is justified.

Reduced glyphosate translocation has been attributed to a
vacuolar sequestration mechanism in Conyza canadensis (Ge et al.,
2011) andLolium spp. (Ge et al., 2012), but specific causative genes
for reduced translocation have not yet been identified. ATP-
binding cassette (ABC) genes have been associated with reduced
translocation in C. canadensis but not yet functionally validated
(Yuan et al., 2010; Tani et al., 2015).

An especially unique glyphosate resistance mechanism is the
rapid cell death phenotype observed in Ambrosia trifida popula-
tions, in which all known candidate resistance mechanisms were
absent and reactive oxygen species accumulated within 30 min of
glyphosate application in older leaves of resistant individuals.
(Moretti et al., 2018; Van Horn et al., 2018). The cause of this
rapid response remains unknown, but the phenotypic similarities
to effector-triggered immunity raise the intriguing possibility that a
disease response pathway may have evolved a new function in
herbicide resistance.

III. Gene duplication in multiple species through
different molecular mechanisms

Increased EPSPS expression as a result of extra EPSPS gene copies
has now been reported in eight species (reviewed by Patterson et al.,
2018). Recently, access to genomic resources, combined with
cytogenetics, has provided critical evidence for our understanding
of themolecular mechanisms of gene duplication (Jugulam&Gill,
2018).

Amaranthus palmeri: eccDNA

Amaranthus palmeri (Palmer amaranth) is the first species in
which EPSPS gene duplication was reported, with resistant
individuals carrying a variable number of extra EPSPS gene
copies, ranging from 20 to > 100 (Gaines et al., 2010). Original
reports showing EPSPS in association with every chromosome
attributed this to transduplication and introgression into chro-
mosomes, a conclusion now proven to be incorrect (see next
paragraph). Mobile genetic elements were identified within 1–
2 kbp of sequence flanking the EPSPS gene in resistant but not
susceptible individuals (Gaines et al., 2013). Subsequently, an c.
300 kbp sequence containing EPSPS was identified using bacterial
artificial chromosome (BAC) sequencing (Molin et al., 2017a)
with substantial sequence differences between resistant and
susceptible individuals upstream and downstream of the EPSPS

gene. The replicon containing EPSPS contained 71 additional
predicted open reading frames, including genes with transposase
domains, heat shock proteins, a reverse transcriptase gene, various
categories of repetitive sequences, and, perhaps most significantly,
sequences with homology to autonomous origins of replication
(Molin et al., 2017a).

In a recent, major discovery, Koo et al. (2018) identified an
extrachromosomal circular DNA (eccDNA) carrying EPSPS in
A. palmerimitotic cells. The eccDNA was inherited at meiosis but
not in equal proportions among gametes (Fig. 1) and was observed
to be tethered to chromosomes by a structural protein, which
enables transmission from cell to cell during mitosis and meiosis, a
first for eukaryotic cells, although previously reported for some
autonomously replicating viruses (reviewed in Koo et al., 2018).
The A. palmeri eccDNA is much larger at 300 kbp than previously
reported in plants (2–20 kbp; Cohen et al., 2008).

Kochia scoparia: tandem duplication

Kochia scoparia populations were identified with three to 10 extra
EPSPS gene copies (Wiersma et al., 2015). Cytogenetics experi-
ments revealed that the extra EPSPS gene copies were arranged as a
tandem duplication at a single locus (Fig. 1) (Jugulam et al., 2014).
A positive correlation between degree of resistance and number of
EPSPS copies has been established (Gaines et al., 2016). Sequenc-
ing inserts from aK. scoparia genomic BAC library identified seven
coduplicated genes and two different sizes of duplicated sections
(Patterson et al., 2019). A key observation is the insertion of
additional sequence containing mobile genetic elements such as a
Far1 transposon next to the EPSPS gene in glyphosate-resistant
K. scoparia that is absent in glyphosate-susceptible individuals. The
model proposed is that this repetitive sequence insertion generated
a site for unequal recombination, leading to the generation of extra
EPSPS gene copies that had a selective advantage under glyphosate
selection (Patterson et al., 2019).

Other species: unknown molecular mechanisms

Descriptions of EPSPS gene duplication have been reported for
four grass weed species (reviewed in Patterson et al., 2018), but less
is known about the molecular mechanism(s) by which this gene
duplication has occurred in grasses than in the dicotyledonous
species K. scoparia and A. palmeri. In Amaranthus tuberculatus
(waterhemp), glyphosate-resistant individuals had from four to
eight extra EPSPS gene copies (Lorentz et al., 2014). Cytogenetics
experiments revealed tandem EPSPS gene duplication followed by
seemingly rare excision of a small extra chromosome resulting in
higher EPSPS gene copy number (Dillon et al., 2017).

IV. Evolutionary dynamics of a ‘rare’ resistance trait

Twenty years of escalating glyphosate use has facilitated an
unprecedented, human-directed selection experiment. Speculation
that glyphosate might be uniquely robust to resistance evolution
has been disproved, and globally distributed weedy plant species
have exhibited convergent evolution of glyphosate resistance, with
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four generalized ‘types’ of resistance confirmed: an altered EPSPS
sequence; altered patterns of glyphosate sequestration and translo-
cation; rapid cell death; and EPSPS gene duplication. As novel
molecularmechanisms have emerged, experimental and theoretical
studies have addressed the origins, spread, fitness consequences,
and inheritance of glyphosate resistance. Unsurprisingly, given the
diversity of species, molecular mechanisms, and selection regimes,
these studies identify that the evolutionary, quantitative, and
population genetics underpinning glyphosate resistance mecha-
nisms are equally diverse.

The rapid evolution and spread of resistance from the late 1990s
onwards, 20 yr after its first use, raises questions about the origin
and spread of resistance mutations. Did escalating selection after
the mid-1990s lead to the spread of rare resistance mutations that
arose as single evolutionary events or were there multiple,
independent evolutionary events within a species and/or species
complex? Based on the size and sequence of the amplified EPSPS
cassette in geographically distinct A. palmeri populations, Molin
et al. (2017b) concluded that resistance probably arose as a single
evolutionary event.Using a genotyping-by-sequencing approach in
the same species, K€upper et al. (2018) found distinct population
genetic structure between glyphosate-resistant populations from
Georgia and Tennessee, suggesting two or more origins of
glyphosate resistance may be possible. Similarly, Okada et al.
(2013) demonstrated multiple origins of glyphosate resistance in
populations of Conyza canadensis in the Central Valley of
California. Recently, multiple origins of glyphosate resistance were
identified in A. tuberculatus by whole-genome resequencing,
showing both the introduction of glyphosate resistance into
Canada from the USA as well as independent evolution of
glyphosate resistance in other populations in Canada (Kreiner
et al., 2018). Others have shown that glyphosate resistance traits
can be spread through hybridization between related Amaranthus
species (Gaines et al., 2012; Nandula et al., 2014). The recent
appearance of glyphosate-resistant populations of A. palmeri in
Brazil with EPSPS gene duplication hints at the potential for
intercontinental spread of resistance mutations, mediated by seed
movement (K€upper et al., 2017). Experiments have demonstrated
that glyphosate-sensitive populations ofL. rigidum (Busi&Powles,
2009) and Alopecurus myosuroides (Davies & Neve, 2017) harbor
heritable standing variation for glyphosate insensitivity, although
this additive genetic variationmay be distinct from themechanisms
of resistance selected in field-evolved resistant weed populations.
Selection for glyphosate resistance and susceptibility in diverse lines
of Ipomoea purpurea also demonstrated heritable standing genetic
variation for glyphosate insensitivity (Debban et al., 2015).

Recent resequencing of the eccDNA from divergent glyphosate-
resistant A. palmeri populations has shown that the eccDNA is
nearly identical in every glyphosate-resistant individual, with no
structural variation and very few single nucleotide polymorphisms
(SNPs; Molin & Saski, 2019). It would be highly unlikely for two
individuals to independently generate eccDNA that were so nearly
identical. As the eccDNA is not integrated with the genome, it is in
full linkage disequilibrium with the entire nuclear genome;
therefore, there is no linkage drag associated with glyphosate
resistance inheritance via eccDNA.This allows for any nonadaptive

loci froman introduced resistant genome tobe purged quickly from
the local population via backcrossing (especially as A. palmeri is
dioecious and almost exclusively outcrossing). Thismay bewhy the
nuclear genomes from two distant A. palmeri populations are
divergent, as described earlier (K€upper et al., 2018), but the EPSPS
eccDNA is nearly identical (Molin & Saski, 2019).

The fitness costs and benefits of glyphosate resistance mecha-
nisms vary according to species and mechanism, with mechanisms
based on the TIPS mutation and eccDNA-based duplication
providing high amounts of resistance, while other mechanisms
provide moderate to low resistance. It has been speculated that the
relatively slow evolution of glyphosate resistance may reflect high
fitness costs associated with resistancemutations. However, there is
little evidence for universally high costs, except for the TIPS
mutation (reviewed in Vila-Aiub et al., 2019).

For most known glyphosate resistance mechanisms, inheri-
tance studies have established segregation of resistance traits as
single dominant or semidominant loci (reviewed in Powles &
Preston, 2006). Indeed, even the gene duplication mechanism in
K. scoparia appears to segregate as a single locus, albeit the actual
gene copy number may vary from generation to generation
through unequal crossing over (Jugulam et al., 2014). The recent
report of a glyphosate resistance mechanism mediated by
eccDNA gene duplication begins to shed light on the transgres-
sive segregation of copy number variation observed for A. palmeri
populations possessing this mechanism (Gaines et al., 2011),
highly variable within plant copy number, and increased EPSPS
copy number in progeny of single copy parental plants,
suggesting that a few cells may retain eccDNA and transmit
them to progeny (Giacomini et al., 2019). The eccDNA-based
mechanism and potentially other novel mechanisms such as
mobile genetic element insertion driving gene duplication are
suggestive of a greater role for mechanisms that generate novel
genetic variation in somatic cells (sporophyte genomes), which is
subsequently transmitted into gametes via differentiation of
somatic cells into germline cells during plant development. Many
questions relating to the origins, dispersal, inheritance, and
fitness consequences of this fascinating mechanism of resistance
call into question the paradigms and models that have informed
our current understanding of the evolutionary dynamics of
herbicide resistance.

V. Conclusions

Under intense glyphosate selection, different species have con-
verged on a range of molecular solutions to evolve resistance. For
some of these mechanisms, for example, target site resistance based
on nucleotide polymorphisms, conventional Darwinian models of
random mutation and subsequent selection suffice to explain
observed patterns of adaptation. It is, however, increasingly evident
that other evolutionary mechanisms may be responsible for
generating the genetic variation on which selection can act. This
genetic variation may arise from epigenetic modification, genomic
rearrangements, gene copy number variation (CNV) and other
mechanisms of genomic plasticity, and this variation is often
inherited in a nonMendelian fashion.
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The heritable, chromosome-tethered eccDNA in A. palmeri is
the first such example in plants. The formation of eccDNAs is
relatively common in plants (Cohen et al., 2008; Lanciano et al.,
2017), including retrotransposons captured outside the chromatin
in eccDNA form (Lanciano et al., 2017), but, importantly, these
eccDNAs are usually transient andnot stably inherited. This raises a
number of critical questions. How did the tethering mechanism
that enables transmission of the eccDNA arise? Is contemporary
adaptation based on eccDNA-based mechanisms a quirk of
glyphosate selection, through which A. palmeri has co-opted a
mechanism for genome housekeeping for adapting to a uniquely
novel selection pressure? Another proposed role for eccDNA is to
counteract genome expansion following interspecific hybridization
(Cohen et al., 2008). Could the eccDNA in A. palmeri be a by-
product of the common interspecific hybridization in the genus
Amaranthus? Or is eccDNA a more general mechanism for
generating heritable genetic variation, and, if yes, is variation
generated at random or is the mechanism stress-responsive?

The discovery of eccDNA-based mechanisms of resistance
highlight the evolution of glyphosate (and herbicide) resistance as
fertile ground to address fundamental and applied questions
relating to plant adaptation (Baucom, 2019). In relation to the
origins of resistance-conferring mutations, a key question that
remains to be answered is: ‘Does herbicide-induced stress result in
CNV and genomic rearrangements?’ Even if this were shown to be
the case, it is intriguing to speculate how stochastic and infrequent
cellular events, induced by exposure of amulticellular organism to a
toxophore, could result in the generation of sufficient somatic
variation to confer a resistant phenotype at the whole organism
level. Beyond this, given the observation by Koo et al. (2018) of
highly variable patterns of mitotic and meiotic transmission on
eccDNA-based CNV, and of apparent tissue-to-tissue variation in
eccDNA, several questions remain regarding how this variation
influences the expression of the whole-plant resistance phenotype.
The exciting discovery of this resistance mechanism adds fresh
impetus to further population genetics/genomics-based studies to
determine if the continent-wide evolution of resistance in
Amaranthus species in North America (and beyond, potentially
into South America) is based on a single, a few, or multiple
evolutionary events. These studies will, in turn, inform the
generality of eccDNA as a potential mechanism for resistance
evolution.

The global, ongoing and human-directed selection for
glyphosate resistance in weedy plants provides a lens through
which to view, explore, and understand the range of mechanisms
that underpin contemporary plant adaptation to environmental
stresses. The inherent instability of thesemechanisms is anticipated
to affect the ecoevolutionary dynamics of glyphosate resistance in
fundamentally different ways from other resistance mechanisms
mediated by SNPs. The diversity of glyphosate resistance mech-
anisms requires evaluation using different evolutionary models
that consider inheritance, fitness penalty, genome dynamics and
plant physiology. Research on glyphosate resistance has already
proved to be a valuable field for challenging and expanding classic
adaptive evolution paradigms and it will continue to do so in the
future.
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