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Abstract: Soil erosion is one of the main causes of soil degradation among others (salinization,
compaction, reduction of organic matter, and non-point source pollution) and is a serious threat
in the Mediterranean region. A number of soil properties, such as soil organic matter (SOM),
soil structure, particle size, permeability, and Calcium Carbonate equivalent (CaCO3), can be the key
properties for the evaluation of soil erosion. In this work, several innovative methods (satellite remote
sensing, field spectroscopy, soil chemical analysis, and GIS) were investigated for their potential
in monitoring SOM, CaCO3, and soil erodibility (K-factor) of the Akrotiri cape in Crete, Greece.
Laboratory analysis and soil spectral reflectance in the VIS-NIR (using either Landsat 8, Sentinel-2,
or field spectroscopy data) range combined with machine learning and geostatistics permitted the
spatial mapping of SOM, CaCO3, and K-factor. Synergistic use of geospatial modeling based on
the aforementioned soil properties and the Revised Universal Soil Loss Equation (RUSLE) erosion
assessment model enabled the estimation of soil loss risk. Finally, ordinary least square regression
(OLSR) and geographical weighted regression (GWR) methodologies were employed in order to
assess the potential contribution of different approaches in estimating soil erosion rates. The derived
maps captured successfully the SOM, the CaCO3, and the K-factor spatial distribution in the GIS
environment. The results may contribute to the design of erosion best management measures and
wise land use planning in the study region.

Keywords: soil erosion; remote sensing; Sentinel-2; Landsat 8; ANN; RUSLE; field spectroscopy;
OLSR; GWR

1. Introduction

Soil erosion is a complex four-stage dynamic process involving soil detachment, breakdown,
transport, and subsequent deposition of sediments [1]. Erosion is a naturally occurring process
that affects all landforms by wearing away a field’s topsoil by the physical forces of water and
wind or through forces associated with farming activities such as tillage. Soil erosion can be either
a gradual process, continuing relatively unnoticed, or it may occur at an alarming rate, causing
serious loss of topsoil, which is high in organic matter [2]. Soil erosion removes organic matter and
important nutrients and prevents vegetation growth, which negatively affects overall biodiversity.
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The specific phenomenon is denoted as the biggest threat to soil fertility and productivity. It changes
the physical, chemical, and biological characteristics of soil, leads to a drop in potential agricultural
productivity, and gives rise to concerns about food security, especially in the context of a growing
world population [3]. Soil erosion may pose a threat to food security if we consider that about nine
billion people should be fed by 2050 [4]. Therefore, global agriculture production has to be intensified,
presumably on a reduced proportion of land as soil erosion, soil sealing, and salinization increasingly
take their toll on the landscape [4]. Nevertheless, the effects of soil erosion go beyond the loss of fertile
land, since it can also lead to increased pollution and sedimentation in streams and rivers, closing the
waterways and causing declines in fish and other marine species. Degraded lands have also reduced
capacity to hold onto water, sometimes causing intensification of flooding.

Mediterranean Europe is a world hotspot extremely prone to erosion, as it suffers from long dry
periods followed by heavy erosive rainfall on steep slopes with fragile soils, resulting in considerable
amounts of erosion [5]. It is a fact that several Mediterranean spots have already reached a stage
of irreversibility in terms of soil erosion, while in some places, there is little soil left [6]. Greece is
one of the most erosive areas of the Mediterranean countries [4], and therefore, it is necessary to
estimate soil erodibility and identify areas of high or low soil erosion risk. Specifically in Crete (Greece),
research studies have already monitored and estimated the soil erosion process in several basins [6].
The study in [7] quantified the soil loss amount in Chania, Crete, and depicted the watersheds that are
exposed to greater soil erosion risk in the study area. [8] investigated soil erosion in southern central
Crete, Greece, in the Asterousia range, where soil erosion is already widespread [9], and the region
appears desertified.

Different approaches have been employed in the relevant scientific literature regarding the soil
erosion research. Either integrated or individual employment of innovative techniques such as satellite
remote sensing, geostatistics, geomorphology, field spectroscopy, machine learning, and combined
in situ and laboratory soil reflectance measurements are considered to be promising approaches to
estimate various soil properties [10]. Geostatistics, including interpolation and spatial linear regression
methods, have been used by several researchers in order to monitor soil organic matter (SOM), CaCO3,
and soil erodibility (K-factor) [11–13]. Laboratory analysis is sometimes proven inadequate when
trying to investigate the soil erosion regime, especially in wider areas. In such cases, a big number of
well spatially distributed samples should be collected for further analysis, which usually turns out to
be an expensive and time consuming process. Therefore, the combination of laboratory analysis with
geostatistics and remote sensing may be ideal to enable the environmental change monitoring in terms
of cost and time. Earth observation (EO) satellites in particular have proven very beneficial in upscaling
local field studies to relatively large areas [14–17]. Satellite remote sensing is virtually the only data
source that permits a repeated monitoring of land degradation dynamics [18]. In this context, both [10]
and [13] applied integrated use of geostatistics, geoinformatics, and field spectroscopy to study the
correlation between soil erosion and various soil parameters such as SOM, CaCO3, and K-factor.

Initially, the most common field scale model for the estimation of soil erodibility risk was the
Universal Soil Loss Equation (USLE) [19], which was later revised to the Revised Universal Soil Loss
Equation (RUSLE) [20]. Both USLE and RUSLE equations are empirical models whose parameters
contain uncertainty [21]. Reference [22] noted that nowadays, the RUSLE model is a widely used
method in the Mediterranean for the estimation of soil erodibility risk and the assessment of soil erosion
effects. Furthermore, numerous scientists have already employed the integrated use of satellite remote
sensing data, the GIS approach, and the RUSLE methodology in monitoring and estimating soil erosion
rates [23–26]. Following that, machine learning approaches such as artificial neural networks (ANN)
have been successfully used in the recent past to simulate soil erosion processes [27–29]. In those cases,
ANNs have been utilized to describe the nonlinear relationships between eroded soils and relevant
soil parameters such as SOM and CaCO3. Continuously, the accurate spatial identification of SOM and
CaCO3 permits the subsequent identification of K-factor. K-factor is an estimate of the ability of soils
to resist erosion based on the physical characteristics of each soil.
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In this study, the soil erosion phenomenon is extensively investigated in the Akrotiri cape in Chania,
Crete. At first, laboratory analysis of 30 soil samples in terms of texture and chemical composition
collected from corresponding study spots was conducted. Continuously, EO data (Sentinel-2, Landsat
8) combined with machine learning approaches (ANNs) derived SOM and CaCO3 maps of the study
area in the GIS environment. The aforementioned maps were used for the estimation of K-factor,
which expresses the susceptibility of soil to erode [30]. The results of the machine learning developed
maps were compared with respective maps developed from geostatistics (spline method) analysis
in terms of accuracy. In addition, the RUSLE model was also applied in the study area, and the soil
loss outputs were cross-compared with the already estimated soil parameters (SOM, CaCO3). Finally,
soil samples spectral data as derived from field spectroscopy campaigns were used in order to assess
and correlate soil properties with specific spectral bands.

2. Study Area and Data

2.1. Study Area

The study area was the Akrotiri cape located in the northeastern part of Chania city in Crete
(Figure 1), covering an area of approximately 112.6 km2. The Akrotiri cape offers great diversity
on the topographic relief, being both characterized as rocky and lowland area, whereas it includes
a coastal zone of approximately 59.55 km with steep shores. The elevation ranges from 0 to 529 m
(Skloka peak in the eastern part of the region). The rocky zone is located in the northeastern part of the
Akrotiri region, where the elevation ranges approximately between 350-420 m. The area consists mainly
of limestone rocks, which produce carbonate karst formations such as gorges, streams, sinkholes,
and caves. Flat relief with a maximum altitude of approximately 220 m characterizes the lowland zone
of the Akrotiri cape. In the north-northeast part, the hilly area is sinking into the Cretan Sea, shaping
the rocky coasts with steep slopes.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 24 
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The climate in the study area is characterized as temperate Mediterranean and particularly dry-hot.
Sunshine covers 70% of the days of the year. Summers are warm and dry, while winters are relatively
mild [31]. The average annual precipitation for the broader area of Chania is estimated at about 665
mm [6] and takes place mainly from November to March. Predominant land-uses are forests and semi
natural areas (47.2%), where sclerophyllous vegetation and shrubs predominate, suitable for pasture.
In addition, heterogeneous agricultural areas (27%) and agricultural areas (18.7%) also prevail. In the
central and the central-western area of the Akrotiri cape, there is intensive anthropogenic activity, i.e.,
road networks, commercial activities, and residential areas. Furthermore, the soil in the study area has
high permeability, resulting in high infiltration rates and good drainage. The soil is not continuous,
as the rocky part occupies 50-70% of its surface. Based on field observations and monitoring, sheet, rill,
and gully erosion caused by running water are predominant at the study site.

2.2. Satellite Imageries

For the study needs, two different satellite images from two different sensors, namely Sentinel-2
and Landsat 8, were acquired and incorporated in the overall research (Figure 2).Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 24 
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The two images cover the study area (Akrotiri Cape) during the study period (July 2018).
The specifications of the two images are presented in the following table (Table 1).

Table 1. Satellite imageries used in the study.

# Sensor Date of Acquisition (dd/mm/yyyy) Spatial Resolution (m)

1 Landsat 8 08/06/2018 30
2 Sentinel-2 15/06/2018 10 (Bands 2,3,4,8), 20 (5,6,7, 8A)

For both images, reprocessing techniques were applied, such as geometric, radiometric,
and atmospheric pre-processing corrections. Initially, the images were radiometrically corrected
to account for various changes such as Earth to Sun distance correction and viewing geometry
changes (e.g., Sun elevation correction) among different image acquisitions. The digital number
(DN) values were converted to reflectance values [31]. Eventually, all the images were corrected for
atmospheric distortions using the atmospheric correction method, namely darkest pixel (DP) [32].
The overall methodology was applied in the GIS environment and could practically significantly
reduce atmospheric distortions and intensities by accounting for dark and non-variant targets located
in the image or by conducting in situ measurements.

2.3. Soil Samples Collection and Laboratory Physicocemical Analysis

In order to calibrate the model, 30 surface soil samples (about 0-20 cm depth) were collected within
the study area. Sampling locations were carefully selected on the basis of the most representative
soil–landscape features, such as geological substrate, topographic characteristics, soil types, land use,
land cover, and overall conditions of the topsoil. The sampling points were georeferenced using a
differential Geographic Positioning System (GPS) (Figure 2). All topsoil samples were stored in plastic
bags and aluminum bowls and carried to the laboratory, where plant roots and other unnecessary
materials were removed. The Bouyoucos Hydrometer method was applied to determine soil texture [33].
Each sample was air-dried, ground to pass through a 2 mm sieve, and stored in plastic bags in order to
be analyzed in the laboratory. Fixed solutions of soil mixed with distilled water (1:5 ratio) were shaken
mechanically for 1 h, allowed to settle naturally for 30 min, and then electrical conductivity of the
solution (EC1:5) was determined [34]. According to the laboratory analysis results, the vast majority of
the soil samples ranged between sandy and sandy clay loam in terms of texture (Figure 3) and were
considered to be high and medium erosion prone soils, accordingly.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 24 

 

2 Sentinel-2 15/06/2018 10 (Bands 2,3,4,8), 20 

(5,6,7, 8A)  

 

For both images, reprocessing techniques were applied, such as geometric, radiometric, and 

atmospheric pre-processing corrections. Initially, the images were radiometrically corrected to 

account for various changes such as Earth to Sun distance correction and viewing geometry changes 

(e.g., Sun elevation correction) among different image acquisitions. The digital number (DN) values 

were converted to reflectance values [31]. Eventually, all the images were corrected for atmospheric 

distortions using the atmospheric correction method, namely darkest pixel (DP) [32]. The overall 

methodology was applied in the GIS environment and could practically significantly reduce 

atmospheric distortions and intensities by accounting for dark and non-variant targets located in the 

image or by conducting in situ measurements. 

2.3. Soil samples collection and laboratory physicocemical analysis 

In order to calibrate the model, 30 surface soil samples (about 0-20 cm depth) were collected 

within the study area. Sampling locations were carefully selected on the basis of the most 

representative soil–landscape features, such as geological substrate, topographic characteristics, soil 

types, land use, land cover, and overall conditions of the topsoil. The sampling points were 

georeferenced using a differential Geographic Positioning System (GPS) (Figure 2). All topsoil 

samples were stored in plastic bags and aluminum bowls and carried to the laboratory, where plant 

roots and other unnecessary materials were removed. The Bouyoucos Hydrometer method was 

applied to determine soil texture [33]. Each sample was air-dried, ground to pass through a 2 mm 

sieve, and stored in plastic bags in order to be analyzed in the laboratory. Fixed solutions of soil 

mixed with distilled water (1:5 ratio) were shaken mechanically for 1 h, allowed to settle naturally 

for 30 min, and then electrical conductivity of the solution (EC1:5) was determined [34]. According 

to the laboratory analysis results, the vast majority of the soil samples ranged between sandy and 

sandy clay loam in terms of texture (Figure 3) and were considered to be high and medium erosion 

prone soils, accordingly. 

 

 

Figure 3. The United States Department of Agriculture (USDA) textural distribution of the soils at the
study site.



Remote Sens. 2019, 11, 1106 6 of 21

In addition, CaCO3 was quantified by acid dissolution with the calcimeter. The specific method
involves determination of H+ consumption or Ca (and Mg) or CO2 production. The SOM was
estimated with the use of the Walkley-Black oxidation method [35]. The mean value of the SOM
(from the total of the sampling population) as estimated from the laboratory measurements was 3.2%.
However, concerning the northeastern area of Akrotiri, which suffers more from erosion, the topsoil
SOM mean value was only 1.86%. On the other hand, in the main part of the cape that is not much
affected by erosion, the SOM mean value was 4.1%. Concerning CaCO3, its average value was about
18.1% with the outliers ranging from 2 to 59.5%. However, the measurement of null CaCO3 values in
some soil samples made the CaCO3 model less reliable compared to the SOM model. Within this study,
the K-factor of the study area was estimated using Equation (1) as proposed from [30].

K = 2.8·M1.14
·10−7(12− SOM) + 4.3·10−2(S− 2) + 3.3·10−2(p− 3

)
(1)

where M is the textural factor; SOM is the percentage of soil organic matter content; S is the soil
structure code used in the classification; P is the profile permeability class. The soil structure class is
determined in Table 2.

Table 2. Classes of soil structure [36].

Structure Class Value

Very fine granular (1-2mm) 1
Fine granular (2-5mm) 2
Medium or coarse granular (5-10 mm) 3
Blocky, platy or massive: > 10 mm 4

3. Methodology

3.1. Overall Methodology

The overall methodology was based on the synergistic use of satellite imageries (Sentinel-2 and
Landsat 8), field spectroscopy, ANN, and soil textural and chemical analysis in order to estimate SOM,
CaCO3, and K-factor. Specifically, soil sample campaigns were carried out in the Akrotiri peninsula
in Chania, Crete, Greece, and the texture and the corresponding chemical analysis results (in terms
of SOM and CaCO3) were used as calibration data of our overall model. Following that, spectral
and spatial data from Sentinel-2 and Landsat 8 images were statistically analyzed in terms of SOM,
CaCO3, and K-factor estimation using a non-linear ANN approach. In addition, spectral signatures
were collected (using field spectroscopy) from all the soil samples, and the results were employed to
correlate them with the SOM variable using ordinary least square regression (OLSR) analysis. Finally,
the RUSLE erosion simulation model was developed, and geographical weighted regression (GWR)
analysis was employed to investigate its correlation with the developed SOM maps. Consequently,
Figure 4 outlines the methodological steps presented in the following paragraphs.

3.2. Simulation of SOM and CaCO3 through Spectral Vis-NIR Measurements and Satellite Data

Spectral (VIS-NIR) reflectance measurements from all the 30 soil samples were acquired in the
field using an Analytical Spectral Device (ASD) FieldSpec 2 portable spectroradiometer covering
wavelengths from 325 to 1075 nm at a sampling interval of 1 nm for each spectral reflectance
measurement. Each measurement represented an average of 20 spectral measurements. Relative
reflectance is the quantity measured by the instrument, which is calculated by dividing the energy
reflected from the soil sample by the energy reflected off a calibrated white Spectralon panel. The data
were acquired at the nadir with a field of view of 25◦ and a solar zenith angle of approximately 5◦ [37]
(Figure 5a). In addition, the data were classified (mean values) in terms of both different soils textures,
SOM values, and their corresponding spectral signatures (Figure 5b). The results denote the fact



Remote Sens. 2019, 11, 1106 7 of 21

that the most prone eroded soils, such as those of sandy loam texture and soil of low SOM values,
had corresponding low spectral signature values.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 24 
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Initially, due to high levels of noise, bands ranging between wavelengths of 325–392 and
951–1075 nm were excluded from the overall analysis. In order to develop the OLSR model, certain
bands were chosen based on significant correlation of those bands with soil properties. For that reason,
Pearson correlation analysis was carried out, and from 751 bands (from 325 to 1071 nm), only 19 bands
were chosen as the more correlated in order to be included in the final spectral analysis. Following this,
the potential contributions of the individual spectral bands in the estimation of valuable soil parameters,
such as SOM, CaCO3, and K-factor, were estimated using the OLSR approach. OLSR is a method for
estimating the unknown parameters in a regression model by minimizing the sum of the squares of the
differences between the observed responses in the given dataset and those predicted by a linear function
of a set of explanatory variables [38]. Thus, the soil parameters were used as dependent variables and
the spectral bands, as extracted from field spectroscopy, were used as independent variables.
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3.3. Artificial Neural Networks

ANNs have been used in the past extensively for data processing and interpolation. ANNs were
initially inspired by the structure and the functional aspects of biological neural networks and were
originally suggested as mathematical models to simulate human brain function [39]. The feed-forward
neural network was the first type of ANN, where information moves in only one direction—forward.
The processing of information is done at different layers, the corresponding nodes being separated
into three categories—input nodes, output nodes, and hidden nodes. Input nodes do not perform
calculations, while output and hidden nodes are computational nodes. The computational nodes
initially multiply the input (xi) with the corresponding synaptic weight (wi). The sum of the products
of the weights is introduced as an argument to the activation function, and the resulting value is the
output value of the node for the current inputs and the weights of a given iteration. This value is then
either fed to the next hidden layer or the output of a neural network. The optimal architecture of an
ANN is defined by varying the number of neurons in the hidden layer and successively training and
testing against variable sets previously unknown to the network [40]. The aim of the training process
is to decrease the error between the ANN output and the real data [41]. The effectiveness of ANNs in
solving remote sensing problems has been well demonstrated in various studies, since ANN can easily
combine data coming from different sources into a unique integrated algorithm [42].
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In the present study, ANNs were utilized in order to model the SOM, the CaCO3, and the K-factor
distribution in the study area. Two different models were developed at the study, each one using
different satellite images. The specific ANN architecture used, as input parameters, the longitude
and the latitude [coordinate system: Universal Transverse Mercator (UTM) Zone 35N World Geodetic
System (WGS) 1984] coordinates of each soil sample location as well as data from the spectral bands of
Landsat 8 for the first ANN and Sentinel-2 for the second. The estimated output parameters of the model
were the SOM, the CaCO3, and the K-factor, as determined from soil analysis. After training the ANNs
using the available field data from the 30 locations in Akrotiri, the trained networks were used in order
to predict SOM, CaCO3, and K-factor. Trial and error determined the optimal Multi-layer Perceptron
(MLP) architecture to a three-layer network consisting of an input layer (X and Y coordinates and band
values at each data point), one hidden layer (10 neurons for the Landsat 8 and eight neurons for the
Sentinel-2 data) and one output layer (SOM, CaCO3, or K-factor). In order to minimize the uncertainty
due to the small diverse dataset, a Monte Carlo procedure was followed. In this case, the training was
performed 100 times, having 100 different Training–Validation–Testing datasets and initial neural weight
parameters each time. In each realization of the algorithm, a random selection of data within the dataset
was performed, keeping the 80%-10%-10% distribution between the Training–Validation–Testing
datasets, respectively. In this case, training was based on the Levenberg-Marquardt method, which is
a modification of the classic Newton algorithm for finding an optimum solution to a minimization
problem. The Levenberg-Marquardt algorithm is often characterized as more stable and efficient [43]
for applying ANN analysis. Thus, the mean values of the different trainings are representative of the
capabilities of a mean ANN.

3.4. RUSLE Model and Statistical Analysis

The Universal Soil Loss Equation (USLE) is the most common model used to estimate erosion risk.
The USLE was first developed as a field scale model [19] and later was revised to the Revised Universal
Soil Loss Equation (RUSLE) in an effort to better estimate the values of the various parameters of the
USLE [20]. The RUSLE incorporates improvements in the factors based on new and better data but
keeps the basis of the USLE equation. A widely worldwide used method for estimating soil loss is
the USLE/RUSLE, since it is compatible with the GIS environment. The method does not only predict
erosion rates within the spatial limits of a watershed basin but also presents the spatial heterogeneity
of soil erosion [44]. The RUSLE equation (Equation (2)) incorporates five different factors concerning
rainfall, K-factor, slope length and steepness, cover management, and support practice.

A = R·K·L·S·P (2)

where,

A is the soil loss (t ha−1year−1),
R is the rainfall-runoff erosivity factor (MJ mm ha−1 h−1 year−1),
K is the soil erodibility factor (t ha h ha−1MJ−1 mm−1),
L is the slope (dimensionless),
S is the slope steepness factor (dimensionless),
P is the conservation practices factor (dimensionless).

For the needs of the study, the RUSLE model was applied to assess soil erosion status in the
Akrotiri region. The model was fed with different spatiotemporal data such as land use, precipitation,
soil erosivity, vegetation cover, and geomorphological and support practices data. The supervised
classification algorithm (maximum likelihood algorithm) was applied to the Landsat 8 image to create
the Land Use/Land Cover map of Akrotiri. The specific map was used to develop the C (cover
management factor) layer. In addition, certain values of C (cover management) factor ranging from 0
to 0.35 were attributed to different land uses, as estimated in [45]. Mean monthly data were employed
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to estimate the rainfall erosivity factor (R). Thus, the Modified Fournier Index (MFI) was estimated,
and the Spline interpolation method was applied [23]. A Digital Elevation Model (DEM) of 20 m
spatial resolution of the study area and the equation derived from [46] was employed to calculate
the L and the S factor. In case of the Landsat 8 ANN model, the DEM was resampled to 30 m spatial
resolution. The P factor was developed through optical observation and digitization of Google Earth
satellite images. In this case, the areas of terracing and contouring within the study area were mapped
in the GIS environment. All the above-mentioned digital layers were imported and analyzed in the
GIS environment in terms of the RUSLE soil erosion model according to Equation (2).

In the case of cross comparison between the RUSLE output and the soil parameters estimation,
the GWR method was used rather than OLSR. Both models are linear regression models, however,
OLSR is a global model and GWR is a local model. GWR is a general linear model that contains
embedded geographic information. The general linear method of GWR is described in Equation (3) [47]:

Yi = βo(µι, νι) +
ρ∑

k=1

βκ (µi, νi)ικ + ει i = 1, 2, 3, . . .n (3)

where βo is the intercept,
(µι, νι) represents the coordinates of the sample point at position i,
βκ(µι, νι) is the regression parameter of the sample at position i,
and ει is the random error term, which is consistent with the feature of zero mean homescedacity.

GWR has proven to give better results with data exhibiting spatial non-stationarity due to its
ability to model locally-varying relationships between independent and dependent variables [47].
A GWR model is calculated for each specific location of interest using either: (a) a fixed distance
approach (i.e., including all data points within a specific distance), or (b) an adaptive distance approach
(i.e., including a specific number of nearest data points). In this context, a GWR typically employs a
kernel weighting function, e.g., a Gaussian or bi-square kernel function, in order to allow data points
located nearer to the point of interest to have stronger influence in the regression calculations [48].
In our study, GWR was employed to conduct comparison between soil loss rates and SOM rates in
terms of R2.

4. Results

Initially, after the estimation of SOM and CaCO3 parameters, through laboratory soil samples
analysis, K-factor was calculated using Equation (1) in the GIS environment. The maps denote a
conceptual uncertainty in the values distribution of all three parameters (Figure 6a–c). This uncertainty
was also depicted in the statistical results in terms of spline methodology accuracy. Specifically,
20 random point measurements were selected for applying the interpolation method and 10 points for
validating the results. The extremely low R2 values, as estimated for correlating training and validating
measurements and concerning all the estimated parameters (SOM, CaCO3, and K-factor), highlighted
the need for developing a new coherent methodology for explicitly mapping soil parameters with
the use of EO data. These results are merely in accordance with similar studies [49] that applied the
Ordinary kriging method to estimate SOM.

Following this, three individual maps were constructed from the synergistic use of ANN, satellite
data, and laboratory analysis, modeling the SOM, the CaCO3, and the K-factor, respectively. Specifically,
the integration of the different approaches contributed to the development of six different maps
concerning both satellite sensors, Sentinel-2 and Landsat 8 (Figure 7a,b, Figure 8a,b, and Figure 9a,b).
Furthermore, the ANN MLP simulation results produced good agreement with those measured in the
field data in terms of R2 and root-mean-square error (RMSE) (Tables 3 and 4) for both Landsat 8 and
Sentinel-2 satellite imageries.
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Table 3. Statistics of R2 and root-mean-square error (RMSE) concerning the performance of the MLP
artificial neural network (ANN) algorithm in the Landsat 8 data.

Landsat 8

Mean RMSE Mean R2

Training Testing Validation Overall Training Testing Validation Overall
SOM 0.55 1.1 0.67 0.58 0.88 0.52 0.83 0.87
CaCO3 6.5 9.2 7.3 8.08 0.84 0.5 0.6 0.79
K-factor 0.0087 0.016 0.01 0.0095 0.7 0.42 0.52 0.6

Table 4. Statistics of R2 and RMSE concerning the performance of the MPL ANN algorithm in the
Sentinel-2 data.

Sentinel-2

Mean RMSE Mean R2

Training Testing Validation Overall Training Testing Validation Overall
SOM 0.43 1.1 0.94 0.58 0.93 0.41 0.67 0.87
CaCO3 6.3 10.1 8.4 7.1 0.85 0.56 0.74 0.82
K-factor 0.002 0.0164 0.0114 0.0093 0.68 0.39 0.42 0.59
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In most cases, the results were within an acceptable range considering the complexity of the case
study and the limited data availability. For both datasets, the SOM parameter was better simulated by
the ANNs, which was expected since the dataset used was more diverse and its statistical characteristics
were well distributed. In addition, these results in terms of R2 were in accordance with the results
of [50], who estimated SOM with the use of ANN and remote sensing data. For the calculation of the
K-factor, both SOM and CaCO3 data were used (see Equation (1)), thus the uncertainty derived by both
datasets was accumulated to the K-factor dataset, resulting in the worst simulation results amongst the
three parameters simulated. However, because the study system was quite complex, the simulation
was considered successful.

Using the RUSLE model, the final soil erosion map of the Akrotiri cape was developed (Figure 10).
The results denote high soil erosion risk in the northeastern part of the cape, where steep slopes
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occur. Specifically, an average soil loss rate of more than 80 t ha−1year−1 was recorded for 2018 in the
specific area.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 24 

 

 

 

Figure 9. Spatial distribution of K-factor as estimated from the integrated use of ANN and (a) Landsat 

8, and (b) Sentinel-2 imageries. 

Using the RUSLE model, the final soil erosion map of the Akrotiri cape was developed (Figure 

10). The results denote high soil erosion risk in the northeastern part of the cape, where steep slopes 

occur. Specifically, an average soil loss rate of more than 80 𝑡 ℎ𝑎−1𝑦𝑒𝑎𝑟−1 was recorded for 2018 in 

the specific area. 

Figure 9. Spatial distribution of K-factor as estimated from the integrated use of ANN and (a) Landsat
8, and (b) Sentinel-2 imageries.

The study area was divided to four different land use classes according to CORINE 2006 land
cover data, and zonal statistics were calculated in terms of SOM content using different methodological
approaches (Spline interpolation, Sentinel-2, and Landsat-8). The results denote the trend of the
Sentinel-2 methodology to underestimate SOM values compared to the Spline and the Landsat 8
approaches (Figure 11).
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The study area was divided according to topography and the RUSLE results into affected (>50 m
height) and no erosion-affected areas (<50 m height). The affected areas were delineated in the
northeastern part of the cape where high slope inclinations occur, and corresponding high soil loss
rates were recorded (approximately 80 t ha−1year−1). The less erosion prone areas were delineated in
the almost flat areas in the central part of the cape, where minimum soil loss rates (~6 t ha−1year−1) were
recorded. Table 5 indicates the statistical correlation between soil loss rates and SOM measurements in
the above-mentioned areas. The results highlight the fact that the average SOM deposits decrease in
areas that suffer from water soil erosion due to the phenomenon of topsoil removal.
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Table 5. Statistical results of SOM and the RUSLE correlation

Erosion Affected Areas No Erosion Affected Areas

Mean SOM (%) St. Deviation Mean SOM (%) St. Deviation

Spline 1.84 0.3 4.4 0.78
Landsat 8 1.76 0.92 3.4 0.98
Sentinel-2 2.15 0.3 3.69 0.78

Following this, the OLSR methodology was applied to correlate the SOM parameter with the
soil samples’ corresponding spectral signatures, as derived from field spectroscopy campaigns. As it
was previously stated, in case there is an initial filtering of the vast number of the available spectral
bands, the field spectroscopy can be a valuable tool in modeling and predicting soil parameters with
means of spectral analysis. The value of R2 = 0.67, as indicated in Figure 12, is promising for actively
incorporating field spectroscopy in soil studies.
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The results concerning the application of the GWR methodology for comparing the RUSLE,
the slope inclination (degrees), and the SOM datasets in terms of R2 are presented in Table 6.

Table 6. R2 statistics and slope inclination results concerning cross comparison between real data and
the RUSLE results with various SOM estimation approaches.

SOM
R Square

RUSLE (Soil Loss) Inclination (Degrees)

Spline 0.08 0.99
Landsat 8 0.41 0.80
Sentinel-2 0.29 0.88
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The R2 values describe the overall fit of the developed models. The results denote the ultimate
correlation of SOM with the terrain morphology in terms of slope inclination. On the other hand,
the low R2 values concerning comparison of the soil loss model with the SOM parameter highlight the
multi-parametric nature of the soil erosion phenomenon, which cannot be actually described with the
employment of a unique variable such as SOM. In Figure 13, the overall spatial allocation of local R2

values concerning the correlation between the RUSLE and the ANN satellite derived SOM products is
presented. It seems that Landsat 8 had greater spatial allocation of high R2 values across the study area
(Figure 13a).
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5. Conclusions

Greece is a Mediterranean Europe hotspot extremely prone to soil erosion. Both Mediterranean
land managers and stakeholders need sound, evidence-based information about land degradation
patterns and the effectiveness of their management responses [8]. Obtaining such information, however,
is particularly difficult in Mediterranean grazing lands, where a long history of anthropogenic pressure,
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high topographical and climatic variability, and frequent disturbances combine to create a highly
diverse and unstable environment.

This paper highlights the significance of determining the soil erosion threat using both EO and
field spectral VIS-NIR data in order to monitor soil regime and adopt the appropriate measures and
practices for soil conservation and sustainable land use. Furthermore, the manuscript highlights the
potential of the ANN inversion model for the estimation of the soil erosion phenomenon with the use of
EO data. The collection of crucial in situ soil parameters data such as SOM and CaCO3 in remote areas is
often an impractical, expensive, and time-consuming process; therefore, the development of alternative
data collection methodologies is indispensable. In this context, efficient spatial simulations of the
crucial soil parameters, SOM and CaCO3, were carried out using field spectral VIS-NIR measurements
and satellite remote sensing observations (Sentinel-2 and Landsat 8) combined with non-linear (ANNs)
approaches. The derived maps successfully captured the SOM and the CaCO3 spatial distribution in
the GIS environment (approximately 80% R2 for images from both sensors). It is important to state that
the results are optimum for SOM compared to CaCO3. Accordingly, the aforementioned maps were
used for the spatial estimation of K-factor, which formed the main data input in the RUSLE model
to estimate the soil erosion risk in the study area. The results depicted increased soil erosion risk in
the northeastern part of the Akrotiri cape, where steep slopes occur. In addition, field spectroscopy
data were collected for various soil samples, and statistical analysis (OLSR and GWR) was carried out
to compare them to relevant soil parameters (SOM and CaCO3) values. The high corresponding R2

values (67%) for OLSR denoted the potential of field spectroscopy to describe soil health effectively.
Finally, the results highlighted the fact that the terrain morphology is absolutely related to soil erosion
rates rather than SOM values that cannot successfully describe the soil erosion regime.

The presented approach forms a sufficient methodology for incorporating EO data in monitoring
soil parameters and consequently estimating soil erosion. Results demonstrate that the retrieval of
soil parameters is possible by using satellite data, either Sentinel-2 or Landsat 8, and an inversion
algorithm, making the whole process both time and cost efficient. This overall approach will contribute
to the design of good soil erosion management practices and wise land use planning in the study
region or wherever it is needed. In addition, this work can provide significant guidelines for defining
and monitoring additional areas susceptible to soil erosion. Future research will focus on further data
collection in broader areas for a more accurate validation of the results.
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