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Károly Héberger

PII: S0731-7085(16)30187-X
DOI: http://dx.doi.org/doi:10.1016/j.jpba.2016.04.001
Reference: PBA 10602

To appear in: Journal of Pharmaceutical and Biomedical Analysis

Received date: 29-10-2015
Revised date: 4-3-2016
Accepted date: 1-4-2016

Please cite this article as: {http://dx.doi.org/

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Faculty of Chemistry Repository - Cherry

https://core.ac.uk/display/232939602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/doi:10.1016/j.jpba.2016.04.001
http://dx.doi.org/


-1- 

 

Multivariate assessment of lipophilicity scales –computational and 

reversed phase thin-layer chromatographic indices 

 

Filip Andrić1, Dávid Bajusz2, Anita Rácz3,4, Sandra Šegan5, Károly Héberger3* 

 

1Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia 

2Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian 

Academy of Sciences, H-1117 Budapest XI., Magyar Tudósok krt. 2, Hungary 

3Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian 

Academy of Sciences, H-1117 Budapest XI., Magyar Tudósok krt. 2, Hungary 

4Department of Applied Chemistry, Faculty of Food Science, Corvinus University of 

Budapest, H-1118 Budapest XI., Villányi út 29-43, Hungary 

5Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia 

 

*Corresponding author: Károly Héberger, Tel.: +36 1 38 26 509 

E-mail: heberger.karoly@ttk.mta.hu 

  

mailto:heberger.karoly@ttk.mta.hu


-2- 

 

Graphical Abstract 

 

 

Highlights 

 Liphophilicity measures are compared with classical and novel chemometric methods, 

such as SRD and GPCM. 

 Comparison with One VAriable at a Time (COVAT) was introduced for the 

production of SRD and GPCM heatmaps. 

 SRD- and GPCM-COVAT have more discriminatory power than classical correlation 

metrics. 

 Heatmaps enable the understanding of the fine data structure of the input matrix. 

 The most similar methods to the shake-flask method are CLogP, XLogP3, 

PC1/RM(C18-MeOH). 

 The slopes of changes in mobile phase composition are to be avoided when comparing 

chromatographic lipophilicity measures. 

 

Abstract 

Needs for fast, yet reliable means of assessing the lipophilicities of diverse compounds 

resulted in the development of various in silico and chromatographic approaches that are 

faster, cheaper, and greener compared to the traditional shake-flask method. However, at 

present no accepted “standard” approach exists for their comparison and selection of the most 

appropriate one(s). This is of utmost importance when it comes to the development of new 

lipophilicity indices, or the assessment of the lipophilicity of newly synthesized compounds. 

In this study, 50 well-known, diverse compounds of significant pharmaceutical and 

environmental importance have been selected and examined. Octanol-water partition 

coefficients have been measured with the shake-flask method for allmost of themcompounds. 



-3- 

 

Their retentions have been studied in typical reversed thin-layer chromatographic systems, 

involving the most frequently employed stationary phases (octadecyl- and cyano-modified 

silica), and acetonitrile and methanol as mobile phase constituents. Twelve computationally 

estimated logP-s and twenty chromatographic indices together with the shake-flask octanol-

water partition coefficient have been investigated with classical chemometric approaches – 

such as principal component analysis (PCA), hierarchical cluster analysis (HCA), Pearson’s 

and Spearman’s correlation matrices, as well as novel non-parametric methods: sum of 

ranking differences (SRD) and generalized pairwise correlation method (GPCM). Novel SRD 

and GPCM methods have been introduced based on the Comparisons with One VAriable 

(lipophilicity metric) at a Time (COVAT). For the visualization of COVAT results, a heatmap 

format was introduced. Analysis of variance (ANOVA) was applied to reveal the dominant 

factors between computational logPs and various chromatographic measures. In consensus-

based comparisons, the shake-flask method performed the best, closely followed by 

computational estimates, while the chromatographic estimates often overlap with in silico 

assessments, mostly with methods involving octadecyl-modified silica stationary phases. The 

ones that employ cyano-modified silica perform generally worse. The introduction of 

alternative coloring schemes for the covariance matrices and SRD/GPCM heatmaps enables 

the discovery of intrinsic relationships among lipophilicity scales and the selection of 

best/worst measures. Closest to the shake-flaskrecommended logKOW values method are 

ClogP and the first principal component scores obtained on octadecyl-silica stationary phase 

in combination with methanol-water mobile phase, while the usage of slopes derived from 

Soczewinski-Matyisik equation should be avoided.  

 

List of abbreviations: ANOVA, Analysis of Variance; C18, Octadecyl silica; CEPW, 

Conditional Exact test with Probability Weighted (ranking); CN, Cyanopropyl-modified 

silica; COVAT, Comparison with One Variable at a Time; CRRN, Comparison of Ranks with 

Random Numbers; GPCM, Generalized Pairwise Correlation Method; HCA, Hierarchical 

Cluster Analysis; HILIC, Hydrophilic Interaction Liquid Chromatography; HPLC, High 

Performance Liquid Chromatography; IAM, Immobilized Artificial Membrane 

Chromatography; LSER, Linear Solvation Energy Relationships; MEKC, Micellar 

Electrokinetic Chromatography; MLC, Micellar Liquid Chromatography; PC, Principal 

Component; PCA, Principal Component Analysis; Rg, Range scaling; Rk, Rank 
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transformation; SRD, Sum of (absolute) Ranking Differences; Sd, Standardized (autoscaled); 

TLC, Thin-layer Chromatography 

 

Keywords: Lipophilicity, Reversed-phase thin-layer chromatography, Benzodiazepines, 

Polyaromatic hydrocarbons, Phenols, Sum of ranking differences - SRD, Generalized 

pairwise correlation method - GPCM, Comparison with one variable at a time – COVAT, 

Heatmap 

 

1 Introduction 

Throughout the last century lipophilicity evolved into an essential physicochemical 

parameter that is used in pharmaceutical and environmental sciences abundantly. It is related 

to distribution of compounds in the environment and biota, to bioavailability and 

bioconcentration in the food chain, as well as to the transport in the soil-sediment-water 

compartments [1]. It is a crucial factor influencing passive transport trough biological 

membranes such as the blood-brain or the gastrointestinal barriers [2,3]. Lipophilicity has a 

high impact on protein binding, drug-receptor interactions, which consequentially alters the 

desired physiological response, as well as drug-related toxicity and adverse effects [4,5].  

Nevertheless, since the first works of Meyer and Overton [6,7], lipophilicity has been 

tailored to suit our practical needs, while its strict definition remains ambiguous. In that sense, 

according to the International Union for Pure and Applied Chemistry (IUPAC), lipophilicity 

represents the affinity of a molecule or a moiety for a lipophilic environment [8]. It is still not 

clear what a “lipophilic environment” actually is, and how it should be modelled. Such a 

vague definition of the lipophilicity itself might be one of the reasons that create additional 

space for development of various lipophilicity measures and numerous experimental 

approaches for its measurement and estimation. In order to put some constraints the IUPAC 

gives some recommendations how lipophilicity should be or could be measured [8]. The 

traditionally adopted shake-flask method – based on the distribution between octanol and 

water (commonly denoted as logP, but more frequently replaced with logKOW in 

contemporary literature) – is time and reagent consuming, experimentally demanding, tedious, 

and mostly applicable to pure compounds that have partition coefficients in the range of -3 to 

4.5 log units (some modifications of the shake flask method are applicable for compounds 
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with logKOW > 4.5). In order to overcome these difficulties many chromatographic methods 

have been developed, and some of them have been adopted as standard methods, parts of 

OECD guidelines (Organization for Economic Cooperation and Development), such as Test 

No. 117, HPLC method [9]. Aside from very specific applications of chromatographic 

approaches that tend to mimic biosystems such as micellar liquid chromatography (MLC) 

[10-15], immobilized artificial membrane chromatography (IAM) [16,17], immobilized 

proteins etc. [18], the mainstream methods in the determination of lipophilicity are still based 

on typical reversed-phase chromatography including a variety of chemically bonded 

stationary phases [19-22], where octyl-, octadecyl-, and cyanopropyl-modified silica beds are 

the most frequently used in combination with a polar mobile phase (usually binary mixtures 

of miscible organic solvents and water) [23-25].  

Both high-performance liquid chromatography (HPLC) and thin-layer 

chromatography (TLC) produce a high number of chromatographic lipophilicity indices. 

However, TLC has a significant advantage over HPLC because of its simplicity, significantly 

reduced costs, and short analysis time, low consumption of solvents and reagents, and its 

ability to simultaneously handle dozens of samples.  

Several lipophilicity measures stem from TLC experiments. The intercept (RM
0) and the slope 

(b) of the linear dependence of the retention on the volume fraction of the organic component 

of the mobile phase (φ), proposed by Soczewinski and Matyisik [26] (Eq. 1), have been 

introduced among them first. The RM value is defined according to the Eq. 2. 

 bRR MM
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where RF is so called retardation factor i.e., the ratio of the distance of a solute target zone and 

the solvent front. 

The parameter b can be related to the specific hydrophobic surface area of the solute 

[27] and the surface tension of the mobile phase [28], while the intercept describes 

partitioning between pure water and the non-polar, hydrophobic stationary phase. 

In addition, the concentration of the organic solvent in the mobile phase resulting in 

equal distribution of a solute among the stationary and mobile phase, C0, was introduced by 

Bieganowska et al. [29], and is frequently used. It is defined as the intercept (RM
0) and the 

slope (b) ratio: 
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Alongside the extrapolated chromatographic lipophilicity measures, the ones based on 

primary retention data are also used as e.g. the first principal component scores (PC1/RM) 

derived from principal component analysis (PCA) of multivariate retention data [30, 31], and 

arithmetic means of RM values ( RM , or more frequently denoted as mRM) [23-25]. 

Besides the experimental methods, computational approaches for the prediction of 

logP values are extensively used. Their main advantage is that they simply do not require 

experimental measurements. They can be classified in two large families: substructure-based 

and property-based methods. Substructure-based methods decompose the molecular structure 

into smaller fragments (or even down to the level of single atoms). Depending on the 

algorithm used, each fragment is then associated with a particular logP contribution. The final 

logP value of the unknown compound is obtained by a summation over all fragment 

contributions, and using correction factors, where necessary [32]. Examples of 

fragmentation/group contribution based methods are: ClogP, AClogP, ALOGP, miLogP, 

KOWWIN, XLOGP2, XLOGP3 [33-38]. Property-based methods, on the other hand, 

consider the molecule as an undivided entity [32]. Calculation of logP is based on quantitative 

structure - property relationship (QSPR) models using physicochemical parameters such as 

the case with the Linear Solvation Energy Relationships (LSER) approach [39], or from 

molecular descriptors obtained from 3D representations (e.g. COSMOFrag) [40], or simple 

1D topological, and electrotopological indices (MLOGP, ALOGPs) [41,42]. 

Nevertheless, both property- and substructure-based methods are accompanied by 

estimation errors that reach orders of magnitude for the same molecule as compared to each 

other. Computational methods that are used in the present work are enlisted in section 2.3. 

When it comes to the selection of an appropriate approach to lipophilicity assessment 

there are several problems, errors, and misconceptions, especially in the case of newly 

synthesized compounds or novel lipophilicity indices. If there is no possibility to obtain 

octanol-water partitioning data, chromatographic and computational estimates are most 

frequently used to estimate lipophilicity. However, no systematic or widely accepted approach 

exists for the selection of appropriate lipophilicity measures. Many procedures use similarities 

among computationally estimated values and experimentally derived lipophilicity indices as a 

criterion to select the best one. Such similarities are most often obtained from hierarchical 
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clustering (HCA) [43,44], principal component analysis [21,23,25,45], or simple correlations 

based on parametric statistics such as Pearson’s correlation coefficient [24,25,44]. The last 

one is applicable only if the data is normally distributed, which is often not the case. PCA and 

HCA do not provide information about statistical significance of such similarities, while the 

use of correlation measures most often lead to selection of the best correlated pairs, neglecting 

the rest of statistically significant ones.  

The aim of the present work was to rank and group lipophilicity measures from the 

typical reversed-phase thin-layer chromatographic data, to find the most similar and dissimilar 

ones, to suggest the suitable substitutes for octanol-water partition coefficient as a current 

golden standard in lipophilicity assessment, and to give recommendations for the proper use 

of statistical techniques in the selection of lipophilicity scales. The present work is a 

continuation and extension of our previous research [46,47]. 

 

2 Materials and methods 

2.1 Compound set selection 

In total 50 compounds (Table 1) of low molecular mass (94.12-321.18 g mol−1) of 

various chemical structures, molecular sizes and shapes have been selected in a way that they 

cover a relatively broad range of the recommended values of experimentally determined 

octanol-water partition coefficients (0.62 < logKOW < 6.50) and their various abilities to 

interact with stationary and mobile phases selected according to Abraham’s solvatochromic 

parameters:  

0.00 < A < 0.94, 0.15 < B < 1.63, 0.79 < S < 2.49, 0.80 < E < 3.43, 0.7751 < V < 2.1924 

where A, B, S, E, and V are hydrogen bond donating ability, hydrogen bond accepting 

ability, dipolarity-polarizability, molar refractivity in excess expressed in units (cm3 mol−1)/10 

and McGowan’s molar molecular volume (V has a unit of (cm3 mol−1)/100), respectively. The 

full list of compounds accompanied with Abraham’s solvatochromic parameters, molecular 

masses, pKa values and water solubilities is given in the supplementary material, Table S1. 

Special care was taken of the selection of pharmaceutically important compounds (9 

benzodiazepine derivatives) and those with environmentally related issues (12 phenols, 10 

polyaromatic hydrocarbons (PAH), 4 tirazine herbicides, 5 aromatic amines, 6 aromatic 

alcohols, aldehydes and ketones, 3 aromatic acids and esters). Under experimental conditions 
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all compounds, with the exception of 4-nitrophenol, 2,4,6-trichlorphenol, and 4-aminobenzoic 

acid, have been in their neutral (non-ionized) form (ionization degree < 1 %). 

 

2.2 Chromatographic experiments 

Two most commonly used stationary phases have been selected: octadecyl- and 

cyanopropyl-modified silica layers coated on aluminum sheets and glass, respectively, (Art 

Nos. 5559 and 16464 respectively, Merck Darmstadt, Germany). The plates of the 10 × 10 cm 

size were used. Two typical organic modifiers: methanol and acetonitrile have been chosen to 

prepare binary mixtures with water. The mobile phase composition was tuned in a way that 

allows precise and reliable measurement of retention and good fitting to the Soczewinski-

Matyisik linear equation (Eq. 1). The fraction of the organic component was varied in the 

range from 40-80 %v/v, with an increment of 5 %. All chromatographic experiments were 

performed in horizontal fashion using a horizontal development chamber (CAMAG, Lutenz, 

Switzerland). Approximately 0.3-0.5 μL of freshly prepared solutions in concentration ≈ 1 

mg/ml have been applied on the surface of the plates at 5 mm distance from the edges. The 

chamber was saturated 15 minutes before chromatogram development. Solvent developing 

distance was 5 cm. The mobile phase pH range was between 5.5 and 6.5. No buffer solution 

was used.  

After development the plates have been dried in a stream of hot air and visually inspected 

under UV light (λ = 254 nm) allowing individual zones, corresponding to the target 

compounds, to be detected. 

All substances and solvents used were of analytical purity grade. Benzodiazepines have 

been provided in small quantities from the Faculty of Pharmacy – University of Belgrade. 

Small amounts of PAHs have been a generous gift from the Chair of Environmental 

Chemistry, Faculty of Chemistry – University of Belgrade.  

 

2.3 Computational prediction of logP-s 

Mostly fragmental methods, either atom- or substructure-based have been employed to 

calculate logP values (with the exception of the linear solvation energy relationship (LSER) 

approach, AlogPs, and MLOGP, which are property-based). ALOGPs, AClogP, miLogP, 
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ALOGP, MLOGP, XLOGP2 and XLOGP3 have been calculated through the Virtual 

Computational Chemistry Laboratory (VCCLAB, http://www.vcclab.org) [55,56], last time 

accessed on September 15, 2015. ALOGP and MLOGP are implemented in the Dragon 

software v. 6 (http://www.talete.mi.it); miLogP was developed by Molinspiration and 

implemented in Molinspiration property engine v2014.11 (http://www.molinspiration.com/); 

XLOGP3 is available through the XLOGP3 software (http://www.sioc-

ccbg.ac.cn/?p=42&software=xlogp3). LSER estimated logP values have been calculated 

according to the model reported by Abraham et al. [39]. KOWWIN logP values have been 

obtained from the KOWWIN software, part of the EPI Suite package v.4.1 (U.S. EPA). ClogP 

was calculated using Chem Draw Ultra v. 11.0.1 (CambridgeSoft). ACDlogP and ABlogP 

estimates have been obtained with the freely accessible ACD I-Lab online database 

(https://ilab.acdlabs.com/iLab2/), last time accessed on September 15, 2015. ACDlogP was 

also available through the VCCLAB. 

 

2.4 Data pretreatment and statistical analysis 

In order to put the lipophilicity indices on the same scale, several data pre-treatment 

methods have been investigated: a) standardization (St), also called autoscaling (mean 

centering and rescaling to unit standard deviation), b) range scaling between the lowest and 

the highest value of the shake-flask octanol water partition coefficient logKOW value (0.62 and 

6.75, respectively) (Rg) and c) rank transformation (Rk). All data pretreatments, descriptive 

statistics, PCA, HCA, and analysis of variance (ANOVA) were performed using Statistica v. 

10 (Statsoft Inc. Tulsa, Oklahoma, USA).  

In the case of HCA and PCA, the PLS, PCA and multivariate/Batch SPC module was 

used (Statistica v.10), while analysis of variance was carried out with the factorial ANOVA 

tool, part of the Advanced models (General linear) module (Statistica v. 10). HCA has been 

carried out using Ward’s amalgamation rule and the Euclidian distance measure.  

Two novel, non-parametric statistical methods, sum of ranking differences (SRD) and the 

generalized pair correlation method (GPCM) were also applied to provide a reliable 

comparison and ranking of the examined lipophilicity measures. These methods are entirely 

general and can give a fast and easy solution to comparison problems. Both methods are 

http://www.vcclab.org/
http://www.talete.mi.it/
http://www.molinspiration.com/
http://www.sioc-ccbg.ac.cn/?p=42&software=xlogp3
http://www.sioc-ccbg.ac.cn/?p=42&software=xlogp3
https://ilab.acdlabs.com/iLab2/
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implemented as Microsoft Excel VBA macros and are available at http://aki.ttk.mta.hu/srd/ 

and http://aki.ttk.mta.hu/gpcm 

 

2.4.1 Sum of ranking differences (SRD) 

SRD is a novel, fast and entirely general method for the comparison of alternative 

solutions to the same problem – e.g. different methods for the measurement/calculation of the 

same property (in this case, lipophilicity measures). [57,58] It takes a matrix as its input, 

which contains the samples/molecules in its rows and variables/methods in its columns – thus, 

a cell in row i and column j contains the property (here, lipophilicity) value 

calculated/measured for the ith molecule with the jth method. SRD is based on the 

comparison of the rankings produced by the different methods, i.e. the samples are ranked (in 

the order of magnitude) according to each method plus a reference method (i), the differences 

between the rank numbers of each sample according to each method and the reference method 

are calculated (ii), and these ranking differences are added up for each method (iii). The 

reference method can be an exact “golden standard” or as in the present case the average. 

Using the arithmetic mean as reference instead of the recommended experimentally 

determined logP-s is justified based on two main points: a) the average realizes a consensus 

supported by the maximum likelihood principle, which yields a choice of the estimator as the 

value for the parameter that makes the observed data most probable (the average). [59]; b) 

even systematic errors cancel each other out not only the random errors, at least partially. 

Even if some small biases remain, we are better off using row-average than any of the 

individual methods. The resulting values are called SRD values and the smaller they are, the 

closer the method is to the reference (in terms of ranking). These SRD values are usually 

normalized to enable the comparison of different SRD calculations: 

SRDnor = 100SRD / SRDmax,  (4) 

where SRDmax is the maximum possible SRD value. 

SRD employs two validation steps: first, a Gauss-like curve is plotted based on the use of 

random ranks as a sort of randomization test (CRRN – Comparison of Results with Random 

Numbers); if a method overlaps with the Gauss-like curve, than it cannot be considered as 

significantly different from the random ranking. In the second step, seven-fold cross-

validation is carried out (or leave-one-out cross-validation, if the number of samples is less 

http://aki.ttk.mta.hu/srd/
http://aki.ttk.mta.hu/gpcm
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than 14) to provide a population of SRD values, for which average, standard deviation, etc. 

can be calculated. An illustrative animation of the SRD calculation was published as a 

supplement to our recent article [60]. 

 

2.4.2 Generalized pair correlation method (GPCM) 

The method is based on a 2 × 2 contingency matrix, where the frequencies of the event A, 

B, C and D are in the rows and columns [61]. These frequencies are calculated from a 

comparison between every selected dependent variable pairs (X1 and X2) and the reference 

(Y) variable (the arithmetic mean). Event A shows that how many times both of the compared 

two variables strengthen the correlation (makes positive effect). Similar to this, event D shows 

the amount of those cases, when both of the compared two variables weaken the correlation 

with Y variable. Event B and C are the complementary of each other, because here variable 

X1 strengthen and X2 weaken the correlation (event B) and vice versa (event C). The final 

decision of the comparison is based on Conditional Fisher’s exact test or McNemar test [61]. 

The procedure is repeated for every possible variable pairs. A variable can win the final 

comparison, if it has the most “win” decisions. ”No decision” results can be made if there is 

no significant difference between the correlations between the reference variable and the 

members of the pair. GPCM compares all the different variable pairs, and counts “wins”, 

“losses” and “no decisions (ties)” between the variables (lipophilicity measures) [61]. The 

final result can be ordered in three different ways: simple ordering (which counts the number 

of wins), difference ordering (which calculates the differences between wins and losses) and 

significance ordering (the probability weighted form of difference ordering). 

 

3 Results and discussion3.1 Exploratory data analysis and clustering 

Aiming to detect outliers, and explore the data structure for similarities among 

lipophilicity scales, PCA and HCA has been performed on the standardized dataset. Since 

comparison of lipophilicity measures to the arithmetic mean average (AMA) was introduced 

and justified in section 2.4.1, we have decided to include AMA in the PCA and HCA as well. 

Two PCs capture 88.83 % of the overall data variability in the data (PC1 84.86%, and PC2 

3.97 %). The score plot (Figure S1, Supplementary material) reveals relatively homogeneous 

structure of the studied set of compounds. Only 4-aminobenzoic acid (comp. no. 17) was out 
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of the 3 S.D. confidence ellipse, most likely due to significant ionization under 

chromatographic conditions (α = 99.98 %). The rest of the solutes might be grouped into four, 

not entirely distinct groups: I – Comp. nos. 19, 24, 25, and 50; II – 7, 9, 13, 20, 23, and 49; III 

– 21, 22, 26-29, 34, 41-48; IV – 1-6, 8, 10, 12, 14, 15, 30, 32, 35-40. The first and the second 

group contain mostly polyaromatic hydrocarbons. All benzodiazepines, except of midazolam, 

and all triazine herbicides are in the third group along with few phenolic compounds. The rest 

of phenols, aromatic amines, aldehydes, ketones, and esters are in the fourth group.  

The majority of the lipophilicity measures responsible for such disposition of compounds 

have the highest loading values in the PC1 direction, grouped in the tight range of 0.80-0.99 

units (Figure 1). Exceptions are slopes, b, obtained on a C18 stationary phase using methanol 

and acetonitrile as organic mobile phase modifiers. The majority of computational approaches 

(XLOGP2, miLogP, AlogPs, ACDlogP, KOWWIN, ClogP, and XLOGP3) are centralized in 

the extremely small range of PC1 vs. PC2 loading space together with the experimentally 

determined logKOW(exp). They are further surrounded with chromatographic descriptors, 

mostly PC1/RM mRM, and RM
0 indices in the first level, and C0 in the second one, derived 

under different chromatographic conditions. Water solubility, i.e. its negative logarithm  

(-logS) perform similarly as C0 and it is the closest to the AMA. 

Figure 1 

Fine data variability along the PC2 direction (4.19 %) allows distinction of 

chromatographic indices obtained on cyano-modified silica and those derived from octadecyl-

silica. The majority of the chromatographic indices obtained on cyano-modified silica are 

located in the lower part of the loading plot; the others are in the upper one. Between these 

two groups lies a very coherent group composed mostly of computational logP-s.  

Figure 2 

Clear distinction between computationally estimated logP-s and chromatographic indices 

is obtained by HCA (Fig 2). Cluster A, comprised of in silico predicted logP-s, and logS, and 

AMA. Cluster B containing all chromatographic lipophilicity indices are separated at the level 

of 14 linkage distance units. However, the difference between them is only ~ 2 distance units. 

Further grouping of indices according to stationary and mobile phases is obvious at the level 

of 10 distance units. While B1 gathers only chromatographic indices obtained on cyano-

modified silica, B2 includes those obtained from both stationary phases (B2a – corresponds to 

CN-modified silica, B2b – accounts for C18-modified silica). Also, the use of acetonitrile vs. 

methanol differentiates between B1 and B2a. Cluster A can be further divided into two sub-
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clusters. However, it cannot be explained by the subdivision of methods to property- and 

substructure-based ones. Also, there is the following trend in mutual similarity among the 

types of chromatographic descriptors on almost all chromatographic systems: the most similar 

to each other are mRM and PC1/RM (the shortest linkage distance), the most similar to them is 

C0, while RM
0 and b are gathered in separate clusters. Figure 2 clearly shows that the classical 

chemometric method HCA cannot establish a link between calculated and chromatographic 

indices. The experimental value logKOW is far away and separated by calculated indices from 

the chromatographic ones. It is also separated from the AMA value, which is located in the 

first subcluster (Figure 2). 

If the recommended experimental values logKOW(exp) are considered as the reference, 

both PCA and HCA lead to the same decision about the best lipophilicity measure, i.e. 

XLOGP3. However, each of the considered lipophilicity estimation methods has systematic as 

well as random errors. Using the arithmetic mean as the reference instead of the 

recommended experimental logKOW is justified based on two main points: a) the maximum 

likelihood principle – the average is the most probable solution and b) even systematic errors 

cancel each other out. If According to the closeness of each method to the average point, 

which is included in the PCA and HCA plots the closeness of each method to the average can 

be observed the best lipophilicity estimate is obtained by logS in the case of PCA, and LSER 

in the case of HCA. However, several problems still remain. The two most important are: i) 

unknown statistical significance of obtained grouping and similarity to the reference and ii) 

loss of information due to dimensionality reduction in PCA. 

 

Comparison of lipophilicity measures by means of SRD and GPCM 

With the aim to overcome the aforementioned problems and answer the above questions, 

lipophilicity measures were compared, ranked, and grouped by non-parametric ranking 

methods, SRD and GPCM. SRD also provided information regarding statistical significance 

of ranking.  

According to the SRD-CRRN ranking of standardized lipophilicity data (Fig. 3a), the 

lipophilicity estimate closest to the reference, in this case the average is ClogP. The parameter 

is closely followed by the recommended experimentally determined values of octanol-water 

partition coefficient, than XLOGP3, etc. Actually the pseudo-continuous ranking occurs in the 

range of scaled SRD score values 9.28 – 14.88, including several chromatographic descriptors 
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and the majority of in silico lipophilicity estimates. The farthest lipophilicity measures are the 

slopes b obtained on C18 silica. Generally, chromatographic indices obtained on CN-modified 

silica have lower SRD scores than those obtained on C18. All studied lipophilicity indices are 

able to rank the studied compounds according to their lipophilic character better than random 

ranking – none of the lines overlap with the random number distribution, i.e., their ability to 

measure lipophilic character of selected group of compounds is statistically significant. 

Different data pretreatment methods might lead to slightly different ranking patterns. 

However, the milestone variables (the closest and the farthest from the reference) remain the 

same (Table S4a).  

GPCM of standardized data provided a slightly different ranking pattern (Figure 3b) with 

a characteristic degeneracy of some variables (variables having the same or indistinguishably 

similar ranking scores). Here the average was used as a dependent variable. The lipophilicity 

measure closest to the average in this case was the set of recommended values, logKOW(exp), 

closely followed by miLogP, RM
0 (CN-MeOH), PC1/RM (C18-MeOH), etc., the same 

variables that can be found in the pseudo-continuous ranking in the case of SRD, with a 

slightly (not significantly) altered order of variables. The variables that are farthest from the 

consensus are again the slopes b obtained on C18-silica closely followed by b (CN-MeCN) 

and AB/logP.  

If the logKOW(exp) values are used as the benchmark instead of the arithmetic mean 

average, different ranking is obtained in the case of both SRD and GPCM, especially in terms 

of variable cluttering and degeneracy. However, the most important variables such as the 

closest ones (ClogP, XlogP3) and the farthest from the reference (b (C18-MeCN)) preserved 

their positions (Figure S2a and b, Supplementary material).  Although the information about 

the relation of lipophilicity estimators, especially the closest and the farthest methods to this 

particular reference has been obtained, the information regarding the reference itself is lost. It 

can be only provided if the average is kept as the reference point of view.  

Various methods can provide different orderings. SRD has the advantages of 

“multicriteria optimization”, c.f. ref. [62]. It is clear that in this case in silico methods are 

close to the recommended logKOW(exp) values, while chromatographic estimations might 

seem to perform worse. The reason for such, possibly “biased” behavior might be the use of 

the same, or at least most of the studied compounds in the training of presented in silico 

methods. External validation might provide a proof for a possible bias. However, this is not 
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necessarily a good choice, though many authors still support it. In her recent paper Gramatica 

advises “to avoid the limitation of using only a single external set, we […] always verify our 

models on two/three different prediction sets” [63]. Independently from this, our recent paper 

clearly shows that the ordering of merits for external validation is indistinguishable from 

random ranking. [62].  

Nevertheless we have carried out the SRD and the GPCM ranking of lipophilicity 

measures on a subset of compounds with logKOW values that are likely to be correctly 

measured by the shake-flask method (logKOW < 3 and determined by the shake-flask 

procedure, which was verified through a meticulous tracing of the original articles, Table S1, 

Supplementary material). The arithmetic mean average was used as the reference. 

Ranking of lipophilicity measures is slightly altered for both SRD and GPCM (Figure S3a 

and b, respectively in the Supplementary material), however the general trend is the same and 

the most important variables retained their positions compared to the ranking based on the 

overall set of compounds. In that sense RM
0 (CN-MeOH) is selected as the lipophilicity 

measure closest to the average by SRD instead of ClogP which is the second closest (Figure 

S2a), while the farthest ones (b (C18-MeCN), AB/logP b (C18-MeOH), RM
0 (CN-MeCN)) 

remain in their original positions. GPCM provides ranking in a similar fashion identifying the 

following measures as the closest to the average: logKOW(exp), miLogP, RM
0 (CN-MeCN), 

and b (C18-MeCN) as the farthest one. Therefore, conclusions related to identified 

approaches using the overall set of compounds, for which logKOW values originate from 

different sources and possibly from different measurement techniques, are valid for the 

limited set of compounds for which logKOW values are more likely to be measured by the 

shake-flask method.  

In order to test whether the data pretreatment methods and ranking methods employed 

lead to significantly different results, analysis of variance (ANOVA) was performed on the 

GPCM and SRD score values after sevenfold cross-validation. ANOVA was also used to test 

for the possible difference among chromatographic lipophilicity indices, the use of different 

stationary and mobile phases, and in silico prediction methods.  

Uncertainty has been introduced to SRD and GPCM values by a jackknife-like validation 

procedure (cross-validation) as follows: seven minors of the original data matrices were 

obtained by removing 1/7 of samples. Every truncated data set was then subjected to SRD-

CRNN and GPCM-CEPW ranking procedures, providing seven score values for each of the 
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lipophilicity measures, in total 1386 scores (33 variables (lipophilicity indices) × 3 data 

pretreatment methods × 2 ranking approaches (SRD and GPCM) × 7 repetitions). GPCM 

scores were range scaled to fit the size and order of SRD-s. Obtained scores were used as an 

input for ANOVA. The following factors and a full interaction model without quadratic terms 

were considered: 

Score = b0 + b1F1 + b2F2 + b3F3 + b12F1F2 + b13F1F3 + b23F2F3 + b123F1F2F3  (3) 

The types of data pretreatment are incorporated in the three level factor, F1: standardization 

(St), range scaling (Rg), and ranking (Rk); F2 represents the type of lipophilicity scale ranking 

(two levels): SRD and GPCM; F3 takes into account the type of lipophilicity measure at six 

levels: logKOW (exp) – shake-flask method, Cmp – computationally estimated logP-s, and four 

types of chromatographic lipophilicity indices - C18-MeOH, C18-MeCN, CN-MeOH, CN-

MeCN, referring to the use of octadecyl- and cyano-modified silica as stationary phases and 

methanol and acetonitrile as mobile phase components respectively.  

Statistical parameters of ANOVA are summarized in Table 2. The data pretreatment 

methods do not differ at the predefined significance level p = 0.05. However, the type of 

ranking method, the lipophilicity measure (factors F2, F3) and their cross-coupling term are 

statistically significant. The other interaction terms are not significant (Table 2, last column).  

Factor effects are illustrated in a way that is easier to perceive, in Figure 4. Considering all 

types of lipophilicity parameters, the GPCM procedure resulted in generally higher scores 

compared to the SRD, except in the case of the shake-flask method, in which GPCM and SRD 

scored the same (Figure 4). Considering that the smaller the scores the better, i.e., the closer to 

the average are the lipophilicity measures, it is easy to find that the lipophilicities obtained 

from the shake-flask method are the best ones. Computational methods closely follow the 

recommended experimental logKOW values while chromatographic lipophilicity indices are 

close to the computational logP-s. Both GPCM and SRD confirm that the use of different 

organic components in the mobile phase does not have any influence on the ordering of 

lipophilicity scales in the case of octadecyl-silica. Unlike the octadecyl-silica, the cyano-

modified silica gel makes a significant difference in the use of methanol vs. acetonitrile. 

Besides that, GPCM does not differentiate lipophilicity parameters obtained on cyano-

modified silica using methanol as a mobile phase modifier from the rest of the lipophilicity 

scales measured on octadecyl-silica. Only chromatographic indices obtained on CN-silica 

using acetonitrile are significantly different. Similar conclusion might be obtained from HCA 
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dendrogram (Clusters B1 and B2a, Figure 2). No difference among data pretreatment methods 

(standardization, range scaling, and ranking) can be seen (Fig. 4). The reason why the use of 

acetonitrile vs. methanol alters lipophilicity assessment on CN-silica is most likely due to 

strong dipolar properties of cyano groups of both stationary and mobile phase components. 

Since, both have the same ability for dipolar and polarizable interactions with a solute, but 

expressed in opposite directions, the overall interaction impact on retention might be 

significantly diminished. This is not expected to occur in the case of C18-silica. The same 

pattern can be observed for GPCM and SRD scores: The pattern is increasing, from the 

recommended logKOW values via computational measures and further on to C18-MeOH and 

C18-MeCN, then, an exception can be observed: a decrease at CN-MeOH, then an increase 

again at CN-MeCN. 

ANOVA of SRD and GPCM scores provides information about the statistical significance 

of differences among lipophilicity measures, which is an important issue, not provided by 

PCA, or HCA. Considering GPCM scores, and based on 95 % confidence intervals (denoted 

as up and down whisker-like lines at each data point, Figure 4), no statistically significant 

differences can be detected among in silico determined logP-s, and chromatographic indices 

obtained on C18- and CN-modified silica, except of those obtained on CN-silica in 

combination with acetonitrile as a modifier. In the case of SRD scores, no differences can be 

observed among C18-based and CN-silica-based chromatographic indices. However, 

statistical difference among computationally calculated logP-s and chromatographic indices is 

a borderline case. The recommended logKOW values (logKOW(exp)) are the closest to the 

reference (consensus) and clearly statistically distinct according to both comparison methods, 

SRD and GPCM. 

 

3.1 Pattern recognition between lipophilicity measures by non-parametric correlations 

based on SRD and GPCM 

Sometimes the selection of the benchmark (golden standard) is not unambiguous. In that 

case it is of particular interest to employ a methodology that provides information about how 

different variables relate to each other in an easily perceivable way. For this type of problems 

correlation matrices are most often used. Pearson’s correlation coefficient has been already 

extensively used for the assessment of novel lipophilicity indices [24,25,44]. In order to 

extend the capabilities of SRD to this type of problems, we have implemented a MS Excel 
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VBA macro for the generation of “SRD heatmaps”, where we use all of the variables in turn 

as the reference to produce a matrix of SRD values. We have termed this approach 

Comparison with One VAriable at a Time (or COVAT, as we refer to it in the rest of the 

article). The final results are presented in a heatmap format, with three coloring schemes: 

relative, absolute and Gaussian. With relative coloring, the range of (normalized) SRD values 

occurring in the heatmap are divided into ten sub-ranges of the same size (i.e. SRDmax/10, as 

SRDmin = 0 per definition for the diagonal elements) and a color is assigned to each of these 

sub-ranges. Absolute coloring facilitates the comparability of different heatmap SRD 

calculations, as the ten sub-ranges are fixed in this case (0-10, 10-20…90-100%). SRD values 

overlapping with the Gaussian distribution of random ranking can be highlighted with the 

Gaussian coloring scheme. A color reference is provided to each output table created with the 

macro. To enable a better perception of the underlying structure of the SRD matrix, the rows 

and columns of the heatmap are reordered in the ascending order of the row-wise average 

SRD values (which is at the same time, the ascending order of the column-wise average SRDs 

as the matrix is ideally symmetric). As a consequence, clusters of similar methods/models/etc. 

(here, lipophilicity measures) can be detected along (both sides of) the diagonal. While the 

resulting SRD matrices are ideally symmetric, the presence of tied values in the input matrix 

can introduce a small extent of asymmetry. However, if the occurrence of tied values is not 

too frequent, this usually does not impair the rearrangement of the matrix or the perception of 

the underlying data structure. The VBA script to produce SRD-COVAT heatmaps is available 

for download on our website: http://aki.ttk.mta.hu/srd/ 

A similar approach was taken for the production of GPCM-COVAT matrices. However, a 

significant difference is that GPCM-COVAT matrices will be asymmetric by definition, as in 

the case of GPCM, probability weighted scores differ whether x or y is used as a benchmark 

(therefore the complete absence of symmetry is expected). This has significant consequences 

on the interpretation of GPCM-COVAT matrices. Basically the benchmark variables are 

arranged in columns in an ascending order of the column-wise total sums of the scores. 

However, row-wise summation leads to different results, therefore the arrangement of GPCM-

COVAT matrices demands a compromise.  

We compared four approaches: a) classical correlation matrix based on Pearson’s 

correlation coefficient, b) non-parametric correlation matrix based on Spearman’s rank 

correlation coefficient (rho), c) SRD-COVAT, and d) GPCM-COVAT matrices. 
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In order to identify similarities and dissimilarities among lipophilicity scales, the relative 

coloring scheme was applied, consisting of ten different colors. The most similar variables 

(the maximum similarity or the minimum dissimilarity measure value) are colored in red, 

while the most dissimilar ones (the minimum similarity or the maximum dissimilarity value) 

are marked with dark blue.  

All matrices show similar patterns but the classical Pearson’s and Spearman’s correlation 

matrices are more similar to each other (Figure 5a and 5b as compared to Figure 6a and 6b). 

The highly correlated lipophilicity measures are located in the upper left corner (square 

marked as L1 which is mostly composed of chromatographic indices obtained on C18-silica, 

with a few in silico estimates and the recommended values logKOW). In the lower-

intermediate parts (L2 and L3) of both heatmaps somewhat dissimilar lipophilicity indices are 

located, mainly chromatographic ones derived from experiments on CN-silica, with a few 

computational measures (orange, ochre, and yellow colored). An important difference 

between the Pearson’s and Spearman’s heatmaps are the different portions of orange, and 

ochre colors (70-80 % of the maximum correlation values), which are dominant in the 

Pearson’s map. Therefore, it is obvious that the Pearson’s heatmap has a slightly lower 

discriminatory power. Highly dissimilar (orthogonal) variables, colored in dark green and 

blue, are located along the bottom and right edge of the heatmaps – parts L4 and L5 (slopes b 

(C18-MeOH) and b (C18-MeCN)). 

Instead of the current misuse of Pearson’s correlation matrices [24,25,44] we would like 

to encourage the implementation of: (a) adequate arrangement of variables and (b) coloring 

schemes which enables patterns among variables to be easily perceivable. The choice of the 

best variable/lipophilicity measure following the aforementioned matrix arrangement is 

straightforward, i.e. the variable that correlates the best with the majority (the upper left 

corner) is the best choice: XLOGP3, logKOW(exp), and ClogP, along with the rest of the 

lipophilicities belonging to the cluster A (Figure 5a and b), and can replace the rest of them. 

The SRD-COVAT heatmap provides similar patterns as the Spearman based-one, but with 

significantly greater discrimination power (Figure 6a). Practically, red, orange, ochre, dark 

and light yellow colored squares (regions) that cover variables of different similarity are well 

defined and easily noticeable (clusters M1-M5). Also, the upper left red square (M1) of highly 

similar variables is extremely narrowed to only XLOGP3, logKOW(exp), and ClogP. Orange 

and ochre regions gathers mostly computationally estimated logP-s, mixed with few C18- and 
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CN- derived lipophilicity indices (M2). The rest of C18-silica based descriptors can be found 

in the darker yellow region located in the middle parts of the heatmap (M3), while CN-based 

lipophilicity scales are predominantly colored with light yellow parts located in the lower 

parts of a heatmap space (M4). CN-based lipophilicity scales are here much distinctively 

differentiated according the use of methanol or acetonitrile (M4a and M4b red colored 

regions). The most different lipophilicity measures can be found at the matrix margins colored 

in dark green and blue (b (C18-MeOH) and b (C18-MeOH)).  

Also, it can be concluded that the mRM, PC1/RM and C0 measures are highly correlated for 

each stationary phase-mobile phase combination: they can be detected as smaller clusters 

along the diagonal. (b values on the other hand are not necessarily present in these clusters.) 

The GPCM-COVAT heatmap, based on probability weighted ranking using Fisher’s 

conditional exact significance testing, results in a similar pattern and variable arrangement, 

with some insignificant differences (Figure 6b). GPCM has the greatest discriminatory power 

of the above mentioned cases. Row-wise summation shows a more easily distinguishable 

pattern. The coloring scheme suggest that the variables that are the most similar with the rest 

of the studied lipophilicity scales should be found at the top of the heatmap, colored in red 

and yellow (the best ones, since they can replace most of the others). In this particular case 

those are: ClogP, logKOW(exp), and XLOGP2 (belonging to M1), as well as RM
0(CN-MeOH), 

PC1/RM(C18-MeOH) and mRM(C18-MeOH) (belonging to M2). The most orthogonal ones, 

on the other hand, are located at the bottom of the heatmap (colored in blue, M5): RM
0(CN-

MeCN), b(CN-MeCN), b(C18-MeOH), and b(C18-MeCN). 

Although the coloring is somewhat arbitrary, it is astonishing that methods based on 

completely different concepts provide so similar patterns for ordering lipophilicity indices. 

 

4 Conclusions 

Many chromatographic methods in addition to in silico estimation approaches have been 

developed so far in order to measure/quantify the lipophilic character of compounds. Now we 

provide a unique systematic approach to select the most appropriate lipophilicity measures 

available. Many of the chemometric methods applied are misused, leading often to wrong 

conclusions. Sum of ranking differences (SRD) leads to the selection of the closest and 

farthest lipophilicity measure to the reference, in a straightforward manner, compared to 

principal component analysis (PCA) and hierarchical cluster analysis (HCA). Although being 

based on completely different concepts, generalized pairwise correlation method (GPCM) 
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provides a similar ordering of lipophilicity scales. Comparison with “random numbers” in the 

case of SRD provides information regarding the statistical significance of the obtained 

ranking (which cannot be obtained from PCA and HCA). Furthermore, uncertainties among 

SRD and GPCM scores, introduced by sevenfold cross-validation experiments enables to test 

statistical significance among studied lipophilicity scales, as well as different factors by 

analysis of variance (ANOVA) (data pretreatment approaches, ordering and ranking 

procedures). Two factors, namely the way of ranking (SRD and GPCM) and the type of 

lipophilicity measures have been identified as statistically significant by ANOVA. SRD 

generally results in lower scores than GPCM. The shake-flask method provides the lowest 

scores (the closest to the average) and therefore it can be considered as the best one. 

Computational estimates closely follow. Chromatographic indices obtained on octadecyl-

modified silica do not differ significantly in terms of the use of methanol or acetonitrile as the 

mobile phase component. However, the situation is different when it comes to cyano-

modified silica, in which case acetonitrile exhibits different effects compared to methanol, 

which can be explained with the strong dipolar properties of cyano groups of the stationary 

phase and acetonitrile as a constituent of the mobile phase, that cancel each other out.  

Introduction of a relative coloring scheme to correlation matrices and their adequate 

arrangement enables the discovery of intricate relationships among lipophilicity scales and the 

selection of the most similar and dissimilar ones. SRD-COVAT matrix has more 

discriminating power than Pearson and Spearman based-ones. The window that grasps the 

lipophilicity scales that are mostly correlated with others are significantly narrowed down (in 

this case to only three – recommended logKOW(exp), XLOGP3 and ClogP). However, 

although based on completely different concepts, GPCM-COVAT heatmaps discriminate 

lipophilicity scales the most.  
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Figure captions 

Figure 1 Principal component analysis loading plot; similar lipophilicity measures are 

positioned close to each other 

Figure 2 Hierarchical cluster analysis dendrogram showing similarities among different 

chromatographic lipophilicity indices and in silico predicted logP values 

Figure 3 Comparison, ranking and grouping of chromatographic and in silico 

lipophilicity measures by SRD-CRRN (a), and GPCM-CEPW ranking (b); where CEPW 

stands for probability weighted ranking (PW) based on Fisher’s conditional exact test 

(CE). Left side y-axes and x-axes are the same and denote score values in %. 

Figure 4 Effect of factors by analysis of variance for sevenfold cross-validated SRD and 

GPCM score values; the average was used for reference in ranking. Score values were 

plotted on the y-axis. Vertical bars denote 0.95 confidence intervals. 

Figure 5 Relative colored heatmap representation of Pearson (a) and Spearman (b) 

correlation matrices. Red color represents the highest correlation values while blue marks 
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the lowest one. Color codes are provided on the right side with absolute and relative (%) 

values. 

Figure 6 Heatmap representations of SRD (a) and GPCM-CEPW (b) COVAT matrices. 

Red color represents the lowest score value (the highest similarity), while blue marks the 

highest one (the lowest similarity). Color codes are provided on the right side with 

absolute and relative (%) values. CEPW stands for probability weighted ranking (PW) 

based on Fisher’s conditional exact test (CE) 
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Table 1 List of compounds with their octanol-water partition coefficients (logKOW). 

Recommended, experimentally determined values of logKOW have been obtained from the 

EPI-Suite data base v.4.1 (EPA – U.S. Environmental Protection Agency) 

No Compound  logKOW Ref. No Compound  logKOW Ref.  

1 Phenol 1.46* [48] 26 Simazine 2.18* [48] 

2 4-Nitrophenol 1.91* [48] 27 Propazine 2.93* [48] 

3 Benzyl Alcohol 1.10* [48] 28 Ametryn 2.98* [48] 

4 1-Naphthylamine 2.25* [48] 29 Prometryn 3.51* [48] 

5 1-Naphthol 2.85* [48] 30 3-Nitrophenol 2.00* [48] 

6 2,4-Dichlorofenol 3.06* [48] 31 2-Naphthol 2.70* [48] 

7 Anthracene 4.45* [48] 32 4-Hydroxybenzaldehyde 1.35* [48] 

8 Acetophenone 1.58* [48] 33 2-Aminophenol 0.62* [48] 

9 2,4,6-Trichlorophenol 3.69* [48] 34 4-t-Buthylphenol 3.31* [48] 

10 Ethyl-4 -hydroxybenzoate 2.47* [48] 35 2,6-Dimethylphenol 2.36* [48] 

11 p-Anisidine 0.95* [48] 36 4-Methoxyphenol 1.58* [48] 

12 1,2,3-benzotriazole 1.44* [48] 37 Methyl-4-hydroxybenzoate 1.96* [48] 

13 Diphenylamine 3.50* [48] 38 2-Nitrobenzaldehyde 1.74* [48] 

14 2,2’-DipiridylumBipyridyl 1.50 [49] 39 3-Nitrobenzaldehyde 1.46* [48] 

15 4-Bromoaniline 2.26* [48] 40 Phthalimide 1.15* [48] 

16 Benzophenone 3.18* [48] 41 Oxazepam 2.24* [48] 

17 4-Aminobenzoic acid 0.83* [48] 42 Lorazepam 2.39* [48] 

18 Pyrene 4.88* [48] 43 Clonazepam 2.41* [48] 

19 Benzo(a)pyrene 6.13 [50] 44 Bromazepam 2.05 [53] 

20 Fluorene 4.18* [48] 45 Diazepam 2.82* [48] 

21 Acenaphthene 3.92* [48] 46 Nitrazepam 2.25* [48] 

22 Naphthalene 3.30* [48] 47 Chlordiazepoxide 2.44* [48] 

23 Phenanthrene 4.46* [48] 48 Clobazam 2.12 [54] 

24 Dibenz(a,h)anthracene 6.50* [51] 49 Medazepam 4.41* [48] 

25 Benz(a)anthracene 5.76 [52] 50 Chrysene 5.81 [50] 

* Values recommended by C. Hansch and A. Leo  
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Table 2 Univariate test for significance of factor effects for 1386 score values obtained with 

SRD and GPCM ranking procedures. Factors: F1 – methods of data pretreatment: 

standardization (St), range scaling (Rg), rank transformation (Rk); F2 – ranking methods: 

SRD and GPCM; F3 - type of lipophilicity measures: Recommended experimental logKOW 

values (logKOW(exp)), in silico estimated logP-s (Cmp), Chromatographic indices obtained on 

octadecyl- and cyano-modified silica using methanol and acetonitrile as mobile phase 

components (C18-MeOH, C18-MeCN, CN-MeOH, CN-MeCN, respectively). Significant 

factors are indicated in bold. 

Factor Sum of squares Degrees of freedom Mean squares F p 

Intercept 313548.9 1 313548.9 3942.905 0.000000 

F1 11.2 2 5.6 0.070 0.932187 

F2 11252.2 1 11252.2 141.498 0.000000 

F3 32348.2 5 6469.6 81.356 0.000000 

F1×F2 4.2 2 2.1 0.026 0.974172 

F1×F3 35.2 10 3.5 0.044 0.999996 

F2×F3 6676.8 5 1335.4 16.792 0.000000 

F1×F2×F3 10.0 10 1.0 0.013 1.000000 

 


