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Abstract 
 

Conjugated polymers (CPs) have emerged as one of the potential candidates as active 

semiconducting elements in organic electronics owing to their low cost device fabrication in the 

area of organic field effect transistors, organic light emitting diodes and solar cells etc. The main 

feature of this class material lies in the preparation of the thin film via facile solution processing. 

CPs are susceptible to anisotropic charge transport owing to their inherent one-dimensional nature.  

In order to delineate optical anisotropy and anisotropic charge transport various techniques for 

molecular alignment of CPs have been attempted in the recent past. Existing problems like 

mechanical damage, solubility of under-layer and difficulty in multilayer film fabrication during 

molecular alignments needs the development of suitable methods. To circumvent these issues, 

floating film transfer method (FTM) having capability of anisotropic thin film fabrication have 

been proposed in the recent past. Although in the proposed FTM oriented films could be easily 

obtained, most commonly observed circular orientation hinders further upscaling of this method 

for the large area applications. In this thesis, a new improvisation for unidirectional film spreading 

during FTM have been made by implementing a newly designed PTFE slider leading to ribbon-

shaped floating films and named as Ribbon-shaped FTM.  

A number of most widely used CPs such as PQT-C12, F8T2, non-regiocontrolled (NR) P3HT, 

PBTTT-C14, PTB7 and regioregular (RR) P3ATs etc. have been successfully oriented using 

ribbon-shaped FTM. These oriented films have been characterized by a number of techniques like 

polarized electronic absorption spectroscopy, atomic force microscopy, X-ray diffraction. 

Parametric optimization for film casting conditions such as viscosity/temperature of the liquid 

substrate, temperature and concentration polymer solution were amicably carried out.  Influence 

of these casting conditions on the nature of ribbon-shaped FTM in terms of extent of macroscopic 



film formation, variation on the optical anisotropy and film thickness were investigated in detail. 

Amongst several CPs used for investigation, PQT-C12 exhibited not only the optical anisotropy 

but also the pronounced anisotropic charge transport with highest charge carrier mobility for 

OFETs based on oriented CPs. 

 PQT-C12 was utilized for in-depth investigation pertaining to the implication molecular weight 

and its distribution on the optoelectronic anisotropies by synthetizing polymers with different 

molecular weight and polydispersity index (PDI). It has been found too high or low molecular 

weights or not favorable for promoting molecular orientation and relatively smaller PDI promotes 

the facile anisotropic charge transport. One of the batch of synthesized PQT-C12 and large area 

thin film by ribbon-shape FTM exhibited remarkably high optical anisotropy (DR˃22) under at 

optimized casting condition. Microstructural investigation of these highly oriented films as probed 

by in plane GIXD exhibited edge-on orientation for the films fabricated under ambient conditions. 

A clear dependence of extent of molecular orientation on charge carrier mobility and anisotropic 

charge transport was demonstrated.    

Intractability of polythiophene led to development of RR-poly(3-alkylthiophene) derivatives but 

drastic decrease (4-5 orders) in mobility as function increasing alkyl chain length and enforced 

maximum research on hexyl substituted derivative (P3HT). Efforts were directed to prepare large 

area oriented thin films of RR-P3ATs by ribbon shaped FTM and influence of molecular 

orientation on alkyl chain length was investigated. A decease in DR with increasing alkyl chain 

length substitution was explained by increasing extent of interdigitating alkyl chains as confirmed 

by XRD results. Moreover, drastic hampering of charge carrier mobility as function of alkyl chain 

was not observed for FTM oriented films, which was explained by edge-on orientation as 

evidenced by in-plane GIXD investigations.     
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Chapter 1: Introduction 
1.1 Background 

Currently, increasing the demand of consumer electronics in day-to-day life became the basic need 

for the modern human life. To fulfill the demand of modern society in better ways, further 

development was done by miniaturization in microelectronics in order to change the circuit for 

high speed electronic devices. Since 19th century great effort have been done for the development 

of the inorganic semiconductor in which Si was the most interesting material because of the unique 

feature. Although it have unique feature in terms of high efficiency but in order to purification of 

Si wafer at the level of  such high efficiency  need very sophisticated and energy consuming 

instrument which is very costly for the production. Apart from this high class clean room was also 

one of the requirement for fabrication as well as device characterization. Finally in addition to all 

these production facilities make more costly. To avoid these processing cost one alternative 

semiconductor was emerged now days, named as organic semiconductor. Organic electronics is a 

branch of modern electronics where this organic semiconductor material such as polymer or small 

molecule was used as an active layer. This technology is based on carbon, similar to molecules in 

living things. Normally we consider about organic material properties we may not feel this material 

as an electrical conductor. In 1970 three scientists named as Heeger, MacDiarmid, and Shirakawa 

was discovered the first conductive polymer by certain modification in polymer named 

polyacetylene which is conductive in nature. [1,2]  After the discovery of first conductive polymer 

still 10 years there is no involved of electronics application. In mid of 1980 interest was increased 

in the field of applied physics and engineering and first organic solid state field effect transistor 

was fabricated by Van Slyke [3]  where polythiophene was the active layer. At the end of 1980                       
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some group member presented the organic ices by using organic small molecules or say oligomer. 

Although oligomer were deposited by thermal evaporator rather than solution processibility 

because of the poor solubility. Now days various types of organic devices fabricated by using 

organic material with solution processibility such as organic solar cell, organic field effect 

transistor, organic light emitting diode and organic photodiode, etc. The main feature of this 

technology of solution processable in order to make flexible, ease of handling, colorful and 

economic too. At present increasing the performance of the OFET make more interesting to design 

the complex circuit for the application in different area. Someya et al. reported large area pressure 

sensor made with OFET for the application of electronics artificial skin [4]. Subramanian et al. 

reported mobility 10-1 cm2/Vs by inkjet printer for the deposition of semiconductor, dielectric 

insulator and metal contact. This achieved OFET performance sufficient for 135 KHz RFID 

technology [5]. Klauk et al. [6] also reported integrated organic circuit operated with very low 

power supply in range of 1.5-3V and power consumption 1nW per logic gate. Apart from this Jung 

at al. reported roll to roll transfer antenna, rectifiers and ring oscillator on flexible substrate for the 

application of RFID tag work on 13.5 MHz. [7]   

 

Figure: 1.1 Importance and drawbacks of organic electronics as compared to inorganic     
electronics. 
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At present development of organic devices are very fast by utilization of solution processabale 

organic material specially conjugated polymer. Now conjugated material reached the mobility up 

to 1cm2/Vs which is sufficient for low frequencies devices like RFID and display devices. It is 

very important to note that the main aim of organic electronics not to replace the high mobility 

crystalline Si but we can replace amorphous Si at least having similar mobility. Now days in 

organic electronics conjugated polymer was utilizing the most interesting material having unique 

properties such as solution processable and mechanical flexibility for high performance devices 

fabrication. Although the device performance depends on many factors such as molecular weight, 

dielectric interface and other processing condition [8,9]. Recently high performance device was 

fabricated by align the film morphology of conjugated polymer by applying external force [10]. 

The oriented film having many advantage over the non-oriented film prepared by some method 

such as spin coat and doctor blad coating and drop casting etc. In this article we utilized the large 

scale oriented thin film fabrication technique named as ribbon shaped FTM [11]. The main 

advantage of this technique over the other orientation method to resolve the exiting problem such 

as mechanical damage, static charge accumulation, solubility in interatrial layer and bottleneck of 

multilayer casting. 

According to Organic Electronics Market Report, published by Allied Market Research, [12] 

forecasts that the global market is expected to $79.6 million by 2020, registering a CAGR of 29.5% 

during the period 2014-2020. In organic electronics market Organic displays are one of the largest 

revenue source for covering to nearly 2/3rdof the market. The main application of OLED displays, 

in laptops, tablets and TV sets, hold lions share in the global organic electronics displays market. 

In global market Asia Pacific generates about 63.5% of the revenue which is almost 3/4thof the 
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global electronics manufacturing industry, which is the primary application area for organic 

electronics. 

1.2 Semiconductor: 

Semiconductor is a class of crystalline solid which having intermediate electrical conductivity 

below the conductor and above the insulator. Semiconductors are basically utilized for the 

fabrication of various types of electronics devices such as diode, transistor and integrated circuit. 

It is having the capability to control wide range current and voltage and important for fabrication 

of complex microelectronics circuits. In periodic table elements are arranged according to their 

properties. In group four of predict table there are some element such as C, Si, Ge, Sn and Pb in 

which there are four valence electrons available  for covalent bonding. Si is the second most 

abundant element in the world but ranks first in its application in semiconductor technology. 

However the cost of processing it demands high energy consuming instrument and clean room for 

device fabrication as well as for characterization. So an alternative way to minimize such high cost 

is substituting the Si with organic materials which demand no such high cost of processing. The 

elements Si, Ge, Sn, Pb contribute to the inorganic semiconductor. 

1.2.1 Inorganic Semiconductor:  

A class of material made from non-carbon based material like Si, Ge, gallium or arsenide utilized 

for the fabrication of all logic circuit and memory chip contrary to organic semiconductor. Inspite 

of having different physics in both of them, abutment inorganic semiconductor cannot be expelled 

from organic semiconductor research, especially when discuss about transistor based devices. 

From the first day of integrated circuit and recent 2018 announced 10 nm CMOS technology based 

microprocessor chips [13]. For this Si is the one of the most top position for evaluation of 
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semiconductor technology. In this section we will be discuss the basic fundamental of inorganic 

semiconductor and also specially focused on Si properties. In following section we will discuss 

the contrast in organic semiconductor. 

1.2.1.1 Conductor, Metal and Insulator 

Although it is already define the solid state materials are classified according to their conductivity 

(σ) is the main criterion. Materials with conductivity in the range of 10-6 to 10-18 Ω-1 m -1 belongs 

to classified as an insulator and at the other extreme, the conductivity in the range of 104 to108 

classified  as conductors. But the intermediate range of conductivity 10-3 to10-6 Ω-1 m -1   which is 

below the conductor and above the insulator classified as Semiconductor. Figure 1.2 shown the 

classification of material according to their conductivity.                                      

 

  Figure: 1.2 shown the range of conductivity in conductor semiconductor and insulator.  

  In figure the conductor having a properties to pass a various types of energy. In metals 

conductivity is based on the free electrons due the internal bonding. In all metals gold and silver 

are best but costly so rarely used. In chip the gold is using for contact. An alternative metals such 

as aluminum, copper are using for wiring from one component to another in microchip. 
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Insulator passes no current in any substance because of no free electron to serve as charge carriers 

so it is non-conductive in nature. Due to the nature of non- conductive basically used for packaging 

as well as isolation from one layer to other. In insulator belongs to some best insulating materials 

such as glass, paper and Teflon which have very high resistivity. 

In semiconductor the conductivity is function of temperature and increase by increment in 

temperature. Semiconductor having the very good properties to alter the conductivity by adding 

some impurities in crystal structure. In semiconductor Si and Ge are the best semiconducting 

material but Si is most preferred in semiconductor technology. Their conductivity is increased by 

adding some amount of impurities such as pentavalent (antimony, phosphorus, or arsenic) or 

trivalent (boron, gallium or indium) impurities and this process is called doping and resultant 

semiconductor named extrinsic semiconductor. 

Semiconductor based device having useful properties like easily current passing in one direction 

than other, showing variable resistance and sensitivity to light or heat. The electrical properties of 

semiconductor can be optimized by doping or by electric fields or light, and can be used for 

amplifying, switching and energy conversion. 

1.2.1.2 Charge Carriers and Energy Bands 

According to band theory, at absolute zero the four valence electrons occupy in 3s subshell of their 

respective states and another 3p subshell is unoccupied. At this extreme condition there is no 

charge conduction via crystal because occupied 3s subshell does not allow to unoccupied empty 

subshell 3p. The highest occupied band 3s is called valance band and the lowest occupied band is 

called conduction band. In conduction band the lowest energy level is denoted by EC while Ev is 

denoted the highest energy level of valance band. The energy gap between EC and EV is called 
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energy band gap and denoted by EG. This energy gap difference decide the nature of the material 

to be semiconductor, conductor or insulator. The filled electron in conduction band need some 

amount of energy to excite the electron from valance band to conduction band [14,15]. These 

excited electron are called free electron and electron deficiencies in valence band create holes. 

These electrons and holes are the charge carriers in semiconductor. In case of metals, there is an 

overlapping in conduction and the valance band (EG =0) due to this the electrons in the CB become 

electrically conductive. In energy momentum relation the dependence of Ec and Ev on momentum 

(K) define the direct band semiconductor or indirect band semiconductor. In direct band 

semiconductor for example GaAs, the minimum EC occurs for the same K and maximum EV while 

in indirect band gap semiconductor for example Si, the level maximum and minimum appears at 

different K respectively. The direct band gap semiconductor having the great importance for 

optoelectronics application because their band structure facilitates absorption and emission of 

photon and show higher quantum yields as compared to Si. Having this type of properties play 

importance role for high efficient devices, such as LED. In crystal lattice structure, the charge 

carries move over the size of unit cell  the momentum differ as per expected value and simplified 

by the concept of effective mass of electron (me*) as well as hole (mh*). In equation 1 mention 

the effective mass depends on energy momentum relation [16] 

                                                              𝑚𝑒 =
ℎ𝑘2

2(𝐸(𝑘)−𝐸0 )
                                                           (1)                                            

Where E(k) energy of the electron in band, E0 is the edge energy of the band, k is the momentum 

and h is the Planck constant (6.582 ×10-16 eV.s)  
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Figure: 1.3 Energy band gap of insulator semiconductor and conductor  

Without any external excitation, after given non-zero temperature for thermal activation only the 

mechanism to induce the electron-hole pair generation. The semiconductor is classified two types 

intrinsic and extrinsic based on impurities. In intrinsic, the concentration of small impurities in 

semiconductor crystal as compared to thermally generated carrier pairs while adding doping  

impurities of other group such as group III to V in semiconductor crystal due to this introduce  new 

energy levels  called as extrinsic. The electron density per unit volume can be calculated by taking 

the integral of density of state and probability function F(E) which is also known by fermi 

distribution function. When F(E) =1/2 called fermi energy. In intrinsic semiconductor the position 

of the fermi energy in the middle of the band gap. The electron and hole density positioned bottom 

of the conduction band and top of the valance band which is denoted by n and p respectively. The 

important case in intrinsic semiconductor, n=p = ni   here ni stand for intrinsic carrier density. In 

extrinsic semiconductor in case of electron donation the density is denoted by ND while in case of 

acceptor density is denoted by NA. These are affected the position of the fermi level and calculated 

by this equation: 

                                          𝐸𝐶- 𝐸𝐹  = kT ln (𝑁𝐶

𝑁𝐷
)                                                                            (2) 
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                                        𝐸𝐹- 𝐸𝑉  = kT ln (𝑁𝑉

𝑁𝐴
)                                                                            (3) 

Where k is Boltzmann`s constant, T is absolute temperature, 𝑁𝐶 , 𝑁𝑉  are effective density state in 

conduction as well as valance band and  𝑁𝐷, 𝑁𝐴 are donor and acceptor density.  The equation for 

charge carrier density in intrinsic semiconductor      

                                              n = 𝑛𝑖 exp
𝐸𝐹− 𝐸𝑖 

𝐾𝑇
                                                                           (4) 

                                              p = 𝑛𝑖 exp
𝐸𝑖− 𝐸𝐹 

𝐾𝑇
                                                                           (5)   

Where 𝐸𝑖 is intrinsic fermi level.   

In this case the product of n and p are equal to 𝑛𝑖 
2 at thermal equilibrium and also called mass 

action law. 

                                                              𝑛𝑝 = 𝑛𝑖 
2                                                                      (6) 

According to this law the carriers having highest concentration called as majority carriers while in 

minority called minority carriers. In extrinsic semiconductor when electron are majority carriers 

called n-type while hole is majority carriers called p-type semiconductor. 

1.2.1.3 Charge Carrier Transport  

The charge carrier transport is an important topic for discussion because the movement of free 

carriers lead current flow in any semiconductor devices [17]. Carrier movement caused electric 

field because of applied the external voltage. We will assign this charge transport mechanism as a 

carrier drift since the charge carriers are charge particle. Apart from this, carriers also move a 

region where the carrier density is high to the region of low carrier density. This charge transport 

mechanism is because of thermal energy and associated to the random motion of the carriers, 
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referred to as carrier diffusion. The addition of carrier drift and carrier diffusion is total current in 

semiconductor and these two factors are important for electrical conduction in any semiconductor.  

Some other phenomena such as electron-hole pair generation and recombination, quantum 

tunneling, avalanche multiplication and thermionic emission also play important contribution to 

the current conduction of the semiconductor.  

In semiconductor after applied the bias, an electrostatic force is exerted on the partially occupied 

electrons along the applied field lines. Due to electric field, velocity component induced and 

known as drift velocity that is calculated as    

                                                       𝑣𝑛 = - 𝑞𝑡𝑐

𝑚𝑛∗
 𝜖                                                                           (7) 

Where q is the elementary charge, 𝜖 is electric field and 𝑣𝑛 is drift velocity of electron. 

According to equation, the 𝑞𝑡𝑐

𝑚𝑛∗
  known as electron mobility and denoted by 𝜇𝑛.Likewise, 𝜇𝑝 as a 

hole mobility. Charge carrier mobility is very important parameter for both inorganic as well as 

organic semiconductor and used for the evaluations of electrical performance.  

                                            𝜇 = 𝑞𝑡𝑐

𝑚∗
                                                                                        (8) 

Where m* is the effective mass of the charge carriers. 

The total current in a semiconductor induced by an applied electric field is called drift current Idrift 

and equals the sum of electron and hole drift currents. The conductivity σ of the semiconductor 

equals 

                                      𝜎 = 𝑞 (𝜇𝑛 + 𝑝𝜇𝑝)                                                                           (9) 



11 
 

Where n is the electron density, p is the hole density, μn is the electron mobility and μp is the hole 

mobility. 

The drift current density 𝐽𝑑𝑟𝑖𝑓𝑡  is the drift current per unit area which flows through a 

semiconductor of a cross-sectional area A under the effect of an applied field ε and it can be 

expressed by Ohm’s law: 

                                              𝐽𝑑𝑟𝑖𝑓𝑡 =  
𝐼𝑑𝑟𝑖𝑓𝑡

𝐴
=  𝜎𝜀                                                                   (10) 

In this case, the induced current is called diffusion current 𝐼𝑑𝑖𝑓𝑓  and has two components; the 

electron diffusion current and the hole diffusion current. Its density 𝐽𝑑𝑖𝑓𝑓   in a semiconductor of 

cross-sectional area A is defined as: 

                                           𝐽𝑑𝑖𝑓𝑓 =  
𝐼𝑑𝑖𝑓𝑓

𝐴
= 𝑞 (𝐷𝑛

𝑑𝑛

𝑑𝑥
−  𝐷𝑝

𝑑𝑝

𝑑𝑥
)                                               (11) 

where 𝐷𝑛 and 𝐷𝑝 are the diffusion coefficients, constants or diffusivities of electrons and holes, 

respectively, and 𝑑𝑛

𝑑𝑥
 and 𝑑𝑝

𝑑𝑥
 are the spatial derivatives of electron density and hole density, 

respectively.  

The total current density 𝐽𝑡𝑜𝑡𝑎𝑙  is the sum of drift and diffusion current densities for both electrons 

and holes; 

              𝐽𝑡𝑜𝑡𝑎𝑙 =  𝐽𝑑𝑟𝑖𝑓𝑡 +  𝐽𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑞 (𝑛 𝜇𝑛𝜖 + 𝐷𝑛
𝑑𝑛

𝑑𝑥
+  𝑝 𝜇𝑝𝜖 − 𝐷𝑝

𝑑𝑝

𝑑𝑥
)                          (12) 

1.2.2 Organic Semiconductor 

Recently in last 20 years tremendous development has been done by using the organic 

semiconductor in electronics devices. Organic semiconductor emerges new class of material that 
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provide interesting electronic properties and many other benefits as compared to inorganic 

semiconductor. Since the organic materials specially polymer having the features such as low 

molecular weight, ease of processing for thin film fabrication, low temperature and low cost 

production. In next section we will discuss about the conjugated polymer which is very interesting 

research topic in organic semiconductor. 

1.2.2.1 Conjugated Polymer 

In organic semiconductor conjugated material are most important class of material and classified 

in two groups [18] such as conjugated polymers and conjugated oligomers. In polymer many 

identical units bonded together in a long chain for example poythiophene, while only a few units 

bonded in oligomer. In these materials, due to delocalized π- electron formed the π-conjugated 

system [19,20]. Apart from this some other π- conjugated organic semiconductor such as pentacene 

fullerenes and etc. having of semiconducting properties. In figure shown some conjugated 

polymers chemical structure. 

Figure: 1.4 Chemical structure of some of the widely studied conjugated polymers.  

1.2.2.2 Charge Carriers in Conjugated Polymer 

In conjugated polymers the charge carriers was created by partial oxidation or by partial reduction 

and understand by p-type doping and n-type doping, due to this charge defects induces named as 

polaron, bipolaron and soliton [21]. In organic semiconductor, according to molecular orbital 
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theory, the conduction band can be understand by lowest unoccupied molecular orbital (LUMO) 

while highest occupied molecular orbital (HOMO) known as valance band. These HOMO and 

LUMO are also called frontier orbitals of molecule. The energetic difference between HOMO and 

LUMO levels known as band gap. In organic semiconductor the band gap is also small (1eV-4eV) 

due to this thermal excitation of electrons from HOMO to LUMO states is possible. In organic 

semiconductor the energy band gap depends upon the conjugation of molecule. When molecules 

conjugation increases delocalization in π-electron become more and decrease the energy gap 

between subsequent discrete energy states. 

1.2.2.2 Charge Carriers Transport in Conjugated Polymer 

As discussed already in inorganic semiconductor band transport theory unlike in organic molecule. 

In this section we will discuss the charge transport theory in organic semiconductor. In organic 

semiconductor the charge transport depends on many factor and explained by polaron model, 

effect of disorder, effect of space charge and effect of charge carrier traps. In polaron model, the 

band transport in organic semiconductor first reported by Karl et al. in pure crystals of oligoacenes, 

[22] where author explained mobility dependence on temperature. 

                                      𝜇 ∝  𝑇−𝑛                                                                                             (13) 

Another better received theory based on drift velocity as discussed in inorganic semiconductor. 

                                    𝑣 =  𝜇𝜖                                                                                                  (14) 

Total mobility of carriers by polaron model  

                                 𝜇 =  𝜇𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 +  𝜇ℎ𝑜𝑝𝑝𝑖𝑛𝑔                                                                        (15) 
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Where 𝜇𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 is stand for band like transport mechanism and  𝜇ℎ𝑜𝑝𝑝𝑖𝑛𝑔  is incoherent transport 

mechanism. 

In disorder effect of diagonal and off diagonal, the distribution of effective conjugation length and 

other effect of electrostatic nature [23] belongs to digoanl disorder while off diagonal based on 

molecular packing and the morphology of a semiconducting thin-film.   

The space charge effect can be understand in intrinsic semiconductor (un-doped), the injection of 

charge carriers from metal electrode into bulk of semiconductor introduces space charge along the 

conduction path. These charges affect the externally applied field, due to this there is a reduction 

in resulting current and known as space charge limited current (SCLC) and its current density is 

described by   

      𝐽𝑆𝐶𝐿𝐶 =  
9

8
 𝜖𝑟  𝜖0 𝜇 

𝑉2

𝐿3                                                         (16) 

Where 𝜖𝑟  is the static permittivity of the semiconductor, 𝜖0 is the vacuum permittivity (~8.854 

×10-12 F/m), μ is the mobility of charge carriers, V is the externally applied voltage and L is the 

length of the conduction path. 

The effect of charge carrier traps is unavoidable in organic semiconductor devices. The charge 

traps either electron traps, when the electron affinity (Ea) of the semiconductor is somewhat lower 

than their energy state, or hole traps, when their ionization potential (Ip) is somewhat higher than 

their energy state. Charge carriers are effectively trapped by these energy sites due to the 

aforementioned energy differences.   
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1.3 Thin Film Fabrication and Molecular Orientation  

In organic electronics thin film fabrication was deposited by either thermal evaporation for small 

molecules, or solution processable for the polymers. Recently in solution processable, there are 

many methods such as spin coating, dip coating and doctor blading used for thin film fabrication 

in which spin coating is most preferred method. Although these methods make the thin film well 

which is isotropic in nature. Recently some orientation techniques such as mechanical rubbing, 

friction transfer, strain alignment, roll transfer and solution flow etc. have been used to align the 

polymer chain. The main advantage of orienting film of its single dimensionality which show 

optical as well as electrical anisotropy. The large scale orientation in conjugated polymers can be 

explain by two way, first the preferred alignment in main chain of conjugated polymer from the 

substrate and in second preferential alignment at the length scale. The preferential alignment of 

polymeric backbone can be understood by three different way such as edge-on, face-on and end-

on. First, in edge-on orientation, the axis of conjugated backbone and π-stacking lie in the plain of 

substrate. Where as in second, face-on orientation, the conjugation and alkyl stacking axis parallel 

to the substrate and π-stacking normal to the substrate. It is documented and believed that along 

the conjugation direction and π-stacking direction, high carrier transport occurs, while lower in 

alkyl stacking direction [24]. It is also well known that edge –on orientation is preferred for the 

OFET, which need high in plain transport, while the face-on orientation is suitable for solar cell 

because out-of-plane is desirable [25]. In third, end-of orientation, there are few report where 

polymer backbone direction in normal to the substrate direction, [26] which show high out-off-

plane transport that is promising geometry for solar cell [27]. 

The orientation can be understood on the basis of quantitative characterization of thin film 

conjugated polymer, for that polarized absorption spectroscopic and polarized emission 
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spectroscopic were used. Some other orientation investigation can be understand by polarized 

Fourier transform infrared spectroscopy and polarized Raman spectroscopy. However, for detailed 

orientation of the crystallite in their thin films involve sophisticated characterization such grazing 

incidence X-ray diffraction and electron diffraction measurements. 

1.4 Organic Field Effect Transistor: 

Transistors are backbone of in modern circuitry and used for signal amplifier or on/off switches. 

This work on the basis of field effect phenomenon where the conductivity of a semiconductor 

changes by applying the electric field normal to its surface [28]. When applying the electric field 

it act as parallel plate capacitor in which one plate consider as metal and another as semiconductor, 

isolated by insulator. The FET consist of having three terminals such as source drain and gate work 

as electrode shown in figure  

 

Figure: 1.5   shown the bottom gate top contact (BGTC) OFETs configuration having three                                             
terminal source, drain and gate.   
 

The dielectric can be made of a variety of dielectric materials, through SiO2 grown on doped 

silicon. In figure source and drain are two separate electrode physically connected to the 

semiconductor layer with separation, and the gap between two electrodes called channel. In this 
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configuration channel is important parameter that is understand by channel length (L) separation 

between electrodes while the width of electrode is channel width (W).  

1.4.1 Device Configuration  

 The configuration of OFETs varies according to fabrication method but in principle there are four 

types of configuration are available in trend shown in figure 1.6 which is basically based on above 

discussed requirements. Amongst four configuration the bottom gated configuration is mostly 

preferred. This configuration are usually common where SiO2  is grown on  doped silicon wafers 

, which is easily purchase by the researcher for study the preliminary  evaluation of  semiconductor 

material performance. 

 

Figure: 1.6 shown the possible four types of typical configuration of OFETs (a) BGTC (b) 
BGBC (c) TGBC and (d) TGTC 
 
The gate dielectric layer play an important role since its capacitance, which is actually 

determined by its thickness permittivity, influence the number of charge carrier to be generated 

in the semiconductor, concomitantly the operating voltage of the device. To satisfy the need of 

low voltage operating gate dielectric which can be solution processed, transparent and can be 

utilized as flexible substrate as well, a number of new organic gate dielectric has been developed 
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in the recent past, simultaneously.  The advantage of organic dielectric is that it can be solution 

processed in order to fabricate top gated devices without harming the metal electrodes and 

semiconductor layer unlikely to other inorganic dielectrics which needed to be deposited using 

sputtering and thermal evaporation. 

1.4.2 Working Principle  

The main difference between OFET and MOSFET is that OFETs usually operate in accumulation 

mode but they also known for operate in depletion and inversion mode [29-31]. In accumulation 

mode the VG is biased and source will be grounded in this mode charge carriers accumulate at 

semiconductor /dielectric interface. This accumulated charge of few nanometer thickness [32] 

formed in layer, called transistor channel. The channel length, L and width, W, can be optimized 

by spatial arrangement of the source and drain electrode. The areal charge density of accumulated 

charge in the channel, Q channel, and when applying the gate voltage it works as a parallel plate 

capacitor model.  

                              𝑄𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =  𝐶𝑖  ×  𝑉𝐺                                                                       (17) 

When applied gate to source voltage VGS the free electron/hole accumulated in the 

HOMO/LUMO at the channel, second bias drain to source voltage is also applied which is known 

as drain voltage VD. After applying the second bias VD and with addition to VG generate a current 

in the channel known as drain current ID. There are three main case for the current flow in channel  

If VD = 0, in this case there is no changing in accumulated layer at semiconductor / dielectric 

interface, called cut –off , where drain current ID = 0A. In second case when a little increase in 

drain current, 0V˂VD˂VG, the charges will start to inject from source to attract the drain, in this 

case constant resistance across the channel, and carrier concentration vary linearly due to this drain 
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current increases linearly. This region is known as linear regime. In third case when VD ≥ VG ˃ 

0V, the more depleted charge carriers having high resistance started to inject next to the drain 

electrode. This high resistance resultant non-linear conductivity across the channel and called as 

saturation regime. 

1.4.3 Electrical Characterization:  

By applying the VD across the channel the voltage varies gradually and employed a gradual-

channel approximation model. This model is basically used in case of MOSFET but it has been 

utilized in OFETs by slightly modification [33]. According to this model, discuss the current flow 

across the channel. As previously discussed available trap need to be filled before the mobile 

carriers induce at semiconductor/insulator interface. The required voltage to fill this trap and 

produce mobile charges known as threshold voltage, Vth.  From equation the density of mobile 

charges in channel Qmob  

                                         𝑄𝑚𝑜𝑏 =  𝐶𝑖  (𝑉𝐺 − 𝑉𝑡ℎ)                                                                                           (18)                                                                                                                                              

As the charge carrier density depends on the position in the channel, V(x), 

                                       𝑄𝑚𝑜𝑏 =  𝐶𝑖  [𝑉𝐺 −  𝑉𝑡ℎ − 𝑉(𝑥)]                                                           (19) 

Assuming that, under the external field VD, drift current dominates the channel, then diffusion and 

gate leakage can be neglected (i.e. only consider the movement of charge carriers due to the applied 

field). The current through the channel, ID, is then proportional to the width of the channel, W, the 

density of mobile charges, Qmob, the electric field V at position x, F(x), and the speed of the charge 

carriers due to the applied electric field, μ: 

                                      𝐼𝐷 = 𝑊 𝜇 𝑄𝑚𝑜𝑏𝐹(𝑥)                                                                                                   (20) 
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Where                 𝐹(𝑥) =  
𝑑𝑉

𝑑𝑥
                                                                                                   (21) 

                              𝜇 =  
𝑉

𝐸
                                                                                                        (22) 

where μ is the mobility, which is defined as the drift velocity, V, of the charge carriers in cm/s per 

applied electric field, E, in V/cm. 

Substituting Equation (19) and (21) into Equation (20) resultant: 

𝐼𝐷𝑑𝑥 = 𝑊 𝜇 𝐶𝑖 [𝑉𝐺 − 𝑉𝑡ℎ − 𝑉(𝑥)]𝑑𝑉                                                                                             (23)                                                                                                                                                

and integrating over the potential difference range between the source and the drain, i.e. the 

channel length, L, gives 

                     ∫ 𝐼𝐷 𝑑𝑥
𝐿

0
= 𝑊 𝜇 ∫ 𝐶𝑖 [𝑉𝐺 − 𝑉𝑡ℎ − 𝑉(𝑥)]𝑑𝑉

𝑉𝐷

0
                                                               (24) 

                             𝐼𝐷 =  
𝑊

𝐿
 𝐶𝑖  𝜇 [(𝑉𝐺 − 𝑉𝑡ℎ) × 𝑉𝐷 −

𝑉𝐷
2

2
]                                                                      (25) 

By approximating VD << VG in Equation (25), the current between the source and drain during 

linear regime operation is given by the following 

                                           𝐼𝐷 =  
𝑊

𝐿
 𝐶𝑖  𝜇 [(𝑉𝐺 − 𝑉𝑡ℎ) × 𝑉𝐷]                                                            (26)         

To find the current in the saturation regime, VD = (𝑉𝐺 − 𝑉𝑡ℎ) can be substituted into the gradual 

channel approximation in Equation (25), as when VD is greater than(𝑉𝐺 − 𝑉𝑡ℎ) , there is no 

noticeable increase in 𝐼𝐷 

                                              𝐼𝐷,𝑆𝑎𝑡 =  
𝑊

2𝐿
 𝐶𝑖  𝜇 (𝑉𝐺 − 𝑉𝑡ℎ)2                                                               (27) 

From here, the saturation mobility, μsat, can be found either from the second derivative of Equation 

(28) with respect to VG. 
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                                                 𝜇𝑠𝑎𝑡 =  
2𝐿

𝑊𝐶𝑖
  (

𝜕√𝐼𝐷

𝜕 𝑉𝐺 
)

2

                                                              (28)                                                                                                                                                                                 

1.5 Motivation for the Research   

Now days, organic electronics is growing field for the development of the electronic devices such 

as organic field effect transistor, solar cell, organic light emitting diode and photodetector etc. Fast 

growth if this technology is associated with the features such as low cost, flexibility and ease of 

processing. The main advantage of this technology is solution processability due to this it can be 

cast on variety of substrate such as plastic, cloths and glass etc. at large area to make the functional 

devices. Devices performances are evaluated on the basis of mobility, for that conjugated polymers 

with solution processable, will be the promising material for the development of the next 

generation electronics. Currently in conjugated polymer the mobility stand up to 10 cm2/V.s [34]. 

Mobility was improved by adopting a number of approaches like molecular design, processing 

conditions, making composites and blends but controlling the film morphology of conjugated 

polymer owing to their inherent single-dimensionality plays a dominant role. Currently mobility 

is also controlled by aligning the conjugated polymer in 3-D space, and inducing crystallinity in 

3-D resultant π-π stacking increase due to reduction of inter-chain resistance. There is exiting 

problem in solution processed conjugated polymer during the casting of the multilayer without 

affecting the underlying layers. Recently one orientation method was developed, which basically 

protects the damage of underlying layers during the multilayer casting named as floating film 

transfer method [35, 36]. In this method film was fabricated on liquid substrate by dropping a 20 

µl of polymer solution. The polymer solution was spread on liquid substrate and make a floating 

oriented solid film on liquid substrate that is easily transferred on desired substrate. The film 

thickness and orientation was easily controlled by controlling the casting temperature, polymer 
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concentration and viscosity of liquid substrate [37]. In order to circumvent issues like non-

uniformity and multi-directional film spreading, we have recently reported an improvisation in our 

conventional floating film transfer method [38]. Utilization of a custom-made slider during film 

spreading for providing directionality to the spreading film in FTM led to the large area (14-20 

cm) and highly oriented films formation named as Ribbon- shaped FTM [11]. This oriented film 

was transferred on desired substrate for the application in electronics device with improved device 

performance. This method is different to spin coating and other solution based method needs 

orthogonal solvent to avoid the existing problem such as morphological and compositional 

damages during the multilayer deposition [39]. FTM shows unidirectional orientation of liquid 

crystalline conjugated polymer having the tendency to align the backbone structures in preferred 

direction at a certain optimized temperature [36].  Subsequently this method was applied for many 

conjugated polymers to form oriented film at large area and later applied to electronic devices 

showing anisotropy in OFET and organic light emitting diodes [40-41]. In order to have large area 

implementation of organic electronics, having following features are highly desired; 

1. Solution based procedure 

2. Capable of fabricating large area oriented films 

3. Minimum material wastage  

4. No need of sophisticated instrument 

5. Ease of handling 

6. Thickness of the film can be easily controlled 
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After consideration of above features, there are a needs to develop this method further in order to 

implement this large area for the fabrication of electronic devices while maintaining the high 

performance. This method should be applicable for various types of conjugated polymer having 

different in polymeric backbone structure by controlling the casting factor control in orientation 

that improved the device performance. Therefore, the motivation lies to carry out the development 

of this method and to demonstrate the various features of this procedures and the same has been 

conveyed in the subsequent chapters. 

1.6 Thesis Organization   
 
This thesis has been organized in to seven chapters by summarizing the research work carried and 

research results as follows;   

First chapter provides a brief introduction to the concerns related to the present state-of-art in 

organic electronics over the conventional electronics, background problems related to thin film 

fabrication techniques for conjugated polymers and aim of this present work. Theory related to the 

basic knowledge of inorganic and organic semiconductor specially conjugated polymers, their 

charge carriers, energy band as well as charge carrier transport, with existing thin film fabrication 

techniques and working principle of organic field effect transistor. 

Second chapter presents brief outline of the conjugated polymers utilized in the present thesis, 

their film processing with especial emphasis on the introduction to the orientation technique with 

emphasis on developed floating film transfer method, various characterization procedures for 

oriented film, device fabrication and analysis.  

Third chapter focuses on the further improvisation of conventional floating film transfer method 

by introducing the assisting slider and making the large area oriented film in ribbon shaped. This 
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chapter also discusses the controlling factors for ribbon shaped FTM utilizing non regiocontrolled 

poly(3-hexylthiophene) as one of the representative  conjugated polymer. 

Fourth chapter of the thesis presents optoelectronic characterization of large area oriented films of 

PQT-C12 conjugated polymer prepared by ribbon-shaped FTM. Implication of molecular weight 

and its distribution on molecular orientation and anisotropic charge transport has been 

systematically carried out.   

Fifth chapter deals with molecular orientation and charge transport anisotropy in various type of 

conjugated polymers prepared by ribbon shaped FTM. The main aim of the work carried out in 

this chapter to delineate the nature of polymeric backbone upon extent of molecular orientation 

and the resulting anisotropic charge transport after fabricating OFETs by stamping the oriented 

films in the parallel and perpendicular to the channel.  

Sixth chapter of this thesis discusses about the orientation, electrical characteristics and anisotropic 

charge transport in the large area regioregular poly(3-alkylthiophene) thin films by fabricating 

OFETs. Thanks to the edge-on oriented thin films fabricated by ribbon-shaped FTM, demonstrated 

in this work, there was very little influence of alkyl chain length on charge transport, which is one 

of most serious problems in spin-coated thin films reported previously by many research groups.  

Finally, the seventh and last chapter of this thesis presents the overall conclusion of the whole 

work summarizing the main results along with future work and their perspectives. 

 

 

 

 

 



25 
 

References: 

[1] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J Louis, Electrical  
conductivity  in doped polyacetylene. Phys Rev Lett 1977, 39(17):1098-101. 
 
[2] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of 

Electrically Conducting Organic Polymers, Polymer (Guildf). 36 (1977) 578–580. 
doi:10.1039/C39770000578. 

 
[3] C.W. Tang, S.A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 

(1987) 913–915. doi:10.1063/1.98799. 
 
[4] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. 

Sakurai, G.M. Whitesides, T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. 
Murase, Conformable , flexible, large-area networks of pressure and thermal sensors with 
organic transistor active matrixes, Proc. Natl Acad Sci U S A. 102(35) (2005) 12321-5. 

 
[5] V. Subramanian, P.C. Chang, J.B. Lee, S.E. Molesa, S.K. Volkman, Printed organic 

transistors for ultra-low-cost RFID applications, IEEE Trans. Components Packag. 
Technol. 28 (2005) 742–747. doi:10.1109/TCAPT.2005.859672. 

 
[6] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Ultralow-power organic complementary 

circuits, Nature. 445 (2007) 745–748. doi:10.1038/nature05533. 
 
[7] M. Jung, J. Kim, J. Noh, N. Lim, C. Lim, G. Lee, J. Kim, H. Kang, K. Jung, A.D. 

Leonard, J.M. Tour, G. Cho, All-Printed and Roll-to-Roll-Printable Tag on Plastic Foils, 
IEEE Trans. Electron Devices. 57 (2010) 571–580. doi:10.1109/TED.2009.2039541. 

 
[8] P. Pingel, A. Zen, D. Neher, I. Lieberwirth, G. Wegner, S. Allard, U. Scherf, Unexpectedly 

high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction 
with low polydispersity, Appl. Phys. A Mater. Sci. Process. 95 (2009) 67–72. 

 
[9]  H. Sirringhaus, Device physics of solution-processed organic field-effect transistors, Adv. 

Mater. 17 (2005) 2411–2425. 
 
[10]  M. Brinkmann, L. Hartmann, L. Biniek, K. Tremel, N. Kayunkid, Orienting semi-    
          conducting pi-conjugated polymers, Macromol. Rapid Commun. 35 (2014) 9–26. 
 
 [11] A.S.M. Tripathi, M. Pandey, S. Sadakata, S. Nagamatsu, Anisotropic charge transport in     
       highly oriented films of semiconducting polymer prepared by ribbon-shaped floating film,     
       Appl. Phys. Lett. (2018)112, 123301 (n.d.).  
 
[12] https://www.alliedmarketresearch.com/press-release/organic-electronics-market-is     
expected-to-reach-79-6-billion-global-by-2020-allied-market-research.html. 
 
[13] https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-   

https://www.alliedmarketresearch.com/press-release/organic-electronics-market-is%20%20%20%20expected-to-reach-79-6-billion-global-by-2020-allied-market-research.html
https://www.alliedmarketresearch.com/press-release/organic-electronics-market-is%20%20%20%20expected-to-reach-79-6-billion-global-by-2020-allied-market-research.html
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-


26 
 

        2017-Moores-Law.pdf. 
 
[14] D. Liming, Intelligent Macromolecules for Smart Devices. Structure (2004)      
 
 [15]  J.E. Carlé, http://plasticphotovoltaics.org. 
 
[16]   Antonis Dragoneas , Organic Semiconductor Devices: Fabrication, Characterisation and     
          Sensing Applications, http://etheses.whiterose.ac.uk/5763/1/Dragoneas%20PhD%20Thesis%20(Library).pdf. 
 
[17]   Charge carrier intro https://ecee.colorado.edu/~bart/book/book/chapter2/ch2_7.htm 
   
[18]  F. Garnier, “Scope and limits of organic-based thin-film transistors,” Phil. Trans., 1997 
        vol. 355, pp. 815–827. 
 
[19] C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors, a review 
      of recent advances, 2001 IBM J. Res. Dev., vol. 45, pp. 11–27. 
 
[20] E. Cantatore, “Organic materials: A new chance for electronics?,” Proc. of the 
      SAFE/IEEE workshop, vol. workshop 2000,27, pp. 27–31. 
 
[21] D. Liming,  Intelligent Macromolecules for Smart Devices. Structure (2004). 
 
[22]  N. Karl, J. Marktanner, R. Stehle, and W. Warta, “High-Field Saturation of Charge Carrier      
       Drift Velocities in Ultrapurified Organic Photoconductors,” Synthetic Metals,1991, vol. 42,      
        no. 3, pp. 2473-2481. 
 
[23] V. Coropceanu, J. Cornil, D. A. da Silva, Y. Olivier et al., “Charge transport in organic       
         semiconductors,” Chemical Reviews, vol. 107, no. 4, pp. 926-952, Apr, 2007. 
 
[24] Jimison, L. H., Toney, M. F., McCulloch, I., Heeney, M. & Salleo, A. Charge-Transport 
        Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of     
         Regioregular Poly(3-hexylthiophene). Adv. Mater. 21, 1568–1572 (2009). 
 
[25] H.Sirringhaus, Two-dimensional charge transport in self-organized, high-mobility 
          conjugated polymers. Nature (1999), 401, 685–688. 
 
[26]  M. Aryal, K. Trivedi, W. Hu, Nano-Confinement Induced Chain Alignment in Ordered P3HT 
   Nanostructures Defined by Nanoimprint Lithography, ACS Nano, (2009) 3, 3085– 3090. 
 
[27] J. Ma, K. Hashimoto, T. Koganezawa, K. Tajima, Enhanced vertical carrier mobility in 
       poly ( 3- alkylthiophene ) thin films sandwiched between self-assembled monolayers and 
       surface- segregated layers. Chem. Commun. 50, 3627 (2014). 
 
[28] R.F. Pierret, G.W. Neudeck, Advanced Semiconductor Fundamentals, Pearson Educ. Inc. 

6 (1987) 17–18. doi:10.1017/CBO9781107415324.004. 

[29] G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, M. Hajlaoui, Concept of 

http://etheses.whiterose.ac.uk/5763/1/Dragoneas%20PhD%20Thesis%20(Library).pdf
https://ecee.colorado.edu/~bart/book/book/chapter2/ch2_7.htm
https://pubs.acs.org/author/Aryal%2C+Mukti
https://pubs.acs.org/author/Trivedi%2C+Krutarth
https://pubs.acs.org/author/Hu%2C+Wenchuang+Walter


27 
 

`threshold voltage’ in organic field-effect transistors, Adv. Mater. 10 (1998) 923–927. 
doi:10.1002/(SICI)1521-4095(199808)10:12<923::AID-ADMA923>3.0.CO;2-W. 

[30] M. Zhu, G. Liang, T. Cui, K. Varahramyan, Depletion-mode n-channel organic field-
effect transistors based on NTCDA, Solid. State. Electron. 47 (2003) 1855–1858. 
doi:10.1016/S0038-1101(03)00141-2. 

[31] B. Lüssem, M.L. Tietze, H. Kleemann, C. Hoßbach, J.W. Bartha, A. Zakhidov, K. Leo, 
Doped organic transistors operating in the inversion and depletion regime, Nat. Commun. 
4 (2013) 1–6. doi:10.1038/ncomms3775. 

[32] A. Salleo, Charge transport in polymeric transistors, Mater. Today. 10 (2007) 38–45. 
doi:10.1016/S1369-7021(07)70018-4.                                 

[33]   S.D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs. 
    Switzerland: Springer; 2013. 
 
[34] Y. Yamashita, F. Hinkel, T. Marszalek, W. Zajaczkowski, W. Pisula, M. Baumgarten, H. 

Matsui, K. Müllen, J. Takeya, Mobility Exceeding 10 cm2/(V·s) in Donor-Acceptor 
Polymer Transistors with Band-like Charge Transport, Chem. Mater. 28 (2016) 420–424. 
doi:10.1021/acs.chemmater.5b04567. 

[35] T. Morita, V. Singh, S. Nagamatsu, S. Oku, W. Takashima, K. Kaneto, Enhancement of 
transport characteristics in poly(3-hexylthiophene) films deposited with floating film 
transfer method, Appl. Phys. Express. 2 (2009) 1–4. doi:10.1143/APEX.2.111502. 

[36] D. Arnaud, R.K. Pandey, S. Miyajima, S. Nagamatsu, R. Prakash, W. Takashima, S. 
Hayase, K. Kaneto, Fabrication of large-scale drop-cast films of π-conjugated polymers 
with floating-film transfer method., Trans. Mater. Res. Soc. Japan. 38 (2013) 305–308. 
doi:10.14723/tmrsj.38.305. 

[37] M. Pandey, S.S. Pandey, S. Nagamatsu, S. Hayase, W. Takashima, Controlling Factors for 
Orientation of Conjugated Polymer Films in Dynamic Floating-Film Transfer Method, J. 
Nanosci. Nanotechnol. 17 (2017) 1915–1922. doi:doi:10.1166/jnn.2017.12816. 

[38] A. Tripathi, M. Pandey, S. Nagamatsu, S.S. Pandey, S. Hayase, W. Takashima, Casting 
Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM, J. 
Phys. Conf. Ser. 924 (2017). doi:10.1088/1742-6596/924/1/012014. 

[39] T. Morita, V. Singh, S. Oku, S. Nagamatsu, W. Takashima, S. Hayase, K. Kaneto, 
Ambipolar transport in bilayer organic field-effect transistor based on poly(3-
hexylthiophene) and fullerene derivatives, Jpn. J. Appl. Phys. 49 (2010) 0416011–
0416015. doi:10.1143/JJAP.49.041601. 

[40] A. Dauendorffer, S. Nagamatsu, W. Takashima, K. Kaneto, Optical and transport 
anisotropy in poly(9,9???-dioctyl-fluorene-alt- bithiophene) films prepared by floating 
film transfer method, Jpn. J. Appl. Phys. 51 (2012). doi:10.1143/JJAP.51.055802. 

[41] A. Dauendorffer, S. Miyajima, S. Nagamatsu, W. Takashima, S. Hayase, K. Kaneto, One-
step deposition of self-oriented β-phase polyfluorene thin films for polarized polymer 
light-emitting diodes, Appl. Phys. Express. 5 (2012). doi:10.1143/APEX.5.092101. 



28 
 

Chapter 2: Experimental 

 
2.1 Materials 

Chemicals like methanol, ethylene glycol, glycerol, methanol, ferric chloride and super dehydrated 

chloroform etc. were purchased from Wako Chemicals Japan. Starting materials like 3-

alkylthiophenes were purchased from TCI-chemicals Japan while, 3,3’’’-didodecyl-

quarterthiophene and conjugated polymer poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-

b]thiophene] (PBTTT-C14) were purchased from Sigma-Aldrich and used as received without any 

further purification. Conjugated polymers non-regiocontrolled poly(3-hexylthiophene) (NR-P3HT) 

and poly(3,3’’’-didodecylquarterthiophene) (PQT-C12) were synthesized as per the reported literature 

procedure [1-3]. The synthesized conjugated polymers were further purified by Soxhlet extraction 

as already reported in our previous work [4-5]. NR-P3HT was synthesized by FeCl3 catalyzed 

chemical polymerization, where it was having 80% of moderate regioregularity. Regioregularity 

of this polymer was confirmed by 1H-NMR considering fraction of at ⍺-methylene proton [6]. 

PQT-C12 was chemically synthesized from its monomer 3,3’’’-didodecyl-quarterthiophene) by 

FeCl3 catalyzed oxidative polymerization followed by purification by Soxhlet extraction. It is a p-

type liquid crystalline conjugated polymer having larger stability for oxygen doping as compared 

to most commonly used P3HT [7]. Poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) is an 

alternating copolymer synthesized by Suzuki coupling as per the literature procedures [9-10]. 

Regioregular poly(3-alkylthiophenes) (P3ATs) with varying chain length from four (C4H9) to 

eighteen (C18H37) were purchased from Sigma Aldrich. Poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-

b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl] 

(PTB7)  was purchased from 1-material. Molecular structure of various conjugated polymers used 

have been shown in the figure 2.1 
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Figure: 2.1 Chemical structure of different π-conjugated semiconducting polymers like NR-P3HT 
(a), PQT-C12 (b), PBTTT-C14 (c), F8T2 (d) regioregular P3ATs (e) and PTB7(f).   

 

2.2 Deposition Method  

2.2.1 Spin Coating 

Spin coating is one of the mostly used for thin film deposition of various types of conducting 

semiconducting and insulating organic materials after making in the form of solution. For 

making the film, first of all we drop a small amount of material in center according size of 

substrate and makes it spin for a sort duration. The dropped solution started to spread in all 

direction due centrifugal force and the excess material ejected from the edges of the substrate 

and make the solid thin film. The film thickness cab be optimized based on such parameters, 

concentration of material, spinning speed, acceleration and time is the controlling factor of film 

thickness. In figure 2.2 shown the thin film fabrication process by spin coating method. 
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Figure: 2.2 Picture of the spin coater used step wise for making the thin film 

Although this process is known for best reproducible thin film fabrication but it is sensitive to 

presence of dust particle. This technique is generally used in clean room environment .Some 

more drawbacks of this technique is not suitable for large area fabrication. 

2.2.2 Dynamic Floating Film Transfer Method 

A novel and simple thin film fabrication method was developed in 2009 in our laboratory to 

easily make a conjugated polymer film on hydrophilic liquid substrate by using floating film 

transfer method [11,12]. 

 

Figure: 2.3 Schematic of thin film fabrication by dynamic floating film transfer method.  

In this method, a small amount of hydrophobic polymer solution dropped on hydrophilic liquid 

substrate and making a floating solid film. This film was easily transferred on desired substrate 
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without of any morphological damage. Although this method is similar to Langmuir-Blodgett 

method but there is no any extremal surface force. It is found that this is the best method for making 

the oriented film of π- conjugated polymer at cm scale by optimizing its parameter such as casting 

temperature, concentration of polymer solution and viscosity of the liquid substrate [13]. The main 

advantage of dynamic FTM is solution processable, facile method with cost effective and least 

material wastage. Apart from this, it have the ability to fabricate multilayer device by multi casting 

of oriented film with easily controlled thickness. 

In FTM , when solvent vaporized slowly after dropping the polymer solution on liquid substrate 

that provide the floating film known as static FTM [14,15]. Contrary to quick evaporation of 

solvent known as dynamic FTM and due to this dynamic nature polymer was oriented well. In 

FTM, the volatile nature of solvent decide the type of FTM like high boiling point solvent such as 

chlorobenzene where low evaporation and low boiling point solvent chloroform, tetrahydrofuran 

and dichloromethane leads quick evaporation shown in figure 2.3 

Recently further developed the conventional FTM in which existing circumvent issues like non-

uniformity and multi-directional film spreading by providing the directionality in a single 

direction, and make this FTM method for large scale thin film fabrication up to ˃ 20 cm in length 

and ˃2 cm in width by adding the assisting slider during the casting and also achieved the high 

orientation named as ribbon-shaped FTM [16,17].  
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Figure: 2.4 Schematic demonstration for the fabrication of ribbon-shaped oriented FTM films 
and its orientation mechanism. 
 

2.3.3 Thermal Evaporation  

Thermal evaporation is a deposition system where the metal such as gold, silver and aluminum 

etc. are deposited at very low pressure up to 10-6 mbar. For longer mean free path low pressure is 

required, due to this evaporated particle reached directly to target object without any type of 

colliding background gases. Apart from pressure some other physical parameter is also important 

mention in equation 2.1. 

                                                      𝜆𝑚 =  
𝑅𝑇

√2 𝜋 𝑑2𝑁𝐴 𝑃
                                                                   [1] 

    Where the symbols represents. 

P, R, T stand for Pressure of the system, Gas Constant and Temperature respectively. While  𝑁𝐴  

and d stand for Avogadro’s number and diameter of the gas particles in meters. 
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Figure: 2.5 Thermal evaporation system used for deposition of metal electrodes assembled in 
our laboratory.   

 

Figure 2.5 shown the setup of thermal evaporation system where two pumps one high vacuum 

turbo pump backed by another second rotary pump. In this system some important component 

have the important role for deposition of metals as per requirement. For deposition of metal like 

gold first wrapped in tungsten filament and setup above the target substrate. For avoid the any 

types of slippery impurity shutter was used for the protection. Once the sufficient vacuum reached, 

operating the system then filament tungsten heated on the principle of joule’s first law    (𝑃 ∝ 𝐼2𝑅) 

. The tungsten was selected as a filament having high melting point (~ 3400 oC) as compared to 

gold (~1064 oC) , the gold started to melt around the melting point. During the gold deposition 

current was increased slowly so that gold properly adhere on filament before the evaporation. The 

amount of thickness and rate of deposition read by the crystal detector and display on monitor. 

When the thickness monitor showing the deposition then opened the shutter and reset the thickness 

start from zero .The rate of deposition slowly increased by dc current regulator till the desired rate 
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and steady until the desired amount. When desired amount reached, the input current removed and 

left the deposited substrate for a 15 minutes in high vacuum chamber before taking it out. 

 

2.3 Thin Film characterization  

2.3.1 Ultraviolet-Visible Spectroscopy 

Ultraviolet-visible spectroscopy are basically used for optical characterization of any type of solid 

or solution based samples in the ultraviolet and visible spectral region. According to principle 

molecules containing π-electrons or nonbonding electrons can absorb the part of incident energy 

which are incoming and to excite these electrons to higher antibonding molecular orbitals. The 

more easily excited the electrons the longer the wavelength of light it can absorb. The electronics 

absorption spectra of any sample either solution or solid film provide the useful information such 

as various type of electronic transitions and also used in color bearing molecules characterization. 

These characterization is very helpful for calculation of various parameters such as optical band 

gap, molecular aggregation and molecular orientation. Figure shown the step wise process for the 

measurement of electronics absorption spectra. For the measurement of polarized absorption 

spectra, a polarizer named as Glan-Thomson was used between the sample and incident beam. 

This polarizer is easily rotate and take the absorption at any desire angle. The polarized absorption 

spectra was calculated for the estimation of optical anisotropy in terms of dichroic ratio (DR).   

𝐃𝐑 =  
𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐀𝐛𝐬𝐨𝐫𝐩𝐭𝐢𝐨𝐧 ‖𝐚𝐭( 𝛌𝐦𝐚𝐱 ‖ )

𝐀𝐛𝐬𝐨𝐫𝐩𝐭𝐢𝐨𝐧 ⊥𝐚𝐭 (( 𝛌𝐦𝐚𝐱 ‖ )
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Figure: 2.6 (a) Schematic representation of the processes involved in absorption spectroscopy 
and (b) Photograph of the UV-vis spectrophotometer (JASCO V-750). For polarized absorption 
measurement Glan- Thomson prism is shown in blue-dash square in (a) and (b). 
 
2.3.2 Interference Microscopy  

    Interference microscopy are used for measuring the thickness of the any sample. Figure shown 

the Eclipse LV150N interference microscopy. This system is combined with digital imaging and 

advance optical system. It is detected the information easily and display on camera control unit. In 

addition, the information is automatically converted into appropriate calibration data when 

changing magnification. 

 

Figure: 2.7 Set up of Interference Microscopy (Nikon- Eclipse LV150N) utilized for thickness 
measurement. 
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2.3.3 2-D Positional Mapping 

2-D positional mapping is similar to absorption spectroscopy used for the probing the absorption 

spectra with small interval distance of thin film. Figure 2.8 shown the setup of 2- D positional 

mapping, where a fixed light source, computer controlled X-Y sample stage and multichannel 

photodiode array detector was used for the 2-D positional scanning of thin film. It is basically 

measured by the position dependent absorbance at the respective absorption maximum of the CPs, 

where absorption peak directly correlates with the thickness. 

 

Figure: 2.8 2 D position mapping set up used for analysis of thin film distribution. 

2.3.4 X-RAY Diffraction 

X-ray diffraction is one of the most important material characterization tool to analyze the atomic 

and molecular structural of the polymer film. The bragg equation is most important for 

understanding the X-ray diffraction   

                                    nλ = 2 d sinθ 

Where n is an integer, λ is the wavelength of the X-rays, d is the interplanar spacing between the 

atoms, and θ is the angle of the X-ray beam with respect to these planes. There are two types of 

measurement was done in my work. First, out-of-plane diffraction, where we received the stacking 
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behavior from diffracted lattice plane. This measurement is basically less surface sensitive owing 

to large incident angle.  The out of–plane process easily understand by shown figure. In this process 

due to difficulty to achieve the single crystal of polymer and on the other hand the transport 

properties depend upon arrangement of macromolecules in space of the polymer film. For 

orientation base polymer film grazing –incidence XRD (GIXD) is suitable reported in [18] , where 

the incident rays are close just above the critical angle it becomes more surface sensitive and 

refracted beams are stronger. 

 

Figure: 2.9 Schematic geometry of out-of-plane XRD (a) and in-plane GIXD (b). 

 

2.3.5 Atomic Force Microscopy 

Atomic force microscopy (AFM) also known as Scanning force microscopy (SFM) is very high 

resolution scanning probe microscopy. It is used for determine the surface topography of any 

material on the order of fraction of a nanometer. The AFM basically work on the principle of 

having a cantilever with sharp tip at the end that is used to scan the surface morphology. When the 

tip contact on the surface of film there is force between the surface and tip lead to deflection of the 
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cantilever according to Hooke’s law [19]. The force consist of different type according to situation, 

such as mechanical force, van der walls, electrostatic, chemical, capillary and magnetic force etc.  

 

Figure: 2.10 Set up of AFM system with JEOL-SPM used for AFM measurement.  

The tapping mode was used for the scanning the surface of material because the tip could stick the 

surface in normal contact mode. In backside of the cantilever beam a laser beam is focused and 

reflects it to the position sensitive photodetector, which convert it in electrical signal. AFM image 

were taken by JEOL SPM 5200 with Olympus probe (OMCL-AC200 TS-C3) in tapping mode and 

AFM set up was shown in figure. 

2.3.6 Gel Permeation Chromatography  

Gel permeation chromatography (GPC) is a type of size exclusion chromatography (SEC) that 

separates the dissolved macromolecules by size based according to elution form columns filled 

with a porous gel. It is basically known for triple detection coupled with light scattering, 

viscometer and concentration detection. It is used for the measurement of molecular weight, 

molecule size and intrinsic viscosity and also produce the important information on the 

macromolecular structure, conformation, aggregation and branching. Apart from molecular 

weight, it can characterized molecules such as synthetic polymers as well as natural polymer. It 
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can be also characterized by a variety of definitions for molecular weight including the number 

average molecular weight (Mn), the weight average molecular weight (Mw) and calculate the 

polydispersity (PDI). 

 

Figure 2.11 Set up of GPC measurement system for estimation of molecular weight and PDI of 
the polymer. 

2.4 Device Fabrication  

2.4.1 Surface Treatment 

Bottom gate top contact OFET was fabricated on highly doped Si substrate having 300nm of   

grown SiO2 insulating layer. For making the devices, Si substrate was cut into a small pieces up to 

size of ~1 cm2. It is important to note that the wafer should be cut on clean soft cloth to avoiding 

the any types of scratch on insulator interface during the cutting because one small scratch act as 

an interface for active semiconducting layer. The pieces of substrate was cleaned in ultrasonic bath 

5 minute each by rinsing the substrate into acetone and isopropanol and dry it at 100 oC for a few 

minutes. The SiO2 layer act as a gate dielectric insulator having the capacitance 10 nF/cm2. The 

insulating layer was modified by making it more hydrophobic as per requirement. In my 

experimental work two types of hydrophobic preparation was done on SiO2 surface such as 

CYTOP TM and octadecyl (trichloro) silane (OTS).  
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For making the CYTOP layer on SiO2, the solution of CYTOP drop on SiO2 substrate and spin 

coated at 3000 rpm for 120 second followed by annealing at 150 oC for a duration of 1 hour. After 

coating the CYTOP on SiO2 the value of capacitance was changed and found 8 nF/cm2. For OTS 

treatment, the SiO2 surface was immersed in a closed glass container filled with 2 mM solution of 

octadecyltrichlorosilane (OTS) in dehydrated toluene and heated 90oC for 2 hours followed by 

annealing at 130oC for 30 min. to make the self-assembled monolayer of OTS on SiO2 surface. 

2.4.2 Deposition of Semiconductor Layers and Electrodes 

For making the OFETs, oriented semiconductor layer was deposited by FTM method followed by 

masking which show anisotropic nature, while for comparison non-oriented layer was deposited 

by spin coating method show isotropic. Masking position was set according to the orientation 

direction oriented before the electrode (source and drain) deposition. Figure 2.12 shown the 

procedure of electrode deposition by using the mask. After the deposition of electrode the 

unwanted area outside the mask was removed for avoid the any type of leakage at the edges during 

the OFET operation. For characterization, source, drain and gate terminal was connected to the 50 

µm gold wire with the help of silver pest for characterization.    

 

Figure: 2.12 (a) Photograph of nickel shadow mask on substrates and (b) schematic flow 
diagram of the various steps from semiconductor layer to full ready OFET for measurement. The 
channel length ‘L’ and width ‘W’ was 20 μm and 2 mm, respectively. 
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2.4.3 Electrical Characterization 

The OFETs measurement was done in vacuum where the normal pressure up to 10-3 torr shown in 

figure. The set up was made in acrylic box for the connection of source, drain and gate using the 

gold wire (50µm in diameter). The set up box headed in vacuum chamber and start the pump for 

creating the vacuum.  The electrical characterization such as output and transfer characteristics 

were measured with computer controlled two channel electrometer (Keithley 2612). OFET 

parameter such as field effect mobility (µ), threshold voltage (Vth ) and on/off ratio was calculated 

from the transfer characteristics . 

 

Figure 2.13 Set up of OFETs electrical characterization (a) with one typical example of transfer 
characteristics of PQT-C12 as an active material (b). 

 

Figure shown the transfer characteristics of OFET at saturation region in IDS vs VGS. Mobility 

and threshold voltage was measured by the calculation of √𝐼𝐷𝑆 vs VGS. The drain current 

equation at saturation region represent the value of drain current. By solving the drain equation 

for mobility we found that it depends upon the slope k in equation that was mention in graph of 

transfer characteristics. The threshold voltage was also calculated by the intersection of the line 

with the axis of VGS. 
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Chapter: 3 Ribbon-shaped FTM: parametric optimizations 

 

3.1 Introduction 
In the recent past Conjugated polymers (CPs) have captivated a lot of attentions for their potential 

applications in the area of organic field effect transistors (OFETs), light emitting diodes, (LEDs) 

photovoltaics and different type of sensors etc. The CPs having solution processing capability, 

which is one of the important features rendering their suitability towards potential application in 

the area of flexible electronics owing to the cost efficient process for fabrication of thin films. The 

quality of thin film morphology, plays an important factor in deciding the charge transport 

properties, which commence from the self-assembly promoted aggregation of macromolecules 

while solid phase condensation. The casting procedures to prepare the thin film semiconducting 

layer by using CPs is, therefore, an important and best way to characterize the transport 

performance. Although thin film fabricated by spin coating is one of the well documented and 

mostly preferred techniques but unfortunately, the random spatial arrangement of polymeric main-

chains bounds its usage for fabricating high performance organic electronic devices [1]. Recent 

past years one of the amicable solutions for this problem is developed by the introduction of 

macromolecular alignment of CPs. Now days various methods are used  for the preparation of  

oriented thin-films in which some methods such as friction transfer method [2], mechanical 

rubbing [3], solution flow [4], capillary action [5], solution shearing [6], slide coating [7] and strain 

alignment [8] etc. have been developed and also investigated the analysis of  orientation and charge 

transport characteristics in details. Although the oriented film of CPs fabricated by these 

techniques have demonstrated high performance in organic electronics devices from the last one 

decade, but some important challenges such as fabrication process in simple way and multilayer 
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oriented thin film fabrication without harming the film morphology are yet to be taken into 

consideration. After looking such type of challenges our group developed a dynamic casting of 

thin floating-film of CPs on orthogonal liquid-substrate and make a floating solid film that is easily 

transfer on a desired substrate named as dynamic-FTM. This is simple and quick casting method 

and provide the oriented film of CPs with cost effective. The oriented film are at centimeter-scale 

which enables us to construct multilayered thin-films with the preserved oriented morphology. [9-

11] However, remaining obstacles like non-uniformity in thickness and control of orientation 

direction are still remaining challenges which have to be solved. In order to resolve such issues, 

we have developed a new casting method by modifying in casting of conventional floating films 

into the ribbon-shape by introducing a custom-made slider during the casting and control the 

spreading of the oriented films. In this study, we have compared the film characteristics prepared 

by this ribbon-shaped dynamic-FTM and conventional dynamic-FTM. The importance of 

individual casting parameters such as solution concentration, viscosity of liquid substrate and 

casting temperature have been investigated by polarized electronic absorption spectroscopy. 

3.2 Experimental  

 In this study non-regiocontrolled poly (3-hexyltiophene) (NR-P3HT) was selected as the 

representative polymeric material. It has been synthesized by chemical oxidative polymerization 

using FeCl3 catalyst and purified as per our earlier publication. [15] The regioregularity (head-to-

tail coupling content) was confirmed to be about 80 % by proton nuclear magnetic resonance 

investigations. The dehydrated chloroform as a solvent, purchased from Wako Chemicals, was 

used for the thin film casting. The synthesized NR-P3HT was highly soluble in the dehydrated 

chloroform and used to prepare three types of solutions, 0.5%, 1% and 2% (wt/wt). Procedure to 

cast the ribbon shaped floating-film has been schematically shown in the Fig. 1. 
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The hydrophilic liquid mixture was first made and poured into a rectangular tray which serves the 

purpose of liquid-substrate. A hand-made assisting slider made of PTFE was put near the one of 

edges in the tray. About 15 μl of NR-P3HT solution in chloroform was dropped in center of slider. 

When the droplet touched the boundary of slider/liquid-substrate, there was a quick spreading of 

the polymer solution in unidirectional and followed by continuous solidification due to evaporation 

of solvent and leading to the fabrication of ribbon-shaped floating-film. After this casting, the 

obtained solid floating-film was left for 5 minutes to ensure complete evaporation of the remaining 

solvent. Since the orientation of CP in the floating-film was of macroscopic in order, it was 

manually confirmed by a sheet of polarizer film with the naked eyes before the measurement and 

easily understand the orientation direction. The resulted solid floating film was stamped on 

transparent solid-substrates for the orientation analysis. 

Before the film transfer, the surface of the solid substrates were treated with hexamethyldisilazane 

(HMDS) to enhance the hydrophobicity of the solid substrate in order to ensure easy and better 

adhesion of the thin floating-films during the film transfer. The transferred film surface was 

washed with methanol in order to remove any remaining liquid substrate on the stamped surface 

followed by drying. In order to investigate the effect of viscous liquid-substrate on the molecular 

orientation, a variety of binary mixtures such as water and ethylene glycol (Wt/Eg) or ethylene 

glycol and glycerol (Eg/Gl) were used to prepare the liquid-substrates as per our earlier reported 

manuscript. [14,15] The polarized electronics absorption spectra were obtained by utilizing a Glan-

Thompson prism with JASCO V-570 spectrophotometer for investigation of optical anisotropy in 

the oriented thin films. The orientation intensity of the NR-P3HT based films was calculated in 

terms of optical dichroic ratio (DR) by using polarized absorption spectra. 
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3.3 Result and Discussion 

3.3.1 Casting of Floating Film 

The casting of oriented film on liquid substrate is very simple and quick method and easily transfer 

on a desired substrate. In Figure 3.1 demonstrated the real photographic images of the obtained 

floating-films prepared by the conventional as well as Ribbon-shaped FTM methods, respectively. 

The both method casted on liquid substrate by utilizing the same polymeric solution but certain 

change during the dropping and clearly observed that the obtained shape of the floating-film 

drastically changes depending on the employed method of the film casting under dynamic FTM. 

The floating film in circular shape with some dispersive parts formed in the floating film can be 

clearly seen for the thin film fabrication using previous used conventional dynamic-FTM.  

 

Figure: 3.1 Optical photographs of casting with (a) conventional dynamic FTM and (b) Ribbon-
shape FTM procedure, respectively. 

 

On the other hand, after this newly developed handmade custom slider as solution dropper 

during the casting changed the shape of the floating-film into the Ribbon-shaped one. It is obvious 
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that the after changing the setting-up method in conventional FTM has advantages in terms for the 

analysis the orientation manually as well as ease of handling the transfer process due to its 

rectangular shape in one direction. For the investigation of orientation, polarized electronic 

absorption spectra was taken by transferring the oriented film of Ribbon-shaped floating-film on 

hydrophobically treated glass substrate demonstrated in the Figure 3.2. In order to compare the 

behavior of oriented film a non-polarized electronic absorption spectra of a spin-coated NR-P3HT 

film has been also incorporated. The obtain DR of the Ribbon-shaped floating-films was found to 

be 2.4 after calculating the ratio at λmax at ‖ and λ┴ at λmax ‖. It can be easily seen that absorption 

maximum (λmax) in the electronic absorption spectrum of parallel oriented NR-P3HT film was 

located at 520 nm along with the presence of vibronic shoulders. Interestingly, λmax in the 

electronic absorption spectrum of spin-coated film was found to be at 508 nm with a clear red shift 

of 12 nm in the Ribbon-shaped FTM film. The vibronic shoulders around 540 nm and 602 were 

appeared in the similar manner to that observed for   the conventional dynamic-FTM.  

 

Figure: 3.2 Polarized electronic absorption spectra of NR-P3HT thin films prepared by spin 
coating as well as Ribbon-shape FTM. 

 

These obtain resultant indicate the presence of the increased π-orbital delocalization on main-

chain of the polymer. [16] The results also support that the films fabricated by this newly 
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developed method also have enhanced in π-stacking and such type of  films are appropriate for the 

fabrication of optoelectronic devices. Although a relatively small DR of 2.4 observed in this 

ribbon-shaped oriented film indicates that developed slider method provides a weak orientation as 

compared to that of the conventional dynamic-FTM. A clear reason for this cannot be assigned at 

the present stag but further development and optimization of the slider shape is required for 

achieving the high orientation. The orientation intensity is small in the ribbon-shaped films, it is 

worthy to note that the λmax is clearly red-shifted even in NR-P3HT as discussed above. As reported 

in our previous work, that thin film casted via dynamic-FTM is found to show high transport 

performance as compared to that of the spin-coat film. [12] In addition, the orientation size can be 

reached up to centimeter-scale in single direction as compared to conventional dynamic-FTM.  

 

3.3.2 Controlling the Casting Parameter 

3.3.2.1 Casting Temperature  

During the orientation optimization in ribbon shaped FTM, casting temperature such as 

temperature of polymer solution and viscous liquid substrate play important role because it can 

change the evaporation speed as well as viscosity of the liquid substrate. If we have used the 

polymer solution associated with temperature, the polymer solution spreads large area and it will 

take long time for evaporation of solvent, while in opposite at high temperature the evaporation of 

solvent was rapid and in a short duration polymer solution spread. On the other hand in case of 

liquid substrate temperature the polymer expansion was also affected. Likewise polymer solution, 

at low temperature of viscous liquid temperature, it reduces the spreading speed because of 

relatively high viscosity of liquid substrate, while at high temperature it provide the rapid 

expansion. After this discussion it is clear that both factors are important during the optimization 
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film orientation under the dynamic FTM and achieve the maximum possible orientation. For 

quantitate investigation polarized electronic absorption spectra of FTM films at different 

temperatures were measured in order to elucidate its implication on the molecular orientation of 

NR-P3HT films and demonstrated in Figure 3.3 

 

Figure: 3.3 Effect of casting temperature on dichroic ratio. 

3.3.2.2 Polymer Concentration 

In dynamic FTM, polymer concentration play important role for controlling the film orientation. 

An optimized concentration is required to achieve the maximum orientation in any polymer by 

dynamic FTM. For this investigation we have prepared the 0.5%, 1% and 2% concentration of 

polymer solution and find out that when the polymer concentration is high, the solvent evaporation 

and the polymer solidification are too rapid hindering the polymers to expand and to generate a 

uniform floating-film on the liquid-substrate. On the other hand, in the case at very low 

concentration, dropped solution parts easily spread on the whole of the liquid surface before its 

solidification. For this investigation polarized absorption was taken of different concentration and 

observed the affect in spectral feature and orientation intensity. A red shifted absorption maximum 
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(_max) along with clear vibronic shoulders can be seen when the concentration of NR-P3HT 

solution was increased from 0.5 to 1% (w/w) suggesting the increase in the effective π-conjugation 

length of the polymer main chains. Further increase in the concentration up to 2% (w/w) leads to 

not only the blue-shifted of λmax but relatively less-defined vibronic shoulder also. These findings 

clearly show that the solution concentration is an important factor for the orientation of main chain 

for dynamic-FTM. The orientation intensity in terms of DR at several different concentrations is 

shown in the Figure 3.4. The figure clarifies that increase in the solution concentration from 0.5 to 

1% (w/w) promotes the orientation then turned to decrease in the orientation with further increase 

in the concentration of the polymer solution. These results suggest the mechanism to cause the 

orientation in dynamic-FTM.  

 

Figure: 3.4 Effect of polymer concentration on dichroic ratio. 

 

Figure 3.5 shows the location dependence of DR as well as the absorbance at the λmax. 

Absorbance at λmax at difference location of the ribbon-shaped FTM was also measured in order 

to investigate variation in thickness of the films at different locations of the casted films. It is 

important to note that thin films casted towards the slider end in the Ribbon-shaped FTM  up to > 
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10 cm exhibit nearly no change in the measured DR values. This indicates that the Ribbon-shaped 

casting method provides relatively uniform orientation especially towards the slider side. The film 

thickness tends to be thinner as a function of increasing distance of the casted film from slider side 

to opposite end. These location dependences were also observed even after changing the 

concentration of the polymer solution. Such information about the distribution of large-scale 

orientation is highly desired for the in-depth discussion about the orientation mechanism. In this 

context, Ribbon-shaped thin film casting procedure proposed here provides the considerable 

knowledge of orientation characteristics by dynamic-FTM. It is interesting to note that there is 

appreciable enhancement in the observed DR at the far area in the Ribbon-shaped floating-film. 

This could be explained considering the fact that at the initial stage of solidification of floating 

film due fast solvent evaporation and dragging viscous force from the liquid substrate, there is 

induction of molecular orientation, which continues further with the advancing floating film.  

 

 

    Figure: 3.5 Location dependence of DR as well as the absorbance at the λmax. 
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3.3.2.3 Liquid Substrate Viscosity 

In dynamic FTM, viscosity of liquid substrate also play one of the important role to controlling 

the molecular orientation. It acts as a dragging force in opposite direction during the propagation 

of polymer solution, thereby affecting the self-organization of polymer leading to the orientation. 

The liquid substrate viscosity can be change by mixing the two different liquid having different 

viscosities. In this study, different varieties of liquids such as pure water, ethylene glycol (EG) and 

glycerol (GL) used as a base liquid having viscosity 0.79, 14.41 and 487.64 centistoke respectively. 

By mixing this base liquid we can make the optimized binary liquid for control of viscosities. It 

has been clearly observed that increasing the viscosity affect the propagation of the FTM film on 

liquid substrate. In case of very low viscosity in case of 100% pure water the polymer solution 

spreading all over the area of liquid substrate and decrease while increasing the viscosity. These 

findings suggest that a dragging force hindering the FTM films to a confined area. 

Figure 3.6 depicts the liquid substrate viscosity dependence of observed DR in the Ribbon-shaped 

floating-film where the viscosity was controlled by mixing the two miscible hydrophilic solvents 

of varying viscosities. All of the DR plotted here are taken at the farthest position giving the best 

orientation. Although DR is small as mentioned above, the orientation characteristics are quite the 

same of the floating-films obtained by the conventional dynamic-FTM as reported previously. [14]. 

This fact also indicates that even by changing floating film fabrication method as mentioned above 

with Fig.2, the essential orientation characteristics remain well conserved. This is also very 

important to note that the Ribbon-shaped dynamic-FTM is useful for investigating the mechanism 

with various casting factors aiming towards the attainment of high molecular orientation. The 

proposed Ribbon-shaped dynamic-FTM is utilized for researching the orientation mechanism in 

dynamic-FTM and for optimizing the orientation condition towards the practical use. 
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Figure: 3.6 DR dependence on the binary mixture of water, EG or GL as casting liquid 
substrate. 

 

 

 

 

 

3.4 Conclusion 

We have developed a modified dynamic-FTM by changing the shape of conventional FTM circular 

to rectangular shape and obtain the Ribbon-shaped floating-films. The resulting floating-films 

were confirmed to be oriented to perpendicular against the propagation direction. The orientation 

intensity given by the dichroic ratio (DR) was 2.4, which was relatively small as compared to the 

conventional dynamic-FTM. DR dependences on the distance from the dropping point, solution 

concentration and liquid-substrate were investigated as a preliminary investigation. These results 

exhibit almost the same characteristics as compared that observed in conventional dynamic FTM. 

The developed casting way can be utilized for investigating the orientation mechanism as well as 

for the optimizing the casting condition in dynamic-FTM. 
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Chapter 4: Charge transport in poly (dodecylquaterthiophene): 
Implication of optical anisotropy and molecular weight 

 

4.1 Introduction  

Advent of solution processable conjugated polymers (CP) have drawn a good deal of attentions of 

materials science community since about last three decades owing to their application potentials 

in the area of low cost disposable and flexible electronic devices such as organic field effect 

transistors (OFETs), light emitting diodes and solar cells.[1] Interests in CPs was geared 

considering their features like mechanical flexibility, self-assembly and tuning of their electronic 

functionality. Inherent one-dimensionality and extended -conjugation of CPs renders them highly 

susceptible for molecular self-assembly in condensed state. Unidirectional alignment CP 

macromolecules are highly desired for the facile in-plane charge transport along the orientation 

direction leading to the fabrication of high performance OFETs. Now days  OFETs are more 

studied  research for the development of electronics consisting of amplifying and switching 

action.[2] For the commercialization of OFET based electronics  devices high performance OFETs 

are required by controlling the several types of issue such as enhancement in field effect 

mobility,[3] operation stability,[4] passivation method[5,6] and high- performance 

reproducibility[7,8]. As reported by the some groups, OFETs performance were optimized based 

on fabrication conditions [9–11]. Some literature study was also reported that OFETs mobility 

dependence on average chain length of polymer. The mobility was enhanced in order to increasing 

molecular weight reported for P3HT and other thiophene based polymer [9,11–13]. Apart from 

these , CPs stringently depends on their film morphology leading to the proposal of various  film 

fabrication techniques although spin coating has been most widely utilized [14–16]. A number of 

methods have been proposed to orient CPs, however, most of them either uses shear forces offering 
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preferred face-on orientation. At the same time existing possibility of physicochemical damages 

to the underlying soft polymeric layers also cannot be ruled out [17,18]. However, direct deposition 

of thin films via slow solvent evaporation from the polymer solution inherently results in to the 

thermodynamically favored edge-on orientation of CP macromolecules, which is highly favorable 

for planer devices like OFETs [19,20]. 

In this chapter, we have reported a facile and cost control strategy for fabricating the oriented thin 

films of CPs on the viscous hydrophilic liquid substrates and named as floating film transfer 

method (FTM [15,20]. In this method, solid film formation takes place by simultaneous rapid 

spreading and compression of film by dragging force offered through viscous liquid substrate in 

opposite direction [14,20]. Interestingly, highly oriented thin floating films at very large scale up 

to several centimeters (15-20 cm) with a small variation in the film thickness as well as orientation 

intensity. Apart from this we also show the importance of molecular weight and PDI in the 

fabrication of orientated thin film and as well as in OFET. Importantly, in this discussion it 

demonstrate that the effect of molecular weight and PDI on orientation are a function of mobility.  

4.2 Experimental Work 

Materials and Optimization 

 In this work poly(3,3‴-didodecyl quaterthiophene)(PQT) was synthesized as per our previous 

publication and used as representative CP in the present work[21]. On the other hand, PQT-C12 

are also synthesis by changing the synthesis parameter and achieved the four PQT-C12 extrcat of 

varied molecular weight and PDI. Dehydrated chloroform was purchased from sigma Aldrich as a 

solvent. Polymer solution was prepared 2% and 0.5% w/w for making the solid film prepared by 

ribbon shaped FTM and spin coating respectively. For making the solid film by FTM we drop a 
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15-20 µl of polymer solution in center of the assisting slider which placed in one edge of partly 

filled rectangular tray. On the other hand spin coating film was also prepared by the condition of 

3000 rpm spinning speed and 5 s acceleration for the duration of 120 sec. Film thickness was 

measured by interference microscopy (Nikon Eclipse LV150). Optical characterization was done 

by using polarized UV visible absorption spectrophotometer (JASCO V 570) equipped with Glan-

Thompson Prism.       

Bottom gate top contact OFETs were fabricated for investigation of electrical characterization. For 

making the OFETs, highly doped Si substrate was used with 300 nm grown SiO2 layer. Before 

transfer the FTM film surface treatment was done by introducing addition self-assembled 

monolayer on SiO2 surface. In  this treatment  substrate was dip in 2 mM solution of 

octadecyltrichlorosilane (OTS) in dehydrated toluene and heated 90oC for 2 hours followed by 

annealing at 130oC for 30 mins. The estimated dielectric capacitance was about to Ci= 10 nF/cm2. 

FTM film was transferred on OTS treated SiO2 layer by stamping. 50 nm electrode (source and 

drain) was deposited by thermal evaporation on base pressure 10-6 torr by using nickel shadow 

mask having the channel length 20µm and width 2mm. Electrical characterization was done by 

computer controlled 2 channel source meter unit (Keithley-2612) in vacuum at 10-3 torr pressure . 

A custom-made slider consisted of polytetrafluoroethylene was designed and used to provide 

directionality while film spreading. Slider was dipped in a rectangular tray (22 cm x 15.5 cm) in 

such a manner that half of its slope should be immersed in viscous liquid substrate (Fig.1) acting 

as liquid substrate. Viscosity of the liquid substrate plays a dominant role and decides not only the 

thickness but also the molecular orientation which was optimized by taking the different viscous 

liquid substarte. We have used mixture of ethylene glycol (EG) and Glycerol (GL) in the ratio of 

3:1 as optimized viscous liquid substrate and 25 µl of the polymer solution was dropped in the 
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center of the slider. This dropped polymer solution rapidly spreads and expands in the form of a 

ribbon up to 15-20 cm from the drop point. However, unlikely to our standard FTM reported 

previously, spreading in this case took place only in one direction due to the tilted bottom wall of 

the slider as illustrated schematically in the Fig.1. Orientation was qualitatively verified by naked 

eye using a polarizer film followed by its transfer on the glass slides (1.1 cm × 2.5 cm) by stamping 

for quantitative analysis. Spin-coated films were also prepared from the 0.5 % (w/w) PQT solution 

in chloroform by spin coating at 3000 rpm for 120 s for comparison.  PQT coated glass substrates 

were annealed at 60°C for 5 min in order to ensure the complete evaporation of any remaining 

solvent. Polarized electronic absorption spectra were measured with UV-visible-NIR 

spectrophotometer (JASCO V-570) equipped with Glan Thomson prism. In order to quantify the 

molecular orientation and optical anisotropy in the FTM processed films, optical dichroic ratio 

(DR) was also estimated from the polarized optical absorption spectrum. Optical DR was defined 

as DR = A||/A, where A|| and A are absorption maximum (max) of the film along the || and  

direction of the orientation, respectively [20]. 

4.3 Results and Discussion 

4.3.1 Molecular Orientation 

 Fig 4.1 (a) show the polarized electronic absorption spectra of the oriented ribbon shaped FTM as 

well as spin-coated thin films of PQT for the comparison. Spin-coated PQT film spectra show the 

featureless absorption spectrum with ill-defined vibronic modes as compared to that of oriented 

films fabricated by FTM. In parallel oriented PQT thin films exhibit clear peaks at λmax around 537 

nm and 580 nm along with vibronic shoulder at 505 nm. These vibronic peak around 580 nm 

indicates the formation of higher structural ordering in the condensed state and enhanced π-π 
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lamella stacking [21]. The absorption spectra of oriented thin film shown in Fig. 4.1(a) that shows 

22 dichroic ratio, which is one of the highest optical anisotropy reported for the oriented PQT 

films. Interestingly, Pandey et al have also worked on orientation in the PQT films by using our 

conventional FTM and found the low DR along with less pronounced vibronic features [21].These 

prominent resolution of the 0-0 vibronic transition at 580 nm indicates the higher planarization of 

polymeric chains and enhanced molecular ordering due to higher unidirectional orientation [22].  

 

Figure: 4.1 (a) Polarized electronic absorption spectra of oriented film and (b) Variation of DR 
from near to far with samples taken at equidistant interval in a 15 cm long ribbon shaped oriented 
film. (c) Variation in DR and (d) film thickness of the oriented film casted on glass substrate with 
area of 2×2 cm2. Inset in (a) is the photograph of the oriented film transferred on glass slide with 
|| and  orientations. The dark color shows parallel (||) and almost colorless shows perpendicular 
() when angle of the polarizer was rotated from 00° to 90°. 
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 The oriented films with   absorption spectra show featureless λmax at 489 nm like as in solution 

which, clearly indicates the polymer chain are randomly distributed [20,23]. Since in FTM films 

molecular orientation results from synergistic interaction between the solvent evaporation and 

viscous dragging force of liquid substrate, it is obvious to have some variation in the calculated 

DR of oriented film at large scale shown in the Fig. 4.1(b). A perusal of this figure corroborates 

that calculated DR at the far end of film is relatively higher as compared to that at the near end of 

film from the solution dropping point. It is attributed to the fact that the progressing film towards 

the far end has to pass through the additional viscous dragging force posed by the viscous liquid 

substrate prior to film solidification. The thin film homogeneity in terms of their thickness and 

molecular orientation plays the important role for controlling the device performance. Thickness 

have been measured by Interference microscopy (Nikon Eclipse LV150). Fig. 4.1(c) and (d) shows 

the variation in DR and thickness at intervals of 1 mm in the oriented film with point source 

photonic analyzer connected with the computer controlled mobile stage for holding the PQT coated 

glass substrate. It can be seen that the thickness of oriented films fabricated at optimized casting 

temperature  at 50°C is rather uniform (variation ± 1 nm) as compared to that non optimized 

condition  at 30oC showing  relatively large thickness non-homogeneity (variation ± 6) in the latter 

case. Relatively inhomogeneous films fabricated at lower temperature could be associated with the 

slow solvent evaporation and non-homogeneous film expansion.  

In this work four categories of PQT-C12 Extract having different molecular weight and PDI were 

also used for the investigation. Figure 4.2 shown the polarized absorption spectra of four categories 

of PQT-C12 having different molecular weight and PDI, where found the red shift in parallel FTM 

as compared to spin coated. All the selected of PQT-C12 extract spectral features such as maximum 

absorption spectra in parallel/perpendicular, vibronic shoulder and optical anisotropy in terms of 
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DR summarized in table 1. Amongst all, PQT-C12 extract having highest molecular weight and 

PDI exhibit maximum absorption spectra in ‖ FTM at 546 nm which is 8nm red shifted with clear 

vibronic shoulder exhibit at 586nm as compared to spin coated film. On the other hand in case of 

lowest molecular weight and PDI show the maximum absorption spectra in ‖ FTM at 544 nm which 

is 6nm red shifted as compared to spin coated film along with clear vibronic shoulder at 584nm. 

In middle, two of PQT-C12 extract in which one show maximum absorption spectra in ‖ FTM at 

550nm which is 10 nm red shifted as compared to spin coating along with clear vibronic shoulder 

at 588nm and in second one of remaining PQT-C12 extract show the maximum absorption spectra 

in parallel FTM at 538 nm which is red shifted 22 nm as compared to spin coated film along with 

vibronic shoulder at 582 nm. Such type of spectral features such as red shift and existence of 

vibronic shoulder indicate the structural ordering in the condensed state and improve the π-π 

stacking [15]. 

 Absorption spectra shown in figure 4.2 (a) clear indicate the spectral difference according to 

molecular weight and PDI. These resultant show the importance of Molecular weight and PDI as 

a function of changing the spectral features such as variation in absorption peak as well as vibronic 

shoulder. Apart from this spectral features, also play important role for the changing the orientation 

characteristics. As per reported by Pingle at al. molecular weight and PDI dependence spectral 

features by selecting  three PQT C-12 extract  such as high (Mw=26500 g/mol, PDI=1.66) medium 

(Mw= 7000-9000 g/mol, PDI=1.17-1.29) and low (Mw= 1700 g/mol, PDI=1.03) molecular weight 

and compared to it with similar three group of P3HT counterpart [22]. According to him, high and 

medium molecular weight of absorption spectral features of PQT-C12 extract almost resemble 

each other and  the spectral feature started to degrade such as blue shift and featureless absorption 

spectra when going from higher to lower molecular weight in both of case. For P3HT such degrade 
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was described in terms of smaller crystallinity in medium molecular weight means a large no of 

chain are  contained in disorder area and exhibit less plagiarized backbone conformation [11,24] 

In low molecular weight of PQT-C12 there is a reverse trend such as narrow well absorption 

spectra and small red shift as compared to medium molecular weight and further degrade in P3HT. 

Its features can be interpreted in terms of prevalence of planarized chain conformation and high 

solid-state order [25,26].Although in my case I selected four PQT-C12 extract having different 

molecular weight and PDI noted in table1.The resultant show the importance of both is equally, 

when we increase the molecular weight and PDI from first type to second the spectral features and 

vibronic transition was featureless but increasing the molecular weight in third group enhance the 

spectral feature. Further increase in molecular weight again slightly decrease the spectral feature 

as compared to third. It might be the main reason the value of the PDI. Although it was increased 

after increasing the molecular weight, which was clearly reflected from the table1 and Pingal at al. 

resultant [22]. According to me and other groups resultant clearly reported optimization of PDI is 

so difficult during the polymerization. Apart from spectral feature the orientation was also increase 

after increasing the molecular weight from first to third and further start to degrade in case of next 

type. The orientation was expressed in terms of DR and its average quantitative values from first 

to third be 4.5, 4.9, 8.7 and 6.8 in case of four. Figure 4.2 (b) show one of the typical absorption 

spectra of third group PQT-C12 extract in parallel and in perpendicular which is one of the highest 

value among four. Figure 4.2 (c) and (d) show the molecular weight and PDI dependence dichroic 

ratio measured by the polarized absorption spectroscopy. For the reproducibility we prepared 6 

sample for each type of PQT-C12 extract and taking the average DR. These resultant show 

importance of molecular weight and PDI limitation for optimizing the orientation. In my case the 

one of the optimized PQT-C12 have 42500 molecular weight and 2.1 PDI and achieved the one of 
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highest DR ˃ 10 and average DR= 8.7. The main reason to achieve this highest DR due to 

possibility of combination of high molecular weight and average low value of PDI.      

 

 

 Figure: 4.2  Polarized Electronic absorption spectra of PQT-C12 prepared by ribbon- shaped 
FTM   of different molecular weight and PDI in Parallel (a) typical absorption spectra in parallel 
and perpendicular having highest DR˃10 for molecular weight 42500 g/mol and PDI=2.1 (b) 
Molecular weight dependence DR (c) PDI dependence DR(d). 
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Tabel-1 Optical parameters for spin coated and ribbon shaped FTM films from the solid-state 
electronic absorption spectra.  

Polymer PQT C-12 Film Condition Absorption    
Max  
(nm) 

Dichroic 
Ratio 
(DR) 

Vibronic 
Shoulder 
(nm) Mw PDI 

25825 1.7 Spin coat 528 4.56 586 
Parallel FTM 544 586 
Perpendicular FTM 524 590 

30965 2.0 Spin coat 516 4.9 578 
Parallel FTM 538 582 
Perpendicular FTM 496 582 

42500 2.1 Spin coat 540 8.7 586 
Parallel FTM 550 588 
Perpendicular FTM 538 592 

55865 3.5 Spin coat 538 6.13 590 
Parallel FTM 546 586 
Perpendicular FTM 532 590 

 

4.3.2 Probing Orientation by XRD 

The in-plane GIXD measurements were also taken in order to analyze the conformation of the 

backbones in the FTM processed films, which is shown in the Figure 4.3 The measurements were 

taken by casting the oriented films on the bare silicon wafers following the measurement geometry 

(inset of Fig. 4.3 (a)) [18]. It can be seen that all of the diffraction peaks related to lamellar alkyl-

stacking are absent and only 010 peak associated with π-π staking was appeared at 21° in the as-

cast film when the incident X-ray was || ( = 90°) to the orientation direction [27,28]. Interestingly, 
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same peak at 21° completely disappears when the incident X-ray was  ( = 00°) to the orientation 

direction. These results implies that the polymers are uni-directionally oriented with conjugation 

as well π-π stacking axis are in plane of the substrate (edge-on orientation).   

 

Figure : 4.3 (a) In-plane GIXD of oriented PQT film before and after thermal annealing, (b)  
scan of 010 peak of as-cast and annealed oriented film. GIXD along  = 00° and  = 90° represents 
the diffraction pattern along the perpendicular and parallel to the orientation direction, 
respectively. The inset in (a) represents the experimental geometry for in-plane GIXD set-up and 
inset in (b) is schematic view of orientation pattern in edge-on oriented film before and after 
annealing. 

 

4.3.3 Electrical Characterizations 

This is crucial for devices like OFETs where charge transport take place at the interface of the 

insulator/semiconductor and presence on any alkyl sidechains in the channel direction acts as 

resistive barriers for hopping of the charge carriers [29].It has been reported that PQT possesses 

liquid crystalline (LC) behavior whose alkyl side-chains melts around 130°C [30]. In our case, 

when as cast and highly oriented film was annealed at LC phase transition temperature for 5 min, 

010 peak shifted at 24° representing more dense packing in the films. Since there was no 
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remarkable change in the extent of orientation after annealing, therefore, this could have originated 

from the disturbance in the polymer stacking. In order to probe this, -scan were also performed 

on 010 peak of as-cast and annealed films as shown in Fig. 4.3 (b). The -scan yielded a full width 

at half maximum (FWHM) of 16.5° in the as-cast film which increased drastically to 38.2° for 

annealed films. This clearly indicates that although the π-π stacking goes under more dense state 

once annealed but there was a disturbance in the molecular arrangement during π-π stacking. It is 

also worth to note here that these value of FWHM are very close to oriented poly(3-

hexylthiophene) prepared by mechanical rubbing and friction transferred techniques, however, 

those methods yielded face-on orientation with alkyl chains lying in-plane to the substrate.[18,31] 

OFETs were fabricated by stamping the oriented PQT films on the CYTOP coated SiO2 / Si(p++) 

substrates having the capacitance of 8 nF/cm2 in the bottom gate and to contact device 

configuration as shown in Fig. 4.4 (a). Gold electrodes (50 nm) were deposited for source and 

drain terminals using thermal evaporation at 10-6 Torr on the top of PQT film with nickel shadow 

mask having channel length (L = 20 µm) and width (W = 2 mm). Electrical characterization was 

made under dark with computer controlled two-channel electrometer (keithley-2612) at 10-3 Torr. 

All of the electronic parameters for OFETs were extracted as per our earlier publication and field 

effect mobility (µ) was extracted in the saturation regime of the transfer curves using Eq. 

𝐼DS =  
𝑊

2𝐿
𝜇𝐶i(𝑉GS − 𝑉TH)2  
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Figure: 4.4 Device architecture of the OFETs (a), their output (b) and transfer curves (c) using 
oriented PQT film having the DR of 22. Variation in μ for the OFETs using oriented PQT of 
variable DR (d) where,  μ|| and  μ represent the μ along the || and  direction, respectively. PQT 
film with low DR (~2) was casted at 30°C while that with intermediate DR (~12) was casted at the 
proximal end of the oriented ribbon shaped film prepared at 50oC. (e) Angle dependence mobility 
at 0o,45o and 90o (f) Statistical analysis of  FET performance showing large scale homogeneous 
film. 

 

Charge transport was evaluated for PQT in both of the orientation directions viz. with channel || to 

the orientation direction as well as channel   to orientation direction (Fig. 4.4(a)). Parallel and 

perpendicular OFETs were fabricated on the same substrates and in similar device configurations 

in order to pinpoint the implication of molecular orientation only and avoiding the substrate 

dependent deviations. Fig. 4.4 (b) shows the typical I-V characteristics with a clear p-type 

behavior, where higher output currents were observed when channel was || as compared to devices 

when channel was  with respect to the orientation direction of the polymer backbone. There was 

about an order of magnitude higher output current for devices as compared to  one at a fixed gate 
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bias.  Figure 4.4 (c) shows the transfer characteristic of the same OFETs (DR = 22) with average 

(maximum) 0.026 (0.029) cm2/Vs and 0.0025 (0.0013) cm2/Vs along the || and  directions, 

respectively. Although mobility have been achieved lower as reported by other group [27,32,33]  

because of various factor to improve the mobility in which some of the factors like polymer 

synthesis techniques, molecular weight, fabrication technique, surface treatment and post 

treatment. It might be the possibility of lower mobility due to the lower molecular weight 

(Mw=10000 g/M) as compared to other group with high molecular weight (Mw=22900 g/Mole).  

These molecular weight dependence mobility also support by this article [22]. All of the OFETs 

using || oriented PQT films exhibited nearly similar on/off ratio typically in the order of 105. On 

the other hand, relatively lower on current and nearly similar off current for OFETs fabricated with 

perpendicularly oriented PQT films led to one order of magnitude lower (104) ON/OFF ratio. 

Possibility of fabrication of PQT films with variable optical anisotropies by controlling the film 

casting conditions under ribbon-shaped FTM encouraged us to explore the implication of extent 

of molecular orientation on the anisotropic charge transport.  To accomplish this, OFETs were 

fabricated using oriented PQT films with varying optical anisotropy and DR dependent field effect 

mobility for parallel and perpendicular oriented PQT films (μ|| and μ) are shown in the Figure 4.4 

(d). It can be clearly seen that mobility anisotropy (μ|| / μ) increases with the increasing DR, which 

clearly indicates that the significance of increasing the molecular orientation on the charge 

transport. Beniek et al have reported that nature of the molecular orientation and extent of their 

distribution (edge-on/face-on) in CPs play dominant role in controlling the charge carrier transport 

anisotropy (μ|| / μ)[31]. Therefore, almost one order of magnitude change in μ|| / μ  for PQT films 

in spite of having relatively small DR is in well agreement with the GIXD results, where a well-

stacked edge-on conformation was clearly evidenced. Angular dependence mobility have been 
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measured to investigate the anisotropy based transport phenomenon shown in figure 4.4 (e), Where 

mobility was decreased after increase the angle in orientation direction. To investigate the 

homogeneous large scale oriented films quality, we have been fabricated many OFETs and its 

performance statistical analysis demonstrated in figure 4.4(f). 

 

Figure: 4.5 mobility of oriented thin film in parallel and perpendicular based on molecular 
weight (a) and dependence on PDI (b). 

 
In this work, OFETs were also fabricated in similar manner of above geometry for the investigation 

of charge transport anisotropy of four extract of PQT-C12 having different molecular weight and 

PDI. Detailed summary was summarized in table 2 where four types of PQT-C12 extract having 

different molecular weight and PDI were used for the investigation. Resultant show when 

molecular weight increases from first to third type PQT-C12 the maximum mobility in parallel 

was increased in order of 0.8×10-2 cm2/Vs, 1.12 ×10-2 cm2/Vs and 6.7×10-2 cm2/Vs respectively.  

But after further increment in molecular weight it start to decrease 3.92 ×10-2 cm2/Vs. In all  PQT-

C12 extract, third type of extract having one of the highest mobility 6.7×10-2 cm2/Vs in parallel 

and one order less in perpendicular 7.0×10-3 cm2/Vs however Ong.et al and my previous 

publication  also reported the mobility 0.02 -0.05 cm2/Vs and 0.029  having Mn = 17300 g/mol 
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and Mw=10080 g/mol respectively [27,34]. Apart from these pingle et.al also reported mobility in 

the range of 10-3 cm2/Vs having Mn= 1650 g/mol [22]. In this article third type of PQT-C12 having 

highest mobility might be the possibility high molecular weight 42500 with of optimized value of 

PDI 2.1 which is different to fourth types of extract having high molecular weight 55865 and with 

high PDI 3.5.  Note that in this investigation to check the reproducibility the mobility of four types 

of PQT-C12 are averages over measurements on 5-6 transistors each. 

Figure 4.5 show mobility graph as a function of molecular weight and PDI. In figure 4.5 (a) clearly 

indicate mobility was increased with molecular weight below 45000 and slightly decrease after   

further increment. The mobility was demonstrated in parallel and perpendicular for the analysis of 

charge transport anisotropy. The charge transport anisotropy was achieved very high upto 10 

having molecular weight above 30000 and below 45000 and slightly decreased above 45000. 

There are many reason to increase in mobility with molecular weight reported by some group such 

as charge trapping at the end, the density of chemical defects, regioregularity of the polymer chain 

and variation in energy level because of PDI etc.[9]. In all the one group reported that 

regioregularity in polymer chain are play important role for enhancement in mobility because chain 

pack each other [35]. In figure 4.5 (b) show PDI as a function of mobility as well as anisotropy. 

The mobility and charge transport anisotropy was increased when PDI was 2 and 2.1 and slightly 

decreased at 3.5. The reason of decrease in mobility having high PDI was explained as having 

longer chain statically provide longer conjugation length that acts as trap site and reduced in band 

gap [35].   
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Table-2 Device parameters deduced from OFETs prepared thin films of PQT-C12 extract 
fabricated by ribbon-shaped FTM. 

PQT-C12 𝝁‖ 

 FTM 

𝝁

 

 FTM 
𝝁‖ 𝝁


⁄  𝐈𝐎𝐍 𝐈𝐎𝐅𝐅⁄  DR 

Mw PDI 

25825 1.7 5.3 ×10−3 3.0×10−3 4.5 104 4.56 

30965 2.0 9.2×10−3 8.7×10−4 10 105 4.9 

42500 2.1 6.6×10−2 6.3×10−3 10 106 8.7 

55865 3.5 3.3×10−2 5.0 ×10−3 7.4 105 5.61 

 

4.4 Conclusion 

In conclusion, we have demonstrated a novel and cost effective method for the fabrication of large 

area, uniform and highly oriented floating films. It has been shown that oriented films of PQT up 

to 20 cm in length can be easily cast with just 25 µl of the polymer solution. Polarized electronic 

absorption spectra of the oriented PQT films exhibited very high optical anisotropy (DR=22) 

which is one of the best reported values amongst CPs oriented by different methods. Investigation 

pertaining to the film uniformity in terms of extent orientation and thickness revealed high 

uniformity for the films fabricated under optimized casting conditions. The in-plane GIXD results 

also clarified the well-stacked backbone conformation with ideal edge-on orientation. At the same 
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time -scan suggested that although PQT shows thermotropic LC phase but main chains are ideally 

aligned in edge-on conformation without any thermal treatment at LC phase transition temperature. 

DR dependent charge transport anisotropy has also been demonstrated and is well correlated with 

the results of polarized electronic absorption spectroscopy as wells as GIXD supporting the fact 

that increase in DR leads to increased μ||, decreased μ and vice versa. 

Apart from this four PQT-C12 extract having different molecular weight and PDI obtain after 

optimized the synthesis parameter. These different molecular weight and PDI is a key function of 

changing the orientation as well as charge carrier transport in OFETs. By increasing a molecular 

weight and low PDI upto limit achieved the high performance oriented film having DR˃10 and 

6.7×10-2 cm2/Vs charge transport in parallel and one order lower in perpendicular without any post 

treatment. Apart from this it also shows more than ˃10 optical and electrical anisotropy with 

ION IOFF⁄  ratio in the range of 106 in parallel and one order lower 105 in perpendicular.  
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Chapter: 5 Optoelectronic properties of conjugated polymers prepared 
by ribbon-shaped FTM 

 5.1 Introduction  

The advent  of conjugated polymers (CPs) and their semiconducting properties for the use in 

various technological fields such as solar cells, organic light emitting diodes and organic field 

effect transistors (OFETs) make them strong contender amongst organic semiconductors in the 

area of organic electronics [1,2]. CPs can be functionalized by main chain and side chain 

substitutions [3,4], which facilitates solution processing and variety of applications [5-7]. In CPs 

intrinsic one- dimensionality and extended π-conjugation of CPs make them susceptible to 

molecular self-assembly in condensed state. In this  attainment of an ordered structure is driven by 

the different interactions like hydrogen bonding, hydrophobic, electrostatic, van der Waals 

interaction and π-π stacking etc. Controlling the molecular self-assembly in order to get ordered 

structure is one of the requirements for providing the high-performance to optoelectronics devices. 

Orientation of CPs has been reported for enhancing the charge transport, polarized luminescence 

and electroluminescence [8-11]. Controlling the thin film morphology by molecular alignment of 

the polymer chains has been demonstrated to be critical for enhancing the photoresponse in the 

optoelectronic devices like photosensitive field effect transistors [12].  At the same time, molecular 

orientation of CPs support in-plane transport owing to the planarity of π-conjugated backbone 

leading to high-performance in organic OFETs [10]. A number of methods such as mechanical 

rubbing [10], friction transfer [13], high-temperature rubbing [14], drawing [15], strain alignment 

[16] and solution flow [17] etc. have already been used for the orientation of the CPs.  Although 

these techniques have been found to impart molecular orientation but exiting some problems such 

as mechanical damage, static charge accumulation, solubility of the under layers, material wastage 

and lack of multilayer formation have to be solved amicably. Apart from these, use of shear force 
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in these methods generally provide face-on orientation, which is not much suitable for planer 

devices like OFETs. On the other hand, deposition of thin film using polymeric solution with slow 

solvent evaporation results into thermodynamically favored edge-on orientation, which is highly 

essential for in-plane charge transport in the planner devices [18-20].  

We have developed a novel  and low-cost method for the fabrication uniform and oriented thin 

films on the viscous liquid substrate and named as floating film transfer method (FTM) [21,22]. 

Orthogonality of the solvents used for the preparation of liquid substrate and solution of CPs are 

important requirements for thin film fabrication under FTM. Application of a drop of polymer 

solution with low boiling solvent on an orthogonal liquid substrate leads to fabrication of thin 

floating film via film spreading and solvent evaporation. Competing processes like evaporation of 

solvent used for polymer solution and viscous force of liquid substrate provide molecular 

orientation to the floating film. Such floating films can be easily transferred to the desired substrate 

for further characterization as well as applications. It has been found that film thickness and 

orientation intensity can be controlled by optimizing film-casting parameters like concentration of 

the polymer solution, temperature and viscosity of the liquid substrates [23]. Apart from the 

optimization of film casting conditions during FTM, the nature of the polymeric backbone also 

plays a dominant role in controlling the molecular orientation and affects the finally attainable 

optical anisotropies [24].  In order to circumvent issues like non-uniformity and multi-directional 

film spreading, we have recently reported an improvisation in our conventional FTM [25]. 

Utilization of a custom-made slider during film spreading for providing directionality to the 

spreading film in FTM led to the large area (14-20 cm long) and highly oriented film formation 

named as Ribbon- shaped FTM [26].  
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Present work deals with the fabrication and characterization of very large area oriented thin films 

of CPs using our newly developed ribbon-shaped FTM. To expedite the investigations pertaining 

to the nature of the polymeric backbone on molecular orientation, five different CPs 

(homopolymer and copolymer) belonging to the thiophene family have been taken into 

consideration. Molecular orientation in these large area oriented films have been probed by 

polarized electronic absorption spectroscopy, while anisotropic charge transport has been studied 

after the fabrication OFETs in the bottom gate top contact device architecture.  

5.2 Experimental Work 

In this work five different CPs such as poly(didodecyl-quaterthiophene) (PQT-C12), poly[(9,9-

dioctyl-9H-fluorene-2,7-diyl)-alt-2,2'-bithiophene]-5,5'-diyl)] (F8T2), non-regiocontrolled poly 

(3-hexyl thiophene) (NR-P3HT), poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] 

(PBTTT-C14) and poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-

fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl] (PTB7) have been used for the 

investigation of orientation. Chemical structure of the CPs are demonstrated  in the Figure 5.1.  

 

Figure: 5.1 Chemical structure of conjugated polymer utilized for probing molecular orientation 
and anisotropic charge transport.  
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NR-P3HT and PQT-C12 were chemically synthesized using FeCl3 catalyzed oxidative 

polymerization and purified by soxhlet extraction as per our earlier publications [27-29].  

Copolymer F8T2 was synthesized by Suzuki coupling following the method reported by Lim et al 

[30]. Copolymer PTB7 and homopolymer PBTTT-C14 were purchased from 1-Material and 

Sigma Aldrich, respectively. Both of these two polymers were used without any further 

purifications.  In order to fabricate thin films by FTM, 1 % solution (w/w) of the respective CPs 

was prepared in the dehydrated chloroform. The oriented thin films of the CPs were prepared using 

a rectangular tray having size (23 cm ×15 cm) filled with hydrophilic viscous liquid substrate. The 

optimized viscous liquid substrate was consisted of a binary mixture of ethylene glycol (EG) and 

glycerol (GL) in the 3:1 ratio. A custom-made slider (PTFE) was placed at one of the longer sides 

of the rectangular tray as schematically shown in the Figure 5.2.  

 

 

Figure: 5.2. Schematic representation for fabrication of oriented thin film by ribbon-shaped 
FTM. 

 

The amount of solution about 25 µl of respective polymers in dehydrated chloroform was dropped 

in the center of the slider where the edge of the slider touch the hydrophilic liquid substrate. The 

slider play important role for assisting the spreading of a polymer solution in single direction 
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followed by continuous evaporation of chloroform owing to its low boiling point finally leading 

to large area ribbon-shaped oriented floating film. Before the transfer the film orientation was 

verified manually by naked eye using a polarizer film and transferred on a glass and Si/SiO2 

substrates by stamping for investigations pertaining to the estimation of optical as well as electrical 

anisotropy after fabrication of the OFETs respectively. Apart from that, isotropic spin-coated films 

of CPs under investigation were also prepared by using 0.5 % (w/w) polymer solution at spinning 

speed of 3000 rpm for 120 s to compare their optoelectronic behaviour. Polarized electronic 

absorption spectra were measured by UV-visible NIR spectrophotometer (JASCO-570) equipped 

with Glan Thomson prism. To measure the absorption coefficient, film thickness was measured 

by the interference microscope [Nikon Eclipse LV150]. Electrical characterization was made after 

OFET fabrication in bottom gate top contact (BGTC) configuration using respective CP films 

fabricated by spin coating as well as FTM method. OFET was fabricated by using highly p-doped 

silicon having 300 nm of SiO2 insulating layer as a gate dielectric with the capacitance of 10 

nF/cm2. Prior to the semiconductor deposition, SiO2 surface was treated with 2 mM solution of 

octadecyltrichlorosilane (OTS) in dehydrated toluene at 90oC for 2 hours followed by annealing 

at 130oC for 30 min. to make the self-assembled monolayer of OTS on SiO2 surface. 50 nm source 

and the drain electrodes were then deposited by thermal evaporation at a base pressure of 10-6 Torr 

followed by  Ni shadow mask on oriented film  having channel length (L= 20 µm) and width (W=2 

mm). Electrical characterization of OFETs was done with computer controlled two-channel source 

measure unit (Keithley-2612) having the pressure of 10-3 Torr. 

5.2 Result and Discussion 

As discussed earlier, orientation intensity in FTM can be controlled by controlling the speed of 

film spreading and solvent evaporation forming thin film on the viscous hydrophilic liquid 
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substrate. At the same time, the extent of orientation and film thickness can also be controlled by 

controlling the film casting parameters like concentration of the polymer solution along with the 

temperature and viscosity of the liquid substrate [23]. During FTM, compressive force posed by 

the viscous liquid substrate and solvent evaporation of polymer solution synergistically assist the 

molecular alignment. These ribbon-shaped films have been found to orient in the tangential 

direction to the film spreading. An optimized condition such as hydrophilic liquid substrate 

consisted of EG/GL (3:1), the temperature of 60oC and polymer concentration 1% (w/w) in 

chloroform was found to be optimum for NR-P3HT. Utilization of PTFE slider and NR-P3HT, we 

have recently demonstrated the fabrication of very large area [(20 cm (L) × 2cm (W)] , uniform 

and oriented under ribbon-shaped Film [25]. In order to check the versatility of this ribbon-shaped 

FTM, a number of organic CPs like PQT-C12, F8T2, NR-P3HT, PBTTT-C14 and PTB7 were 

utilized for the fabrication of large area oriented thin films. All of the these CPs were subjected to 

thin film fabrication under optimized casting condition of NR-P3HT aiming towards implication 

of nature of polymeric backbone on their optoelectronic properties. Fabricated thin films for 

various CPs are shown in the Fig. 5.3. It can be clearly seen from this figure that all of the CPs 

under investigation form very large area [20 cm (L) × 2 cm (W)] thin films like a ribbon under 

FTM similar to that of NR-P3HT as reported by us previously. Observation of these films under 

polarizer exhibited a contrast in the color when polarizer was rotated at 90o indicating that these 

films are oriented too. The direction of the film orientation was perpendicular to the film spreading 

direction.  
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Figure 5.3. Photographic images of thin films of various CPs fabricated by ribbon- shaped FTM 
under identical casting conditions [liquid substrate-EG: GL (3:1), temperature 60oC, concentration 
1 % (w/w) in chloroform.   

Fabrication of homogeneously uniform films is one of the important requirements for utilization 

of thin film fabrication technology towards their application for devices with high reproducibility.  

In order to investigate the homogeneity of large area thin films fabricated by ribbon- shaped FTM, 

variation in thickness over centimeter scale was measured by measuring the position dependent 

absorbance at the respective absorption maximum of the CPs. It is well known that peak 

absorbance directly correlates with the thickness, therefore, it was measured using 2-dimensional 

position scanning of absorbance with a step size of 1 mm interval. A fixed light source, computer 

controlled X-Y sample stage and multichannel photodiode array detector was used for the 2-D 

positional scanning. Results of the 2D-positional mapping of the film uniformity is shown in the 

Fig. 5.4. It can be clearly seen that thin films of all of the CPs are highly uniform. Moreover, this 

film uniformity continues up to cm scale not only in the length but also in the width directions. 
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Figure 5.4. Variation of peak absorption intensity across about 1 cm in the length and width 
directions for the thin films of CPs casted on a glass substrate.  

 

5.3.1 Non-Polarized Absorption Spectra                                                                                    

The respective five CPs were first subjected to optical characterization of coated thin films 

fabricated by conventional spin coating prior to the anisotropic optical characterization using 

oriented thin films fabricated by ribbon-shaped FTM. The electronic absorption spectra of spin-

coated films of all respective CPs under investigation are demonstrated in the Figure 5.5 and its 

detail summarization values related to of their absorption maxima λmax) in the table 1. Although 

all of the CPs belong to the thiophene family but differ in absorption spectral features depend on 

the extent of π-conjugation.  
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Figure: 5.5 Electronic absorption spectra various conjugated polymers on glass prepared by spin 
coating method. 

 

Amongst CPs used F8T2 absorption spectra  shows most hypsochromically shifted max at 454 nm 

and vibronic shoulder at 482 nm along with highest value of extinction coefficient of 2.27 × 105 

cm-1. However, PTB7 resultant show largest bathochromically shifted max at 670 nm combined 

with π-π* electronic transition and vibronic shoulder at 622 nm. The increased extent of -

conjugation in the monomer block along with high planarity is attributed to the observation of 

showing high value of max in this polymer. If we have to consider PQT-C12 and NR-P3HT, they 

are structurally very similar but exhibit max at 538 nm and 508 nm, respectively. At that instant, 

we can observe the clear vibronic shoulder at 587 nm for PQT-C12, while such vibronic shoulder 

is not present in NR-P3HT. It is already reported  that regioregular P3HT exhibit not only red-

shifted max but also clear vibronic shoulder due enhanced effective -conjugation and crystallinity 

as compared to their non-regiocontrolled counterparts [31]. Therefore, the presence of higher 

extent of regioregularity in PQT-C12 owing to its molecular structure could be responsible for its 
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red-shifted max along with clear vibronic shoulder compared to that of NR-P3HT. PBTTT-C14 is 

a liquid crystalline CP and exhibit max at 542 nm associated with -* electronic transition along 

with vibronic shoulder appearing at 586 nm. It is interesting to note that absorption coefficient of 

NR-P3HT (6.6 × 104 cm-1) is higher than that of PQT-C12 (4.8 × 104 cm-1), which could be 

explained considering the density or compaction of -electrons in the polymeric backbone. In an 

interesting report, Takashima et al have reported that in the regioregular poly(3-alkylthiophenes), 

absorption coefficients of CPs decreases with the alkyl chain length [32]. Therefore, presence long 

alkyl chain (dodecyl) in PQT-C12 could be responsible for its lower absorption coefficient as 

compared to NR-P3HT having relatively smaller alkyl chain (hexyl) substituents.  It can be seen 

that PBTTT-C14 exhibits highest red- shift amongst the CPs except for PTB7, which is associated 

with very large effective -conjugation length and enhanced molecular self-assembly facilitated 

by its high degree of planarity and presence of fused thienothiophene ring.    

 

 5.3.2 Polarized Absorption Spectra 

As mentioned previously, ribbon-shaped FTM not only leads to large area homogeneous thin films 

but also imparts the molecular orientation. In order to quantitatively analyze the molecular 

orientation of CPs, oriented polymer films were transferred on to glass substrate and subjected to 

polarized electronic absorption spectral investigations by measuring the absorbance of the films 

after rotating the angle of the polarizer at 00o (parallel) and 90o (perpendicular).  Figure 5.6 shows 

the anisotropic electronic absorption spectra for thin films of PQT-C12, F8T2, NR-P3HT, PBTTT-

C14 and PTB7. At the same time, optical parameters like absorption maxima for 

parallel/perpendicular orientation, vibronic shoulders and optical anisotropy in terms of dichroic 

ratio (DR) have been summarized in table 1. Electronic absorption spectra of PQT-C12 in the 
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parallel orientation exhibits λmax at 547 nm, which is 9 nm red-shifted as compared to non-

polarized spin coated film. Apart from red shift, it exhibits vibronic shoulder at 589 nm, which 

indicates the structural ordering in the condensed state and enhanced π-π stacking [29]. The 

dichroic ratio (A||/A⊥) for this CP was found to be 5.1, which was maximum amongst the CPs used 

for present investigation. 

 

 

Figure: 5.6 Polarized electronic absorption spectra of oriented CPs on glass substrate prepared 
by Slider based FTM. 

 

Oriented F8T2 films exhibit an intense absorption associated with π-π transition appearing at λmax 

of 486 nm, which is not only 5 nm red-shifted as compared to spin-coated films but also shows 

clear vibronic shoulder indicating backbone alignment [11]. Oriented NR-P3HT films exhibited 
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λmax at 520 nm with pronounced red-shift and clear vibronic shoulders at 562 nm and 587 nm, 

which are very similar to the spectral features of regioregular P3HT and absent in the spin-coated 

films [25]. PBTTT-C14 shows λmax at 546 nm, which is slightly red-shifted (4 nm) as compared to 

non-polarized Spin coated films. In spite of molecular rigidity and well-known liquid crystalline 

nature, red-shifted λmax and vibronic shoulder clearly indicates enhanced effective π-electron 

delocalization in the FTM processed oriented films owing to applied viscous force from the liquid 

substrate during the solidification after film spreading [29,33,34]. Interestingly, FTM processed 

PTB7 exhibits nearly similar spectral features as compared to that of spin-coated films and smallest 

optical anisotropy (DR = 1.7) also supports that polymeric chains are less prone to align further.  

A perusal of Figure 5.4 and table 1 clearly corroborates that ribbon-shaped FTM is not only able 

to make large area homogeneous thin films of all of the CPs under investigation but also exhibit 

optical anisotropy too. Although extent of orientation (represented by DR) is different, which was 

highest for PQT-C12 and lowest for PTB7. It has been previously reported by us that extent of 

orientation depends not only on FTM parameters but also on the crystallinity, molecular packing, 

liquid crystalline behaviour and nature of polymeric backbones [24-25, 35]. It has been observed 

that rigid rod-like crystalline CPs are relatively less prone to orientation under FTM, which can be 

explained considering the fact that molecular orientation is facilitated by viscous dragging force 

applied during film spreading and solidification on the liquid substrate. This is the reason why 

regioregular (RR) P3HT exhibits relatively small orientation as compared it its non-regiocontrolled 

NR-P3HT under identical film casting conditions during FTM [27]. 
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Tabel-1 Optical parameters for spin coated and ribbon shaped FTM films for various CPs 
deduced from the solid-state electronic absorption spectra.  

 

 

In an interesting review, Kuei and Gomez discussed in detail about molecular chain conformation 

of CPs and their implications on the phase behaviour and optoelectronic properties and advocated 

about the persistent length (Lp) in order to correlate and compare the chain conformation of the 

CPs quantitatively [36]. Actually, Lp is the distance taken by polymeric backbone to bend it by 90o 

and a smaller value leads to attaining flexible coil-like conformation while a high Lp represents 
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stiff, rod-like and crystalline polymeric backbone. Using small angle neutron scattering 

experiments, McCulloch et al reported a small Lp of 0.9 and 1.4 for regiorandom and NR-P3HT, 

which was much higher for RR-P3HT (2.9) [37]. Therefore, lower value of Lp could be attributed 

to lower DR under FTM for RR-P3HT reported by us previously. At the same time, a Lp value 9.0 

and 8.2 have been reported  by Zhao et al and Li et al for PBTTT and PTB7, respectively [38]. 

This indicates that both of these polymers are stiff rigid rod-like and highly crystalline, which 

make them less prone to orient easily during FTM as indicated by their lower values of DR as 

shown in the table 1. One can argue that in spite of lower Lp for PTB7 (8.2) than PBTTT-C14 

(9.0), why it exhibits relatively lower molecular orientation (DR= 1.7) as compared to PBTTT-

C14 (DR= 2.2) under ribbon-shaped FTM.  This can be explained considering the nature of 

polymeric backbone in to consideration. Although, PTB7 and PBTTT-C14 both bear fused 

thienothiophene ring providing enhanced planarity and intermolecular interactions but former has 

hydrophilic ester group while later has only hydrophobic alkyl chains. We have recently reported 

that thin films PBTTT-C14 prepared by FTM exhibits edge-on orientation and its hydrophobicity-

assisted repulsion from hydrophilic liquid substrate promote this edge-on orientation [39]. 

Contrary to this, presence of hydrophilic ester group in PTB7 offers attractive interaction of the 

polymeric main-chain with hydrophilic liquid substrate posing hindrance in the orientation leading 

to drastically reduced DR of 1.7 in the oriented films of PTB7 prepared under ribbon-shaped FTM.                 

5.3.2 Anisotropic Charge Transport 

 

 The BGTC device architectures for OFETs have been adopted to investigate the effect of 

molecular orientation on anisotropic charge transport. This device architecture was selected 

because this work lies in the fact that SiO2 grown insulator are most commonly being used, easily 

available from different commercial sources and there is no damage to the dielectric layer while 
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adopting solution processable organic semiconductors. At the same time, contact resistance has 

been reported to be small for BGTC device structures as compared to that of the BGBC device 

structure counterparts [40].  The device architecture of the fabricated OFET is shown in the Fig. 

5.7 (a), where thin film were deposited by ribbon-shaped FTM along with the spin coating for 

comparison. Prior to transfer the oriented film for device fabrication, direction of aligned FTM 

films was first confirmed by polarizer film followed by its transfer on SiO2/Si substrate in order to 

assign the alignment direction. The electrode, source-drain metal contacts were then thermally 

evaporated on top on semiconductor layer  by using shadow mask by placing the mask in parallel 

and perpendicular with respect to the orientation direction. The device field effect mobility ( µ) 

was calculated from the transfer characteristics, when the device reached in condition of saturation 

region using the equation 1 as follows:  

                                          𝐼DS =  
𝑊

2𝐿
𝜇𝐶i(𝑉GS − 𝑉TH)2                                                                   

Where, IDS, W, L, µ, Ci, VGS and VTH are representing saturated output current, channel width, 

channel length, charge carrier mobility, capacitance of gate insulator, applied gate bias voltage and 

threshold voltage, respectively. A typical output characteristics OFETs using oriented thin films 

of PQT-C12 fabricated by ribbon-shaped FTM is shown in the Fig. 5.7(b), where varying gate bias 

voltage as a function of OFETs. In figure 5.6(b) that OFET shows typical p-type semiconducting 

behaviour since it is being operated at negative gate bias voltages and show high current in case 

of parallel oriented film. 
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Figure: 5.7 Device architecture (a) and representative output characteristics of OFETs (b) 
fabricated using parallel and perpendicularly oriented PQT-C12 films at various applied gate bias.  

 

In order to extract the electrical parameters of the OFETs, transfer characteristics (IDS
 −VGS) of the 

OFETs operated at VDS = − 80 V, which are demonstrated in the Fig. 8. These parameter like µ, 

ON/OFF ratio, electronic anisotropy (μ|| / μ) etc. calculated  from the transfer characteristic curves 

for all of the CPs along with corresponding isotropic spin coated films (for comparison) have been 

summarized in the table 2. 

Table-2 Anisotropic electrical parameters deduced from OFETs using thin films of different CPs 
fabricated by ribbon-shaped FTM. 

Conducting 

Polymers 

FTM [μ||] 

(cm2.V-1s-1) 

FTM [μ] 

(cm2.V-1.s-1) 

Spin coated   

(cm2.V-1.s-1) 

(μ|| / μ) ION/IOFF DR 

PQT-C12 5×10-2 7×10-3 6.7×10-4 7.1 106 5.1 

F8T2 1.05×10-3 3.7×10-4 2.0×10-4 2.9 104 2.5 

NR-P3HT 4.2×10-3 1.2×10-3 1.0×10-5 3.5 104 2.4 

PBTTT-C14 7.5×10-3 5×10-3 5.2×10-3 1.5 104 2.2 

PTB7 1.9×10-4 5.5×10-5 1.1×10-4 3.5 103 1.7 
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A perusal of the transfer characteristics shown Figure 5.8 and table 2 corroborates that amongst 

CPs used PQT-C12 exhibited highest charge carrier mobility of 0.05 cm2/vs for FTM films 

oriented parallel to channel direction, which was about 7 times higher (7.0 ×10-3 cm2/vs) as 

compared to the corresponding FTM films in the perpendicular orientation. An electrical and 

optical anisotropies of 7.1 and 5.1, respectively, also correlate the implication of anisotropic charge 

transport in the OFETs based on PQT-C12. At the same time, parallel oriented film of PQT-C12 

show nearly 75 times enhancement in the mobility in comparison to its spin coated counterparts 

(6.7 ×10-4 cm2/vs) portrays the importance of molecular orientation on the facile charge carrier 

transport. Although, highest mobility of PQT-C12 was reported but in this work is a lower as 

compared to the benchmark values (> 0.1 cm2/vs), reason behind this optimization of other factors 

such as  dielectric interface, molecular weight, polydispersity index, processing conditions and 

channel length etc. apart from molecular orientation [ 41]. Parallel FTM oriented F8T2 exhibits 

although about 5 times higher mobility as compared to its corresponding spin coated films but it 

is lower than the reported mobility of high performance OFETs (4.3 × 10-2 cm2/vs) for this material 

by Endo et al [42] . This high mobility was reported along with for highly oriented F8T2 films 

having  (DR>10) achieved under stringent conditions such as annealing at its very high liquid 

crystalline temperature of 280oC and alignment of polymer chains due to mechanical rubbing. NR-

P3HT based OFETs exhibited maximum charge carrier mobilities of 4.2×10-3 cm2/vs, 1.2×10-3 

cm2/vs and 1.0 ×10-5 cm2/vs in oriented film of parallel, perpendicular and spin coating films, 

respectively. This resultant shows that charge transport in parallel oriented thin films of NR-P3HT 

was >102 times higher as compared to its spin-coated thin film counterparts. 
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Figure: 5.8 Transfer characteristics of OFETs operated at gate bias voltage of -60 V in parallel 
and perpendicular orientation for various thin films fabricated using ribbon-shaped FTM. 

 

Charge carrier mobilities in the FTM processed parallel oriented thin films of PBTTT-C14, PTB7 

were slightly higher than that of corresponding spin-coated films, and electrical anisotropy follows 

the trend of optical anisotropy.  In spite of large area homogeneous thin films of PBTTT-C14 

prepared by ribbon-shaped FTM, mobility of parallel oriented film (7.5 × 10-3 cm2/vs) was lower 

than that reported by M. Pandey et al by conventional FTM under optimized condition (0.11 

cm2/Vs) [20]. In this work, similar casting condition was used for the ribbon shaped FTM of all of 

the CPs for structure-property correlation, which might not be optimum for PBTTT-C14, 

Therefore, lower molecular orientation of this material in the present case might be responsible for 

hampered value of observed carrier mobility. In line with smallest molecular orientation, parallel 

oriented FTM films of PTB7 exhibited FET mobility of 1.9×10-4 cm2/vs, which is smallest 

amongst the CPs used in this work.  Although observed  mobility is nearly similar to that reported 
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by Xu et al (6.0 × 10-4 cm2/Vs), smallest value of molecular orientation (1.7) and nearly similar 

value compared to that of spin-coated film [43] suggest that hindrance in most favorable edge-on 

orientation owing to its molecular structure could be responsible for hampered charge transport 

along the channel.  One can argue that in spite of very low optical anisotropy in PTB7 (DR = 1.7), 

what the cause of large electrical anisotropy (μ|| / μ= 3.5). In general, sheer-force assisted 

molecular orientation leads to face-on molecular orientation which is not much favored for planer 

devices and presence of large alkyl chains in the plane of the channel results in to highly hindered 

charge transport perpendicular to the channel leading to very high electrical anisotropy. Using 

poorly soluble polythiophene derive and aligning them by friction-transfer method. Hosakawa et 

al. [44] have also reported very high μ|| / μ value. Therefore, hindered edge-on orientation in PTB7 

as discussed earlier could be responsible for relatively higher mobility anisotropy in spite of low 

optical anisotropy. 

5.4 Conclusion  
Ribbon-shaped FTM has been successfully utilized for the fabrication of large area [20 cm (L) × 

2 cm (W)] uniform and oriented thin films. The main advantage of this method single direction 

uniform thin film fabrication was demonstrated using a number of CPs belonging to polythiophene 

family. There is a least material wastage during thin film fabrication in ribbon-shaped FTM can 

be justified considering the fact that by using only one drop (20 µl) of polymer solution, it is 

possible to fabricate ˃100 OFETs. Parametric optimization of FTM for a CP is necessary in order 

to get optimum molecular orientation but under identical casting condition, order of molecular 

orientation was found to be PQT-C12>F8T2>NR-P3HT>PBTTT-C14>PTB7. The correlation of 

structure-property in terms of polymeric structure and molecular orientation was explained in 

terms of nature and rigidity of polymeric chains in the light of reported values of persistent length. 
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A clear anisotropic charge transport was demonstrated by all of the CPs used in this work. Amongst 

CPs used, PQT-C12 exhibits highest optical as well as electrical charge transport anisotropy, and 

achieved best device performance with having 5×10-2 Cm2/Vs charge carrier mobility in parallel 

orientation.  
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Chapter: 6 Orientation and anomalous charge transport in 
regioregular poly (3-alkylthiophenes) 

 

6.1 Introduction  

Over the last two-decade conjugated polymer have been the great discussion for various type of 

application including thin film organic field effect transistors (OFETs)[1-3]  photovoltaic cell[4,5]  

organic light emitting diode[6-7]   actuator and sensor. The processing condition such as solution 

processability and low temperature is very important for low cost and wide area electronics 

manufacturing. Usually the film preparation in conjugated polymer via solution processing exhibit 

semi crystalline structure in which the presence of few crystals with a mostly disorder matrix [8,9]. 

Such type of disorder responsible for degrade the device performance and adverse for efficient 

charge hopping between transport location [10,11]. A great effort have been made by controlling 

the thin film morphology and alignment to boost charge carrier mobility for high performance 

devices. 

 Present day conjugated polymers of both electron and hole have been developed and their charge 

carrier mobility reach up to 10 cm2/Vs, [12-14] which is important switching frequencies for any 

transistors. Even though this value is 2 orders lower as compared to doped semi crystalline Si but 

direct contest with amorphous silicon and accompanying them edge of commercialization in 

various type of flexible display and photovoltaic devices [5,15,16]. To date, various orientation 

technique have been used to align the conjugated polymers main chain for high performance 

optoelectronics devices [17]. By considering these a some of technique such as mechanical 

rubbing,[17] friction transfer method,[18] high temperature rubbing [19]  solution flow [20] and 

drawing[21]  etc. Although these techniques have been, make effort to orient the conjugated 

polymers to achieve their outcome in the development of charge transport of organic FET. On the 
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other hand, these techniques have some defect like consumption of material, mechanical damage, 

charge accumulation on surface, solubility in interatrial layer and possibility of some barrier of 

multilayer casting. To resolve such type of issues have been challenge for the researcher. Our 

group have been developed a technique to make oriented film easily by casting a polymer solution 

on orthogonal liquid substrate named as dynamic floating film transfer method with nominal 

material wastage [22,23].    However, the oriented film having at cm scale but still we have some 

challenges like film non-uniformity in the form of thickness, directionality by controlling 

direction. To resolve such type of issues and further extend this method by simple using assisting 

slider to control the spreading in unidirectional named as ribbon shaped FTM [24,25]. In this 

method the film formation shape resemble like a large ribbon in unidirectional and easily transfer 

on desire substrate to further analysis. 

In this work, we would like to report about orientation analysis of regioregular poly (3- alkyl 

thiophene) active semiconducting material (alkyl= butyl, hexyl, octyl, decyl and dodecyl).Film 

orientation have been demonstrated by ribbon shape FTM and molecular ordering of alkyl group 

were varied based on alkyl chain length. The effect of edge on and face on orientation was 

discussed in OFET performance by increasing alkyl carbon number. 

6.2 Experimental Work 

The regioregular Poly (3 –alkyl thiophene) purchased from sigma Aldrich, having head to tell (HT) 

coupling 98.5% in case of PHT, PDT and PDDT and 80-90% in case of PBuT. The solvent 

anhydrous chloroform also purchased from sigma Aldrich for dissolving the all polymers. The 

molecular weight of  PBuT, PDT and PDDT was 54000, 42000 and 60000 kg/M respectively listed 

in table 1. Polymer solution was prepared 2% and 0.5% (W/W) concentration by dissolving in 

super dehydrated chloroform with 0.001% of maximum water content for thin film casting of 
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oriented and spin coated method. Alkyl chain length dependence large area oriented thin film 

prepared by ribbon shaped floating film transfer method [24,26]. For comparison we also prepared 

thin film by using spin coating followed by 3000 rpm with time duration 120 sec. The oriented 

film was transferred on desired substrate for optical and electrical characterization. For the 

measurement of out of plane XRD, sample was prepared by ribbon shaped FTM with HMDS 

treated on bare silicon substrate by multiple casting for appropriate thicker film up to 700nm for 

getting at least significant XRD signal intensity without affecting the film morphology. Polarized 

electronics absorbance spectra was done by using UV visible NIR spectrophotometer (JASCO V-

570) attached with Glan Thompson prism. In order to measure the optical anisotropy, rotating 

polarizer was used before the detector that was rotated according to the angle setting. Optical 

anisotropy was estimated by in terms of Dichroic Ratio (DR) by polarized absorbance spectra and 

calculated by this equation DR= A‖/AꞱ  ,where A‖ indicate maximum absorbance when polarization 

direction ‖ to the orientation direction and AꞱ indicate absorbance in perpendicular direction (Ʇ)at 

the same wavelength of A‖. 

For electrical characterization, OFETs were fabricated by using highly doped p- type Si substrate 

with 300 nm grown SiO2 insulating layer having capacitance (Ci= 10 nf/cm2 ). To make SiO2 

surface treatment was done by octadecyltrichlorosilane for the formation of highly hydrophobic 

self-assemble monolayer which also support better adhesion of floating film.  Si Substrate was dip 

in 8 mM OTS solution mixed with  toluene in packed glass petri dish at 90 oC for 2 hours followed 

by washing in toluene and dry at 130 oC. Oriented floating film was transferred on OTS treated 

substrate by stamping. 50 nm Source and drain gold electrode were deposited at the rate of 1.5 Å/s 

in thermal evaporator chamber with high vacuum pressure 10-6 torr using nickel mask. The channel 

length (L) and width (W) was fixed for all devices 20 µm and 2 mm, respectively. Electrical 
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characterization were estimated by computer controlled 2 channel electrometer (Kiethley 2612) at 

vaccum of 10-3 torr. For comparison we also prepared spin coated sample with concentration of 

0.5 % w/w in chloroform for OFET fabrication.  

6.3 Result and Discussion 

6.3.1 Fabrication of Oriented Thin Films 

 

Dynamic FTM is a facile method for thin film fabrication in ambient atmosphere without high 

pressure vacuum so attracted me for further studied. As already reported FTM method, during the 

film casting polymer solution free to move in all direction and making the floating film in circular 

shape. This circular shape film little difficult to transfer on desired substrate so we developed this 

method by changing the shape in rectangular by providing the directionality through handmade 

assisting slider [24]. Extant of orientation, thickness and size of film were controlled by some 

casting parameters such as concentration of polymer solution, casting temperature and viscosity 

of liquid substrate [24,26].  In this studies, even series of carbon chain of Poly (3-alkyl thiophene) 

were used for making oriented thin film for OFET fabrication. Although this poly (3-alkyl 

thiophene) series as previously reported by some colleagues and other groups but  different method 

such as spin coating and time of flite (TOF).The main reason to utilized  long alkyl chain length 

because of  high  solubility in organic solvent [27]. For making film we drop a 20-25 µl of polymer 

solution in center of slider which is dipped in rectangular tray with partly filled hydrophilic liquid 

substrate consisting of binary mixture of ethylene glycol (Eg) and Glycerol (Gl) proportion of 

3:1.The dipped slider are placed in such an order which half portion slope touch the viscous liquid 

substrate. When polymer solution start to spread, slider tilted bottom walls provide the 

directionality in a single direction and make a solid film on liquid substrate in a ribbon shape 

shown in fig 6.1. 
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Figure: 6.1 Floating film casting of regioregular P3ATs on hydrophilic liquid substrate by ribbon-
shaped FTM a) Butyl b) hexyl c) decyl and d) dodecyl.  
 

The main key feature of this method is film was prepared by natural self-assembly process without 

any external force or controlling setup like LB or other method. In this method film was aligned 

by dynamic solidification by solvent evaporation during spreading and internal compressed force 

in opposite direction of film expansion try to align the polymer film. During the film expansion 

most important behavior is also inherent as a lyotropic liquid crystalline phase transition from 

solution phase to solid, if solidified material have LC characteristics. The film was oriented in 

perpendicular direction along the spreading direction that is also verified by manually by rotating 

polarizer film. The oriented film nature like face on and edge on orientation is also play important 

role for high performance according to device. As per reported, edge on orientation is favored for 

planer device for example OFETs. However, face on orientation is most preferred for vertical 

devices i.e. Solar cell and Organic light emitting diode [28,29]. It was already reported to control 

edge on stacking for some thiophene based conjugated polymer by [25,30,31]. In this discussion 

we used series of poly(3-alkyl thiophene) with increasing order of alkyl chain for making the film 

by FTM. After increasing the alkyl chain length it will become more hydrophobic so after casting 

on hydrophilic liquid which contains large OH group repulsion was also increased according to 

increase in alkyl chain length and support thermodynamically edge on orientation.           
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6.3.2 Polarized and Non-Polarized Electronic Absorption Spectra 

 

Oriented film prepared by FTM was characterized by electronic absorption spectra and on the 

other side spin coated film was also characterized to understand the difference between them as 

shown in Figure 6.2 (a), from figure it is clear that poly (3-alkylthiophene) series have absorption 

range from 400 to 650 nm. A clear difference of absorption peak in parallel FTM and spin coat 

was showing by the same color in dark and dashed line for each carbon chain. The difference in 

absorption peak of carbon chain shows red shift in Parallel FTM as compared to spin coat. In series 

of poly (3-alkyl thiophene) there was a maximum peak at 516 nm, 542nm, 554nm and 552nm in 

parallel FTM while 506nm, 530nm, 536nm and 538 nm in spin coated respectively. From these 

maximum peaks, there was a clear red shift up to10 nm, 12 nm, 18nm and 16 nm in parallel FTM 

and blue shift in spin coat. This result indicate alkyl chain length dependence red shift in Poly (3-

alkyl thiophene) series. The red shift was increased almost after increasing alkyl chain length. 

Apart from chain length dependence red shift vibronic shoulder is also clear after increasing the 

chain length. The 2nd vibronic mode 0-0 of alkyl group was similar for C4 and C6 at 600nm on the 

other hand 606nm for C10 and C12. This vibronic mode was explained by spano associated with 

electronic structure of exitonic bandwidth (W) with intermolecular coupling transition energy Ep 

from equation. [32]. 

                                              𝐴0−0

𝐴0−1
= [

1−0.24
𝑊

𝐸𝑝

1+0.073
𝑊

𝐸𝑝

]

2

                                              (1) 
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Where A0-0 and A0-1 intensities of the 0-0 and 0-1 transition. Oriented film optical anisotropy was 

identified in terms of dichroic ratio (DR).This DR was calculated by the ratio of maximum 

absorbance parallel at λmax‖ to absorbance in perpendicular at λmax‖  (DR= A‖/A┴).  

Figure 6.2 (b) shown the alkyl group dichroic ratio where the dichroic ratio is a function of carbon 

number. From figure 6.2 (b), C4 have dichroic ratio 1.2 and increase 2.2 in C6 and again slightly 

decrease in C10 and C12 such as 1.8 and 1.5 respectively. This trend little surprise me because 

orientation in alkyl group slightly increase and decrease by increasing in carbon number. From my 

knowledge some body reported orientation in C6 (P3HT) by using different orientation method 

[33,34].  M. Pandey et al. also reported [35] orientation in C6 RR-P3HT and achieve DR 1.5 which 

is slightly less as compared to in my case 2.2. This mechanism was further understand by some 

characterization in next section.          

      

Figure: 6.2 Absorption spectra of FTM film in parallel (dark color) and spin coat (dashed line) 
(a) Orientation (DR) is a function of carbon number (b). 
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6.3.2 XRD Analysis 

 

Oriented film prepared by FTM was further studied to investigate crystallinity and stacking by 

XRD measurement in out of plane. Figure 6.3 (a) shown X-ray diffraction characterization in out 

of plane for various alkyl chain. There was a sharp peak up to 3 order of (h00) series indicate alkyl 

stacking in oriented film. These 3 peak full width half maximum (FWHM) showing at low angle 

region. From figure most important thing is also absorbed after increasing the carbon number these 

peak shifted at low angle side in PAT series.  

 

             
Figure: 6.3 X-ray diffraction profile in out of plane of various alkyl chain P3AT (a) d space in 
oriented film calculated by XRD measurement function of alkyl carbon Number (b). 

 

To further understand the mechanism of alkyl PAT in terms of polymer chain distribution in 

oriented film prepared by FTM we calculated the d spacing by using XRD peak at 2θ angle with 

the help of Scherer equation. The oriented film d spacing shown in figure 6.3 (b) as function of 

alkyl carbon number. This graph shows as a sublinear relationship in d spacing and PAT group 
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while increasing the alkyl carbon number. On the other hand this relationship is little different 

reported by W. Takashima et al [27]  by using spin coat and drop cost method .In this reported 

method, linear relationship observed while increasing the alkyl carbon number. So this relationship 

created more interest to further studied to understand the main mechanism.     

To investigate the mechanism of slightly decrease orientation in P3AT on the basis of alkyl carbon 

number was understand by d spacing calculated by manually and XRD measurement. The concept 

of mechanism possibility was explained from figure 6.4. In figure shown the polymer chain 

arrangement on the basis of d spacing. The d spacing was decreased when film was prepared by 

FTM as compared to manually calculation after increment of alkyl carbon number. The d spacing 

estimation in butyl thiophene was almost same as manually so possibility polymer chain 

arrangement from one chain to another on at edge. But after increment alkyl carbon number, hexyl 

thiophene shows slightly decrease in d spacing as compared to manually so polymer chain touch 

from one chain to another and showing one of the highest DR 2.2 as compared to other .After 

increment further in carbon number such as decyl and dodecyl thiophene, d spacing further 

decreased so polymer chain overlap inside and create a problem of inter-digitation. This inter-

digitation slightly decrease orientation in alkyl group due to overlap in long chain.          
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Figure: 6.4 Interdigitation of alkyl chains in the P3AT on the basis of d spacing as a function of 
theoretically and XRD calculation   

  

6.3.2 Anisotropic Charge Transport 

 

To investigate the charge transport bottom gate top contact OFETs are fabricated by using alkyl 

group as an active semiconducting layer in a channel deposited by FTM shown in figure 6.5. 

Although similar configuration type of OFET fabricated by some colleague other group by 

different method such as Spin coat, drop cast and time of flite (TOF) method [32,33,35] by using 

the PAT as a semiconducting material in channel. These reported method are an isotropic in nature 

so directly deposited without changing the angle position of mask. But in FTM method mask was 

used in orientation direction (parallel) as well as its opposite direction (perpendicular) by changing 

the position of nickel shadow mask that is also shown in figure 6.5 

 

Figure: 6.5 OFET architecture and mechanism of orientation deposition in parallel and 
perpendicular by using a nickel shadow mask. 

 

OFETs electrical characterization was measured to check the behavior and its charge transport 

performance. Figure 6.6 show the one of the typical output and transfer characteristics of regio- 

regular P3HT in parallel and perpendicular. In figure 6.6 (a) the clear p type transistor behavior 
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was observed in parallel and perpendicular, where gate to source voltage (VGS) varied from 0 to -

80 V and achieved 10-5 µA high drain current at constant drain to source voltage (VDS) -80 V. 

Apart from p-type behavior there was a clear difference in parallel and perpendicular, it reflects 

because of orientation .charge transport was measured in terms of mobility by using the transfer 

characteristics shown in Figure 6.6 (b). From figure, there was a clear transfer characteristic in 

drain current (ID) and gate to source voltage (VGS) slightly different in parallel and perpendicular 

because of orientated film . The mobility was calculated when drain current start to saturate at 

condition VDS ≥ VGS-Vth  and constant current flow in channel that is expressed in equation 2.  

                                  𝐈𝐃 =  
𝟏

𝟐
  µ𝐧  𝐂𝐨𝐱  

𝐖

𝐋
 [𝐕𝐆𝐒 − 𝐕𝐭𝐡 ]𝟐                                                                   (2) 

In this article, mobility was calculated by using oriented film of P3AT series prepared by FTM. 

Here mobility was function of alkyl carbon number and slightly varies by increment in carbon 

number. In butyl thiophene the mobility was observed 1.4×10-2 cm2/Vs in parallel and 1.0×10-2 

cm2/VS in perpendicular but after increment in carbon number in case hexyl thiophene the mobility 

was increased up to 2-3 times such as 3.0×10-2 cm2/Vs in parallel and 1.7×10-2  cm2/Vs. The most 

important thing after further increment in alkyl carbon number in decyl and dodecyl thiophene, 

mobility was slightly decrease as compared to hexyl thiophene. This  slightly decrease mobility  

was 2.6×10-2 , 2.4×10-2 cm2/Vs  in parallel and 1.9×10-2, 2.0×10-2 cm2/Vs  in perpendicular 

respectively. On the other hand , similar type of regio- regular P3AT series was also used for 

OFETs fabrication by the some previously lab member and some other group member using 

different isotropic method such as  drop cast ,spin coat and time of fight (TOF) method [27]. These 

reported result little surprised me because there was a large variation in mobility after increase the 

alkyl carbon number. This large variation mobility was decreased up to 3 order not in 1 or 2 times 

as per in my case. Charge transport anisotropy was investigated by dividing the ratio of mobility 
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in parallel and perpendicular ( 𝜇‖

𝜇┴
 ).Charge transport anisotropy was also reflect similar trend as in 

case of optical such as 1.4, 1.8, 1.4 and 1.2 respectively mention in table 1. One of the most 

important parameter was investigated by calculating off current when the device is in off mode  Ioff  

and on current when device start  Ion .The ratio ( Ion

Ioff
 ) was decide the switching speed of device. 

The device ( Ion

Ioff
 ) was 104 in case of hexyl, decyl , dodecyl and 103in case of butyl noted in table. 

 

 

Figure: 6.6 Electrical characterization of OFET in parallel (red) and perpendicular (blue)  a)output 
characteristics b) transfer characteristics. 

  

Table-1 Anisotropic electrical parameters deduced from OFETs using thin films of P3AT alkyl 
group of CPs fabricated by ribbon-shaped FTM. 

Conducting 

Polymers 

FTM [μ||] 

(cm2.V-1s-1) 

FTM [μ] 

(cm2.V-1.s-1) 

(μ|| / μ) ION/IOFF DR 

C4 1.4×10-2 1.0×10-2 1.4 103 1.2 

C6 3.0×10-3 1.7×10-2 1.8 104 2.2 

C10 2.6×10-3 1.9×10-2 1.4 104 1.8 
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C12 2.4×10-3 2.0×10-2 1.2 104 1.5 

 

Figure: 6.7   Role of face on and edge on orientation of P3ATs for OFET applications 

 Charge transport unaffected by increasing alkyl chain length was clearly understand by figure 6.7. 

In figure face on and edge on mechanism was applied in channel and explained charge transport 

from one electrode (S) to another electrode Drain (D).As per previously reported film prepared by 

spin coat, drop cast and time of flite (TOF) show face on orientation [27] but on the other hand 

edge on orientation in FTM film [25]. In face on orientation charge transport transfer from one 

plain to another plain by hopping on the other hand in edge on orientation charge transfer through 

polymer chain stacking. Charge transport hopping in face on is difficult because of hoping distance 

and resultant some charge consumed during hopping decrease in mobility. But in edge on, 

transport is easy because charge transfer through polymer chain stacking and it is much closed to 

another stacking. After increase in alkyl carbon number charge hopping is more difficult in face 

on because distance increased from one polymer chain to other so mobility drastically decreased 
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up to 3 to 4 order in decyl and dodecyl thiophene. But charge transport not so much disturb by 

increment in alkyl carbon number in edge on because of polymer chain stacking is more closed.               

6.4 Conclusion 
In summary, we conclude, large area oriented thin film prepared by ribbon shaped FTM. Alkyl 

chain length dependent orientation was investigated by polarized absorption spectra in parallel and 

perpendicular and calculated by dichroic ratio. Orientation was slightly decreased after increment 

in alkyl carbon number because of interdigitation investigated by d spacing based on XRD 

measurement. In alkyl group poly (3-hexyl thiophene) show one of the highest DR=2.2. The other 

remaining carbon chain showing slightly decreased in dichroic ratio. Apart from orientation alkyl 

carbon number dependence charge transport was also investigated and achieved slightly variation 

in mobility because of edge on orientation unlike to other group. In these alkyl group poly(3-hexyl 

thiophene) show one of the highest mobility 3.0×10-2 cm2/vs.  
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Chapter: 7 General conclusion and future work 

 
Fabrication of large area, uniform and oriented thin films or organic semiconductor is highly 

desired for the practical implementation and large-scale application of organic electronic devices.  

Research work in this thesis revolves around application of FTM for the fabrication of large area 

oriented thin films on desired substrate, their characterization and application as active 

semiconductor element for the investigation of anisotropic charge transport after OFET 

fabrication. Implementation of newly designed PTFE slider led to fabrication of large area and 

oriented ribbon-shaped films and a number of conjugated polymers have been successfully 

oriented.  

In the first chapter, we have discussed the basic introduction of inorganic and organic 

semiconductor technology and focused on organic semiconductor materials especially organic 

conjugated polymers. Role of the molecular orientation in conjugated polymers for OFETs have 

been critically reviewed taking different exiting orientation control method in combination with 

conventional FTM reported previously. Apart from this, related discussion have also been made 

pertaining to the various OFET device architectures, working principle and their electrical 

characterization parameters.     

Second chapter deals with materials, processes and characterization techniques used for the present 

research. Details about the conjugated polymer utilized, thin film fabrication techniques,   

characterization methods for molecular orientation of the fabricated thin film along with 

fabrication and characterization of the OFETs have been discussed.  

In the third chapter, a new method named as ribbon-shaped FTM has been utilized in order to 

fabricate large area oriented thin films by improvising conventional FTM using a newly designed 
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PTFE slider. Utilizing NR-P3HT as a representative conjugated polymer, parametric optimization 

in terms of concentration of polymer solution, casting temperature and viscosity of the liquid 

substrate have been amicably made in order to control the molecular anisotropy while maintaining 

the large area and film uniformity. 

Fourth chapter deals with fabrication and optoelectronic characterization anisotropic large area 

thin films conjugated polymer PQT-C12. Implication of casting temperature upon the extent of 

molecular orientation has been clearly demonstrated along with observation of very high optical 

anisotropy (DR˃22) under optimized casting condition. In plane GIXD, measurement clarified the   

edge-on orientation, which is highly desired for high performance planner device. By controlling 

the synthetic parameters PQT-C12 with different in molecular weight and polydispersity index 

(PDI) were synthesized and subjected to investigation pertaining to the implication of molecular 

weight and PDI upon the extent of molecular orientation and anisotropic charge transport. These 

four extract showing the variation in molecular orientation and in charge carrier transport.  

In the fifth chapter, five different conjugated polymers such as PQT-C12, F8T2, NR-P3HT, 

PBTTT-C14 and PTB7 were utilized for the fabrication of large area oriented thin films by ribbon- 

shape FTM. It has been shown that all of the polymers provide large area oriented thin films with 

dimensions 20 cm in length × 2 cm in width with only 20µl polymer solution. Under similar casting 

conditions, polymers exhibited differential molecular orientation, which was explained 

considering the nature and rigidity of polymeric chains in the light of reported values of persistent 

length. Amongst used CPs , PQT-C12 not only exhibits highest optical anisotropy but also highest 

anisotropic charge transport with best device performance and a charge carrier mobility 5×10 -2 

Cm2/Vs in parallel orientation.   
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In the chapter six, regioregular poly(3-alkylthiophene) with varying alkyl chain length were 

utilized for the fabrication of large area oriented thin films and investigation of anisotropic charge 

transport. Extent of molecular orientation was found to decrease as a function of increasing alkyl 

chain length because of enhanced interdigitation as evidenced by XRD measurements. Problem of 

drastically hampered charge mobility in long chain regioregular P3ATs has been amicably solved 

by utilizing FTM processed oriented films, where there was only a slight decrease in the mobility 

even for longest alkyl chain (C18) substituted P3AT. This was attributed to the attainment of edge-

on orientation, whether hindrance in in-plane transport is minimized since alkyl chains are out-of-

plane as probed by in-plane GIXD observations.   

In future point of view more development could be envisioned for the further improvisation in the 

ribbon shape FTM by implementing novel slider designs leading to very large area oriented thin 

films. At the same time, new donor-acceptor p-type conjugated polymers with high mobility (1-

10 cm2/Vs) have already been reported but lacks for the report of their orientation characteristics. 

Utilization of FTM for their orientation and optimization of casting parameters may lead to further 

enhancement in the charge carrier mobility. Currently ambipolar organic semiconductors are being 

used for organic CMOS inverters but their poor performance is still a major obstacle for practical 

applications in the area of organic electronics. Apart from p-type polymer, orientation n-type high 

mobility conjugated polymers by ribbon-shape FTM may lead to fabrication of high performance 

and low cost CMOS inverter and logic circuits in very cost effective solution based approaches.          
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