
Tolerance of TCP with network coding to
reverse-direction packet loss and packet
reordering

著者 Nguyen Viet Ha, Tsuru Masato
雑誌名 電子情報通信学会技術研究報告. IN, 情報ネットワ

ーク
巻 118
号 359
ページ 13-18
発行年 2018-12-06
URL http://hdl.handle.net/10228/00007407

社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Tolerance of TCP with network coding to reverse-direction packet loss and
packet reordering

Nguyen VIET HA† and Masato TSURU†

† Faculty of Computer Science and System Engineering, Kyushu Institute of Technology
680–4 Kawazu, Iizuka-shi, Fukuoka, 820–0067 Japan

E-mail: † nguyen.viet-ha503@mail.kyutech.jp, † tsuru@cse.kyutech.ac.jp

Abstract Transmission Control Protocol with Network Coding (TCP/NC) is one of the potential proposals for im-
proving the goodput performance of the current TCP protocol in lossy networks (e.g., wireless networks). TCP/NC
uses additional sub-layer called Network Coding layer below TCP layer to handle packet losses without sensed by
TCP layer. The authors introduced some variants of TCP/NC such as TCP/NCwLRLBE (TCP/NC with Loss Rate
and Loss Burstiness Estimation) which can improve the retransmission and adapt to the changing of the channel.
However, most versions of TCP/NC do not consider two problems, that are the bi-directional packet loss and the
unordering packet receiving, which affect the goodput performance seriously. Therefore, in this paper, we investigate
the goodput performance degradation by the bi-directional packet loss and the unordering packet receiving, and
propose solutions. The result of our simulation on ns-3 (Network Simulation 3) shows that the proposed scheme can
work well when loss happens in both directions as well as in unordering packet receiving environment compared to
the TCP NewReno and our previously proposed protocol, TCP/NCwLRLBE.
Key words TCP/NC, Network Coding, Bi-directional loss, unordering packet receiving, lossy networks, ns-3.

1. Introduction

On the wide of applications, Transmission Control Proto-
col (TCP) is a current choice for reliable transmission due to
its advantages on connection-oriented and congestion con-
trol features. However, its goodput performance of TCP
severely degrades in the packet loss environments (e.g., in
wireless networks). In TCP’s congestion control mecha-
nism, a packet loss considered as a congestion signal; hence,
TCP will decrease the sending rate by reducing the conges-
tion window (CWND) for every packet loss detecting. This
act is necessary for fair bandwidth sharing to all concurrent
sessions running in a network. However, the packet loss is
caused not only by network congestion but also a channel.
Instead of reducing, CWND should be kept stable in the lossy
case to overcome the temporary lousy condition of the chan-
nel. But, TCP has no method to separate the type of losses.
TCP decreases the CWND mistakenly, resulting in affecting
to transmission performance seriously. Some TCP variants
have been proposed to overcome this issue, e.g., TCP West-
wood+ [1]. Another approach is combining Network Coding
with TCP (called TCP with Network Coding - TCP/NC) [2]
which has more benefits than using only the TCP.

The basic idea of TCP/NC is the adding a new NC sub-

APPLICATION
TCP

IP
MAC

APPLICATION
TCP

IP
MAC

SOURCE SIDE SINK SIDE

DataACKNETWORK CODINGNETWORK CODING

Fig. 1 NC layer in TCP/IP model

layer between TCP and Internet layer shown as Fig. 1.
The primary role of NC sub-layer is encoding and decod-
ing. When sending the packet at the source, this sub-layer
receives n TCP segments from the upper layer, combines
them to m combination packets with m>n (referred to en-
coding process), and forward to the lower layer. The sink is
expected to recover all n original segments if the number of
lost packets is no more than m − n (referred to as decoding).
While NC can apply on wide range area such as bandwidth
optimizing, network scheduling. In our study, we focus only
on its advantage on a high degree of packet loss robustness.
And we focus on applying NC only at end-devices, not at the
intermediate nodes due to the limitation of this paper scope.

A few recent years, some variants of TCP/NC have been

— 1 —

introduced to improve the goodput performance. TCP/NC
with Enhanced Retransmission (TCP/NCwER [3]) can im-
prove the retransmission process by sending multiple retrans-
mission in one Round Trip Time (RTT); besides, all the re-
transmission are encoding to prevent the lost again which
leat to TCP Timeout (TO). Self-Adaptive NC-TCP (SANC-
TCP [4]), Adaptive NC (ANC [5]), and Dynamic Coding
(DynCod [6]) focus on the channel condition estimation (link
loss rate) and NC parameters adaptation (n and m) to work
well in the practical channels frequently changed over time.
Especially, TCP/NC with Loss Rate and Loss Burstiness Es-
timation (TCP/NCwLRLBE [7]) can estimate the channel
condition of burst loss environments (both link loss rate and
loss burstiness) and be flexible adjusting the NC parameters
without effect to the current settings. However, the most
mentioned protocols do not consider two channel conditions
which affect the goodput performance severely. First is a
bi-directional loss. Most protocols use the information of
the ACK packet to determine the necessary retransmission
and/or estimate the correct channel conditions to determine
the proper NC parameters. Therefore, they need to receive
all acknowledgment (ACK) packets. Lack of ACK causes
the estimation information to be wrong. Lossing ACK of-
ten occurs in the practical channel with the bi-directional
loss. Second is an unordering problem which mention to the
not in-order receiving the packets. The unordering prob-
lem causes goodput performance degradation in not only the
regular TCP [8] but also the current TCP/NC variants. The
unordering problem causes returning many duplicated ACK
at the sink resulting in reducing the CWND mistakenly and
retransmitting the unnecessary packets at the source. More-
over, this problem also produces the same issue with the
bi-directional loss problem when the source receives not in
order ACK packets.

In this paper, we propose a new scheme which can help the
sink notify to the source the status (received or lost) not only
of the currently received packet but also of the previously re-
ceived or the lost packets. Consequently, the source can col-
lect all the information correctly to estimate all the necessary
values even though of some ACK packets are missing. Ad-
ditional, the proposed scheme can estimate the unordering
conditions, such as unordering length, unordering rate, and
the number of duplicated ACK to react the unordering af-
fectation. This scheme can change the NC parameters based
on not only loss/burstiness but also the unordering informa-
tion. Besides adjusting the NC parameters, we introduce the
Pause-ACK mechanism. Pause-ACK helps the source delay
some the duplicated ACK in the determined period to wait
for the proper ACK packet. This mechanism can limit the
number of time of incorrectly decreasing CWND to stable

the goodput performance.
The remainder of this paper is organized as follows. Sect.

2 introduces the overview of TCP/NC. Sect. 3 explains the
detail of the proposed scheme. Simulation evaluation is pre-
sented in Sect. 4 and conclusion is given in Sect. 5.

2. TCP/NC Overview

2. 1 Network coding in protocol stack
TCP/NC introduces a new NC sub-layer putting between

TCP and network layer shown in Fig. 1. This sub-layer
handles the incoming and outgoing packets from TCP and
network layer, respectively. The key is this sub-layer works
transparently with other layers; thus, TCP/NC can simply
apply to any current devices. If NC sub-layer can recover
all packet losses, TCP layer is unaware of the loss events oc-
curring. Besides, NC sub-layer will return ACK packet with
ACK number determining based on the degree of freedom
and the seen/unseen definition [2] not based on the decoded
or received packet. The CWND is maintained even though
the combination packets have not decoded yet (will be de-
coded later). Thus, the transmission performance is stable
through lossy channels.

2. 2 Coding process
TCP/NC allows the source to send m combination pack-

ets (C) created from n original packets (p) with m≥n using
Eq. (1) where α is the coefficient. If the number of lost com-
binations is less than k=m−n, the sink can recover all the
original packets using the received combinations without re-
transmission except for the case of the linearly dependent
combinations. TCP/NC using a sliding method to combine
the original packets into a combination packet with the num-
ber of combined packets in one combination packet (referred
to as the sliding window) is k+1. Besides, α is selected ran-
domly; thus, the coding algorithm is also called Random
Linear Network Coding (RLNC [9]). The computation im-
plemented in a Galois field. All operators expressed to“ex-
clusive or” (XOR) and lookup table; hence, the complexity
of computation is small to apply to the real system.

C[i] =
n∑

j=1

αijpj ; i = 1, 2, 3, ..., m (1)

2. 3 TCP functionality
As mentioned, TCP/NC is proposed to work transparently

to other layers. And the TCP functionalities have been stud-
ied and worked stably in a long history. TCP/NC should
take all these advantages. Two most important mechanisms
are retransmission and congestion control. If the number
of packet losses is larger than the recovery capacity of NC
sub-layer, the source needs to retransmit the necessary pack-
ets. In this case, the NC sub-layer returns some duplicate

— 2 —

Fig. 2 NC-ACK header

ACK number equaling the oldest unseen packet. The re-
transmission will be started normally based on the original
Triple-Duplicate-ACKs or TCP timeout. Increasing or de-
creasing the CWND is also controlled by TCP layers, not
NC sub-layer.

3. Proposed scheme

The proposed scheme is the development of the previous
study in [7] (TCP/NCwLRLBE) which can automatically es-
timate the channel conditions (e.g., link loss rate, loss bursti-
ness) and adjust the NC parameters (n and m). The pro-
posed scheme can be called the TCP/NCwLRLBE add with
three mechanisms that are the ACK accumulation, unorder-
ing adaptation, and Pause-ACK. We will describe the detail
of them in the following.

3. 1 ACK accumulation
Calculating the estimated value immediately whenever the

source receives each new ACK packet can fail if some ACK
packets are lost or received not in order. Therefore we pro-
posed to add more information in the ACK packet containing
thirty-three packet status to indicate which packets received
at the sink. Consequently, some ACKs loss will not affect the
estimation process of the source. The source can update the
estimated values over time based on the previous information
stored in each ACK packets.

The NC header and NC-ACK header retained from
TCP/NCwLRLBE. And the content of the header fields
discussed in [3], [7]. The modification is only on NC-ACK
header shown in Fig. 2 and Table. 1; hence, in this part, we
focus on Pid Echo-Reply fields, and a new field called“Packet
loss Sequence.”Pid in NC header of sending combination and
Pid Echo-Reply in NC-ACK header of the returning ACK
packet is the same number which is unique. The source uses
Pid Echo-Reply to detect whether a combination was lost or
received at the sink. The Packet loss Sequence field includes
thirty-two binary number presenting to the status (received
or lost) of recently thirty-two consecutive packets. With this
field, the sink informs to the source that not only the success-
fully receiving of the combination packet having Pid but also
the status of the thirty-one previous packets. Therefore, the
sink can collect all the information to estimate the channel
condition even though some ACK packets are lost.

Table 1 NC-ACK header fields

Field name Description
P id-reply The packet identity echo reply
R The redundancy flag
D The dependence flag
P The Pause-ACK flag
U The update indication flag
Reserve Reserved for the future use
SN of the de-
pendence pkt

The SN of the dependence packet at the sink.
Using to notify the source to retransmit this
packet

Packet loss Se-
quence

Store the status of the 32 previous packets
start from the newest received packet having
the Pid equal the Pid Echo-Reply.

Besides, NC header is used instead of the normal TCP
header. The size of the NC header is 20 bytes for the com-
bination containing one original packet. And five bytes is
added for each additional original packet. The maximum size
of NC header is 70 bytes for the k of 10. In NC-ACK header,
twelve bytes is added in the normal ACK packet. The total
size of NC-ACK header is 32 bytes including 20 bytes of the
normal ACK header. The additional overhead is negligible
compared to data payload (e.g., 536 bytes in the simulation);
thus, it does not affect the goodput performance.

TCP/NCwLRLBE determines immediately the number of
packet losses and the loss burstiness size (number of con-
tinuous packet losses) whenever receiving the ACK packets.
These values are accumulated over time until the estimation
process starts in every periodic time (configurable param-
eter). Therefore, losing some ACK packets affects the esti-
mation process of TCP/NCwLRLBE. TCP/NCwLRLBE in-
creases the number of redundancy packets mistakenly; hence
the transmission performance is degraded. It is clear to see
that calculating immediately channel condition is unneces-
sary because the system must wait until the estimation pro-
cess starts. In our proposed scheme, the status of all packets
in one period time is stored and updated whenever receiving
the new ACK packet. Therefore, the source has enough time
to update the correct status of the packet to estimate the
correct channel conditions. The losing ACK packet does not
affect the transmission performance if the total continuous
loss in both directions (sending data packet and receiving
ACK packet) does not exceed thirty-two packets.

3. 2 Unordering estimation
Receiving not in order packets causes the goodput degra-

dation as shown in the study [8]. When the sink receives
leapfrog packets, it thinks some packets are lost on the chan-
nel; hence, it returns the duplicated ACKs. When the source
receives too many duplicated ACKs, the TCP will enter the
retransmission process and reduce the CWND by the half

— 3 —

(e.g., in TCP NewReno). To solve this problem, we propose
to estimate the unordering length (Lu). Then, the source will
the encoded combination packet containing Lu original pack-
ets. Therefore, when the sink receives the leapfrog packets,
the sink can return an ascending ACK based on the "seen"
original packet inside the combination packet, even though
the sink cannot decode the combination packet to the origi-
nal packet.

The Sink does the unordering estimation. The sink fo-
cuses on two actions that are recognizing the unordering
packet and calculating the unordering length. The un-
ordering length Lu is the number of consecutive packets
arriving not in order. If the P id of the received combi-
nation packet (P idcurrent) is less than the P id of the pre-
vious combination packet (P idprevious), the packet comes
not in order. And, if the P idcurrent is higher than the
P idprevious at least two packets, the unordering length equal
P idcurrent−P idprevious −1. However, packet loss also causes
this sign. Therefore, the sink must update which packet in
this unordering length received in the future based on the
method of recognizing the unordering packet mentioned be-
fore. Lu is updated periodically in every pre-configuration
period (e.g., 5 seconds in this paper). In this paper, we also
get the average value (lu) using the Simple Moving Average
(SMA) method for preventing the suddenly large change. Af-
ter having lu, the sink will send ceiling of it to the source via
ACK packet by using the "unordering length" field. The flag
U (update indication) is set to 1 also to let the source know
the change to update the NC parameters.

When the source receives the updated lu with the D flag,
it will find the new NC parameters (n and m) which having
the redundancy factor R approximate nold+kold+lu

nold
. Noted

that the maximum of k is 10.
3. 3 Pause-ACK
Although the source update k based on the unordering

length average lu, the duplicated ACK still happens when
the current unordering length is greater than k. It will affect
the goodput performance least to the sending rate degrada-
tion. When the sending rate is low, the estimated lu will be
not accurate because this length depends on the sending rate
proportionally. Thus, maintaining the stable sending rate is
the primary key to this process. We propose the Pause-ACK
mechanism to let the source delay some duplicated ACK to
limit the number of mistakenly reducing the CWND.

Not the source, the sink will decide which ACK packet will
be delayed to send to the upper layer (at the source). That is
because the source need receive as much as ACK packets to
estimate the channel condition. Thus, skipping some ACK
packets at the sink is not a good solution. The sink will indi-
cate the delayed ACK packet by using P flag in the NC-ACK

Fig. 3 Pause-ACK process

header. The number of the delayed packets calculated from
the average length of the duplicated ACK. We also get the
average value (ld) using the SMA method for preventing the
suddenly large change. In our simulation, we see that the
number of the delayed packets (pause length) equal to ld+2
having the good goodput performance. At the source, when
it receives the Pause-ACK packet, the source will store this
packet to the paused buffer and set the sending schedule of
200 ms (following the setting of Delay-ACK of the regular
TCP) for this ACK packet. When receiving a new ACK, the
source will erase all the packets which having the ACK num-
ber less than that of the new ACK from the buffer. These
processes are shown in the flowchart in the Fig. 3

4. Simulation result

The simulation is accomplished by Network Simulator 3
(ns-3) [10] which is a discrete-event network simulator for In-
ternet systems. We compare the transmission performance
through goodput among the standard TCP NewReno, the
previous study TCP/NCwLRLBE (refer to as TCP/NC from
here), and our proposed scheme.

The topology of the simulation consists of a backbone with
two arranged routers. One source and one sink are on ei-
ther side of the backbone shown in Fig. 4. All links have
a bandwidth of 1 Mbps. A propagation delay of the links
connected to source and sink is 5 ms. A propagation delay
on the link between two routers is configurable. The buffer
size of the links is set to 100 packets. The TCP protocol type
is NewReno. The payload size is 536 bytes. The minimum
TCP timeout is 1 second. And, the number of Delayed-ACK
is 2. The loss channel is the random loss channel for both
two directions. The simulations are run at least 20 times to

— 4 —

Fig. 4 Simulation topology

0 0.04 0.08 0.12 0.16 0.2

Link loss rate

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

TCP NewReno
TCP/NC
Proposed method

(a) Link loss rate of data
sending direction is 0.04

0 0.04 0.08 0.12 0.16 0.2

Link loss rate

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

TCP NewReno
TCP/NC
Proposed method

(b) Link loss rate of data
sending direction is 0.1

Fig. 5 Goodput comparison in the bi-direction loss

obtain the average value.
4. 1 Goodput evaluation in bi-directional loss case
In this simulation, the propagation delay of the link be-

tween R1 and R2 is 10 ms. The loss happens in both di-
rections at the intermediate link. The link loss rate of the
sending data direction is constant of 0.04 (Case 1) and 0.2
(Case 2) while the link loss rate of the ACK receiving direc-
tion changes from 0 to 0.2. Based on the results in Fig. 5, we
can see the advantage of the proposed scheme compared to
TCP NewReno and TCP/NC. The goodput performance of
the proposed scheme is kept stable even though the number
of loss degree increases. While the goodput performance of
both TCP NewReno and TCP/NC decreased when link loss
rate increases.

4. 2 Goodput evaluation in unordering case
In this simulation, the propagation delay is changed dy-

namically based on the proposed topology in [8]. The path
delay changes in every "Inter-switch time" (δ). The prop-
agation delay changes randomly around 200τ+50 with the
standard deviation of 200τ

3 where τ∈[0, 2]. We investigate
the variation of the goodput performance on four values of
δ that are 50 ms, 250 ms, 500 ms, and 1000 ms. More-
over, we show the results on three cases of link loss rate of
zero, 0.05, and 0.1. The simulation results shows in Fig. 6,
Fig. 6, Fig. 6, respectively. We compare the goodput perfor-
mance among the protocols shown in Table 2 excluding the
TCP/NCwLRLBE.

In Fig. 6, TCP/NC2 with Pause-ACK has the highest
goodput performance where τ if from 0.2 to about 1.4
(δ=50ms), 1.6 (others). The goodput performance of TCP
NewReno and TCP/NC2 is not stable when suddenly de-
creasing at τ of 0.4, 0.8, 1, and 1 corresponding to δ of 50
ms, 250 ms, 500 ms, and 1000 ms. The goodput perfor-
mance of the proposed scheme is stable but smaller than that
of TCP/NC2 with Pause-ACK. It is because the proposed

Table 2 Protocols description

Protocol Description
TCP TCP NewReno
TCP/NCwLRLBE or
TCP/NC

TCP/NC with Loss Rate and Loss
Burstiness Estimation

TCP/NC2 TCP/NCwLRLBE combine with ACK
accumulation mechanism

TCP/NC2 with Pause-
ACK

TCP/NCwLRLBE combine with ACK
accumulation and Pause-ACK mecha-
nisms

proposed scheme TCP/NCwLRLBE combine with ACK
accumulation, Unordering Estimation/
Adaptation, and Pause-ACK mecha-
nisms

scheme increases k to overcome the unordering problem. But
in this case, the only Pause-ACK mechanism is enough when
τ less than about 1.4. This issue can be solved when using
more information to decide the value of k. The additional in-
formation which is unordering rate may be solved this prob-
lem. It will be our future work.

In Fig. 7 and Fig. 8, we can see that using only the Pause-
ACK mechanism is not enough in the lossy case. The pause-
ack mechanism can slowdown the retransmission process of
the TCP when it delays the duplicated ACK unnecessarily.
The goodput perfomance of TCP/NC2 with the Pause-ACK
mechanism and TCP/NC2 is nearly the same in whole of τ .
Meanwhile, the propose scheme get a goodput goodput per-
fomance compare to the others. The propose scheme increase
k to overcome the unordering problem. This act can limit
the number of duplicated ACK packets, resulting to decrease
the number of Pause-ACK.

5. Conclusion

In this paper, we have proposed the scheme to help the
TCP/NC work well on the bidirectional loss as well the re-
ceving not in order packet environments which are common
in most practical channels. The simulation results on ns-
3 have shown that the proposed scheme outperforms other
protocols such as TCP NewReno and the recent variant of
TCP/NC (TCP/NCwLRLBE). In the future, we will im-
prove the scheme to adapt more heavy loss burstiness con-
ditions where the number of continuous packets in both di-
rections may exceed thirty-two packets. Instead of using a
fixed length continuous packet information, we will use the
random packet information. Another issue is to adapt un-
ordered packet conditions which also affect seriously to the
goodput performance of the system. Besides, we will con-
sider more additional information on unordering estimation,
such as considering the unordering rate.

— 5 —

TCP NewReno TCP/NC2 TCP/NC2 with Pause-Ack Proposed method

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1
G

oo
dp

ut
 (

M
bp

s)

(a) δ = 50ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(b) δ = 250ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(c) δ = 500ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(d) δ = 1000ms

Fig. 6 Goodput comparison in unordering case (link loss rate is zero)

TCP NewReno TCP/NC2 TCP/NC2 with Pause-Ack Proposed method

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(a) δ = 50ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(b) δ = 250ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(c) δ = 500ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(d) δ = 1000ms

Fig. 7 Goodput comparison in unordering case (link loss rate is 0.05)

TCP NewReno TCP/NC2 TCP/NC2 with Pause-Ack Proposed method

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(a) δ = 50ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(b) δ = 250ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(c) δ = 500ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Path Delay Factor ()

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
M

bp
s)

(d) δ = 1000ms

Fig. 8 Goodput comparison in unordering case (link loss rate is 0.1)

Acknowledgment
The research results have been achieved by the“Resilient

Edge Cloud Designed Network (19304),” the Commissioned
Research of National Institute of Information and Commu-
nications Technology (NICT), and by JSPS Grant-in-Aid for
Scientific Research (KAKENHI) Grant number JP18H06467
and JP16K00130, Japan.

References
[1] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and

R. Wang, "TCP westwood: Bandwidth estimation for en-
hanced transport over wireless links," in Proc. of the 7th
annual International conference on Mobile computing and
Networking, Rome, Italy, pp. 287–297, Jul. 2001.

[2] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M.
Mitzenmacher, and J. Barros, "Network coding meets TCP:
Theory and Implementation," Proceeding of the IEEE, vol.
99, no. 3, pp. 490–512, Mar. 2011.

[3] N. V. Ha, M. Tsuru, and K. Kumazoe, TCP Network Cod-
ing with Enhanced Retransmission for heavy and bursty
loss, IEICE Transactions on Communications, vol. E100-B,
no. 2, pp. 293–303, Feb. 2017.

[4] S. Song, H. Li, K. Pan, J. Liu, and S Y R Li,“Self-adaptive
TCP Protocol Combined with Network Coding Scheme,”in

Proceeding of the 6th Conference on Systems and Networks
Communications, Barcelona, Spain, pp. 20–25, Oct. 2011.

[5] C. Y. Cheng, and H. Y. Yi, “Adaptive Network Coding
Scheme for TCP over Wireless Sensor Networks,” Journal
of Computers, Commu-nications and Control, vol. 8, no. 6,
pp. 800–811, Dec. 2013.

[6] T. V. Vu, N. Boukhatem, and T. M. T. Nguyen, “Dy-
namic Coding for TCP Transmission Reliability in Multi-
hop Wireless Networks,”in Proceeding of the IEEE Interna-
tional Symposium on a World of Wireless, Mobile and Mul-
timedia Networks, Sydney, Australia, 6 pages, Oct. 2014.

[7] N. V. Ha, K. Kumazoe and M. Tsuru,“TCP Network Cod-
ing with Adapting Parameters for bursty and time-varying
loss,”IEICE Transactions on Communications, vol. E101-B,
no. 2, pp. 476–488, Feb. 2018.

[8] K. Leung ; V. O. Li ; D. Yang, “An Overview of
Packet Reordering in Transmission Control Protocol (TCP):
Problems, Solutions, and Challenges,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 4, pp.
522–535, Feb. 2007.

[9] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros,
“The benefits of coding over routing in a randomized set-
ting,” in Proceeding of IEEE International Symposium on
Information Theory (ISIT), Yokohama, Japan, pp. 442-447,
Jun. 2003

[10] Network Simulator 3 (ns-3), “https://www.nsnam.org/,”
accessed in Sep. 20th, 2018.

— 6 —

