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Abstract 

The catalytic α-subunits of both the Na+,K+-ATPase and the gastric H+,K+-ATPase possess 

lysine-rich N-termini which project into the cytoplasm. Due to conflicting experimental 

results it is currently unclear whether the N-termini play a role in ion pump function or 

regulation, and, if they do, by what mechanism. Comparison of the lysine frequencies of the 

N-termini of both proteins with those of all of their extramembrane domains showed that the 

N-terminal lysine frequencies are far higher than one would expect simply from exposure to 

the aqueous solvent. The lysine frequency was found to vary significantly between different 

vertebrate classes, but this is due predominantly to a change in N-terminal length. As 

evidenced by a comparison between fish and mammals, an evolutionary trend towards an 

increase of the length of the N-terminus of the H+,K+-ATPase on going from an ancestral fish 

to mammals could be identified. This evolutionary trend supports the hypothesis that the N-

terminus is important in ion pump function or regulation. In placental mammals, one of the 

lysines is replaced by serine (Ser-27), which is a target for protein kinase C. In most other 

animal species a lysine occupies this position and hence no protein kinase C target is present. 

Interaction with protein kinase C is thus not the primary role of the lysine-rich N-terminus. 

The disordered structure of the N-terminus may, via increased flexibility, facilitate interaction 

with another binding partner, e.g. the surrounding membrane, or help to stabilize particular 

enzyme conformations via the increased entropy it produces. 

 

 

Keywords: sodium pump; gastric proton pump; protein intrinsic disorder; stomach pH; 

amino acid sequence analysis; protein kinase C 
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Introduction 
 
P-type ATPases are a family of enzymes whose major physiological role is the pumping of 

either ions or phospholipids across biological membranes. One of its prominent members is 

the Na+,K+-ATPase (or sodium pump), which is responsible for the Na+ and K+ 

electrochemical gradients across the plasma membrane of all multicellular animal cells 

(Kaplan 2002). Another is the gastric H+,K+-ATPase (or proton pump), whose activity creates 

the low pH necessary for the activation of pepsin, the main protein-digesting enzyme of the 

stomach (Shin et al. 2009). The Na+,K+-ATPase and the gastric H+,K+-ATPase are closely 

related, both belonging to the subfamily of type IIC P-type ATPases (Axelsen and Palmgren 

1998). The H+,K+-ATPase is thought to have evolved by gene duplication from an ancestral 

Na+,K+-ATPase before the evolution of cartilaginous fish ~400 million years ago (Okamura 

et al. 2002; Choe et al. 2004).  

Both of these ion pumps possess lysine-rich N-terminal extensions of their catalytic α 

subunits which project into the cytoplasm of the cell. From the study of tryptic digestion 

patterns (Jørgensen 1975; Jørgensen et al. 1982; Jørgensen and Collins 1986; Jørgensen and 

Andersen 1988) and experiments in which the N-terminus was removed either by proteolytic 

cleavage (Cornelius et al. 2005; Jørgensen and Collins 1986) or by mutagenesis (Scanzano et 

al. 2007), it is known that the N-terminus of the Na+,K+-ATPase undergoes substantial 

movement during conformational changes crucial to its ion pumping mechanism. It is also 

known that serine residues of the N-terminus are capable of phosphorylation by protein 

kinase C (Beguin et al. 1994; Feschenko and Sweadner 1995; Logvinenko et al. 1996). 

Similarly, phosphorylation of the N-terminus of the H+,K+-ATPase by protein kinase C has 

been demonstrated and been shown to affect the maximal enzyme activity (Cornelius and 

Mahmmoud, 2003). Togawa et al. (1996) previously identified the site of protein kinase C 

phosphorylation of the H+,K+-ATPase as serine-27. Therefore, it is thought that the N-termini 
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are involved in pump regulation, and they are even sometimes referred to as R (i.e. 

regulatory) domains of the proteins (Morth et al. 2011). Recent experimental and theoretical 

studies on the Na+,K+-ATPase via a variety of techniques have shown (Jiang et al. 2017; 

Garcia et al. 2017; Nguyen et al. 2018) that the lysine residues of the N-terminus are capable 

of interacting with the negatively charged head groups of anionic phospholipids in the 

neighbouring membrane. Unfortunately no x-ray crystallographic data on the N-terminus of 

either the Na+,K+- or the H+,K+-ATPase is available, because it could either not be resolved 

(Morth et al. 2007; Shinoda et al. 2009; Kanai et al. 2013; Nyblom et al. 2013) or it was 

removed prior to crystal formation (Abe et al. 2018). Furthermore, in contrast to the 

experiments in native tissue described above, experimental data on the Na+,K+-ATPase and 

H+,K+-ATPase after exogenous expression in cell lines do not support a role of the N-

terminus in determination of ion pumping activity. Thus, Daly et al. (1996) found that 

deletion of the Na+,K+-ATPase N-terminus had no effect on activity. Similarly, Asano et al. 

(2000) found that mutating all of the lysines of the H+,K+-ATPase N-terminus to alanines had 

no effect on its kinetic properties.  Therefore, the detailed function of the N-terminus remains 

unclear. 

Analysis of the amino acid sequence of the N-terminus of the α1 subunit of vertebrate 

Na+,K+-ATPases up to its conserved LKKE motif has shown (Nguyen et al. 2018) that the 

frequency of lysine residues is at least 4 times greater than the overall lysine frequency in 

over 1021 unrelated proteins (McCaldon and Argos 1988). However, this alone is not proof 

of a functional role of the N-terminal lysine residues in the Na+,K+-ATPase. Because the N-

terminus extends into the cytoplasm, one would naturally expect a higher frequency of 

charged amino acids simply because of the surrounding aqueous environment. Therefore, one 

open question is whether there is a preferential enrichment of lysine in the N-terminus 

relative to other extramembrane domains of the Na+,K+- and H+,K+-ATPases. To answer this 
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question, here we have compared the lysine frequencies of the solvent-accessible 

extramembrane domains, the N-terminus alone and the transmembrane domains of the 

Na+,K+- and H+,K+-ATPases. The analysis clearly shows that lysine is preferentially 

concentrated in the N-termini, thus supporting the hypothesis of a mechanistic or regulatory 

role for the lysine residues rather than simply charging the protein surface and improving its 

hydration. 

To further investigate the role of the ATPase N-terminus, we have also analysed 

variations in the lysine frequency of the N-terminus of the H+,K+-ATPase across different 

animal species. We have chosen the H+,K+-ATPase for this analysis rather than the Na+,K+-

ATPase, because, in contrast to the Na+,K+-ATPase, the H+,K+-ATPase is a tissue-specific 

enzyme. It is only present in the gastric mucosa of the stomach, whereas the Na+,K+-ATPase 

is present in the plasma membrane of every multicellular animal cell, where, amongst other 

functions, it is crucial to the maintenance of the osmotic conditions across the membrane 

necessary to avoid any cell volume changes. If there is no significant variation in osmotic 

conditions between the cells of different animal species, then for the purposes of its ion 

pumping function alone there is no reason to expect any significant variation in Na+,K+-

ATPase molecular activity. Differences in Na+,K+-ATPase activity between warm- and cold-

blooded animals have been reported (Else and Wu 1999), however, which are probably 

related to the contribution of the Na+,K+-ATPase to heat production and maintenance of body 

temperature. The proton gradient produced by the H+,K+-ATPase across the membrane of the 

stomach parietal cells on the other hand is known to be very species-dependent. The pH 

inside an animal’s stomach depends strongly on its diet (Beasely et al. 2015). Carnivores, 

which have a high protein diet, require a low stomach pH, not only in order to activate the 

digestive enzyme pepsin, but also as a protection against pathogenic foreign microbes in their 

food. In contrast, herbivores rely heavily on gut bacteria for the digestion of their food which 
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can only function effectively at pH values closer to neutral. Thus, carnivores must have a 

higher net pumping rate of H+ ions into their stomachs than herbivores, either via a higher 

forward rate of H+ pumping by the H+,K+-ATPase, by a reduced backward movement of H+ 

ions out of the stomach into the cytoplasm of the surrounding cells or by a higher expression 

level of the H+,K+-ATPase. If the lysines of the N-terminus play a functional role in ion 

pumping, it is possible, therefore, that their frequencies could vary between the H+,K+-

ATPases of carnivores and herbivores. Significant differences in the lysine frequency of the 

H+,K+-ATPase N-terminus were indeed found between different vertebrate classes, but the 

differences did not correlate with the animal’s diet. 

 

Methods 
 
H+,K+-ATPase and Na+,K+-ATPase amino acid sequence analysis 
 
Sequences of the main catalytic α1 subunit of the gastric H+,K+-ATPase and the Na+,K+-

ATPase were obtained from the protein database of the National Center for Biotechnology 

Information. (https://www.ncbi.nlm.nih.gov/protein/). All available entire vertebrate 

sequences were aligned using the MUSCLE program (Edgar 2004) within the MEGA7 suite 

of evolutionary genetics programs (Kumar et al. 2016). 

 

Lysine frequency analysis 

The lysine frequencies of different domains of the Na+,K+- and H+,K+-ATPases were 

determined either using the ProtParam tool (https://web.expasy.org/protparam/) within the 

ExPASy server of the Swiss Institute of Bioinformatics (Gasteiger et al. 2005) or within the 

MEGA7 suite of evolutionary genetics programs (Kumar et al. 2016). The ProtParam tool 

was also used to separately identify the extramembrane and transmembrane domains of both 

enzymes by entering the Swiss-Prot/TrEMBL accession numbers of the two enzymes 

https://www.ncbi.nlm.nih.gov/protein/
https://web.expasy.org/protparam/
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(P05023 for human Na+,K+-ATPase and P20648 for human H+,K+-ATPase). This allowed the 

percentages of lysines in extra- and trans-membrane domains to be separately determined. 

 

Phylogenetic analysis 

Phylogenetic relationships between either the whole α1 subunit of the H+,K+-ATPase of 

different vertebrate species or of its N-terminus alone were calculated using the Neighbor-

Joining method (Saitou and Nei 1987) within the MEGA7 suite of evolutionary genetics 

programs (Kumar et al. 2016). Evolutionary distances were computed using the Poisson 

correction method (Zuckerkandl and Pauling 1965). Each tree was rooted on the branch 

leading to the sequence of Dasytis sabina (Atlantic stingray), the only cartilaginous fish in 

our analysis. Each species was classified as a carnivore, omnivore or herbivore based on 

either common knowledge (e.g. koalas are herbivorous) or information freely available on the 

internet from a variety of sources. 

 

Prediction of disorder 

The normalized disorder tendency along the N-terminus of the Homo sapiens H+,K+-ATPase 

and Na+,K+-ATPase α1 subunits were predicted using the meta Protein Disorder prediction 

system server, metaPrDOS (Ishida and Kinoshita 2008) (http://prdos.hgc.jp/cgi-

bin/meta/top.cgi), which in our case used the following combination of predictors: PrDOS, 

DISOPRED2, DISPROT (VSL2P) and IUPred. This combination of predictors is estimated 

to have a receiver-operator (ROC) score of 0.897, which represents higher prediction 

accuracy than if any of the predictor servers were used alone. In order to increase the 

reliability of the prediction and reduce end-effects, the prediction calculation was carried out 

not just for the region of interest, i.e. the cytoplasmic N-terminal domains, but for the entire 

N-terminus up to the end of the first transmembrane helix.   

http://prdos.hgc.jp/cgi-bin/meta/top.cgi
http://prdos.hgc.jp/cgi-bin/meta/top.cgi
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Results 
 
H+,K+-ATPase and Na+,K+-ATPase amino acid sequence analysis  

To first determine which amino acid residues in the N-terminus of the gastric H+,K+-ATPase 

α1 subunit are potentially physiologically relevant we carried out a sequence alignment of all 

available vertebrate sequences. Alignments of the N-termini are shown in Fig. 1. The 

numbering is based on the human sequence, with the initiation methionine defined as amino 

acid number 1 (Maeda et al. 1988). All conserved amino acid residues are highlighted in 

yellow. The sequence alignment shown in Fig. 1 starts at Homo sapiens amino acid residue 

number 5 simply because the H+,K+-ATPase sequences of several species (e.g. Myotis 

brandtii and Chlorocebus sabaeus in particular) have long species-specific segments prior to 

this position which don’t match at all well with those of most of the others. Thus, by starting 

at Homo sapiens residue 5 these species-specific segments are excluded. The reason for the 

unusual sequences of these species is unclear. There is no obvious evolutionary connection 

between the animals which possess them. An alignment of the N-terminus of the α1 subunit 

of the Na+,K+-ATPase is shown in Fig. 2. 

 From the H+,K+-ATPase alignment shown in Fig. 1, one region of note is the 

sequence 46M47K48K49E, which is conserved in every sequence except that of Stegastes 

partitus (bicolour damselfish), where the second lysine (K) in the motif is substituted by the 

other basic amino acid residue, arginine (R). The MKKE (or MKRE motif) of the H+,K+-

ATPase parallels the conserved 30L31K32K33E motif of the Na+,K+-ATPase, which is found in 

this enzyme’s N-terminus (see Fig. 2). Another similarity between the two enzymes is the 

high frequency of lysines in the N-terminus. For the Na+,K+-ATPase the frequency of lysines 

was found to be in the range 22.9 – 36.4% up to the LKKE motif. Carrying out the same 

analysis for the H+,K+-ATPase up to and including the MKKE motif (but excluding the 
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initiation methionine) yields values ranging between 7.8% (Myotis brandtii, Brandt’s bat) and 

40.0% (Boleophthalmus pectinirostris, Great blue-spotted mudskipper and Monopterus albus, 

Asian swamp eel). The relatively low value for Myotis brandtii is mainly due to its very long 

N-terminus, i.e., 218 residues up to the MKKE, in comparison to only 35 residues for 

Boleophthalmus pectinirostris and Monopterus albus. But even the Myotis brandtii enzyme 

has an accumulation of lysine residues shortly before the MKKE motif. 

As in the case of the Na+,K+-ATPase, the lysine frequencies of the H+,K+-ATPase N-

terminus of all species are higher than the 5.7% determined for 1021 unrelated proteins 

(McCaldon and Argos 1988). This would seem to suggest a functional role of the lysine 

residues. However, it is important to bear in mind that the value of 5.7% reported by 

McCaldon and Argos (1988) is based on entire protein sequences, and, therefore, includes 

many protein domains buried deep in the nonpolar interior of proteins where charged residues 

such as lysines are unlikely to be present purely on electrostatic grounds. Therefore, to 

determine whether or not lysine is enriched in the N-termini of the Na+,K+- and H+,K+-

ATPase above what one would expect for protein segments exposed to an aqueous medium it 

is necessary to consider the transmembrane and extramembrane domains of the proteins 

separately. Such an analysis is described in the following section. 

Apart from the lysine frequency, another point worth noting from the alignment is the 

large number of glycine residues present in the H+,K+-ATPase N-terminal sequence, 

particularly the cluster between residues 33 – 37, which is specific to mammals. Another 

feature which is specific to most mammals is the pair of prolines in positions 16 and 18. 

Serine-27, which, as mentioned in the Introduction, has been identified as a site of 

phosphorylation by protein kinase C (Togawa et al. 1996), is specific to placental mammals. 

The possible significance of these residues will be discussed later. 
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Figure 1: Sequence alignment of the N-terminus of the α1 isoform of the catalytic α-subunit 

of the gastric H+,K+-ATPase from vertebrates. Residues which are conserved across all 

species are highlighted in yellow. Serine 27, which is conserved in all placental mammals, is 

highlighted in light blue, as are glycine 36, glycine 37 and proline 18, which are conserved in 

all mammals (placental and marsupial). The 46M47K48K49E (or 46M47K48R49E) motif and the 

glycine cluster and proline locations of all mammals are boxed. The numbering of the 
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residues is based on the Homo sapiens sequence. The species have been grouped according to 

classes, i.e. placental mammals (orange, top), marsupial mammals (blue), reptiles (green), 

amphibian (pink), bony fish (grey) and cartilaginous fish (pale yellow, bottom).  

 

 

 

 

Figure 2: Sequence alignment of the N-terminus of the α1 isoform of the catalytic α-subunit 

of the Na+,K+-ATPase from vertebrates. Residues which are conserved across all species are 

highlighted in yellow. The 30L31K32K33E motif is boxed. The numbering of the residues is 

based on the Homo sapiens sequence. The species have been grouped according to classes, 

i.e. placental mammals (orange, top), birds (brown), amphibian (pink), bony fish (grey) and 

cartilaginous fish (pale yellow, bottom) 
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Lysine frequencies of the Na+,K+- and H+,K+-ATPases       

The lysine frequencies of the entire α1 chain of the human Na+,K+-ATPase (UniProtKB 

P05023, Gene ATP1A1) and of the human gastric H+,K+-ATPase (UniProtKB P20648, Gene 

ATP4A) are 5.4% (55 of 1018 residues) and 4.6% (48 of 1034 residues), respectively. The 

propetide sequence of the Na+,K+-ATPase (MGKGV) and the initiation methionine of the 

H+,K+-ATPase were excluded in this calculation. Both of these percentages are below the 

5.7% lysine frequency of proteins in general determined by McCaldon and Argos (1988). 

This is to be expected, because lysines would be energetically unfavoured in the nonpolar 

transmembrane domains of membrane proteins. More interesting is a separate analysis of the 

transmembrane and extramembrane domains. 

For the human Na+,K+-ATPase and H+,K+-ATPase the frequency of lysines in 

transmembrane domains are 2.94% (6 of 204 residues) and 3.43% (7 of 204 residues), 

respectively. In the case of extramembrane domains, the corresponding values are 6.02% (49 

of 814 residues) and 4.94% (41 of 830 residues). Thus, again, as one would expect based on 

electrostatic considerations alone, the charged lysine residue is more prevalent in 

extramembrane domains. However, if one considers the N-terminus alone, for the entire N-

terminus up to the start of the first transmembrane helix the lysine frequencies of the Na+,K+-

ATPase and the H+,K+-ATPase are 13.41% (11 of 82 residues) and 13.40% (13 of 97 

residues). Comparing these values to those of the extramembrane domains as a whole for 

each of the two enzymes, i.e., 6.02% and 4.94%, it is clear that the lysines are not evenly 

distributed across the extramembrane domains. They are much more prevalent within the N-

terminus. As shown in the last section, if one just considers the first part of the N-terminus up 

to the MKKE motif of the H+,K+-ATPase or the LKKE motif of the Na+,K+-ATPase, for 



 13 

some species the lysine frequency reaches values of 40% and 36% for the H+,K+- and the 

Na+,K+-ATPase, respectively.  

If the high lysine content of the N-terminus were simply due to the energy stabilisation 

caused by the interaction of the charged lysine residues with surrounding water dipoles, one 

would expect a relatively even lysine distribution across the extramembrane domains. The 

fact that this is not the case, i.e., that lysine is concentrated in the N-termini of both enzymes, 

supports the hypothesis that it is performing an important functional or regulatory role. This 

conclusion is further supported by results of Dunker et al. (2002), who found from an 

analysis of the sequences of 157 intrinsically disordered proteins a lysine frequency in the 

range 7-10%, still significantly lower than the frequencies of the Na+,K+- and H+,K+-ATPase 

N-termini. 

 

Disorder profiles and secondary structure 

Interestingly, based on their sequences, much of the N-termini of both the H+,K+-ATPase and 

the Na+,K+-ATPase are themselves predicted to be intrinsically disordered domains (see Fig. 

3). The metaPrDOS server predicts that 79% of the residues up to and including the 

M46K47K48E49 motif of the H+,K+-ATPase have a normalized disorder tendency of 0.5 or 

greater, with a maximum in disorder tendency at residue 35 in the middle of the cluster of 

five glycine residues (see Fig. 1). Qualitatively similar disorder tendency profiles were 

obtained for all other mammalian H+,K+-ATPases. In the case of the Na+,K+-ATPase, the 

server predicts a normalized disorder tendency of greater than 0.5 for every residue up to the 

conserved 30L31K32K33E motif. However, in contrast to the H+,K+-ATPase, there is no 

maximum in disorder tendency in the middle of the N-terminus, but rather a more gradual 

drop as one proceeds along the polypeptide chain. The absence of any significant disorder 

tendency maximum in the Na+,K+-ATPase N-terminus is most likely because it lacks both the 
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glycine cluster of the H+,K+-ATPase as well as the bulky prolines in positions 16 and 18 of 

the H+,K+-ATPase sequence. The dramatic drop in disorder tendency of the Na+,K+-ATPase 

which occurs at around residue 75 coincides with the start of the first transmembrane helix. In 

the case of the H+,K+-ATPase, because of its longer cytoplasmic N-terminus, the first 

transmembrane helix doesn’t start until residue 99. In an analogous fashion to the Na+,K+-

ATPase, there is a steady drop in disorder tendency just prior to this position. 
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Figure 3: Disorder tendency of the N-terminus of the Homo sapiens H+,K+-ATPase (black) 

and Na+,K+-ATPase (red) α1 subunits, as predicted by the metaPrDOS server. 

 

To confirm the origin of the disorder tendency maximum in the mammalian H+,K+-

ATPase N-terminus sequence, predictions have also been carried out on the sequences of 

bony fish, which lack both the glycine cluster and the proline residues (see Fig. 1). 

Qualitatively similar results were obtained for all fish sequences investigated. As an example, 

Fig. 4 shows a comparison of the results obtained for the human sequence and that of 

Siniperca scherzeri (golden mandarin fish). In contrast to Homo sapiens, the Siniperca 

scherzeri sequence shows a disorder tendency profile with no pronounced maximum in the 
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30 – 40 residue range. In fact, the Siniperca scherzeri profile is not dissimilar to that of the 

Homo sapiens Na+,K+-ATPase sequence, showing a more gradual drop in disorder tendency 

along the peptide chain. Therefore, loss of both the cluster of disorder-promoting flexible 

glycine residues and the disorder-inhibiting bulky proline residues largely abolishes the peak 

in disorder tendency of the mammalian H+,K+-ATPase N-terminus.     

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

Di
so

rd
er

 T
en

de
nc

y

Residue Number

Homo sapiens

Siniperca scherzeri

 

Figure 4: Disorder tendency of the N-terminus of H+,K+-ATPase α1 subunits of Homo sapiens 

(black) and Siniperca scherzeri (magenta), as predicted by the metaPrDOS server. The amino 

acid residue numbering is that of the Homo sapiens sequence, with which the Siniperca 

scherzeri sequence has been aligned. 

 

 For a comparison with the disorder profiles of the N-terminus of the Homo sapiens 

and  Siniperca scherzeri H+,K+-ATPases we have also carried out an ab initio predictions of 

their secondary structure using the QUARK server 

(http://zhanglab.ccmb.med.umich.edu/QUARK) (Xu and Zhang 2012). The predicted 

secondary structures of the entire N-termini up to the start of the first transmembrane domain 

are shown in Fig. 5. The N-terminus of the Homo sapiens enzyme is predicted to have 3 α-

http://zhanglab.ccmb.med.umich.edu/QUARK
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helical segments between residues 39-49, 58-65 and 75-84. The first helix, 39-49, contains 

the conserved MKKE (or MKRE) motif. However, in agreement with the disorder 

calculations, the majority of the N-terminus (64% of the residues) is predicted to be in a 

random coil state. This includes the glycine cluster of the Homo sapiens sequence. Previously 

published secondary structure predictions for the N-terminus of the Na+,K+-ATPase α1 

subunit from rat have yielded similar results, i.e., 3 α-helical segments, with the first 

containing the conserved LKKE motif (Segall et al. 2002). 

 In comparison, the N-terminus of vertebrates other than mammals is predicted to 

contain a greater proportion of α-helix than that of mammals. As an example, the predicted 

secondary structures of the N-termini of the Homo sapiens and Siniperca scherzeri sequences 

are shown in Fig. 5. In particular it can be seen that the N-terminus of Siniperca scherzeri is 

predicted to have an extended region of α-helix between residues 22 and 40, which is missing 

in the Homo sapiens sequence. The reason for this is most likely the presence of the glycine 

cluster in the mammalian sequence in positions 33-37 which may act as a “secondary-

structure-breaker”. If the length of the Homo sapiens N-terminus input into the QUARK 

server is varied, slightly different lengths and positions of the α-helical segments are 

predicted, but the helix-breaking effect of the glycine cluster is always apparent.     

 

 

 

Figure 5: Predicted secondary structures of the N-terminus of the H+,K+-ATPase α1 subunit of 

Homo sapiens and Siniperca scherzeri. The top line gives the Homo sapiens sequence 
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numbering. The second line shows the primary sequence, with conserved amino acid residues 

highlighted in yellow. The third line gives the predicted secondary structure (C = random 

coil, S = β-strand, H = α-helix). 

 

Dependence of H+,K+-ATPase N-terminal lysine frequency on diet and animal class 

The animals for which H+,K+-ATPase sequence data is available (see Fig. 1) were first 

grouped according to their diet as carnivores, omnivores and herbivores, and the lysine 

frequency of each group was averaged. The results obtained were: carnivores (N = 15) 29 (± 

9)%, omnivores (N = 24) 25 (± 6)% and herbivores (N = 25) 23 (± 5)%. Although there 

appears to be a slightly higher preference for lysine in the order carnivores > omnivores > 

herbivores, the standard deviations are all overlapping. It is also important to note that the 

carnivore group contains a large number of fish (9 of 15 species). If the fish are removed 

from the carnivore group, the lysine frequency drops to 19 (± 6) %, i.e., even below that of 

the herbivore group. Thus, it appears doubtful that there is a link between animal diet and N-

terminal lysine frequency. 

 To minimise the impact of species sampling on the analysis, we have also considered 

sister pairs, i.e., species which have a close phylogenetic relationship, but different diets. We 

selected the sister pairs based on the phylogenetic relationships of the species, as determined 

by a phylogenetic tree constructed using the entire sequence of the H+,K+-ATPase (see Fig. 

5). Only pairs consisting of one carnivore and one herbivore were chosen in order to 

maximise the difference in the type of diet. In addition, all pairs were phylogenetically 

independent of one another, i.e., there was no overlap between the pairs based on the 

positions of the species on the tree (see Fig. 1). The pairs and their N-terminal lysine 

frequencies are given in Table 1. Unfortunately the number of available pairs precludes a 

statistical analysis. However, the available data show that for two of the sister pairs there is 
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absolutely no difference in lysine frequency between the carnivore and herbivore of the sister 

pair. For two pairs the carnivore’s lysine frequency is higher than that of the herbivore, but 

there is also a pair in which the herbivore’s lysine frequency is higher than that of the 

carnivore’s. Thus, there is no convincing evidence for the suggestion that a higher lysine 

frequency of the N-terminus is advantageous for the digestion of meat-eating animals. 

 

Sister pairs       % Lys       Sign (C – H)  
_______________________________________________________________  

Orcinus orca (C)   21.28 
        0 
Pantholops hodgsonii (H)  21.28 
_____________________________________________   
    
Canis lupus familiaris (C)  25.53 
        + 
Pteropus alecto (H)   21.28 
_____________________________________________ 
 
Alligator sinensis (C)   20.93 
        – 
Phascolarctos cinereus (H)  25.53 
_____________________________________________ 
 
Siniperca chuatsi (C)   38.89 
        + 
Stegastes partitus (H)   37.14 
_____________________________________________ 
 
Monopterus albus (C)   40.00 
        0 
Boleophthalmus pectinirostris  (H) 40.00 

_______________________________________________________________ 
 

Table 1: Analysis of the lysine frequency (% Lys) in the N-terminus of the α1 subunit of the 

H+,K+-ATPase of sister pair species consisting of a carnivore (C) and a herbivore (H). In the 

third column of the table the sign of the difference between the carnivore’s lysine frequency 

and that of the herbivore is given. 
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To further investigate any possibility of a diet-related link we carried out a 

phylogenetic analysis of the sequences of the entire α1 subunit of the H+,K+-ATPase and its 

N-terminus (see Figs. 6 and 7, respectively). 
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Figure 6: Phylogenetic tree of the α1 isoform of the catalytic α-subunit of the gastric H+,K+-

ATPase from vertebrates. The percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (1000 replicates) is shown next to the branches 

(Felsenstein 1985). 
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Figure 7: Phylogenetic tree of the N-terminus of the α1 isoform of the catalytic α-subunit of 

the gastric H+,K+-ATPase from vertebrates. The percentage of replicate trees in which the 

associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the 

branches (Felsenstein 1985). 

 

Although the trees shown in Figs. 6 and 7 are not identical, the important point is that in 

both trees animals cluster according to their accepted evolutionary positions, i.e., placental 

mammals cluster with other placental mammals, marsupials with marsupials, fish with other 

fish, regardless of their diet. In comparison with the whole protein, there is no significant 

reorganisation of the N-terminus tree to suggest that the N-terminus has a major role in 

facilitating an animal’s digestion, i.e., there is no evidence for convergent evolution of a high 

N-terminal lysine frequency of species with different origins for any diet-related purpose. 

This doesn’t mean, however, that the N-terminus has no role in determining the proton 

pumping activity of the H+,K+-ATPase. It simply means that factors other than the amino acid 

sequence of the H+,K+-ATPase N-terminus must be playing a more dominant role in 

controlling stomach pH. The most obvious factor would be expression level. If carnivores 

expressed a greater number of copies of the H+,K+-ATPase in their parietal cells than 

herbivores and omnivores, this could lead to a lower stomach pH even in the absence of any 

differences in amino acid sequence of the protein.  

 After establishing that there is no link between diet and the N-terminus sequence, we 

turned our attention to an investigation of whether the lysine content of the N-terminus varies 

with animal class. The results obtained are shown in Table 2. Because the number of reptiles 

(2) and amphibians (1) in the data set are so low, standard deviations of the values tabulated 

were only calculated for fish (both bony and cartilaginous) and mammals (placental and 

marsupial). 
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Animal Class     Av. % Lys    No. Lys    No. aa  
_________________________________________________  

Fish (N = 15)     36 (±4)     13 (±1)    36 (±3) 

Amphibian (N = 1)    27      12     44 

Reptiles (N = 2)    26      11.5     45 

Mammals (N = 46)    22 (±4)     11 (±2)    54 (±26) 

Mammals (N = 45)    22 (±3)     10 (±2)    50 (±8) 
(exc. Myotis brandtii) 

__________________________________________________ 
 

Table 2: Values of the average % of lysines (Av. % Lys), the number of lysine residues (No. 

Lys) and the total number of amino acids (No. aa) in the N-terminus of the α1 subunit of the 

H+,K+-ATPase for fish and mammals. The error values given in brackets are the standard 

deviations from the means. The fifth row shows the mammalian results obtained if the 

sequence of Myotis brandtii is excluded from the analysis. 

 

The results obtained clearly show that the lysine frequency in the N-terminus of fish 

H+,K+-ATPases is significantly greater than that of mammals. Because the sequence of 

Brandt’s bat, Myotis brandtii, is so unusual, with an N-terminus over a 100 residues longer 

than all other mammalian species, we have also included averaged values for an analysis 

excluding this species. However, even excluding Myotis brandtii, the lysine frequency is 

much greater for fish than mammals. As can be seen from Table 2, there are two reasons for 

the higher lysine frequency of fish. One is that the number of lysine residues is slightly higher 

for fish than for mammals. However, the more dominant cause is that the length of the N-

terminus is shorter for fish than for mammals. In the course of evolution it appears, therefore, 
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that there has been a tendency towards a slight reduction in the number of lysine residues in 

the N-terminus and an increase in its length. 

As already briefly mentioned earlier, other clear differences between the H+,K+-ATPase 

N-terminus of fish and mammals can be clearly seen by inspection of the alignment shown in 

Fig. 1. Togawa et al. (1996) showed that serine-27 can be phosphorylated by protein kinase C 

in the pig. However, Fig. 1 shows that this residue is only conserved as a serine among 

placental animals. In almost every bony fish this position is occupied instead by a lysine. 

Only in Paralichthys olivaeus (Olive flounder) is there a serine in this position, like the 

placental mammals. In the bony fish Seriola dumerili (Greater amberjack) the position is 

taken by asparagine.  In the only cartilaginous fish in the data set (Dasytis sabina, Atlantic 

stingray) there is a gap in this position. In the only amphibian in the data set (Xenopus laevis) 

its position is occupied by a methionine. In both reptiles in the data set, like the bony fish, the 

position is occupied by a lysine, and in both marsupial mammals the position is occupied by 

glutamine. Therefore, it is only the N-terminus of placental mammals which provides a 

conserved substrate for protein kinase C. It is known that basic residues surrounding serine 

residues provide a consensus sequence for phosphorylation by protein kinase C (Kennelly 

and Krebs 1991; Zhu et al. 2005). However, this cannot be the primary purpose of the 

clustering of lysine residues, because, as explained above, lysine clustering still occurs in fish 

even when phosphorylation by protein kinase C is impossible due to the absence of a serine 

residue in the sequence. 

The N-terminus of the Na+,K+-ATPase also possesses at least one serine residue, i.e., 

Ser-11 (or Ser-16 if one includes the propetide sequence), which is a potential target for 

protein kinase C. Even though it is not within a typical consensus sequence for protein kinase 

C, Beguin et al. (1994) showed, both in vitro and in intact cells, that this residue can be 

phosphorylated by protein kinase C. In contrast to Ser-27 of the H+,K+-ATPase, however, 
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Ser-11 of the Na+,K+-ATPase is not present almost exclusively in placental mammals; it is 

conserved across all vertebrate species (see Fig. 2). Another possible site of phosphorylation 

by protein kinase C in the Na+,K+-ATPase is in position 18 (23 if the propeptide sequence is 

included). This site is occupied by a serine in the rat (Rattus norvegicus), but in most other 

species it is occupied by a lysine or a glycine residue. Therefore, although phosphorylation of 

the serine in this position by protein kinase C has been demonstrated in the rat (Feschenko 

and Sweader, 1995; Logvinenko et al. 1996), this cannot represent part of a general 

regulatory mechanism of the Na+,K+-ATPase across all vertebrate species.            

 

Discussion 

The evolutionary analysis carried out here on the H+,K+-ATPase has revealed a number of 

important points. Firstly, the lysine frequency of the H+,K+-ATPase N-terminus is not linked 

to animal diet and hence not linked to stomach pH. This could be explained in two possible 

ways. It could mean that the lysines of the N-terminus do not play any role in determining the 

molecular activity of the H+,K+-ATPase under physiological conditions. This is possible, but 

it would appear to be inconsistent with direct experimental data on both the H+,K+-ATPase 

and the Na+,K+-ATPase, which support a functional role for the N-terminus (Cornelius and 

Mahmmoud 2003; Beguin et al. 1994; Feschenko and Sweadner 1995; Logvinenko et al. 

1996). A more likely explanation, therefore, is that stomach pH is determined primarily by 

the expression level of H+,K+-ATPase in an animal’s stomach parietal cells, rather than by the 

molecular activity of the individual H+,K+-ATPase molecules. 

 A second finding is that the length of the H+,K+-ATPase N-terminus (i.e., the length 

of the sequence up to the MKKE motif) appears to have increased in the course of evolution 

on going from fish to higher vertebrates, i.e., mammals. It is possible that this change may 

have occurred by chance and simply have been inherited by mammals because they have a 
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common ancestor. However, it is also possible that that the increased N-terminal length may 

have given mammals some selective advantage, which would be an argument in support of an 

important role of the N-terminus in H+,K+-ATPase function. The lysine frequencies, numbers 

of lysines and N-terminal length of the one amphibian in the dataset and the two reptiles are 

intermediate between those of fish and mammals, which would seem to support an adaptive 

evolutionary process, but with the small number of species this is difficult to conclude with 

any certainty. 

From a comparison of the lysine frequency of the N-terminus of both ATPases with 

other extramembrane domains and with other disordered proteins, it is clear that the N-

terminus lysine frequency is far above what one would expect simply through exposure to the 

aqueous solvent. This supports the hypothesis that the N-terminus does have a functional role 

for both enzymes. What this role is, however, is still unclear.  

 Based on the prediction that the N-terminus is largely disordered (see Figs. 3 and 4), 

to gain some insight into the role of the N-terminus it is worth considering the roles played by 

other disordered proteins. If protein domains are highly ordered via hydrogen bonding to 

themselves within α-helical or β-pleated sheet secondary structure it makes it harder for them 

to interact with other molecules, because this would involve the breaking of cooperative 

hydrogen bonding networks. In contrast, disordered sequences have much greater flexibility 

and are able to more easily interact with other molecules, undergoing transitions between 

disorder and order when they do so. Thus, intrinsically disordered proteins have been 

implicated in many regulatory and signalling processes (Wright and Dyson 2002; Dyson and 

Wright 2002; Burger et al. 2014). Instrinsic disorder has also been suggested as an important 

facilitator of regulatory protein phosphorylation by protein kinases, because the flexibility of 

disordered sequences allows them to interact more easily with their respective partner kinase 

enzyme (Iakoucheva et al. 2004). As mentioned in the Introduction, phosphorylation of the 
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N-terminus of both the H+,K+-ATPase and Na+,K+-ATPase by protein kinase C has been 

demonstrated experimentally (Beguin et al. 1994; Feschenko and Sweadner 1995; 

Logvinenko et al. 1996; Togawa et al., 1996; Cornelius and Mahmmoud, 2003). In the case 

of the H+,K+-ATPase the phosphorylation site has been identified as serine-27 (Togawa et al. 

1996). However, this residue is only conserved in placental mammals and in almost all fish 

there is a lysine in this position (see Fig. 1). Thus, regulation of H+,K+-ATPase activity by 

serine phosphorylation by protein kinase C is only a feasible general regulatory mechanism 

for placental mammals. Although lysines do promote protein kinase C activity, this cannot be 

their primary role across all the H+,K+-ATPases of all species because of the absence of 

serine in position 27, not only in most fish, but also in the reptiles, marsupial mammals and 

amphibian in the data set studied. Since it is known that synthetic peptides with the same 

sequence as the Na+,K+-ATPase N-terminus bind to membranes (Nguyen et al 2018), rather 

than the lysine-rich N-terminus facilitating interaction with protein kinase C, a more likely 

binding partner is the surrounding membrane, with the interaction being modulated (either its 

strength or specificity) by the increase in N-terminal length which occurred in the course of 

evolution from ancestral fish to mammals. 

 Apart from promoting the interaction with binding partners, it has recently become 

recognized that intrinsically disordered regions of proteins can themselves play an important 

role in the thermodynamics of protein conformational transitions (Wand 2013; Drake and 

Pettitt 2018). If a protein conformational change occurs which involves a transition of a 

protein segment, such as the N-terminus, from an ordered to a disordered state, the 

conformational entropy thus gained must cause a decrease in free energy and hence a 

stabilisation of the resultant protein conformation. Because the number of accessible 

configurational states of a protein backbone increases with the backbone length, the degree of 

conformational stabilisation would also be expected to increase with the length of the protein 
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segment. Thus, the evolutionary increase in H+,K+-ATPase N-terminal length identified here 

in mammals could have enhanced the entropic contribution of the N-terminus to the protein’s 

conformational energetics. As discussed in the Introduction, there is clear evidence for the 

Na+,K+-ATPase that the N-terminus moves significantly during this protein’s E2-E1 

conformational transition. If this movement changes the degree of motional freedom of the 

N-terminus, the resultant change in entropy could significantly influence the thermodynamics 

of the transition and hence the protein’s selectivity for Na+ and K+ ions, which are dependent 

on the enzyme’s conformational state. This could be equally true for the H+/K+ selectivity of 

the H+,K+-ATPase. By this mechanism protein segments, such as the N-terminus, which are 

quite distant from the actual ion binding sites themselves could have a major impact on ion 

pump function. 
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