
A small sociology of programming languages;

beyond Guy Steele.

Camille Akmut

October 22, 2019

Abstract

Extension of a sociology of programming languages started by Guy
Steele in the introduction to Scheme and the Art of Programming (1989).

1



”This notation is rather formidable for a human to read”...

Introduction : social computer scientists

A small, but important tradition within computer science exists : they
who did not consider their discipline as a mere “technical” subject, matter,
enterprise or challenge.

In being and thinking so, they were not alone, not without peers :
we can assign to this tradition computer scientists like Edgar Dijkstra,
Richard Stallman, Larry Wall or Peter Landin – to name only a few.

Their purported eccentric ways – exceptional only in a field whose
dominant model of the scientist favors naively a-political attitudes above
all else – turned out to be among the best their discipline ever had — and
was ever able to produce.

This was despite great, enduring faults starting with its curriculum
and attached sets of implied values : the false, cheap veneer of false or
immature sciences. Rejecting politics as exterior to itself, yet full of it
wherever the eye reaches.

Guy Steele did not lack a sociological eye either, except for when it
came to himself.

—
The separation of ”the technical” and ”the political” – a foundational

act of this discipline – serves many purposes, but let us express clearly here
its most important function : this simplistic, untenable and unrealistic
dichotomy fulfills only the interests of a certain class, or category of people.

They serve to bolster those who appear regularly in our newspapers
due to their ever-greater audacity and escalating, shameless buffoonery :
the Zuckerberg’s, Sandberg’s, Pichai’s of this world.. Computer scientists
and students are their cannon fodder; too often, all too willing.

Unrepentantly, we can repeat here : Watson must have thought not
unlike many of them in June of 1934, when he visited Berlin for the second
time, and when IBM though its subsidiary IBM Germany (then known
as Demahog) had turned greed into virtue : it served everyone, and most
zealously so...

1 A “small” language.

In the introduction to Scheme and the Art of Programming, Steele had
created a small sociology of programming languages.

His theory : “Small is (...) powerful, [because] small is easy to under-
stand.”1

Based on this, he created a table of programming language standards
ordered by their respective lengths, reproduced down below :

1Ibid., “Foreword”, xiv.

2



In this paper, our contribution does not go much beyond updating
it and highlighting its importance and greater context, not least for the
current era.

Published in the first, 1989 edition of this textbook, it is now extended,
exactly 30 years later.

Using language drafts and standards that have appeared since, we
came up with the following, updated table :

Java 8 780
Java (2nd ed.) 530

C# (ECMA-334, 1st ed.) 490
Haskell 2010 320
Haskell 98 270

Javascript (3rd ed.) 180
Python 3 (3.5) 150
Python 2 (2.7) 130

Javascript (1st ed.) 110
LISP 1

2

But, we can go a bit further by noting that a general trend seems to
be that the more corporate a language (Java/Oracle, C#/Microsoft, etc.),
the more lengthy its specification. COBOL - the businessman’s language
- now replaced by Java and Go.

In a previous article we had claimed these languages’ popularity was
based on corporate power, used to establish them as dominant : adver-
tisements campaigns as heavy as their books, specifications.

—
As to how Guy Steele was able to accomplish the intellectual split re-

quired by moving from Scheme to Java (later JavaScript), this conundrum

3



of the mind, a true “jigsaw puzzle”, we would much rather leave to future
sociologists, applied and theoretical.

Going from working with hackers of some ideals, to joining the very
heart of 1990’s big business : he had learned a lesson then that still escapes
us and his successors have perfected now.

References

”Haskell 2010 Language Report”. https://www.haskell.org/definition/haskell2010.pdf
”Haskell 98 Language and Libraries. The Revised Report”. https://www.haskell.org/definition/haskell98-
report.pdf
”The Python Language Reference”. https://docs.python.org/2.7/download.html
”The Python Language Reference”. https://docs.python.org/3.5/download.html
”The Java TM Language Specification. Second Edition.” http://www1.cs.columbia.edu/ sed-
wards/papers/gosling2000java.pdf
”The Java R Language Specification. Java SE 8 Edition.” https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
ECMA-262, 3rd ed.. ”ECMAScript Language Specification”.
ECMA-262, 1st ed.. ”ECMAScript: A general purpose, cross-platform
programming language”. https://www.ecma-international.org/publications/standards/Ecma-
262-arch.htm
McCarthy, John. 1959. ”Recursive functions of symbolic expressions and
their computation by machine”. In particular, page 13.
Black, Edwin. 2001. IBM and the Holocaust.

4


