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Abstract 
 

The desire to utilise soft-tissue image guidance at the time of radiation treatment has led to the 

development of several hybrid MRI-linear accelerators. These systems have the potential to realise the 

benefits of MRI on the treatment table with the ability of real-time motion management and adaption 

on a patient specific basis. There are several MRI-Linacs currently being implemented covering both 

low and high magnetic field strength and two beam-field orientations. Clinical trials have only recently 

begun with this technology but their future use as standard radiotherapy practice seems assured. This 

review article summarises the challenges faced in developing such hybrid technology, the differences 

and advantages of each of the currently exploited solutions and their current status. 
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1. Introduction 

State-of-the art radiotherapy has the ability to deliver highly conformal doses of radiation that 

can target tumours and avoid normal tissues with high precision. However, the limitations of 

conventional on-line imaging hinder this technology from achieving its true potential. Current imaging 

is often limited to a pre-treatment planning scan (usually CT) or set-up verification at the time of 

treatment with on-board x-ray. As a consequence, there is little or no adaption of the radiation dose to 

known changes in anatomy or physiological variations including that of the tumour target itself, that 

occur during the course of treatment [1-3]. Over the last two decades, the advantages of soft-tissue 

contrast with MRI have been increasingly exploited in radiotherapy planning to improve contouring, 

and many studies have also shown how functional MRI techniques can be used to monitor response to 

treatment. The inherent advantages of MRI has inevitably led to the pursuit of hybrid radiotherapy 

systems that incorporate this imaging capability in the treatment room to realise the benefits of real-

time guidance and adaption. Pioneering work over the last few years on a low field MRI system 

combined with 3 cobalt radioisotope heads [4], has paved the way for the more recent developments of 

linear accelerator based systems or MRI-Linacs, which are the subject of this review. 

 

This article reviews the difficulties associated with combining an MRI scanner and a linear 

accelerator into a single treatment device and summarises the major design differences and current 

status of the existing systems. 

 

2. Integration Challenges 
 

There are two main configurations of MRI-Linac being pursued with the radiotherapy beam 

described as being either ‘inline’ i.e. parallel to the main magnetic field, or ‘perpendicular’ to the field. 

A number of mutual interference effects can be expected to occur when operating a linear accelerator 

in the presence of a strong magnetic field. Both the magnitude and the orientation of the magnetic field 

play a part in this. These interactions can be best described from the perspective of each component part 

in the system and are summarised below. 

 

2.1 The effects of a magnetic field on Linac operation 

 

A standard clinical linear accelerator has a magnetic field tolerance of just 1 Gauss (0.0001 T) 

requiring careful consideration of the siting requirements of linacs and MRI scanners that may be 

closely located in radiotherapy departments. Little wonder then that the proximity of a field of up to 1.5 

Tesla is a cause for concern! The first consideration, as the part of the linac closest to the magnet, is the 

operation of the multi-leaf collimator (MLC), which is used to shape the x-ray beam. More specifically 

the performance of each magnetic encoder used to control a motor driven leaf into the correct position 

can be degraded. Studies have shown that fields of 450 G (0.045 T) are sufficient to render these 

unusable [5]. Re-design or replacement with compatible components is an option but in most cases 

reducing the field is the pragmatic solution. 

 

Another dominant effect is the influence on charged particles- in this case electrons- that are 

accelerated in the waveguide in order to produce the high energy x-ray beam. Magnetic fields can cause 

electrons to deviate and focus/defocus, in many cases causing a loss of beam current. The perpendicular 

systems suffer the worst with total beam loss at 14 G (0.0014 T) [6]. For the inline arrangement up to 

79% beam reduction is observed at 600 G (0.06 T) [7], although this is dependent on electron gun 

design. These threshold fields can be managed in the majority of cases by reducing the field by passively 

shielding the equipment [8] and/or actively shielding the magnet itself to create a near zero Gauss 

region.  

 

Secondary electrons, released as a consequence of the x-ray beam interacting with matter, are also 

influenced by magnetic fields. In the case of inline orientation there is an electron focussing effect (EFE) 

which concentrates electrons along the central axis of the magnetic field. This creates a substantive 
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increase in skin (entrance) dose from contaminating electrons prior to the beam entering the patient 

[9,10]. Results in our own lab show this can be easily mitigated with 2 cm of Perspex placed in the path 

of the beam and proximal to the patient, but electron purging methods may also be employed. In terms 

of electron transport within the patient, i.e. electrons released in the process of dose deposition, the same 

effect has been shown to be beneficial, facilitating dose enhancement in the targeting of certain 

structures [11]. For the perpendicular systems there is a bending of the electrons in a circular path away 

from the field and described as the ‘electron return effect’ (ERE) [12]. While there is no entrance dose 

issue, the ERE is characterised by a widening of the beam penumbra, asymmetric dose distributions 

particularly near tissue cavities, and a more moderate skin dose on exit. These effects can be remedied 

by using opposing beams or incorporating the magnetic field in the inverse planning solution. A diagram 

illustrating the concept of both EFE and ERE is shown in Figure 1. 

 

 

2.2 MRI in the presence of a linear accelerator 

 

The effect of the linear accelerator on the operation of the MRI scanner is perhaps less obvious but 

no less challenging. The most fundamental requirement of any MRI scanner is to ensure it is in an 

electromagnetically shielded room. This is typically achieved by situating the unit in a faraday cage (i.e. 

usually lining the room with copper). Any extraneous radiofrequency (RF) noise will cause severe 

interference in the image, and as such the linear accelerator must be either placed outside this room or 

made an integral part of the RF shield. 

 

Another challenge is preserving the homogeneity of the main magnetic field (B0). It has been 

demonstrated that the proximity of the accelerator and MLC cause increased hetereogeneity within the 

extremely sensitive imaging volume of the scanner. This can be largely removed by the process of 

passive shimming as part of magnet installation. The impact of the MLC is minimal when placed at 

least 1 metre (standard SID) away from the isocentre of the magnet [13]. However when the equipment 

is moved, for example to change the treatment distance or change the gantry angle, the field needs to 

be re-adjusted. In this case, the process of dynamic shimming, i.e. changing the field with gradient or 

other electromagnetic coils within the scanner, over the volume of interest is sufficient to achieve this 

[10]. 

 

Another potential interaction is between the RF receiver coil, used to detect the image signal, and 

the incident beam. In diagnostic imaging the RF coil fits closely to the anatomy of interest in order to 

minimise noise and maximise image quality. On an MR guided (MRg) system this coil may be 

unavoidably placed in the path of the beam. This can not only attenuate the intended dose but also 

increase skin dose via secondary electrons. Furthermore, the beam can cause an electronic 

disequilibrium in the conductors or electronics (‘radiation induced current’) creating interference and 

image artefacts [14, 10]. Dedicated RF coils for MRg have been designed which are either 

radiotranslucent [15] or physically open and completely radiotransparent [16] to minimise these effects. 

 

3. Existing Systems 

 
At the time of writing there are four different MRI-Linac systems at various stages of 

implementation around the world. The trade-off between high field to improve image quality, and low 

field to minimise electromagnetic interactions and dosimetry effects has led to quite different designs, 

each with their own unique advantages. 

 

3.1 MRI-Linac Specifications 

 

Table 1 provides the details of the four current MRI-Linac systems being developed in order of the 

magnetic field strength. The two perpendicular beam-field systems (Elekta & Viewray) are now 

commercial products while the two remaining systems are working prototypes. Each of these four 

systems are shown in Figures 2 (a) to (c). Although a comprehensive overview of their technical 
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performance is beyond the intended scope of this article, each is briefly described below in order of 

field strength. 

 

The system with the highest magnetic field strength is the Unity system from Elekta (shown in 

Figure 2 (a)). This system is being investigated by a founding consortium of seven centres in the UK, 

Europe and USA. Their original design built in Utrecht is based on a 1.5 Tesla clinical magnet (Philips, 

Achieva) with a small gap in the gradient coil and magnet windings [17]. The beam is on a rotating 

gantry and passes through the superconducting cryostat avoiding a small range of angles where the 

superconductor is connected. The electron gun resides in a zero field zone and angle specific shim 

settings are further used to remove the influence of the gantry on the image. Out of all the systems this 

magnet comes closest to the performance and imaging capability of a standard diagnostic scanner. 

 

The only other system that can be described as ‘high field’ in MRI-Linac terms, is the 1.0 Tesla 

Australian phase II prototype [18] located in south west Sydney. The basis for this system is the open 

magnet design shown in Figure 2 (b). This includes dedicated gradient and RF coils which maintain the 

patient opening and permits orientation of the patient and beam in either direction, making it a versatile 

imaging and treatment unit. This system is also different to the others in that it has a fixed gantry, 

providing flexibility in design and also greater efficacy for proton therapy. However, this also means 

that to recreate multiple beam angles the patient has to be re-positioned or, for full arc therapy, a patient 

rotation system has to be used [19]. 

 

The Aurora-RT system (from MagnetTx Oncology Solutions) was developed from the 

University of Alberta group who provided some of the earliest experiments and technological 

developments in the MRI-Linac field. Their research began in 2008 with a head-only prototype [20] 

which has since translated into the current whole-body patient version operating with a 0.5 T magnet 

(Figure 2 (c)). This system is an inline configuration, but in contrast to the Australian version has a 

combined rotating biplanar magnet and beam gantry. The magnet has a number of unique features; it is 

a high temperature superconductor meaning it can be turned on and off relatively easily. An iron yoke 

is used within the bore that contains the fringe field within the isocentre so there is minimal effect from 

electron contamination. Both the Alberta and Australian systems can be dismantled into component 

parts and sited in conventional radiotherapy bunkers. 

 

The last on the list in terms of field strength is the MRIdian system [4] shown in Figure 2 (d). At 

0.35 Telsa, it provides sufficient image quality for the purpose of guidance, whilst minimising the 

interactions experienced by higher field systems. The original version of this system utilised radioactive 

cobalt as a radiation source, and was the basis for the MRg clinical trials to date. A newer version of 

this system has since been commercially released which replaces the cobalt source with a linear 

accelerator; existing systems can be upgraded. A particular strength of this system is the integration of 

on-line registration and planning capabilities. 

 

 

3.2 Current status of MRI-Linacs 

 

In 2017 the two commercial systems began patient trials; The honour of the first ever MRI-Linac 

in human treatment went to the Unity system at Utrecht in May, embarking on a small cohort of spine 

metastases patients using 3 or 5 field approach [21]. It was quickly followed in July by ViewRay with 

the first patients treated at Henry Ford Hospital, USA. This marked the successful transition of their 

system into a linear accelerator having already demonstrated a track-record in adaptive radiotherapy on 

the cobalt units since 2014 [22]. 

 

The Unity system is currently in situ or scheduled for imminent installation at a total of 21 clinical 

and research centres across the world. As of early 2018, Viewray had surpassed the 50th system 

milestone and was installing four new linac systems plus an additional cobalt system upgrade. 
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The MagneTx Aurora-RT system was installed in 2013 and provided the first ever images from an 

inline system in 2014. The Australian phase II magnet was installed in 2016 with first images in 2017. 

More recently the first ever vertical images for treatment guidance were demonstrated [16]. Both of 

these prototype systems have successfully implemented the use of an integrated MRg treatment beam 

and first patient trials are eagerly anticipated. 

 

4. Future Developments 
 

The commercialisation of two of the four current systems secures the future of MRI-Linac in 

the clinic, with business cases reliant on many system installations over the coming years. The early 

clinical findings for pancreatic cancer [23] have raised tremendous interest in the community, and 

experts in the field predict that MRI-Linac will become the standard clinical system in radiotherapy 

over the next decades. 

 

In the medium term, the systems described thus far will apply already proven image gating and 

tracking techniques and go on to treat more difficult cancers. In the longer term, the increased accuracy 

facilitated by MRI guidance will also change how radiation is delivered, enabling higher dose, shorter 

course treatments, benefitting both patients and the health system through increased efficiency. 

Furthermore, the functional imaging capabilities of MRI will enable adaptive physiological targeting, 

further boosting treatment efficacy and personalisation. MRI offers a broad range of functional imaging 

capabilities, for example R2
* imaging is correlated with hypoxia [24], diffusion weighted imaging with 

cellularity [25], blood-oxygen-level dependent (BOLD) contrast imaging with neural activity [26] and 

dynamic contrast-enhanced (DCE) imaging with vascular permeability [27]. Acquiring such 

information at every fraction offers the opportunity to target tumour heterogeneity, monitor treatment 

efficacy and enable rapid changes of treatment plans to improve therapy. Ultimately an MRI-Linac 

system that can offer adaptation based on both anatomy and physiology would seem the logical goal of 

this technology. 

 

With the clear growth in MRI-guided x-ray therapy, it would seem natural for scientists and 

clinicians to consider real-time MRI guidance in proton or more generally particle therapy (MRgPT) as 

the next step (Figure 3). Particle therapy offers superior dose distributions over x-ray therapy due to the 

ability to accurately deliver pencil beams that stop within the volumes of interest. The same benefits of 

improved anatomical accuracy and requirements for MR-based solutions to electron density 

calculations apply, and advances made with MRI-Linacs and particularly inline systems will facilitate 

the move to MrgPT. A ‘Future of Medical Physics’ review paper has recently been published on this 

topic [28]. This article provides a broad overview of this exciting work, which includes at least four 

patents describing real-time MRI-guided proton/particle therapy systems, and the various groups that 

have investigated modelling and experiments related to MRgPT. 

Finally we note the research program based in Germany which is developing a ‘proof of 

concept’ system where MR images of a phantom have been acquired with a clinical scanner whilst 

proton beam delivery was occurring [29]. With the compelling rationale for MRgPT, and with the 

advances seen in MRI-Linacs, the possibility of a clinical prototype MRgPT system within the next 5 

years should be not be considered beyond the realms of possibility. 
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Table 1: Configuration details of each of the current MRI-Linac systems in order of magnetic field 

strength. 

 

 

System 

(company) 

Radiation Field Strength Magnet Type Orientation 

Unity (Elekta) 6 MV 1.5 T Closed 

superconductor 

Perpendicular 

 

Australian 4 & 6 MV 1.0 T Open 

superconductor 

Both 

 

Aurora-RT 

(MagnetTx) 

6 MV 0.5 T Biplanar, high temp 

superconductor 

with steel yoke 

Inline 

 

MRIdian 

(Viewray) 

Co or 6 MV 0.35 T Split 

superconductor 

Perpendicular 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of the effect of a magnetic field on photon dosimetry: (i) the normal situation with 

no magnetic field; (ii) an inline magnetic field creates a focussing of electrons (EFE) within the patient 

and of any external contaminating electrons towards the surface; (iii) a perpendicular magnetic field 

causes electrons to move in an arc causing a lateral shift of the intended delivery and a return effect 

upon beam exit (ERE). 
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Figure 2: (a) Elekta’s 1.5 Tesla Unity system at University Medical Centre in Utrecht, The 

Netherlands; This was the MRI-Linac used for the first in man treatments in May 2017 (courtesy of 

Bas Raaymakers, UMC). 
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Figure 2: (b) The Australian MRI-Linac: Photographs of the magnet gap illustrating (left) supine 

positioning and (right) standing positioning that is possible with this open system. The treatment beam 

can be orientated either inline or perpendicular to the magnet bore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (c) Illustration of the Aurora-RT system courtesy of B. Gino Fallone (MagnetTx Oncology 

Solutions, Edmonton, Alberta, Canada). The patient opening has a clearance of 110 cm x 60 cm and 

the table can move laterally to position off-centre treatments at the magnet isocentre. 
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Figure 2: (d) A new linear accelerator version of the MRIdian system at Washington University in St. 

Louis, USA (photograph courtesy of Olga Green, PhD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Artist’s impression of a future MR-guided proton therapy facilty. 


