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RESEARCH

Genomic selection (GS) can be used to increase the rate 
of genetic gain in plant breeding programs, principally 

through a shorter breeding cycle and enabling screening of larger 
population sizes (Lorenzana and Bernardo, 2009; Heffner et al., 
2010). This is particularly useful for genetically complex traits, 
such as grain yield in wheat (Triticum aestivum L.), which is diffi-
cult to select for using marker-assisted selection and is usually 
only measured after genetically fixed lines are developed and 
sufficient seed has been produced. The process of GS begins with 
phenotyping and genotyping a population, termed the training 
population (TP). A prediction equation for the trait of interest 
is derived using the phenotypic and genotypic information from 
the TP. The prediction equation is then applied to the selec-
tion candidate (SC) population, also genotyped, to calculate the 
genomic estimated breeding values (GEBVs) on which selection 
is then based (Meuwissen et al., 2001; reviewed by Heslot et al., 
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ABSTRACT
Genomic selection (GS) can be effective in 
breeding for quantitative traits, such as yield, 
by reducing the selection cycle duration. Speed 
breeding (SB) uses extended photoperiod and 
temperature control to enable rapid generation 
advancement. Together, GS and SB can syner-
gistically reduce the breeding cycle by quickly 
producing recombinant inbred lines (RILs) 
and enabling indirect phenotypic selection to 
improve for key traits, such as height and flow-
ering time, prior to field trials. In addition, traits 
measured under SB (SB traits) correlated with 
field-based yield could improve yield predic-
tion in multivariate GS. A 193-line spring wheat 
(Triticum aestivum L.) training population (TP), 
tested for grain yield in the field in multiple envi-
ronments, was used to predict grain yield of a 
350-line selection candidate (SC) population, 
across multiple environments. Four SB traits 
measured on the TP and SC populations were 
used to derive principal components, which 
were incorporated into multivariate GS models. 
Predictive ability was significantly increased by 
multivariate GS, in some cases being twice as 
high as univariate GS. Based on these results, 
an efficient breeding strategy is proposed 
combining SB and multivariate GS using yield-
correlated SB traits for yield prediction. The 
potential for early indirect SB phenotypic selec-
tion for targeted population improvement prior 
to trials was also investigated. Plant height and 
flowering time showed strong relative predicted 
efficiency to indirect selection, in some cases as 
high as direct field selection. The higher selec-
tion intensity and rate of generation turnover 
under SB may enable a greater rate of genetic 
gain than direct field phenotyping.
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2015). Phenotyping of the SC population is not required 
prior to selection to decide the next generation of parents 
and/or potential varieties, thereby saving time. However, 
in practice, phenotyping will be valuable in subsequent 
generations to retrain the prediction model and maintain a 
TP that is closely related to the next cycle of SC lines (Sun 
et al., 2016; Neyhart et al., 2017; Brandariz and Bernardo, 
2018; Tiede and Smith, 2018).

The higher the accuracy of GS, the greater the genetic 
gain when comparing breeding cycles of the same length. 
Multivariate GS, where traits correlated to the trait of 
interest (secondary traits) are included in the prediction 
model, can increase prediction accuracy (Pszczola et al., 
2013; Rutkoski et al., 2016). However, there are two 
issues associated with the increased prediction accuracy 
observed in multivariate GS studies on cereal popula-
tions. First, in practice, increased accuracy has only been 
observed when the secondary traits are measured on the 
SC population, as well as the TP (Calus and Veerkamp, 
2011; Jia and Jannink, 2012; Guo et al., 2014; Rutkoski 
et al., 2016; Sun et al., 2017; Fernandes et al., 2018). 
Within a breeding program framework looking to predict 
grain yield, this would mean the loss of the reduction in 
breeding cycle duration, since it would first be neces-
sary to grow and phenotype the SC lines in the field 
prior to selection. Second, most studies on multivariate 
GS have used cross-validation within environments to 
calculate GEBVs, which can result in overestimation of 
the accuracy since the TP and SC population have expe-
rienced the same genotype ´ environment interactions 
(Lorenz et al., 2011).

Speed breeding (SB) is a method of rapid generation 
advance where plants can be grown in a temperature-
controlled glasshouse under prolonged photoperiod to 
increase the rate of development (Watson et al., 2018). 
Healthy, adult spring wheat plants with morphology 
similar to that of plants grown under diurnal conditions 
can be obtained within 8 wk of sowing, which enables 
phenotyping of a range of traits that would require a whole 
season in the field to develop. Using SB, yield secondary 
traits could be rapidly phenotyped on the SC lines and 
incorporated into multivariate GS models with field-
measured grain yield of the TP with the aim of increasing 
the prediction ability above that of a univariate GS. This 
would also provide an opportunity to couple rapid SC 
population development with phenotyping to demonstrate 
incorporation of SB within a GS program. Despite the SB 
conditions being an environment distinct from the field, 
some level of genetic correlations between traits measured 
during SB and traits phenotyped in the field may still be 
adequate. Watson et al. (2018) demonstrated that several 
traits, such as flowering and plant height, could be faith-
fully phenotyped under SB conditions in a variety of crop 
species, including spring wheat. In addition, the controlled 

conditions of the glasshouse may result in higher herita-
bility of SB traits, which is also necessary for increased 
accuracy within multivariate models (Henderson and 
Quaas, 1976; Lorenzana and Bernardo, 2009; Daetwyler 
et al., 2010). Other simply measured traits that are likely 
to correlate to yield include spike length and flag leaf 
length. Spike length can be indicative of the number of 
grains developed on the rachis, and the flag leaf has long 
been described as an important source of photoassimi-
lates during grain filling (Lupton, 1966). Recent studies 
have linked quantitative trait loci (QTL) associated with 
yield components to flag leaf morphology (Liu et al., 2017; 
Zhao et al., 2018).

Due to the complexity of grain yield, there are 
numerous related traits that have potential to be included 
in multivariate models. However, there are computa-
tional constraints to including many variables in a single 
model, especially as secondary traits are often correlated 
not only with yield but also with each other. This can 
lead to overfitting of the model and increased probability 
of spurious errors (Sainani, 2014). Principal component 
analysis (PCA) is a method of data reduction of correlated 
variables, where predictors are condensed into a new set of 
uncorrelated variables (principal components [PCs]) with 
minimal loss of information (Abdi and Williams, 2010). 
These could be used within the prediction model instead 
of data for each distinct trait, a method of data dimension 
reduction that has been used in both plant (El-Dien et al., 
2015) and animal (Bolormaa et al., 2010) breeding with 
positive results.

Indirect phenotypic selection and population enrich-
ment for important traits prior to field trials may also be 
enabled by SB. Provided the heritability and correlation 
between the field-based traits and secondary SB traits are 
sufficient, indirect phenotypic selection could be more 
efficacious than direct selection. The loss of accuracy 
through indirect selection might be compensated for if the 
secondary trait is more easily or rapidly phenotyped than 
the target trait itself (Falconer and Mackay 1996). Traits 
such as plant height and time to anthesis are important to 
grain yield production in the field and generally exhibit 
relatively high heritability. For example, early or late 
flowering can be desirable, depending on which strategy 
will allow the longest grain-filling period before unfa-
vorable environmental conditions strike (Passioura, 1977). 
Indirect selection under SB could therefore be tailored 
to the target environment and the specific population to 
ensure appropriately adapted lines are rapidly produced 
during successive generations prior to being tested within 
a field environment for more complex traits, such as yield. 
Equivalent improvement in the field would require more 
time and resources, and thus SB indirect phenotypic selec-
tion could be a faster way to increase genetic gain for these 
important traits.

https://www.crops.org


crop science, vol. 59, september–october 2019  www.crops.org 1947

al. (2013) as either experiencing little or no water deficit during 
the growing season (no-deficit) or as experiencing significant 
water deficit around anthesis (anthesis-deficit). A summary of 
the location, year, and environment classification of the trials is 
provided in Table 1. All trials were phenotyped for grain yield, 
senescence indices, time to anthesis (DTA), plant height, and 
establishment. The same lines were also phenotyped for seminal 
root angle in gel-filled chambers, as previously reported (Chris-
topher et al., 2013).

Selection Candidates
The SC population was created by selecting the 20 best lines from 
the TP, based on a selection index of GEBV for yield including 
own phenotypes and weighted for performance within an envi-
ronment experiencing water deficit (Fig. 1c). Yield GEBVs from 
no-deficit environments were weighted a quarter of those from 
anthesis-deficit environments to assign more value to those lines 
producing higher yields in water-stressed conditions. Calcula-
tion of GEBVs is detailed below. Intercrossing of parents and a 
subsequent single seed descent (SSD) breeding program were 
performed under SB conditions in a temperature-controlled 
glasshouse (Fig. 1d). General details of the SB method are 
provided in Watson et al. (2018). Photoperiod duration ranged 
from 22 h to constant light provided by high-pressure sodium 
vapor lamps (Philips SON-T 400W E E40 in Sylvan High Bay 
housing with a glass diffuser), in addition to natural light during 
the day. Shorter durations of diurnal lighting periods were occa-
sionally implemented due to the needs of other activities within 
the glasshouse resulting in a slower generational turnover than 
would be expected if optimal SB conditions were consistently 
used. The temperature regime was 17/22°C using a 12-h cycle. 
The 20 selected parents were intercrossed using a half-diallel 
scheme and then inbred from F1 by SSD, whereby up to eight 

After the development of a wheat breeding popula-
tion under SB conditions, the objectives of this study were 
(i) to determine if grain yield prediction ability could be 
increased by including yield secondary traits, phenotyped 
under SB, in multivariate GS models, and (ii) to assess the 
potential of indirect phenotypic selection for plant height 
and days to anthesis (DTA) under SB for improvement of 
wheat populations prior to field trials. These objectives 
would help determine the efficacy of a breeding strategy 
combining these tools into an efficient method to increase 
genetic gain for yield in spring wheat.

MATERIALS AND METHODS
Training Population
The TP consisted of 193 lines of a spring wheat double-
haploid population, derived from a cross between SeriM82 and 
Hartog (Fig. 1a). The population consisted of both F1– (77) 
and single backcross (BC1)-derived (106) lines with Hartog as 
the recurrent parent. The population was previously selected 
for similarity in days to maturity and height, as described in 
Christopher et al. (2013). SeriM82 is a widely adapted, drought-
tolerant line produced from a CIMMYT breeding program 
(Olivares-Villegas et al., 2007; Villareal et al., 1995). Hartog 
is an Australian-adapted line derived from the CIMMYT line 
Pavon (Sivapalan et al., 2003). Five field trials of the TP were 
performed between 2010 and 2012 at Gatton and Warwick in 
southern Queensland, Australia (27°540¢ S, 152°340¢ E, 89 m 
asl and 28°210¢ S, 152°100¢ E, 480 m asl, respectively) and are 
described in detail in Christopher et al. (2014) (Fig. 1b). The 
parental lines, Seri M82 and Hartog, were included in the trials. 
These trials were environmentally characterized by Chenu et 

Fig. 1. Schematic of workflow performed in current study beginning with the (a) training population (TP), (b) phenotyping of the TP in 
the field and under speed breeding (SB) conditions, (c) genomic selection (GS) of parents for the selection candidate (SC) population, 
(d) SC population development using single seed descent (SSD) under SB, and (e) separate phenotyping of the SC lines under SB. 
Phenotypes of SB traits on the TP and SC lines are included together in a principal components analysis (PCA) to calculate the SB 
principal components (SB-PCs) for use in (f) the multivariate GS applied to SC lines. (g) Field-based yield trials of the SC population are 
performed to validate the yield predictions. Blue box = field, red box = speed breeding conditions, and yellow box = selection. GEBV, 
genomic estimated breeding value.
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plants from each family were grown and selfed, and one seed 
from each plant was selected for the next generation. This process 
was continued until the F5 generation, at which time the seed 
from each plant was bulked for subsequent seed increase in the 
field. Each generation required approximately 10 to 13 wk. Seeds 
were harvested at ?2 wk postanthesis and then underwent 7 d 
drying at 35°C, 1 d imbibing at room temperature, and 5 d at 
4°C, allowing seed to be sown ?2 wk after harvest. The final SC 
population consisted of 350 homozygous lines derived from 78 
families (4–8 lines per family). Development of the SC popula-
tion was completed within just 15 mo.

Speed Breeding Traits
In two separate SB glasshouse trials, using a 22-h photoperiod 
and the temperature regime described above, 120 lines of the 
TP and all lines of the SC population were sown in a random-
ized complete block design (Fig. 1a and 1e, respectively). Five 
replicates per line were sown at a density of 12 plants per 4-L 
transparent ANOVApot pot (200-mm diam., 190-mm height, 
www.anovapot.com/php/anovapot.php), as described in the 
“clear-pot” method (Richard et al., 2015). Although the clear-
pot method was originally developed for measuring seedling root 
traits, the plants can also be grown to maturity in a space-effi-
cient and convenient configuration for measuring aboveground 
characteristics. The experiment was blocked by replicate and 
lines were randomized within each block while ensuring that 
the same line did not occur twice in the same pot. Soil media was 
70% composted pine bark (0–5 mm) and 30% coco peat to which 
was added Yates Flowtrace fertilizer (1 kg m−3), iron sulfate 
heptahydrate (1 kg m−3), superphosphate (0.4  kg m−3), copper 
sulfate (0.03 kg m−3), gypsum (1 kg m−3), and the controlled-
release fertilizer, Scott’s Osmocote Plus trace elements at 2 g L−1 
soil. The final pH was adjusted to 5.5 to 6.5.

Traits were measured on the primary tiller of each plant. 
Traits included DTA, plant height (cm), spike length (cm), and flag 
leaf length (cm). The latter three traits were assessed postanthesis.

Field Evaluation of Selection Candidates
The SC lines were evaluated in three partially replicated field 
trials performed in the growing season of 2017 (Fig. 1g). Hartog 
was included as a check for comparison with the TP field trials. 

Each trial was laid out using a row–column design of 500 plots 
with 30% of lines replicated. Plots were 1 ´ 4 m with a target 
density of 100 plants m−2. One rainfed trial was performed at 
Warwick (WAR17rf-SC) with 12 columns and 42 rows. One 
irrigated (GAT17ir-SC) and one rainfed (GAT17rf-SC) trial 
were performed at Gatton with 14 columns and 36 rows each. 
Prior to sowing, soil tests were performed to determine N and 
P concentrations and parasitic nematode densities. Nematode 
densities were found to be lower than those known to cause 
damage to wheat cultivars. All plots in each trial were pheno-
typed for DTA, plot height, and grain yield, with the exception 
that plot height data were not available for the Warwick SC trial 
(WAR17rf-SC). A summary of these trials is given in Table 1.

Analysis of Field Trial Results
Analysis was performed using R software version 3.3.2 (R 
Core Team, 2016) and the R package ASReml-r (Butler et al., 
2009). Grain yield, DTA, and plant height were analyzed using 
a general mixed model approach, where means were adjusted 
for environmental effects within each TP and SC trial for each 
line (Gilmour et al., 1997; Smith et al., 2001; Kelly et al., 2007). 
This was done by calculating best linear unbiased estimates 
(BLUEs) using the following spatial mixed model from Laird 
and Ware (1982):

y = Xb + Zu + e [1]

where y was an n ´ 1 vector of phenotype records, where n is 
the number of phenotypic observations; X and Z were design 
matrices associated with the fixed and random effects, respec-
tively; and b was a vector of fixed effects including genotype, a 
linear column term, and a linear row term. The linear column 
and row terms modeled the global variation across the field in 
the row and column directions. Random effects, u, included 
replicate, a row term, and a column term. The random column 
and row terms modeled the extraneous variation within the 
field induced by management practices such as irrigation and 
harvesting. Finally, e was a vector of random residual effects. 
Apart from genotype and replicate, variables were only included 
if their effects were statistically significant (p < 0.05) within 
that trial. To calculate overall grain yield BLUEs for a grouping 
of field trials, a multienvironment trial analysis was performed 

Table 1. Summary of training population (TP) and selection candidate (SC) trials and mean grain yield.

Trial† Location Year Environment‡ Grain yield Percentage of check§
g m−2 %

TP trials

 GAT10ir-TP Gatton 2010 No-deficit 467 ± 7 74.2

 GAT10rf-TP Gatton 2010 No-deficit 501 ± 7 80.0

 GAT12rf-TP Gatton 2012 Anthesis-deficit 659 ± 3 130.5

 WAR11rf-TP Warwick 2011 No-deficit 438 ± 4 80.0

 WAR12rf-TP Warwick 2012 Anthesis-deficit 546 ± 4 115.6

SC trials

 GAT17ir-SC Gatton 2017 535 ± 4 85.2

 GAT17rf-SC Gatton 2017 347 ± 6 76.2

 WAR17rf-SC Warwick 2017 464 ± 5 85.3

† Suffix “ir” is irrigated and “rf” is rainfed, trials were carried out at Gatton (GAT) or Warwick (WAR), and year is included in the trial name.

‡ Environmental classification was carried out by Chenu et al. (2013).

§ Percentage of check is the mean grain yield of the trial as a percentage of the mean yield of the check cultivar, Hartog.

https://www.crops.org
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for yield (193 + 350 = 543 ´ 1), where nSC is the number of SC 
lines (350); e was an (nTP + nSC) ´ 1 vector of random residual 
effects; and Z was a design matrix relating BLUEs to lines. 
The GEBVs were assumed distributed g ~ N(0, Gs2

g) and e ~ 
N(0, Is2

e), where G is the realized genomic relationship matrix 
of size (nTP + nSC) ´ (nTP + nSC). The G matrix was calculated 
using the method described by VanRaden (2008), Method 1; I 
was an identity matrix; s2

g was the genetic variance and s2
e was 

the residual variance.
When SB-PCs traits were included in addition to TP grain 

yield, the following multivariate model was used to generate 
SC GEBVs for yield and variance components:

1 1 1 1 10

0

n

i n i i i i

         
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where variables were as in the univariate model but with addi-
tional traits included up to the ith trait. For example, for two 
traits it was assumed that 
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is the variance-covariance matrix of TP grain yield and an 
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is the residual variance-covariance matrix of TP grain yield 
and an SB-PC. G was the realized genomic relationship matrix 
with GÄT as the Kronecker product of G and T. This equation 
was extended for multiple traits (e.g., two SB-PCs as well as 
grain yield).

Heritability and Genetic Correlations
Narrow-sense heritability (h2), or “genomic heritability” (de los 
Campos et al., 2015), of traits were estimated using variance 
components generated from the univariate GBLUP model, 
described above, as follows:

( )
2
g2

2 2
g e

h
s

s s
=

+
 [4]

where s2
g was the additive genetic variance attributed to line 

and s2
e was the residual variance.

Genetic correlations (rg) between traits, including grain 
yield from different trials, were calculated using variance 
components generated from the multivariate model as described 
above. Only two traits were included concurrently for the 
genetic correlation calculation as follows:

with a similar model to that above but with all variables nested 
within a fixed term for each trial.

Analysis of Speed Breeding Traits and 
Principal Component Analysis
The line means of SB traits were adjusted for environmental 
effects, using the same R software package and model as for 
field-based phenotypes, although the random effects were the 
pot and plant position within the pot to calculate the BLUEs 
for each trait for each line. The genetic correlations between SB 
traits were calculated using the variance components estimated 
in the genomic best linear unbiased predictor (GBLUP) multi-
variate model described below in Eq. [3], where the BLUEs 
of SB traits were used as the phenotypic observations and two 
SB traits were included pairwise. To perform the PCA, the 
eigenvalues and vectors of a square matrix (4 ´ 4), consisting 
of bivariate genetic correlations (rg) between all four SB traits 
of the TP and SC lines (grain yield was not used to calculate 
any of these correlations), were generated through the “eigen()” 
command in the R statistical software Base package. The 
proportion of variation explained by each PC was determined 
by dividing the corresponding eigenvalue by the sum of all 
eigenvalues. The trait loadings on the first and second PCs were 
then used to generate two new “phenotypes” for each line (PC1 
and PC2). This was done for each line by multiplying the PC 
trait loading by its corresponding trait value and summing the 
four resultant values. These were then used in further analyses 
as described below, referred to as SB-PCs (Fig. 1f ).

Genotyping
The TP and SC populations were both genotyped with genome-
wide single nucleotide polymorphism (SNP) markers using 
genotyping-by-sequencing (Elshire et al., 2011). Genotyping 
of the TP population was performed before the SC popula-
tion was created to calculate the GEBVs for parent selection; 
however, once the SC population was genotyped, the SNPs 
of both populations were recalled together. A total of 6471 
polymorphic markers were identified, from which markers 
containing >50% missing data and a minor allele frequency of 
<2.5% were removed, leaving a total of 4943 markers. Missing 
data were imputed using random forest imputation of 500 trees 
with the R package missForest (Stekhoven and Bühlmann, 
2011; Stekhoven 2015).

Genomic Breeding Value Estimation
The realized genomic relationship matrix was created using 
the R package rrBLUP (Endelman, 2011) with all TP and SC 
lines included. The ASReml-R statistical package was used to 
calculate GEBVs and estimate variance components from the 
GBLUP method (Habier et al., 2007; VanRaden, 2008; Hayes 
et al., 2009). As environmental effects were incorporated earlier 
in the calculation of the BLUEs, only the population mean (m) 
was required as a fixed effect. The univariate model was

y = 1nm + Zg + e [2]

where y was an nTP ´ 1 vector of TP grain yield BLUEs (193 
´ 1), where nTP is the mumber of TP lines (193); 1n was an nTP 
´ 1 vector of ones; g was an (nTP + nSC) ´ 1 vector of GEBVs 
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2
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where rg was the genetic correlation between Trait 1 and Trait 
2; s2

g12 was the genetic covariance between the two traits; and 
s2

g1 and s2
g2 were the genetic variances of Trait 1 and Trait 2, 

respectively.
An approximation of the standard error of genetic correla-

tions (Zar, 1999) was calculated as

( )
2
g

g

1

2

r
x r

n

−
=

−
 [6]

where n was the number of pairs used to derive the correlation, 
specifically nTP + nSC.

Genomic Prediction and Validation
Only the grain yield phenotypes of the TP were used in univar-
iate models. Two multivariate models were used that included, 
first, TP grain yield and the first SB-PC of the TP and SC 
lines (MV-PC1), and second, TP grain yield and the first and 
second SB-PCs of the TP and SC lines (MV-PC1–2). Grain 
yield phenotypes of the SC population were never included 
within the prediction model and only grain yield of the TP 
and SB-PCs were used to predict the GEBVs of the SC lines. 
Predictive ability was determined by taking the mean of the 
Pearson’s correlation coefficient of SC grain yield GEBVs and 
SC grain yield BLUEs, calculated for each of the SC field trials 
performed at Gatton and Warwick, as described above (Fig. 1f ). 
Prediction accuracy contrasts with that of prediction ability 
in that, for prediction accuracy, the correlation between the 
GEBVs and estimated breeding values (EBVs, here as BLUEs) is 
divided by the square root of the heritability. This correction is 
to account for the error of phenotyping and therefore the differ-
ence between the EBV and true breeding value, which cannot 
be directly measured. However, heritability is highly sensitive 
to environmental effects and could cause overinflation of the 
estimate of accuracy. Therefore, to be conservative, predictive 
ability has been used here. The standard error of the predic-
tion ability correlation was given by 1 3n −  (Fisher, 1921), 
where n is the number of lines, specifically nSC.

Indirect Speed Breeding Phenotypic Selection
To determine the possibility of using indirect selection for plant 
height and DTA under SB conditions and compare with that 
of direct selection in the field, the predicted relative efficiency 
was calculated for the TP and SC population. This was the ratio 
between the predicted correlated response of these traits in the 
field to selection under SB conditions (numerator) and predicted 
direct response of selection of the same traits in the field (denom-
inator), as described by Falconer and Mackay (1996):

gCR y yx

x x

i r h

R i hx
=  [7]

where CRx is the predicted correlated response of the trait in 
the field from indirect selection of the trait under SB; Rx is the 

predicted response to direct selection of the trait in the field; iy 
is the selection intensity of the secondary trait under SB; ix is the 
selection intensity of the field-based trait; hy is the narrow-sense 
heritability of the SB trait; hx is the narrow-sense heritability of 
the field-based trait; and rg is the genetic correlation between 
the field-based and SB traits, as defined in Eq. [5]. Selection 
intensity can be varied in practice, although to highlight the 
effect of the heritability and correlation of secondary traits with 
grain yield, intensity was considered constant within calcula-
tions here. By looking at both the TP and SC lines, in multiple 
trials, the consistency of this approach in different populations 
could be determined. Plant height and DTA were measured 
both in the field and under SB conditions, as described above.

RESULTS
The TP and SC population trials performed at Gatton 
and Warwick produced a relatively narrow range in mean 
grain yields across trials (Table 1). The highest yield in 
a TP trial was produced during the GAT12rf-TP trial, 
which was classified as experiencing anthesis-deficit, and 
the lowest yield was at WAR11rf-TP, which was clas-
sified as no-deficit (Table 1). In the SC trials, both the 
highest and lowest grain yields were produced at Gatton, 
the highest being the GAT17ir-SC trial and the lowest 
the GAT17rf-SC trial. With the exclusion of GAT12rf-TP 
and WAR12rf-TP, all TP and SC trials appeared relatively 
similar in yield production when compared with the check 
cultivar, Hartog, included in each trial (Table 1).

Relationship between the Training 
Population and Selection Candidates
The genetic relationship between the TP and SC is 
important to prediction ability, and therefore the PCs of 
the genetic markers were plotted to visually assess their 
relatedness. This plot confirmed the TP and SC lines were 
closely related as shown by their dispersal throughout the 
same cluster (Fig. 2). As expected, the two parents were 
on the extremes of the first PC. Also anticipated, there 
was clear clustering of the backcross TP lines towards 
the recurrent parent, Hartog, indicating they were more 
genetically distant from the SC lines clustering closer to 
SeriM82. It was determined that PC1 and PC2 accounted 
for 12 and 7% of the genetic variation, respectively.

Heritability and Genetic Correlations
The heritability of the target and secondary traits are 
important to determine the benefit that may be derived 
from multivariate GS and indirect selection. All SB traits 
of both the TP and SC lines had a higher heritability than 
grain yield from all TP field trials (Table 2). Heritabilities 
for the TP and SC were estimated in separate SB trials, so 
they should not be directly compared between populations.

Narrow-sense heritability of grain yield was low 
across all field trials of the TP (Table 2). There was a rela-
tively narrow range of grain yield heritability across sites 
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and environmental types, although the trials performed at 
Gatton had the lowest heritability of all trial groupings.

The genetic correlations among grain yields of the TP 
field trials were strong between those performed at Gatton 
and trials classified as experiencing no water deficit and 
between trials performed at Warwick and those classified 
as experiencing water deficit at anthesis (Fig. 3, left). This 
was also the case for all TP trial groupings and when all 
TP trials were considered collectively. However, correla-
tions were consistently weak between both Gatton and 
no-deficit TP trials and the Warwick and anthesis-deficit 
TP trials.

The results of the TP trials were mirrored in the 
SC trials in that there were strong genetic correlations 
between the two Gatton SC trials, whereas the correla-
tions of both these trials with the trial at Warwick were 
weak (Fig. 3, right). The strength of the relationship with 
Warwick remained low when all SC trials were consid-
ered collectively.

Principal Component Analysis of Speed 
Breeding Traits
The genetic correlations between SB traits were used 
to derive their PCs. The genetic correlations among SB 
traits of the TP and SC population were mainly moderate 
to moderately strong (Table 3). The PCs resulting from 
the PCA of these genetic correlations showed that the 
majority of the variation was captured in the first two 

PCs and <10% was explained by the third and fourth PCs 
combined. The proportion of total variation captured by 
each PC were 0.64 for PC1, 0.29 for PC2, 0.05 for PC3, 
and 0.03 for PC4. Therefore, only PC1 and PC2 were 
used for further analyses.

The genetic correlations between the target and 
secondary traits, in this case the SB-PCs, are important in 
determining the benefit that may be derived from multi-
variate GS. The genetic correlation of grain yield at Gatton 
and no-deficit TP trials with SB-PC1 and SB-PC2 were 
slightly stronger than that between Warwick trials and 
the SB-PCs (Table 4). Those between anthesis-deficit TP 
trials and the SB-PCs were much weaker than all other 
TP trial groupings. In the SC trials, the genetic correla-
tions were strong between grain yield of the Gatton SC 
trials and SB-PC1 and SB-PC2. This contrasted with 
the relationship between the Warwick SC trial and the 
SB-PCs, which was weak and opposite in direction. The 
genetic correlations between individual SB traits and yield 
from each trial is provided in Supplemental Table S1.

Multivariate Grain Yield Genomic Prediction 
Including Speed Breeding Traits
Using univariate and multivariate (MV-PC1 and 
MV-PC1&2) models, the grain yield of each SC trial was 

Fig. 2. Scatter diagram of Principal Component (PC) 1 and 2 
vectors calculated by the principal component analysis (PCA) 
of 4943 genotyping-by-sequencing (GBS) single nucleotide 
polymorphism (SNP) markers of the training population (TP), 
selection candidates (SC), and parents (SeriM82 and Hartog). 
SxH, SeriM82 ´ Hartog.

Table 2. Narrow-sense heritability (h2) of speed breeding (SB) 
traits measured on the training population (TP) and selection 
candidates (SCs), grown and phenotyped in separate SB 
glasshouse trials, and h2 of grain yield from all TP and SC 
field trials.

Trait h2 value
Speed breeding traits
 Training population
   Days to anthesis 0.60
   Height 0.54
   Spike length 0.57
   Flag leaf length 0.51
 Selection candidates
   Days to anthesis 0.30
   Height 0.71
   Spike length 0.43
   Flag leaf length 0.34
Grain yield
 TP trials†
   All TP trials 0.20
    Gatton (GAT10ir-TP, GAT10rf-TP, GAT12rf-TP) 0.14
    Warwick (WAR11rf-TP, WAR12rf-TP) 0.23
    No-deficit (GAT10ir-TP, GAT10rf-TP, WAR11rf-TP) 0.24
    Anthesis-deficit (GAT12rf-TP, WAR12rf-TP) 0.29
 SC trials
   GAT17ir-SC 0.37
   GAT17rf-SC 0.46
   WAR17rf-SC 0.48

† Groupings of TP trials were based on location (Gatton [GAT] or Warwick [WAR]) 
or environmental characterization (no-deficit or anthesis-deficit). The number and 
identity of trials in each TP grouping is indicated in parentheses, the details of 
which are given in Table 1.
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predicted with a grain yield dataset from all the TP trials 
(Fig. 4a), all Gatton TP trials (Fig. 4b), all Warwick TP 
trials (Fig. 4c), all no-deficit classified TP trials (Fig. 4d), 
or all anthesis-deficit classified TP trials (Fig. 4e). This 
was to test first whether multivariate models would 
improve grain yield prediction ability, and second how 
prediction ability would vary depending on the TP used 
and the SC environment predicted into. The MV-PC1&2 
prediction models had a significantly higher grain yield 
prediction ability than univariate prediction models using 
grain yield data from any TP grouping to predict into 

either SC trial in Gatton (GAT17ir-SC or GAT17rf-SC, 
Fig. 4a–4e). This was even the case when TP grain yield 
data were only from Warwick trials (Fig. 4c). The increase 
was up to fourfold compared with the univariate model. 
In contrast, when predicting grain yield of the Warwick 
SC trial (WAR17rf-SC), there was no increase in predic-
tion ability when SB-PCs were included, regardless of the 
TP data used (Fig. 4a–4e). Furthermore, the best predic-
tion from a univariate model was found when Warwick or 
anthesis-deficit TP grain yield data were used to predict 
into Warwick SC trial (Fig. 4c and 4e).

When Warwick or anthesis-deficit TP grain data 
were used to predict grain yield of SC trials in Gatton, 
it appeared that the addition of SB-PC2 enabled a 
greater prediction ability increase than when Gatton or 
no-deficit TP grain yield data was used (compare Fig. 
4c and 4e with Fig. 4b and 4d). There was no addi-
tional benefit from including grain yield data from all 
TP trials (Fig. 4a). In this situation, there was still a 
significant increase in prediction ability of multivariate 
models predicting into Gatton but multivariate predic-
tion for the Warwick SC trial was significantly lower 
than univariate prediction. To determine if selection 
for yield was merely selecting lines with a longer time 
between anthesis and maturity, the average number of 
DTA of the predicted 10 highest and 10 lowest yielding 
lines for each SC trial were compared (data not shown). 
Using the univariate models, the differences in DTA 
between these subsets was always <1 d for all SC trials, 
and using the MV-PC1&2 models, the differences were 
always <4 d.

Indirect Selection under Speed Breeding
To compare indirect phenotypic selection under SB with 
direct phenotypic selection in the field the genetic corre-
lations of the SB trait and the field-equivalent trait were 

Fig. 3. Left: heat map of genetic correlations amongst grain yield of all training population (TP) field trials combined and groupings of TP 
trials based on location (Gatton or Warwick) or environmental characterization (no-deficit or anthesis-deficit). Trials included in each group 
are identified in Table 2. Right: heat map of genetic correlations among grain yields of the selection candidate (SC) field trials.

Table 3. Genetic correlations among speed breeding (SB) 
traits of the training population and selection candidates.

SB trait DTA† Height
Spike 
length

Flag leaf 
length

DTA 1.00

Height 0.71 1.00

Spike length 0.41 0.41 1.00

Flag leaf length 0.46 0.28 0.74 1.00

† DTA, days to anthesis.

Table 4. Genetic correlations between training population 
(TP) and selection candidate (SC) trial grain yield and the first 
and second principal components (PC1 and PC2) of speed 
breeding (SB) traits measured on both populations.

Genetic correlations
Trial SB-PC1 SB-PC2
TP trial groups

 Gatton (GAT10ir-TP, GAT10rf-TP, GAT12rf-TP) 0.68 0.52

 Warwick (WAR11rf-TP, WAR12rf-TP) 0.43 0.33

 No-deficit (GAT10ir-TP, GAT10rf-TP, WAR11rf-TP) 0.55 0.39

 Anthesis-deficit (GAT12rf-TP, WAR12rf-TP) 0.03 0.10

 Mean 0.42 0.34

SC trials

 GAT17ir-SC 0.90 0.79

 GAT17rf-SC 0.89 0.71

 WAR17rf-SC −0.17 −0.12

 Mean 0.36 0.46
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determined, after which the predicted relative efficiency of 
indirect selection was calculated. Both the TP and SC lines 
were investigated separately for the predicted response to 
indirect selection of plant height and DTA in each trial to 
determine whether results were consistent across populations 
and locations or environments. The genetic correlations 
between plant height and DTA phenotyped in the field and 
under SB conditions in the TP were weaker than those in 

the SC populations, which were strong regardless of the 
field environment at Gatton (Table 5). However, this was 
still relatively strong for plant height in the TP.

The predicted response to indirect and direct selection 
of plant height was consistent over all TP trial environments, 
with direct selection showing approximately a 1.5 times 
higher predicted response than indirect selection (Table 6). 
Predicted response to selection of DTA across the different 

Fig. 4. Grain yield prediction ability for selection candidate (SC) field trials (GAT17ir-SC, GAT17rf-SC, and WAR17rf-SC) using a univariate 
genomic selection (GS) model incorporating only grain yield data of the training population (TP) groupings, a multivariate GS model using 
grain yield of the TP and speed breeding Principal Component 1 (SB-PC1) of the TP and SC SB traits (MV-PC1), or a multivariate model 
using grain yield of the TP and SB-PC1 and SB-PC2 of the TP and SC SB traits (MV-PC1&2). TP grain yield data were collected from 
(a) all trials performed in both Gatton and Warwick, (b) three trials at Gatton (GAT10ir-TP, GAT10rf-TP, and GAT12rf-TP; two no-deficit, one 
anthesis-deficit), (c) two trials at Warwick (WAR11rf-TP, WAR12rf-TP; one no-deficit, one anthesis-deficit), (d) three trials where no significant 
water deficit occurred (GAT10ir-TP, GAT10rf-TP, WAR11rf-TP), or (e) two trials that experienced significant water deficit at anthesis (GAT12rf-
TP, WAR12rf-TP). Prediction ability is the Pearson’s correlation coefficient of grain yield genomic estimated breeding values (GEBVs) and the 
SC grain yield best linear unbiased estimates (BLUEs) from each SC trial. Error bars indicate standard error of the correlation.
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trials was also relatively stable, although the predicted 
response to indirect selection for DTA was lower than that 
for plant height. For DTA, the predicted response to direct 
selection was more than twice that for indirect selection.

The predicted response to indirect selection of plant 
height in the SC population (using Eq. [7]) was similar 
to that of predicted direct selection response in both the 
Gatton field trials, as was predicted indirect selection 
response of DTA in the irrigated field trial. The predicted 
response to indirect selection of DTA in the dryland trial 
was less than half of that of predicted direct selection in 
that environment (Table 6).

DISCUSSION
The aims of this study were to develop an SB-derived spring 
wheat population and determine whether SB traits measured 
on this population could increase the grain yield predic-
tion ability in multivariate GS models in comparison with 
univariate GS models. This was to determine the potential 
of a breeding strategy incorporating SB and GS to increase 
genetic gain for yield. Indirect phenotypic selection of plant 
height and DTA under SB conditions for improvement of 
wheat populations prior to field trials was also explored using 
predicted responses to selection under SB and in the field.

Speed Breeding Enabled Rapid Population 
Development
This study demonstrated the rapid creation of a new spring 
wheat SC population, from intercrossing of parents to the 
F5 generation, in little over a year (15 mo). Under ideal SB 
conditions, creation of an inbred population could have 
been achieved in ?12 mo, depending on the genotypes; 
however, this was not reached here due to other glass-
house activities requiring shorter photoperiods. The newly 
SB-developed lines produced high yields and, when mean 
trial yield was expressed as a percentage of the check cultivar, 
the SC population was generally comparable with the TP 
in terms of yield in the same location and with the same 
watering regime (i.e., irrigated or rainfed). Large yearly 
rainfall differences were observed between TP trials within 
the same location that also contrasted in yield (Supplemental 
Table S2), which may have affected the similarity between 
SC and TP yields in these locations, in these instances. This 
demonstrates comparative development to spring wheat 
plants grown in diurnal field conditions and how robust 
advancement of breeding populations can be achieved in 
a short time in the SB system. Rapid development of a TP 

and SC population could be incorporated in an efficient 
breeding strategy to allow selection sooner (Fig. 5a, 5c, and 
5e). As previously shown in a range of species, SB condi-
tions enable fast generation turnover that is ideal for SSD 
programs (Ghosh et al., 2018). However, this study is the 
first to report the full process of population development 
using the SB protocol and subsequent use of the population 
in a GS program.

Development of the SC population under SB using SSD 
presents the opportunity to phenotype for SB traits during 
one of the advanced generations, such as the F5. Although 
this was not performed in the current study, the F5 was 
phenotyped under SB using the same growing method 
as was used for the SSD process to create the population. 
This indicates population development of SC lines could 
be efficiently combined with phenotyping of SB traits and 
multivariate GS applied to the F5 generation to determine 
which lines could be advanced to field trials and to be used 
as the parents of the next round of crossing (Fig. 5c), thus 
allowing more selection cycles in a given time.

Multivariate Genomic Selection with Speed 
Breeding Traits Significantly Improved Grain 
Yield Prediction Ability
Regardless of the TP used, the inclusion of SB-PCs in 
multivariate GS models significantly increased grain yield 

Table 5. Genetic correlation between field-based plant height and days to anthesis (DTA) measured on the training population 
(TP) or selection candidates (SC) in field trials and the same traits measured on the same lines under speed breeding (SB) 
conditions. Details of the trials are given in Table 1.

Genetic correlation
Field-based trait SB trait GAT10ir-TP GAT12rf-TP GAT17ir-SC GAT17rf-SC
Plant height Height 0.65 0.71 0.95 0.96
DTA DTA 0.40 0.40 0.84 0.90

Table 6. Predicted response to direct phenotypic selection 
in the field (h) in the training population (TP) trials, GAT10ir-
TP and GAT12rf-TP, and the selection candidate (SC) tri-
als, GAT17ir-SC and GAT17rf-SC, for plant height and days 
to anthesis (DTA), indirect phenotypic selection (h.rg) under 
speed breeding for the same traits, and the ratio between 
both modes of selection. Details of the TP and SC trials are 
given in Table 1.

Response to selection
Trial Selection Plant height DTA
GAT10ir-TP Direct 0.71 0.75

Indirect 0.47 0.31

Ratio 0.66 0.41

GAT12rf-TP Direct 0.77 0.89

Indirect 0.52 0.41

Ratio 0.68 0.46

GAT17ir-SC Direct 0.80 0.48

Indirect 0.80 0.46

Ratio 1.00 0.96

GAT17rf-SC Direct 0.75 0.47

Indirect 0.81 0.26

Ratio 1.08 0.29
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prediction ability, compared with that of univariate models, 
when predicting performance in irrigated or dryland trials 
at Gatton. It is well understood that the extent of the 
genetic correlation between a secondary and target trait is 
key to whether the prediction accuracy will be increased 
(Schaeffer, 1984; Thompson and Meyer, 1986). The 
SB-PCs shared very strong, positive genetic correlations 
with yield obtained in two SC trials at Gatton yet showed 
extremely low and negative correlations with grain yield 
in the SC trial at Warwick. Similarly, the genetic correla-
tions between yield of the no-deficit TP trial subsets and 
SB-PC1 were also higher than those between yield of the 
anthesis-deficit TP trial subsets and the SB-PCs.

In addition to genetic correlations, the heritability of 
secondary traits may have contributed to the increase in 

prediction ability (Lorenzana and Bernardo, 2009; Daet-
wyler et al., 2010). Grain yield showed low heritability 
across all TP trials, which is often the case due to its suscep-
tibility to environmental influences (Babar et al., 2007). 
Jia and Jannink (2012) found the prediction accuracy of a 
low-heritability trait could be improved by using a high-
heritability trait within multivariate prediction, allowing 
a less heritable trait to effectively “borrow”’ information 
from the higher one. All SB traits had a higher heritability 
than grain yield across all TP trials and in general were 
moderate, which supports their ability to improve predic-
tion of grain yield (Henderson and Quaas, 1976; Combs 
and Bernardo, 2013; Guo et al., 2014).

Although a close genetic relationship was observed 
between the TP and SC population, which, as previously 

Fig. 5. Breeding strategy incorporating speed breeding (SB), selection candidate (SC) population development, and multivariate genomic 
selection (GS). (a) Training population (TP) phenotyping for yield and SB traits is followed by principal component analysis (PCA) to derive 
SB principal components (SB-PCs). These are then used in (b) multivariate GS (based on own phenotypes) to select parents for SC 
population development and advanced yield trials. (c) Combined intercrossing of selected lines, single seed descent (SSD) from F1 to F5, 
and phenotyping of the F5 plants under SB conditions. The SB traits undergo PCA with the SB traits of the TP to derive the SB-PCs, and 
(d) multivariate GS is performed to determine which F5 lines will go into field trials. (e) The selected SC lines become part of the TP for the 
next cycle, beginning with the first stage. GEBV, genomic estimated breeding value; MV, multivariate.
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stated, is required for accurate prediction, the prediction 
ability of the univariate models was generally low. As 
discussed, previous studies on multivariate GS to improve 
wheat has involved phenotyping the SC population in the 
field, which negates the time-saving benefit of GS and is 
not realistic in a breeding program context. Furthermore, 
including yield secondary traits on only the TP and not also 
measuring these traits on the SC did not result in an increase 
in prediction ability. Here, the rapid growth enabled by SB 
meant SC lines could be phenotyped for secondary traits 
prior to GS. This provided the model with more infor-
mation, directly from the SC lines, enabling an increase 
in prediction ability in comparison with the univariate 
models, which included only yield of the TP. As can be 
seen in Fig. 5c, within the proposed breeding strategy, SC 
lines could be phenotyped for yield secondary traits prior to 
application to GS and field trials, thus maintaining the time-
saving benefit of GS in addition to increasing the accuracy 
of selections. Further cycles of selection within this strategy 
would involve updating of the GS model through recalcu-
lation of the PCA for SB traits as the SC populations are 
phenotyped and data are collected from yield trials (Fig. 5).

Inclusion of Speed Breeding Trait Principal 
Components Facilitated Prediction
Reducing multiple traits into their PCs allowed all traits 
to be incorporated simultaneously into the prediction 
models, and by using the genetic correlations between 
SB traits, only the variation of these traits determined by 
genetic components was included. This would be difficult 
with all traits separately, but by incorporating only the 
first two PCs, most variation explained by the SB traits 
was captured. The use of PCA may also ease uncertainty 
around which traits to include in the prediction model. 
Genetic correlations and heritability varied for most traits 
between environments, indicating that the most beneficial 
to use as a secondary trait in one environment may not 
be best in another. By routinely measuring a core set of 
SB traits and using their PCs, predictions may possible to 
calculate without computational constraints.

Environment of Training Population 
Evaluation Affected Prediction Ability
The ability to predict grain yield was strongly influenced by 
the environment in which the TP was evaluated, although 
this was more difficult when predicting into Warwick. 
When predicting Gatton SC trial performance, multivar-
iate prediction ability was high regardless of the location 
or environment type of the TP trials used. Conversely, 
only TP data from Warwick or anthesis-deficit trials could 
predict grain yield in the Warwick SC trial. This may be 
attributable to the context dependency of adaptive traits. 
For instance, a trait may enhance performance in a high-
water-stress environment but could have a negative effect in 

a low-water-stress environment (Ceccarelli, 1989). Cooper 
et al. (1997) found that prediction accuracy of wheat perfor-
mance using data from a low-stress environment diminished 
with increasingly water-limited target environments. The 
environment in which the TP is phenotyped will affect the 
alleles that are favored in the prediction model. Training 
data across a limited number of environments or locations 
can result in promotion of lines adapted to a narrow range 
of environmental conditions and potentially lead to the 
discarding of lines with good performance in other condi-
tions (Jarquín et al., 2017). The strong correlation between 
grain yield at Gatton and no-deficit TP trials indicates that 
environments sampled at Gatton were, in general, lower-
stress compared with Warwick, where grain yield was closely 
correlated with that of the anthesis-deficit trials. Correla-
tions between grain yield of the SC trials also reflected this 
contrast between Gatton and Warwick. Despite one trial 
at Gatton being irrigated and the other rainfed (dryland), 
grain yields from both trials were closely correlated but 
only weakly correlated with the Warwick SC trial. This is 
supported by climate data. The Warwick SC trial had lower 
rainfall than the Gatton SC trials both before and after 
anthesis, and both Warwick TP trials had lower total rainfall 
during the growing seasons than those at Gatton, even when 
they were characterized as the same environmental classi-
fication, (i.e., no-deficit or anthesis-deficit; Supplemental 
Table S2). In fact, for >20 yr, Warwick has had fewer days 
of rainfall than Gatton (Supplemental Table S3). This indi-
cates that, in general, Warwick is a drier environment than 
Gatton. The mean temperatures experienced by Gatton and 
Warwick during the growing seasons of the TP trials or 
SC trials were relatively narrow in range and therefore not 
expected to have greatly affected the comparisons between 
the locations (Supplemental Table  S2). Even though both 
these locations are within southeast Queensland, the region 
is known for highly variable climatic conditions (Chenu et 
al., 2013), and large genotype ´ environment interactions 
are common between wheat trials (Brennan et al., 1981). 
Consideration of these factors is increasingly important with 
projections indicating increased water stress not only within 
this region (Watson et al., 2017), but also in other important 
wheat-producing regions worldwide (Ray et al., 2013).

Indirect Speed Breeding Selection Has 
Potential to Rapidly Improve Populations
Plant height and DTA are usually thought of as optimum 
traits, but this can vary widely according to the environ-
ment. Indirect phenotypic selection under SB presents the 
opportunity to breed rapidly for particular environments 
and projected climatic conditions. For example, in southern 
Australia, spring wheat is sown in late autumn to early 
winter to enable flowering after the risk of frost occurrence 
has decreased, but still early enough to allow sufficient grain 
filling prior to damaging summer water limitation (Pugsley, 
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1983). In the case of plant height, in Western Australia, a 
shorter wheat stem is desirable for the dry climate, where 
assimilates are directed more to grain filling rather than 
straw production (Siddique and Whan, 1993). Plant height 
and DTA were assessed under both SB and field conditions 
in two populations across multiple environments, allowing 
determination of the predicted field response to SB pheno-
typic selection, using the genetic correlations between 
the traits and their heritability. Plant height under SB had 
consistently strong genetic correlations with field-based 
height across a range of environments and the predicted 
response to indirect selection was at times as effective as the 
predicted response to direct field selection across popula-
tions and trials (the predictive relative efficiency ranging 
66–100%, Supplemental Table S1). Using indirect selection 
under SB, populations could be rapidly adapted to meet 
requirements of their target locations. The need to increase 
or decrease height or time to anthesis would depend on 
the population, target location, and segregating genes 
present in the population (Cane et al., 2013). In addition, 
the examples shown here were based on one cycle of selec-
tion on inbred lines. If successive generations of selection 
were performed, genetic variation would decrease if new 
genetic material was not introduced and would reduce the 
extent to which traits were modified. Although selection 
was only predicted in the current study, the consistency of 
the relationship between these two traits under SB and the 
field, in multiple trials, is encouraging. Expected response 
to indirect selection of grain yield was also calculated (data 
not shown); however, this was low, suggesting that GS is 
better at predicting this complex trait.

In conclusion, an efficient spring wheat breeding 
strategy has been proposed combining SB and GS. Pheno-
typing for yield-correlated SB traits could occur during 
the final stages of rapid population development through 
SSD, at which time multivariate GS would determine 
which lines to progress to field trials and subsequent cycles 
of selection. The potential of this strategy is strongly 
supported by the findings of this study. The potential of 
indirect selection for important yield-related traits under 
SB conditions was also explored, and further investiga-
tion to validate the results could support fast population 
improvement prior to field trials. In using these approaches, 
the rate of genetic gain in cereals could be accelerated, 
and further advances in crop improvement could be more 
rapidly achieved.
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