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A B S T R A C T

Cancer is a devastating disease that touches almost everyone and finding effective
treatments presents a highly complex problem, requiring extensive multidisciplinary
research. Mathematical and computational modelling can provide insight into both
cancer formation and treatment. A range of techniques are developed in this thesis
to investigate two promising therapies: oncolytic virotherapy, and combined oncolytic
virotherapy and immunotherapy. Oncolytic virotherapy endeavours to eradicate cancer
cells by exploiting the aptitude of virus-induced cell death. Building on this premise,
combined oncolytic virotherapy and immunotherapy aims to harness and stimulate
the immune system’s inherent ability to recognise and destroy cancerous cells. While
both of these therapies are showing increasing success, there are still major challenges
facing these therapies and the goal of this thesis is to overcome obstacles that arise
from treating cancer with viruses.

Using deterministic and agent-based mathematical modelling, perturbations of treat-
ment characteristics are investigated and optimal treatment protocols are suggested.
An integro differential equation with distributed parameters is developed to character-
ise the function of the E1B genes in an oncolytic adenovirus. Subsequently, by using
a bifurcation analysis of a coupled-system of ordinary differential equations for onco-
lytic virotherapy, regions of bistability are discovered, where increased injections can
result in either tumour eradication or tumour stabilisation. Through an extensive hier-
archical optimisation to multiple data sets, drawn from in vitro and in vivo modelling,
gel-release of a combined oncolytic virotherapy and immunotherapy treatment is op-
timised. Additionally, using an agent-based modelling approach, delayed-infection of
an intratumourally administered virus is shown to be able to reduce tumour burden.

This thesis develops new mathematical models that can be applied to a range of can-
cer therapies and suggests engineered treatment designs that can significantly advance
current therapies and improve treatments.
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d distance from a tumour cell to the nearest cell on the tumour edge
dmax radial distance that nutrient reaches by diffusion from the tumour edge
rmin minimum distance between neighbouring cells for proliferation to occur
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introduction 2

With more than 10 million new cases each year, cancer is one of the most devastating

diseases worldwide. Cancer is the collective name given to a group of illnesses sharing

one commonality: uncontrollable cell division that spreads into surrounding tissues.

Progress in developing curative treatments for this disease is slow, despite the years

of work by scientists and clinicians. Developing effective cancer treatments is a highly

complex, multidisciplinary problem that requires extensive research and creativity.

Oncolytic virotherapy is an emerging cancer treatment that uses virus replication

to destroy cancer cells. This therapy originated from observations of accidental viral

infections causing remission in cancer malignancies. Competent and specific viruses

which attack tumour cells but not healthy cells have been made with advancements in

the field of genetic engineering. The current state of this field includes proof of feasib-

ility for a single-shot virotherapy cure and clinical confirmation of the intratumoural

herpes simplex virus therapy for metastatic melanoma (Russell et al., 2012).

Oncolytic viruses are also being investigated as immunotherapy agents for cancer

treatment. Combined virotherapy and immunotherapy is a new approach that uses

a virus’ ability to lyse tumour cells (leading to the release of soluble antigens and

danger signals) to drive an antitumour immune response (Bommareddy et al., 2018).

This immune response then results in immune cell induced apoptosis (programmed

cell death) of cancer cells. New strategies have been developed to maximise this im-

munotherapeutic potential through the addition of immunostimulatory cytokines to

viral genes or combined injections of viruses and immune cells (Oh et al., 2017).

Mathematical and computational biology is a growing field of research that is used to

answer important questions in biology. Over the years, a diverse range of techniques

from this field, varying from deterministic to agent-based modelling, have provided

critical insight into cancer treatments. For example, chemotherapy and radiotherapy

application protocols have been significantly improved through the use of mathemat-

ical modelling (Enderling and AJ Chaplain, 2014). More recently, mathematical and

computational models for oncolytic virotherapy and immunotherapy have been de-

veloped (Bajzer et al., 2008; Dingli et al., 2009; Komarova and Wodarz, 2010; Wares et al.,

2015; Titze et al., 2017; Powathil et al., 2013; Mallet and De Pillis, 2006). These models

have laid out a baseline for future modelling to be developed upon.
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Unfortunately, there are still major challenges facing oncolytic virotherapy and com-

bined virotherapy and immunotherapy. Firstly, determining which genetically engin-

eered virus can maximise both viral spread and anticancer cytotoxicity is difficult due

to the unknown correlation between the virus genomes and virus effectiveness. Addi-

tionally, optimal dosage protocols for these treatments (considering treatment length

and administration protocol) are not yet universally established. Overall, significant

characterisation of the virus infectivity and immune response is needed to improve

future iterations of these treatments.

Experimentally, determining ways to overcome obstacles to oncolytic virotherapy

and combined virotherapy and immunotherapy requires significant time and expenses.

Through the use of mathematical and computational modelling, however, these chal-

lenges can be investigated efficiently. The current literature surrounding the mathem-

atics of these therapies is still basic, and novel formulations need to be designed to

investigate these therapies further.

In this thesis, a range of mathematical and computational techniques are developed

to advance the current baseline of oncolytic virotherapy and immunotherapy, and in-

vestigate the challenges facing these treatments. This research aims to answer two

broad questions:

1. How can mathematical and computational tools be used to improve cancer ther-

apies?

2. In what ways can oncolytic virotherapy and immunotherapy be improved?

To answer these questions, techniques that can be applied to a range of other cancer

therapies are developed in this thesis. By using these, different ways of ameliorating

virotherapy and immunotherapy are able to be determined and subsequent analysis

provides insight into the usefulness of mathematics in cancer modelling.

To introduce the background of this thesis, Chapter 2 is a summary of the biology

behind cancer, virotherapy and immunotherapy. Chapter 3 then summarises the de-

terministic and agent-based models related to these fields, along with mathematical

optimisation and analysis techniques employed throughout this thesis. Following this,
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Chapter 4-8 are individual investigations into different oncolytic virotherapy derivat-

ives. These are conducted at two physiological scales: intracellular and extracellular.

In Chapter 4 an integro-differential system with distributed parameters is developed

to model the intracellular dynamics of the virus-tumour interactions. By optimising

the model parameters to in vitro virus titer measurements for gene-attenuations of

the E1B 19 and E1B 55 kDa proteins, specific viral characteristics and the dominant

processes altered by the mutations is determined. To consider how these processes act

at the extracellular level, Chapter 5 investigates the sensitivity of therapy to individual

tumour cell and viral heterogeneity using a system of coupled ordinary differential

equations (ODEs). Bifurcation and local stability analysis are used to establish dosage

protocols that result in tumour extinction.

Chapters 6 and 7 build on the results of Chapter 5, by presenting extracellular invest-

igations into the dynamics of specific virotherapies. To overcome the rapid clearance of

viral particles by the immune system, oncolytic adenoviruses can be conjugated with

Herceptin. In Chapter 6, a system of coupled ODEs is used to represent the experi-

mental data for this specific virus and predict the response of cancer growth to other

treatment protocols beyond those in the experiments. To contrast this investigation, in

Chapter 7 the system of ODEs is then extended to consider a combined virotherapy and

immunotherapy treatment: an oncolytic adenovirus modified with immunostimulat-

ory cytokines interleukin-12 (IL-12) and granulocyte-macrophage colony-stimulating

factor (GMCSF). A sensitivity analysis of optimised parameter values is used to invest-

igate the characteristics of the immune response to virotherapy, and suggest treatment

improvements.

To begin to establish a universal optima administration protocol, a degradable gel-

release mechanism is considered in Chapter 7. Using the mathematical model de-

veloped, perturbations to the application protocol that achieve optimal treatment ef-

fectiveness are determined.

In Chapter 8 a Voronoi cell-based model (VCBM) is developed to assess the sens-

itivity of treatment efficacy to tumour geometry. The VCBM captures the interaction

between oncolytic virus particles and cancer cells in a 2-dimensional setting by us-

ing an underlying agent-based framework, where agents are cells with edges from a
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Voronoi tessellation. Simulations show that delaying the infection of cancer cells, and

thus allowing more time for intratumoural treatment dissemination, can improve the

efficacy of oncolytic virotherapy.

A final summary and discussion of results is presented in Chapter 9, with concluding

remarks in Chapter 10. Additionally, a preliminary investigation that correlates with

the results presented in Chapters 4-8, is presented in Chapter ??. In this work, an

agent-based framework similar to that of the VCBM in Chapter 8, is used to model an

adenovirus expressing tumour necrosis factor (TNF)-related apoptosis-inducing ligand

(TRAIL).

Fig. 1.1 presents an overview of the interactions that will be discussed in detail in

this thesis and the two physiological scales: intracellular and extracellular. A subset of

this diagram is included at the start of each chapter, indicating the specific interactions

investigated in that chapter.

Virus

Tumour

Extracellular
In vivo

Immune

Intracellular
In vitro

Figure 1.1: An overview of the physiological scales of the virus, tumour and immune
system interaction discussed in this thesis. At the start of each chapter a
subset of this diagram is presented that summaries the key concepts in that
chapter.
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The biological background of this therapy can be summarised into three major areas:

(1) cancer, (2) the immune system and (3) oncolytic viruses. The background to these

areas is provided in the following sections:

1. Cancer - Section 2.2 presents an overview of the initial stages of cancer, cancer

development, specific cancers and their attributes, and current treatments and

challenges.

2. The immune system - Section 2.3 presents an overview of the immune response

in general, the immune response to cancer, and the immune response to viruses.

3. Viruses - Section 2.4 introduces the adenovirus (an important oncolytic virus),

followed by an overview of the virus replication cycle, the function of the E1B

genes of an adenovirus, viral movement, current virotherapies and challenges,

and combined virotherapy and immunotherapy.

A significant amount of published experimental data is used in this thesis and, as

such, the techniques around how this data is collected are explained in Section 2.5.

To understand the specific biological background in this chapter, a brief overview of

biology is provided in Section 2.1.

2.1 biological levels : genes/cells/tissues/systems

Biology is the science of living organisms that exist across a large range of physiological

scales. Fig. 2.1 summarises the biology at the different physiological scales considered

in the interaction between an oncolytic virus and tumour cells. Genes and deoxyribo-

nucleic acid (DNA) exist at one of the smallest possible scales in cancer biology (Kaiser

et al., 2007). Genes are located in the cell nucleus and are the basic physical and func-

tional unit of heredity. Genes are made of DNA, a double helix carrying genetic in-

structions for the development, function, growth and reproduction of organisms and

viruses. A genome is an organism’s complete set of DNA, including all of its genes.

In humans, a copy of the entire genome is contained in all cells that have a nucleus

(Kaiser et al., 2007).
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Physiological scale

Tumour cells

Immune cells

Viruses

TRAIL
Cytokines

Tumour local microenvironment

DNA and 
genes

Antigen
Antibody

Figure 2.1: Overview of the physiological scales of the biology presented in this thesis.

Building up in scale, there are large classes of molecules and proteins that are crucial

to the immune system. Antibodies are large, Y-shaped proteins produced mainly by

plasma cells. They are used by the immune system to neutralise pathogens, such as bac-

teria and viruses (Janeway et al., 2005). Monoclonal antibodies are made by identical

immune cells that are all clones of one parent cell. Monoclonal antibodies can have

monovalent affinity, meaning that they bind to the same part of an antigen that is recog-

nised by the antibody. Antigens are any substance that stimulate the immune system

to produce antibodies and cytokines. Cytokines are signalling molecules that control

cell activities. They allow immune cells to communicate and generate a coordinated,

robust response to a target antigen (Janeway et al., 2005).

Viruses are microscopic packages of DNA (Kaiser et al., 2007). They are classified as

non-living as they are unable to reproduce without a host cell. The exterior protective

of a virus is called a capsid. For some viruses, the capsid is surrounded by an additional

envelope which is used to help viruses avoid the host immune system (Kaiser et al.,

2007). Through infection of cells, virus antigen (or viral genome) is released into the

microenvironment were it can be detected by immune cells and induce an immune

response (Janeway et al., 2005).
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Cells are the basic structural, functional, and biological unit of living organisms

(Alberts et al., 2013). Cells provide structure for the body, absorb nutrients and carry

out important functions. Cells that group together form tissue and then organs. Other

cells, such as immune cells, scavenge the body for possible threats and protect humans

from infection and disease. At the tissue and tumour level, all of the biological scales

interact to promote or inhibit tumour growth.

2.2 cancer

2.2.1 Initial formation

Cancer begins at the genetic level and starts from the mutation of a single gene (De Pil-

lis and Radunskaya, 2001). These mutations occur due to an array of lifestyle, environ-

ment and hereditary factors. Genetic mutations that cause cancer lead to accelerated

cell division and inhibition of programmed cell death (O’Connor et al., 2010). These

genetic mutations then result in large populations of contiguous damaged cells known

as tumours.

Tumours are heterogeneous and are made up of many different cells (De Pillis and

Radunskaya, 2001). Due to over proliferation and space limitations, cancer cells are able

to push out normal cells in the surrounding tissue and form densely packed groups.

Normal tissue, lymphocytes, macrophages, and other types of cells can either grow

at the tumour site or are recruited to the tumour through chemotaxis (De Pillis and

Radunskaya, 2001). These cells ends up forming part of the tumour and become known

as the tumour stroma.

2.2.2 Development and growth

Excessive cancer cell proliferation, spatial limitations and interstitial pressure all in-

fluence the shape of a tumour. Furthermore, the location of the initial tumour (e.g.

which organ the tumour starts in or the tumour’s proximity to the bone) can have
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significant effects on the geometry and shape that the tumour forms. If there are no

spatial limitations for proliferating cancer cells, then a roughly spherical tumour will

form, similar to that of a hanging drop tumour spheroid (Weiswald et al., 2015), see

Fig. 2.2(a). When there is an obstruction above and below a growing cancer cell pop-

ulation, the tumour will form a more cylindrical shape. This obstruction, for example,

could be stiffer stromal tissue, similar to that seen in breast ductal carcinomas in situ

(DCIS) (Kim et al., 2011d), see Fig. 2.2(b). Additionally, in certain cancers, the cells on

the periphery of the tumour can become invasive cells, allowing them to degrade the

surrounding extra-cellular matrix (the structure and support of cells) and invade the

space of nearby cells (Jiao and Torquato, 2011). These tumours form invasive branches

that can spread into surrounding tissue, see Fig. 2.2(c).

The cell cycle is the series of stages that occur when a cell duplicates and divides.

If a healthy cell in the tissue enters the proliferative stage of the cell cycle, it will only

divide if there is sufficient surrounding space. Cancer cells, however, ignore the spatial

requirement and divide uncontrollably, forming regions of densely packed cells.

Pressure from over proliferating cancer cells restricts the diffusion of oxygen and

nutrients (such as glucose) from the blood vessels. As the tumour grows larger, insuf-

ficient nutrients reach cells within the centre of the tumour and the tumour reaches

a diffusion-limited steady state. The cells towards the centre then form a quiescent

tumour cell population (Folkman and Hochberg, 1973; Sherar et al., 1987).

Quiescent cells enter into a state of dormancy, whereby their growth is arrested in the

non-proliferative phase of the cell cycle (Zhang et al., 2016). To counteract this, tumours

release tumour angiogenesis factor (a growth factor) that stimulates the creation of new

capillaries so as to provide nutrients to the necrotic and hypoxic regions. This process

is known as vascularisation. If the nutrient supply to quiescent cells increases then cell

proliferation may resume (Potmesil and Goldfeder, 1980).

The later stage of a tumour’s life cycle can be the most difficult to treat. At late stages,

the inner core of a tumour will be necrotic tissue, surrounded by a shell of quiescent

cells, and an outermost layer of live, proliferating cells (Folkman and Hochberg, 1973;

Sherar et al., 1987). Individual or small groups of cancer cells may then break away from
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(a)

(b) (c)

Dispence cell 

suspension

Form hanging

drop

Hanging drop Spheroid

Figure 2.2: Different shapes seen in cancer experiments and treatments. In (a) is an
illustration of the hanging drop tumour spheroid (inspired by image pub-
lished in Horman et al. (2013)). In (b) is an illustration of the ductal car-
cinomas in situ (DCIS) growth (Image source: National Cancer Institute
(http://www.cancer.gov) ). In (c) is an image of invasive tumour branches
(first published in Jiao and Torquato (2011)).

the primary tumour and initiate a new tumour in another location called a metastasis

(Chaffer and Weinberg, 2011).

Apoptosis and necrosis are the primary modes of cell death. Apoptosis plays an

essential role in the homeostasis of multicellular organisms (Kim et al., 2006a). Failure

of cells to undergo apoptosis allows cells to grow unchecked, resulting in the initial

stages of cancer (Kim et al., 2006a). Apoptosis is a mode of cell death where the cell

is an active participant. It can be induced by immune cells, such as killer T cells and

natural killer cells. In comparison, necrosis is associated with premature death of cells

in living tissue. It can be caused by viral infection or from cells receiving insufficient
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nutrients (such as oxygen and glucose). When a cell undergoes necrosis, it swells and

then ruptures and the contents leak out.

2.2.3 Specific cancers and their attributes

The treatment strategy and prognosis for a cancer patient will often differ based on

the type of initiating cell. Cancer cells have access to different levels of nutrients and

space to grow depending on where they are located in the body. This can significantly

influence the growth rate of a tumour. In this thesis, treatments for four types of cancer

are presented: breast cancer, melanoma, lung cancer and cervical cancer.

2.2.3.1 Breast cancer

Breast cancer results from abnormal growth of cells lining the breast lobules or ducts.

There are several different types of breast cancer and in this thesis the MDA-MB435

type is considered. This is because this breast cancer is known to express high levels

of the the monoclonal antibody Her2/neu+. This monoclonal antibody is found over-

expressed on the surface of 20-30% of breast cancer cells (Slamon et al., 1987). Herceptin

is a Her2/neu-specific monoclonal antibody that is used regularly in breast cancer treat-

ment as it recognises and binds to Her2 (Kim et al., 2011a) (see Fig. 2.3). In this thesis,

an oncolytic virus modified to express Herceptin is examined for its effectiveness on

MB435 breast tumours.

2.2.3.2 Melanoma

Melanoma is a type of skin cancer which develops from the pigment-containing cells

known as melanocytes. The primary cause of melanoma is over-exposure to ultraviolet

light (UV). To measure melanoma growth under treatment, experimentalists often use

B16-F10 melanoma tumours, as this cell line grows aggressively and cures have rarely

been reported (Choi et al., 2012a).
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2.2.3.3 Lung Cancer

Lung cancer begins in the lungs and the mutations causing this type of cancer are

often linked to smoking (Gibbons et al., 2014). Lewis lung carcinoma (LLC) is the only

reproducible syngeneic lung cancer model (i.e. can be grown in mice). As such, exper-

imentalists regularly use LLC cells to predict the effectiveness of treatments on lung

cancer.

2.2.3.4 Cervical cancer

Cervical cancers grow in lining of the cervix. SK-OV3 cervical cancer cell lines are used

in mice to test treatment effectiveness for cervical cancer. These cells form adenocar-

cinoma, a less common and more difficult to diagnose cervical cancer. Experimental-

ists use SK-OV3 cells as they express Her2/neu+, a monoclonal antibody which, like

MDA435 breast cancers, responds to treatment with Herceptin (Kim et al., 2011a).

2.2.4 Current treatments

The most commonly used cancer treatments are chemotherapy, radiotherapy and sur-

gery. Chemotherapy is a type of cancer treatment that uses anti-cancer drugs that

target and destroy over-proliferating cells in the body. Radiotherapy uses targeted ion-

izing radiation to kill malignant cells. Surgery is the process of physically cutting out

the cancer, and is sometimes used in conjunction with chemotherapy or radiotherapy.

While all these therapies are effective, they do not always result in complete tumour

eradication and can be dangerous for the patient.

A phenomenon of current interest to clinicians is tumour dormancy. There is clinical

evidence that a tumour mass may disappear for a period of time, or at least become

no longer detectable, and then reappear, growing to a lethal size (De Pillis and Radun-

skaya, 2001). In some cases, this phenomenon is seen experimentally under oncolytic

virotherapy, where approximate eradication is achieved, and then tumour regrowth

occurs, see Choi et al. (2012a) and Kim et al. (2006a).
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2.3 the immune system

The immune system is the body’s defence against infectious organisms and cancerous

cells. The immune system is made up of a complex network of cells, tissues and organs

that work collectively to eradicate invading pathogens and damaged cells. Immuno-

therapy is a field of oncology that investigates ways to stimulate an immune system

that is targeted towards cancer. As viruses naturally instigate an immune response,

combined virotherapy and immunotherapy is a promising therapeutic area.

2.3.1 The immune response

The immune system is divided into the innate immune system (the first response) and

the adaptive immune system (the second response). There are three primary cells in

the innate immune system: macrophages, natural killer (NK) cells and dendritic cells

(DCs). Macrophages and DCs form a special subgroup of immune cells called antigen

presenting cells (APCs). These cells are a critical part of the immune system as they

have class II major histocompatibility complexes (MHCs). Almost every cell has class

I MHC and uses it to present antigen. This is essential for the function of killer T

cells (CTLs), as they use the class I MHC on cells to determine whether to induce

apoptosis in a particular cell. However, only cells with class II MHC molecules (e.g.

macrophages and DCs) are able to activate immature helper T cells and immature

killer T cells(Sompayrac, 2008; Janeway et al., 2005).

DCs can be activated by macrophages, infected cells or cancerous cells. When a DC

encounters a dangerous antigen, it travels to the lymph node to activate immature T

cells. At the lymph nodes, it produces interleukin-12 (IL-12) which instructs helper T

cells to produce the cytokines: tumour necrosis factor (TNF), interferon (IFN)-γ and

interleukin 2 (IL-2) (Sompayrac, 2008; Janeway et al., 2005).

Both TNF and IFN-γ help to keep NK cells activated and IL-2 is a growth factor

which stimulates the proliferation of killer T cells, NK cells and helper T cells. NK cells

are also activated by signals from macrophages. In return, activated NK cells release
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cytokines that promote macrophage activation. The primary function of NK cells is to

kill tumour and virus-infected cells by forcing them to undergo apoptosis (Sompayrac,

2008; Janeway et al., 2005).

Immature helper T cells are activated by DCs expressing their cognate antigen. This

takes between four and ten hours. Once activated, the helper T cell proliferates (Som-

payrac, 2008). To activate an immature killer T cell, also known as cytotoxic T lympho-

cyte (CTL), an activated DC presents the CTL with the dangerous antigen (Sompayrac,

2008). The activated killer T cell (or CTL) then goes on to kill cells which are presenting

this antigen. Also helper T cells are suppliers of interleukin-2 (IL-2) which is required

for killer T cells to proliferate (Sompayrac, 2008).

2.3.2 The immune response and cancer

Cancer cells are known to suppress the immune system by the induction of anergy or

tolerance in the host (Janeway et al., 2005). There are, however, ways to overcome this

suppression with administration of immature DCs or immunostimulatory cytokines.

Intratumoural administration of DCs increases the probability of tumour antigen re-

cognition and subsequent activation of helper T cells and killer T cells. Administration

of immunostimulatory cytokines, such as IL-12 or granulocyte-macrophage colony-

stimulating factor (GM-CSF), has been shown to provoke the antitumour immune re-

sponse by instigating the proliferation and activation of local immune cells (Choi et al.,

2012a).

2.3.2.1 Effects of interleukin IL-12

IL-12 is an interleukin naturally produced by DCs and macrophages in response to

antigen stimulation. It promotes the immunity of helper T cells and activation of CTLs

(Choi et al., 2012a). In the presence of IL-12, helper T cells are stimulated to produce

TNF, IFN-γ and IL-2, which in turn stimulates the proliferation of CTLs (Janeway et al.,

2005). IL-12, accompanied with TNF, stimulates NK cells to produce IFN-γ which is

protein that activates macrophages.
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2.3.2.2 Effects of GM-CSF

GM-CSF is a molecule that functions like a cytokine. It is secreted by macrophages, T

cells and natural killer cells. GM-CSF stimulates stem cells to produce monocyte (a type

of white blood cell) that exit the circulation and migrate into tissue, whereupon they

mature into macrophages and dendritic cells. Thus, it is part of the immune cascade,

by which activation of a small number of macrophages can rapidly lead to an increase

in their numbers. GM-CSF also enhances the processing and presentation of antigen on

APCs (Heystek and Kalthoff, 2000). Studies by Choi et al. (2012a) found that GM-CSF

expressed in the tumour tissue strongly recruited APCs to the tumour site.

2.3.3 The immune response and viruses

Human immune systems have a very powerful and effective way of eliminating viruses.

Macrophages and DCs are activated by virus-infected cells through the presentation of

virus antigen. Additionally, virus-infected cells undergo lysis, the process by which the

membrane of a cell breaks down, compromising its integrity. Cytokines and antigens

released during lysis then activate DCs and macrophages (Janeway et al., 2005). These

activated cells then stimulate helper T cells and killer T cells to the presence of the

virus. Helper T cells also secrete specific cytokines for a virus invasion (specifically

type Th1), that provide continual stimulation of killer T cells.

2.4 oncolytic virotherapy

Oncolytic viruses are genetically engineered viruses that selectively infect and lyse can-

cerous cells without causing harm to normal cells (Russell and Peng, 2007). For some

time now, viruses have been investigated as a treatment for cancer. The antitumour

potency of viruses comes from their inherent ability to induce lysis in infected cells

(Kumberger et al., 2016). Additional interest in oncolytic virotherapy arises from the

ability to deliver anti-cancer drugs or immunostimualtory cytokines to the tumour site

using viruses (Lawler et al., 2017; Myers et al., 2007). This allows for high dose and
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localised long-term expression of a drug to be achieved efficiently (Kim et al., 2006a).

It reduces the risk of ineffective dosing and nonspecific toxicity (damage of nearby

healthy cells) (Kim et al., 2006a). In this form, viruses are known as therapeutic vectors.

Viruses can also be engineered to fuse infected cells with neighbouring cells, forming

syncytia (multinucleated cells) that ultimately die (Bajzer et al., 2008).

2.4.1 Adenovirus

Adenoviruses are non-enveloped viruses with an icosahedral capsid that contains a

double stranded linear DNA (Alemany, 2014). The adenovirus is a commonly invest-

igated virus that is showing increasing oncolytic potential. Adenoviruses are known

to deliver transgenes most effectively and has widely been used in clinical applica-

tions (Kim et al., 2006a). Additionally, adenoviruses can bind to a specific carbohydrate

over-expressed on certain types of cancer cells. Genetic modifications of adenoviruses

aim to improve the ability of the virus particles to selectively infect, replicate and lyse

cancer cells.

2.4.2 Replication cycle

The fundamental function of viruses is to infect and replicate within cells. While the

replication of every oncolytic virus differs slightly, they follow essentially the same

cycle. Once inside a cell, viruses undergo the molecular processes of transport, disas-

sembly, integration, transcription, translation, assembly and, finally, export (Kumber-

ger et al., 2016), see Fig. 2.3.

The adenovirus enters the cell via receptor-mediated endocytosis (Wagner et al.,

1999), whereby the genome is maintained inside the virus particle in a highly con-

densed form. Once inside the cell, the adenovirus exploits active transport by the host

cell to get from the cell periphery to the nucleus, (Kumberger et al., 2016). As it is being

transported through the cell cytoplasm, the virus is unpacked and the DNA is released

from inside the capsid.
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Figure 2.3: The replication process of an oncolytic adenovirus. Viruses can either enter
the cell by receptor mediated endocytosis or, if they have been modified
to express Herceptin, they will bind to the Her2/neu receptors on the cell
membrane and enter that way. The virus is unpacked in the cytoplasm
and the DNA is released and enters the nucleus. The DNA then undergoes
strand-displacement replication where only one strand is replicated at a
time. This synthesis releases a single stranded DNA, which is in turn copied
into double strand DNA. These new double stranded DNA then exit the
nucleus and are repacked in the cytoplasm before leaving the cell through
lysis. If the virus has been genetically engineered to express secretable tri-
meric TRAIL, then as the virus replication new TRAIL molecules will be
released from the nucleus and exit the cell.

Once inside the nucleus, the adenovirus’ DNA stimulates the infected cell to tran-

scribe and replicate its genes (Liu et al., 2003; Wagner et al., 1999). The infected cell’s

transcription machinery cleaves the DNA in a strand displacement mechanism. This

is the process by which an initial strand of the DNA is removed and simultaneously

copied. Then the single strand that was removed is reprocessed into a double stranded

DNA (Hoeben and Uil, 2013; Wagner et al., 1999). The progeny DNA is subsequently

packaged into virus particles. After a certain number of virus particles have been gen-
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erated, the cell reaches a maximal capacity and bursts open, undergoing lysis and

consequently dying. All the new virus particles are then released from the cell.

2.4.3 The function of the E1B genes in adenoviruses

Gene-attenuated adenoviruses are emerging as a promising new modality for cancer

treatment. Gene-attenuation is the process by which particular genes of the virus are

deleted or removed (Kim et al., 2002). With the motivation of improving adenoviruses

for cancer gene therapy, genetic attenuation of the E1B gene in adenoviruses has been

investigated for enhanced oncolytic and replication effects. Replication-incompetent

adenoviruses can also be created through gene-attenuation. These are viruses which

are unable to replicate or lyse a cell, and are primarily used as a drug delivery vector.

The E1B gene encodes two distinct tumour antigens, the 19 kDa and 55 kDa proteins,

which are both independently capable of influencing the behaviour of the adenovirus

(Kim et al., 2002; Rao et al., 1992). Oncolytic adenoviruses with perturbations on the

E1B genes have been tested in a range of human clinical trials on throat cancer, glioma,

ovarian cancer, sarcoma, pancreatic cancer and more, see Chiocca et al. (2004); Galanis

et al. (2005); Xu et al. (2003); Vasey et al. (2002); Nemunaitis et al. (2001, 2007).

Experimental studies in mice have shown that the E1B 55 kDa protein could be re-

sponsible for viral potency and non-selective replication (Kim et al., 2002). The potency

of the E1B 55 kDa protein likely derives from a physical association with the p53 tu-

mour suppressor gene (Rao et al., 1992). During the early phase of infection, E1B 55 kDa

counteracts stabilisation of p53 and, therefore, the induction of cell apoptosis. Apart

from interfering with the p53 function during viral infection, the E1B 55 kDa protein

is also required for efficient cytoplasmic accumulation and translation of adenoviral

DNA. Lee et al. (2000) showed that E1B 55 kDa-deletion promoted tumour-selective

replication, however, with reduced cell killing. This reduced potency is likely due to

the loss of efficient cytoplasmic accumulation and translation.

The E1B 19 kDa protein has been shown experimentally to be correlated with the

rate of cell lysis. The loss of E1B 19 kDa enhances adenoviral lytic potency. In infected

cells, the E1B 19 kDa protein blocks DNA fragmentation (i.e. separation of DNA into
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pieces) and premature death of the host cells induced by expression of the E1A proteins

(Kim et al., 2002; Rao et al., 1992). Kim et al. (2002) showed experimentally that U343

glioblastoma brain cancer cells infected by an E1B 19 kDa deleted adenovirus exhibited

obvious cell lysis by 2 days post infection in vitro. They concluded that deletion of E1B

19 kDa increased the rate of cell death by infection.

2.4.4 Viral movement

Intratumoural virus transport is governed by the molecular structure of the tumour

(Wang and Yuan, 2006). At the periphery of a tumour, convection is the dominant

mode of transvascular transport of viral vectors. As such, viral vectors preferentially

accumulate at the border of tumours (Wang and Yuan, 2006). Extracellular transport

once inside a tumour, in the interstitium, is then significantly hindered by the cells and

extracellular matrix (Jain, 1988, 1997; Wu et al., 1993; Yuan et al., 1994). The extracellular

matrix is a network of macromolecules, such as collagen and enzymes, that provide

structural and biochemical support of surrounding cells.

Within the interstitial space, viruses move by diffusion and convection as they cannot

move in a self-directed manner (McKerrow and Salter, 2002). Homogeneous diffusion

of viral vectors through the extracellular matrix is difficult as the size of these vectors

is close to or larger than the space between fibres in the extracellular matrix (Wang

and Yuan, 2006). Additionally, viral vectors may bind to cells and extracellular matrix,

either with the intent to infect or by accident, which further hinders the interstitial

transport (Jain, 1997; Juweid et al., 1992).

2.4.5 Typical treatment application protocol

Treatment application protocols are characterised by their method of administration

and the dosage protocol. For the most part, in tumour treatment, therapy is either

administered intravenously (injected into the blood) or intratumourally (injected into

the tumour). The dosage protocol then defines the magnitude and systemic nature of
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the treatment. For the most part, viruses are administered in discrete injections, as this

is the easiest and most controllable way to administer treatment. Continuous treatment

injections are possible when using materials such as degradable hydrogels (Oh et al.,

2017). Treatment loaded gels can be injected adjacent to a tumour and release the

treatment as the gel degrades.

2.4.6 Current oncolytic virotherapies and challenges

The success and capability of adenoviruses as a cancer treatment is evident from a

range of clinical trials: see for examples Chiocca et al. (2004); Galanis et al. (2005);

Nemunaitis et al. (2001, 2007); Vasey et al. (2002); Xu et al. (2003). For example, Chiocca

et al. (2004) conducted a dose-escalation trial of injections of an E1B 55 kDa attenu-

ated oncolytic adenovirus as a treatment for malignant glioma. None of the 24 patients

treated experienced serious adverse effects; however, only one patient experienced re-

mission. Galanis et al. (2005) undertook a clinical trial of the same virus, but simultan-

eously administered with a chemotherapy drug called MAP. For one patient, antitu-

mour activity was seen that lasted 11 months after the injection. While their clinical

investigations were promising, they also did not achieve complete remission in their

patients.

There have been recent advances of other genetically modified cancer-killing viruses,

for example herpes simplex virus, measles, reovirus and vesicular stomatitis Virus

(Russell et al., 2012). These viruses are currently being tested in clinical trials for a range

of cancer types such as glioma, ovarian cancer, sarcoma, pancreatic cancer, prostate

cancer and bladder cancer (Prestwich et al., 2008; Russell et al., 2012). However, while

research has progressed and is advancing, oncolytic virotherapy is still at an early

stage in its development. Challenges for the field are to select viruses that transiently

suppress but then unleash the power of the immune system to maximize both virus

spread and anticancer immunity. Additionally, more universally effective treatment

protocols need to be developed to overcome the barriers imposed by viral clearance

and tumour structure (Russell et al., 2012).
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Until recently, most studies of oncolytic viruses have focused on the direct antitu-

mour properties of these vectors, (Kim et al., 2007, 2011a; Lun et al., 2005; Martuza

et al., 1991; Thorne et al., 2006); however, there is now an increasing body of evidence

suggesting that the host immune response may be critical to the efficacy of oncolytic

virotherapy, (Choi et al., 2013a, 2012b; Elsedawy and Russell, 2013; Huang et al., 2010;

Melcher et al., 2011). Oncolytic viruses can also be used as cytokine delivery and gen-

erating vectors. On this basis, oncolytic viruses represent a promising novel immuno-

therapy strategy, which may be further combined with existing therapeutic modalities

to create an effective cancer treatment.

2.4.7 Combined virotherapy and immunotherapy

Immunotherapy is a cancer treatment that uses the body’s immune response to target

and destroy cancer cells. The focus of immunotherapy is to overcome cancer’s abil-

ity to suppress the immune system. Novel anticancer immunostimulatory therapies

harnessing pre-existing (ineffective) immune responses have shown remarkable clin-

ical results across several tumour types (Velcheti and Schalper, 2016). However, not all

patients benefit from these agents, and this is likely due to the heterogeneity in the

immune response (Velcheti and Schalper, 2016).

Oncolytic virotherapy can be easily integrated with tumour immunotherapies in the

hope of improving their efficacy (Bommareddy et al., 2018). Oncolytic viruses are useful

in immunotherapy, as they directly lyse tumour cells, leading to the release of soluble

antigens and danger signals, which drive the antitumour response (Bommareddy et al.,

2018). In addition, some oncolytic viruses can be engineered to express therapeutic

genes. An example of a successful combined virotherapy and immunotherapy experi-

ment can be seen in the results of Chard et al. (2015). Using the Vaccinia virus, modified

with a gene that can modulate the patient’s immune system, they found that the time

for which the treatment was effective was longer than without the modification. The

immune protein they inserted was able to reduce the intensity of the immune response

against the virus, allowing it to perform its function for a longer period of time.
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2.5 experimental techniques and data collection

In vitro and in vivo experiments are a way of measuring the validity and efficacy of

new oncolytic therapies. In vitro experiments are performed on cells or biological mo-

lecules outside their normal biological context, whereas, in vivo experiments measure

the effects on living organisms. The protocols of the experiments for data that is used

in this thesis are outlined below.

2.5.1 Virus titer and plaque assay

To determine the concentration of a particular virus stock, in vitro experiments are

performed. In these, aliquots of different dilutions of the stock are prepared, and ap-

plied to susceptible cells in mono-layers. The cells are incubated for a period and then

covered with a nutrient rich gel. During the incubation period the infected cells re-

lease the replicated viruses (progeny). These new viruses are restricted in movement

by the gel, resulting in each infectious particle producing a circular zone of infected

cells, called plaque.

The plaques are counted for each dilution case, focused on those cases with between

10 and 100 plaques. By assuming that each plaque formed is representative of one

infective virus particle, the titre (a measure of the concentration) of the applied solution

can be determined. This is most accurate if there are very few plaques, with those

with 100 plaques determining the original stock concentration to within approximately

±10%. The titre is determined as

[titre] = pfu/mL (2.1)

pfu

mL
=

#plaques
Vd

(2.2)

where pfu is the plaque forming units, d is the dilution and V is the volume. PFU/mL

represents the number of infective particles within the sample unit volume (Baer and

Kehn-Hall, 2014).
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2.5.2 Cell viability (%)

Cell viability is the quantification of the number of live cells at a point in time usually

in an in vitro experiment. It is expressed as a percentage of the total cell population,

measured as the sum of both live and dead cells.

2.5.3 Tumour growth measurements

Changes in tumour volume are used for therapy response monitoring in in vivo exper-

imental studies. Experimentalists can measure tumour growth in non-invasive ways

using image technologies such as MRI or x-rays, however, these are costly. Although

less accurate, many experiments on mice or rats use calipers to measure the size of the

tumour through the skin of the animal. This technique is convenient, cost-effective and

non-invasive (Lee et al., 2015). Assuming an elliptical spheroid shape for a tumour, the

volume can be estimated from the measurements of tumour length and width using

0.523× length×width2.

2.5.4 Polymerase chain reaction (PCR) of viral genomes

Polymerase chain reaction (PCR) is a technique primarily used to measure the amount

of a specific DNA in a sample. Real-time PCR is an assay that monitors the accumula-

tion of a DNA product from a PCR reaction in real time. Experimentalists use real-time

PCR to monitor the amount of viral genome in the blood stream of mice. This is done

by collecting whole blood from the retro-orbital plexus and conducting quantitative

real-time PCR of the sample. Similarly, to assess the distribution of virus within the

mouse after injection, organs are harvested and the number of viral genomes in each

sample is assessed by real-time quantitative PCR.
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2.5.5 Dendritic cell release profile

To investigate the release profile of dendritic cells from a gel by enzymatic degrad-

ation, the supernatant is obtained and viable dendritic cells are counted by trypan

blue staining. Trypan blue is a dye that is cell membrane impermeable and therefore

only enters cells with compromised membranes. Upon entry into the cell, trypan blue

binds to intracellular proteins rendering the cell a blue colour and allowing for direct

identification and enumeration of live and dead cells in a given population.



3

M AT H E M AT I C A L B A C K G R O U N D

26



3.1 modelling techniques in cancer growth and oncolytic virotherapy 27

The mathematical work in this thesis can be divided into four areas: (1) determ-

inistic and distributed-parameter models, (2) agent-based models, (3) techniques for

model optimisation and (4) model analysis. This chapter summarises the literature in

following sections:

1. Deterministic and distributed-parameter models - Section 3.2 provides examples

of relevant mean-field models and distributed-parameter models for cancer growth,

oncolytic virotherapy, and combined oncolytic virotherapy and immunotherapy.

2. Agent-based models - Section 3.3 presents published cellular automata and off-

lattice agent-based models used in cancer therapy.

3. Model optimisation - Section 3.4 provides an overview of the numerical imple-

mentation of the fitting algorithm used to analyse oncolytic virotherapy data and

the goodness of fit statistical calculations.

4. Model analysis - Section 3.5 summarises the Routh-Hurwitz stability criteron,

and the theory behind the parameter sensitivity analysis.

The motivation behind the modelling techniques for cancer growth and oncolytic

virotherapy is given in Section 3.1.

3.1 modelling techniques in cancer growth and oncolytic virother-

apy

Mathematical models are designed to distill the essential behaviour of a biological

system. The biological context and purpose of the interaction determines whether a

system should be modelled deterministically or stochastically. Deterministic (or mean-

field) models are chosen when randomness is not a critical part of the dynamics.

Whereas random-parameter models or agent-based models (ABMs) can be insight-

ful when stochastic relationships and interactions in the system can have a significant

effect.

Mean-field models assume that the interaction of a group of individuals can be ap-

proximated by an averaged response. These models are useful in modelling biological
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systems where interactions between well-mixed populations can be taken as an av-

erage rate, for example, when the rate at which cancer cells proliferate can be taken

as an average rate across the entire population. The two most common deterministic

frameworks in cancer research are ordinary differential equations (ODEs) and partial

differential equations (PDEs).

ODEs are used when the biological interaction considered depends primarily on a

single variable, time. In this way, tumour geometry or viral movement are considered

insignificant. However, if the spatial aspect of cancer treatment modelling is important,

PDEs are able to account for this. In addition, age-structured PDEs have been shown

to be very useful in modelling cancer growth by accounting for the time a cell spends

in the cell cycle (Crivelli et al., 2012).

If the heterogeneity in a biological system is important, distributed (random)-parameter

models or agent-based models can be useful. In this thesis, distributed-parameter mod-

els are those that have one or more parameters drawn from a random distribution.

These are useful in oncolytic virotherapy as viral infection and replication rates can be

heterogeneous across a population of cells and viruses (Miyashita et al., 2015). ABMs

can also be useful in virotherapy, as they allow for the interactions of a population of

cells and viruses to be modelled individually.

A collection of models that represent a scaffold for this thesis are detailed below.

There are many other deterministic and stochastic models that have been used in can-

cer therapies, but they will not be reviewed here.

3.2 deterministic models

3.2.1 Models for cancer

ODE models can be used to describe a growing population of tumour cells. These

models are well-mixed and predominantly do not include any geometric effects. Ex-

ponential growth is one of the simplest cancer ODE models, Eq. (3A), and is useful

for describing tumour growth in its initial stages (Laird, 1964). Another formulation of

tumour growth is the logistic model, Eq. (3B). This model is used when considering
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tumour growth over a longer time as it allows the population to reach a carrying ca-

pacity. The Gompertzian tumour growth model, Eq. (3C), captures a similar dynamic,

albeit with the addition of a ln term. See the formulations of these models below:

dU

dt
= rU, (3A)

dU

dt
= rU

(
1−

U

L

)
, (3B)

dU

dt
= rU log

(
L

U

)
, (3C)

where U is the tumour population, r is the growth rate, L is the carrying capacity, and

t is time.

Both logistic and Gompertz functions model qualitatively similar tumour growth

rates and are known to accurately reproduce experimentally observed proliferating

tumours (Laird, 1964; Dingli et al., 2009; de Pillis et al., 2005). The primary difference

between the two is that the Gompertz function will have a more rapid growth at smal-

ler values of the dependent variable (Laird, 1964), which is time in Eq. (3B). This ini-

tial growth is what makes the Gompertz function a good approximation for tumour

growth, as tumours are known to grow rapidly early on.

There are many mathematical models that consider tumour growth as a more com-

plicated dynamical process, where spatial interactions, multiple cell types and cy-

tokines are considered, see for examples Adam (1986); Anderson et al. (2000); Byrne

et al. (2003); Chaplain et al. (2006); Delgado-SanMartin et al. (2015). In this thesis, the

emphasis is placed more heavily on the modelling of the interaction between tumour

cells and treatment, and as such, this level of cancer modelling is beyond the scope of

the research.

3.2.2 Models of viral dynamics

Mean-field models can be used to add insight into the dynamics of viral-based ther-

apies or the treatment of viral-based diseases. In these models, the viral infection and

replication processes are modelled as average rates across the population. When model-

ling the interaction between uninfected cells, U, and virus particles, V , the populations

are considered well-mixed and spatial dynamics are neglected.
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Human Immunodeficiency Virus (HIV) causes the development of AIDS (Acquired

Immune Deficiency Syndrome, or Acquired Immunodeficiency Syndrome). HIV tar-

gets cells that carry the CD4 cell-surface protein, and the major target of HIV is the

helper T cell (Perelson and Nelson, 1999). After becoming infected, helper T cells pro-

duce new HIV particles. This is similar to what occurs after a tumour cell is infected by

an oncolytic virus (see Section 2.4.2). Perelson and Nelson (1999) developed a system

of mass-action equations to model the important features of HIV pathogenesis:

dU

dt
= s+ rU

(
1−

U

L

)
− dTU−βUV , (3.1)

dI

dt
= βUV − dII, (3.2)

dV

dt
= αdII− dVV . (3.3)

where U is the population of uninfected helper T cells, I is the population of infected

cells, s is the rate at which new uninfected cells are created from sources within the

body, dT is the death of T cells cells, β is the infection rate, dI is the rate of cell lysis, α

is the number of new cells created through lysis and dV is the decay rate of the virus.

The proliferation of uninfected T cells is modelled using the logistic function, Eq. (3B).

Perelson and Nelson (1999) used their system to help guide future treatment strategies

of HIV.

While HIV and oncolytic viruses are different, they both undergo infection and rep-

lication in a similar manner. As such, there is a large cross-over between mean-field

models in oncolytic virotherapy and HIV. There are many other mean-field models of

HIV (e.g. (Li and Shuai, 2010; Bonhoeffer et al., 1997)) that share similar features to the

models for oncolytic virotherapy detailed in the following section.

3.2.3 Models for oncolytic virotherapy

Mathematical models have been used to describe the interaction between an onco-

lytic virus and a tumour, either on a theoretical basis or applied to data. Predomin-

antly, these models are ODE systems (similar to Eqs. (3.1)-(3.3)) where the interactions



3.2 deterministic models 31

between cancer cells and virus particles are assumed to occur at average rates across

the population.

Komarova and Wodarz (2010) developed a simple base model for virotherapy:

dU

dt
= Uf(U, I) −βIg(U, I), (3.4)

dI

dt
= βUf(U, I) − dII, (3.5)

where f(U, I) governs the cancer growth and death processes and g(U, I) is the rate

of infection. In this model, the viral population and its corresponding dynamics are

assumed to be constant and not modelled explicitly. Komarova and Wodarz (2010) ana-

lysed this general system and found that if the viral spread (i.e. g(U, I)) was sufficiently

fast, the tumour could be eliminated.

An example of a more complex model for oncolytic virotherapy can be seen in the

work by Wodarz (2003). Wodarz (2003) studied the conditions under which virotherapy

could lead to tumour remission for a non-replicating versus replicating virus. Wodarz

(2003) found that for replication-competent viruses, the efficacy was optimal when the

rate of virus-induced cell killing was kept small. In contrast, for replication incompet-

ent viruses the optimal antitumour effectiveness occurred when rate of virus-induced

cell killing was maximised.

One of the first models that explicitly accounted for the viral population was de-

veloped by Bajzer et al. (2008). Conducting a bifurcation analysis of their system, these

authors discovered stable oscillations in the tumour population emerging from a Hopf

bifurcation. While the concept of an oscillating tumour may seem unusual, such beha-

viour has been observed experimentally (Titze et al., 2017).

Titze et al. (2017) developed a model, analogous to Bajzer et al. (2008)’s, for treatment

of glioblastoma growth with an oncolytic adenovirus:

dU

dt
= rU− dU−βUV , (3.6)

dI

dt
= βUV − δ(V)I, (3.7)

dV

dt
= pI− dVV , (3.8)
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where p is the release rate for new virions and δ is the infected cell death function.

Matching their model to data, Titze et al. (2017) found that the treatment was predicted

to give long-term tumour recurrence, similar to the original oscillating tumour beha-

viour suggested by Bajzer et al. (2008).

Some extensions to the basic oncolytic virotherapy models above can be seen in the

works by Dingli et al. (2006, 2009); Novozhilov et al. (2006); Karev et al. (2006). Dingli

et al. (2009) developed a system of ODEs that modelled the process of syncytium (virus-

infected cells fusing together):

dU

dt
= rU ln

(
L

U+ I+ s

)
−βUV − ρUI, (3.9)

dI

dt
= βUV − dII+ λρUI, (3.10)

dV

dt
= α(I+ s) −ωV −βUV , (3.11)

ds

dt
= (1− λ)ρUI− dIs, (3.12)

where s is the number of syncytia, ρ is the rate at which additional syncytia are cre-

ated and 1− λ is probability of syncytia fusing. Dingli et al. (2009) found that tumour

eradication could only occur if the population of uninfected cells decayed faster than

the cells incorporated in syncytia. By analysing their framework through a bifurcation

and stability analysis, they discovered stable oscillations in the tumour cell population

emerging from a Hopf bifurcation. Note that in this model, a variation of the Gompertz

function (Eq. (3C)) model was used to model tumour growth.

As illustrated in the results of Bajzer et al. (2008) and Dingli et al. (2009), bifurcation

analysis can be fundamental in finding conditions for successful oncolytic virotherapy.

Novozhilov et al. (2006) showed using a bifurcation analysis that there is a region of the

parameter space where trajectories form a family of homoclinics to the origin. A homo-

clinic orbit is a trajectory which joins a saddle equilibrium point to itself and yields

an orbit of infinite duration. This finding was reinforced again by Berezovskaya et al.

(2007), who showed how certain models possess a dynamical regime of deterministic

extinction through the presence of homoclinics. From the biological point of view, the
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existence of homoclinic orbits suggests that tumour cells can be eliminated with time

and complete recovery is possible.

3.2.4 Models for the immune response to cancer

For many years, researchers have turned to mathematical modelling as a way of under-

standing the complex interactions of immune cells in the tumour microenvironment.

One of the first mathematical models of immunotherapy was a system of ODEs de-

veloped by De Boer et al. (1985) to model the activation of macrophages and subsequent

antitumour immune response. Their model formed the basis for the development of

many other models of the tumour-immune interaction, such as the model developed

by de Pillis et al. (2005) to describe the role of natural killer (NK) cells, N, and killer T

cells, K, in tumour surveillance:

dU

dt
= rU

(
1−

U

K

)
− cNU−D, (3.13)

dN

dt
= σ− fN+

gU2

h+U2
N− pNU, (3.14)

dK

dt
= −mK+

jD2

k+D2
K− qKU+ rNU, (3.15)

where D = d
(K/U)λ

s+ (K/U)λ
U (3.16)

where the tumour growth was modelled logistically (Eq. (3B)), and both NKs and

killer T cells were able to kill tumour cells. Using a parameter sensitivity analysis,

de Pillis et al. (2005) suggested that the model can predict which patients may posit-

ively respond to treatment. Computer simulations of their model also highlighted the

importance of killer T cell activation in cancer therapy.

Additionally, there has been recent work on developing models that consider the

immune response to combined immunotherapy and virotherapy, such as the work of
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Wares et al. (2015) and Kim et al. (2015). The work of Kim et al. (2015) looked at the

effect of an oncolytic virus expressing 4-1BBL and IL-12 on the immune response:

dU

dt
= rU−β

UV

N
− k(I)

UT

N
, (3.17)

dI

dt
= β

UV

N
− dII− k(I)

IT

N
, (3.18)

dV

dt
= uV(t) +αdII− dVV , (3.19)

dT

dt
= sT (I) + pA− dTT , (3.20)

dA

dt
= sA(I) − dAA, (3.21)

where T is the number of T cells at the tumour site, A is the number of APCS at the

tumour site, N is the number of cells, uV(t) is the rate at which new virus particles

are injected into the system, sT (I) is the activation rate of T cells by infected cells, p is

the activation rate of T cells by APCs, and T cells and APCs die at rates dA and dT .

Conducting a parameter sensitivity analysis of their model, Kim et al. (2015) found that

combinations of specialist viruses that express either IL-12 or 4-1BBL might initially act

more potently against tumours than a virus that expresses both.

A major difference between the model of Kim et al. (2015) and de Pillis et al. (2005)

was the use of frequency-dependent infection terms, βUV/N, in place of mass action,

βUV . Frequency-dependent terms are common in epidemic modelling as they allow

for interactions to occur at a rate dependent on the frequency of the constituents as op-

posed to the total number. The primary difference between these two modelling terms

is that mass action assumes that the infection rate increases with either an increase in

the pathogens or host. Whereas, the frequency-dependent infection rate assumes that

the infection rate increases with the prevalence (freuqency) of infection.

Wares et al. (2015) then extended the model of Kim et al. (2015) in Eqs. (3.17)-(3.21)

to include discrete DC injections and subsequent interactions. Through perturbing the

dosage strategy, Wares et al. (2015) found that it is more effective to treat a tumour

with immunostimulatory oncolytic viruses first followed by a sequence of DCs than to

alternate virus and DC injections. While insightful, there is still a considerable amount

of development needed for these models. For example the effects of the helper T cell
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were not modelled explicitly by Kim et al. (2015) and the immature and active states of

the DCs were not considered by Wares et al. (2015).

3.2.5 Models with distributed (random) parameters or delays

Time delays are intrinsic to the viral infection and replication processes. Most math-

ematical models of viral dynamics account for the intracellular delay between viral

infection and the appearance of new viral progeny using a constant delay parameter,

see Herz et al. (1996); Nelson et al. (2000); Nelson and Perelson (2002); Pawelek et al.

(2012); Wang et al. (2009); Zhu and Zou (2008). For example, Herz et al. (1996) developed

the below model to account for the intracellular phase of the hepatitis B viral life cycle:

dU

dt
= λ− dU−βUV , (3.22)

dI

dt
= β(t− τ)U(t− τ)V(t− τ)e−āτ − aI(t), (3.23)

dV

dt
= kI− uV , (3.24)

where λ is the influx of cells, d is the death rate, τ is the delay in viral production,

ā is the death rate for infected cells that have not started producing virus, a is the

death rate of virus-producing infected cells, k is the rate of virus production and u is

the rate that free virus particles are cleared. Herz et al. (1996) incorporated a constant

delay into the equivalent mass-action and frequency-dependent infection terms (seen

in the models above). Using their model, Herz et al. (1996) illustrated that frequent

early sampling of plasma virus would provide more reliable estimates of the hepatitis

B virus free virus half-life.

While constant delays are an elegant way to account for the delay in viral production,

they remove the possibility of heterogeneity within the cellular population. Viral infec-

tion, replication and evolution can be stochastic events dependent on the behaviour

of viral genome molecules in each cell (Miyashita et al., 2015). Distributed delays can

be used effectively to model both the delay in viral replication and the heterogeneous

nature of a population of viruses and cells, see for example Banks et al. (2003); Culshaw
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et al. (2003); Elaiw (2012); Li and Shu (2010); Nakata (2011); Shu et al. (2013); Yuan and

Zou (2013).

One of the first mathematical models to use distributed delays to model viral rep-

lication was introduced by Mittler et al. (1998) for HIV-1 (a type of HIV). To model

the dynamics of the virus, Mittler et al. (1998) introduced a time delay between initial

infection and the formation of productively infected cells, assuming that the variation

among cells with respect to this intracellular delay could be approximated by a gamma

distribution:

dI

dt
=

∫∞
0

kUf(t ′)VI(t− t
′)e−mt

′
dt ′ − δI(t), (3.25)

dVI
dt

= [1−H(t)](1− η)pI(t) − cVI(t), (3.26)

dVNI
dt

= H(t)ηpI(t) − cVNI(t), (3.27)

where VI and VNI are the populations of infectious and non-infectious viruses, k is

the infection rate constant, U is the constant density of uninfected target cells, f is the

probability distribution for the delay t ′, t ′ is delay from infection to the time infected

cells begin producing virus, e−mt accounts for the loss of infected cells between the

time of initial infection and the release of the first virus particles, δ is the rate of

productively infected cell death, h is the Heaviside function, η is the drug efficacy, p

is the rate at which productively infected cells release, and c is the clearance rate of

plasma virus particles. Using their model, Mittler et al. (1998) demonstrated that it is

possible to incorporate distributed delays into existing models for HIV dynamics and

from these estimate the half-life of free virus from data.

Following on from the work of Mittler et al. (1998), many mathematical modellers in-

troduced distributed delays to account for the intracellular viral delay, see for example

Culshaw et al. (2003); Nakata (2011); Shu et al. (2013); Yuan and Zou (2013). However,

distributed-delay models have not been employed in oncolytic virus modelling. Addi-

tionally, none of the previous work has considered the effects of stochasticity in the

length of time viruses spend replicating (Miyashita et al., 2015).
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3.3 agent-based models

Agent-based models are a class of computational models for simulating the actions and

interactions of a population of programmed agents within a controlled environment.

Cell-based computational models are a subset of agent-based models that simulate

individual cells as they interact in tissue (Metzcar et al., 2019). Generally speaking,

agent-based models used in cancer research are split into two classes: lattice-based

(cellular automata) and off-lattice models, see Fig. 3.1.

Lattice-based models 
(Cellular Automata)

Off-lattice models

Boundary-based models

Centre-based models

Figure 3.1: An illustration for lattice-based (cellular automata) models and off-lattice
models.

3.3.1 Cellular automaton

In cellular automata (CA) or lattice-based models, each lattice site in a structured mesh

can hold a single cell (Metzcar et al., 2019). At each time step, each cell is updated with

discrete lattice-based rules: remain, move to a neighbouring lattice site, die (vacating

the current lattice site), or divide to place a daughter cell in a nearby site (see Fig. 3.1).

Cellular automata allow individual population interactions to be modelled explicitly

and probabilistically. In this way, heterogeneity and variability in biology can be cap-

tured and simulated.



3.3 agent-based models 38

A common mesh, or tessellation, used in cellular automata is the Voronoi tessella-

tion. This is regularly used by researchers to model tumour cell sheets, (Lobo, 2014;

Kansal et al., 2000a; Schaller and Meyer-Hermann, 2005). A Voronoi tessellation is a

partitioning of a space into regions based on where the lines of the tessellation are the

points equidistant to centre points in the space. The hexagonal lattice in Fig. 3.1 is an

example of a Voronoi tessellation. The first use of the Voronoi tessellation to study the

dynamics of tumour growth in a cellular automaton was undertaken by Kansal et al.

(2000a). Since then, researchers have used Voronoi tessellations successfully in tumour

histopathological image analysis (Kiss et al., 1995; Haroske et al., 1996).

Recently, cellular automata have been derived to explain oncolytic virotherapy in a

more realistic setting. Wodarz et al. (2012) developed a lattice-based stochastic compu-

tational model to understand the principles underlying virus spread in spatially struc-

tured target cell populations. Their model used a two-dimensional grid where each

spot was either occupied by a cell or empty. They defined a set of rules that determ-

ined the interaction between viruses and tumour cells and predicted which pattern

of virus growth (hollow ring, filled ring or dispersive) would occur based on differ-

ent parameter values. They showed that long-term only hollow ring structured viral

patterns resulted in treatment success.

A hybrid PDE-CA approach can also be useful in oncolytic virotherapy modelling.

Paiva et al. (2009) used partial differential equations and cellular automata rules to de-

scribe the multiscale dynamics of tumour growth. Reaction-diffusion equations were

defined for the tissue dynamics of nutrients and viruses. In these equations, cells acted

as sinks and sources of nutrients and viruses depending on their internal states. On

top of this, the cell dynamics were modelled using a stochastic process controlled by

the local concentration of nutrients and free virus at the tissue level. Paiva et al. (2009)

found that successful virotherapy requires a strong inhibition of the host immune re-

sponse and high virus mobility.

A more detailed summary on cellular auatomaton models of tumour development

can be found in the reviews by Moreira and Deutsch (2002) and Boondirek et al. (2010).

For more examples of cellular automata in oncolytic virotherapy and immunotherapy,

see the work of Alarcón et al. (2003); Jiao and Torquato (2011); Frascoli et al. (2016);
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Ghaffarizadeh et al. (2018); Kim and Lee (2012); Dormann and Deutsch (2002); Powathil

et al. (2013); Mallet and De Pillis (2006). The disadvantage of lattice-based modelling is

that cell movement is restricted to a pre-defined grid, and over time, this can restrict

the formation of spatial heterogeneity. Using an underlying off-lattice model reduces

grid-based artefacts that can occur when using a fixed lattice model (Ghaffarizadeh

et al., 2018), producing a more realistic representation of the biological system.

3.3.2 Off-lattice agent-based modelling

Off-lattice agent-based models can be used effectively to simulate mechanical and

physiological phenomena in cells and tissues (Van Liedekerke et al., 2015). In off-lattice

agent-based models, interactions between cells are usually described by forces or poten-

tials, and position changes in cells can be obtained by solving an equation of motion

(Metzcar et al., 2019; Van Liedekerke et al., 2015). A range of frameworks have been

developed to model cellular interactions as centre-based models (Frascoli et al., 2013;

Ghaffarizadeh et al., 2018) or boundary-based models (Meineke et al., 2001). The gen-

eral difference between the two styles of off-lattice models, is that boundaries of cells

play a role in boundary-based models, see Fig. 3.1.

PhysiCell is an example of a centre-based off-lattice agent-based model (Ghaffar-

izadeh et al., 2018). It is an open source physics-based multicellular simulator with a

robust, scalable C++ code for simulating large systems of cells. It allows for biologically

realistic modelling of cell cycling, apoptosis, necrosis and cell volume changes. Physi-

Cell is an example of a hybrid PDE-ABM model, but unlike the work of Paiva et al.

(2009), PhysiCell combines a PDE framework for substrate diffusion with an off-lattice

cell-based model.

Similar to the majority of off-lattice ABMs, PhysiCell models the cell-cell adhesive,

cell-cell “repulsive” forces, drag forces and locomotive forces of a cell i using

mi
dvvvi
dt

=
∑
j∈N(i)

(FFFi,jcca +FFF
ij
ccr) +FFF

i
drag +FFF

i
loc, (3.28)
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where FFFcca and FFFccr are cell-cell adhesive and “repulsive” forces, FFFdrag collects dis-

sipative, drag-like forces, and FFFloc is the locomotive forces. This equation is used to

calculate the cell’s velocity vvvi given a mass mi. The explicit formulations for the force

terms FFFcca,FFFccr,FFFdrag and FFFloc can differ between off-lattice models, depending on

the model’s assumptions.

Frascoli et al. (2013) developed their own computational framework for the migration

of groups of cells in three dimensions. The model focused on the forces acting at the

microscopic scale and the interactions between cells and the extracellular matrix (ECM).

They developed equations of motion and velocity functions by calculating the total

cell-cell and cell-ECM interactions, similar to that of Eq. (3.28). Frascoli et al. (2013)

modelled cell-cell forces by assuming that cells had a compactable outer ring with a

solid core.

Building on these frameworks, off-lattice ABMs have been used effectively in model-

ling tumour elimination by the killer-T-cell response. Kim and Lee (2012) formulated a

hybrid PDE-ABM model of the dynamics of an anti-cancer killer-T-cell response in the

vicinity of a developing tumour. Their work demonstrated the importance of tumour

geometry in determining killer-T-cell effectiveness and the likelihood of eliminating

the tumour.

A boundary-based off-lattice ABM was developed by Meineke et al. (2001) to model

cell movement and arrangement in the intestinal crypt using a Voronoi tessellation. Un-

like a Voronoi tessellation in a cellular automaton, the Voronoi tessellation in Meineke

et al. (2001)’s model changed at every time step based on the interaction forces felt

by a cell, given by a similar formulation to Eq. (3.28). The advantage of this style of

modelling is that cells do not have to retain a fixed circular shape as is evident by the

illustration in Fig. 3.1.

The different off-lattice ABM approaches mentioned above would be useful for mod-

elling oncolytic virus dynamics; however, up until now, these models have yet to be

applied in oncolytic virotherapy.
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3.4 model optimisation

3.4.1 Simultaneous and hierarchical fitting

Simultaneous and hierarchical parameter optimisation (or fitting) methods are useful

ways of obtaining parameters that match a system of ODEs to data. For the hierarchical

optimisation technique, the different dominant processes in a model that relate to each

data set are first determined and the parameters relating to those processes are fit

individually. For the simultaneously fitting algorithm, multiple parameters are fit to

multiple data sets simultaneously and the full collection of data is used to optimise

each parameter in the model. There are examples of hierarchical optimisations in the

work by Kim et al. (2015) (Eqs. (3.17)-(3.21)), where they used they used the algorithm to

optimise a set of tumour time-series measurements under treatment with an oncolytic

virus expressing variations of 4-1BBL and IL-12. One of the earliest illustrations of

the simultaneous optimisation algorithm, can be see in Brewer et al. (2014)’s work on

modelling the trafficking kinetics of insulin-regulated glucose transporter Glut4. Gray

and Coster (2016) also employed the simultaneous fitting algorithm in their work on

modelling Akt, a key mediator of glucose transport in response to insulin.

3.4.2 Numerical implementation

A least-squares fitting method can be used to optimise model parameter values to

data. This is a common technique used to optimise parameters in many different ODE

systems, see the work by de Pillis et al. (2005) and Kronik et al. (2008). The least-squares

fitting method determines an optimal value for the model parameters ppp to approximate

data d(ttt). The vertical distance between a data point and a models approximation to

that point y(ttt,ppp) is known as the residual, i.e. d(ti) − y(ti,ppp). The least-squares fitting

algorithm looks to minimise the L-2 norm of the residual of data to the model evaluated
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for a particular set of parameters, where ttt = [t1, t2, ...., tn] is the discrete time points

measured for the data, i.e.

min
x

||y(ttt,ppp) − d(ttt)||22 = min
x

(
n∑
i=1

(y(ti,ppp) − d(ti))2
)

.

An extension on the least-squares formulation above is weighted least squares. This is

a method used when the response data might not be of equal quality and, therefore,

does not have constant variance. If this is the case, the fit might be unduly influenced

by data of lesser quality. To account for this, a weighted-least squares formulation can

be used. This is where an additional scale factor, the weight, is included in the fitting

process, i.e.

min
x

||w(ttt)(y(ttt,ppp) − d(ttt))||22,

where w(ttt) is the weights. These weights are determined by how much each data point

should influence the final parameter estimates.

In this thesis, the least-squares nonlinear fitting algorithm in Matlab (R2018b, Math-

works 2018) called lsqnonlin was used. The maximum number of function evaluations

was 100×N, where N is the number of parameters, and the maximum number of iter-

ations for each fit was 400. If the value of the objective function crossed 1× 10−6, the

iterations stopped. Each mathematical model was numerically solved using a combin-

ation of the inbuilt ODE solver ode45 or the integral solver integral2.

3.4.3 Goodness of fit statistics

Goodness of fit statistics are used regularly to confirm that an optimisation of para-

meter values in a model to data has produced a reliable representation. The most basic

measure for how well the model approximates the data is through the norm of the

residuals, or residual norm. This is this the squared norm of the vector of residuals:

n∑
i=1

(y(ti,ppp) − d(ti))2. (3.29)

A low residual norm represents a close fit to the data.
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The ability of a model to represent data accurately is also reaffirmed by the coeffi-

cient of determination (R-squared or R2). This is a measurement of the proportion of

the variance in the data that is predictable from the model. In other words, how well

the fit approximates the data. It is calculated using

R2 = 1−

∑n
i=1(y(ti,ppp) − d(ti))

2∑2
i=1(d(ti) − d)

2
(3.30)

where d is the mean of the observed data:

d =
1

n

n∑
i=1

d(ti). (3.31)

An R2 value close to 1 represents a good fit.

Lastly, a Pearson’s r correlation coefficient can also be used to determine whether

the model is a reliable representation for the data. It is calculated using

r =

∑n
i=1(d(ti) − d)(y(ti,ppp) − y)√∑n

i=1(d(ti) − d)
2
√∑n

i=1(y(ti,ppp) − y)
(3.32)

where ȳ is the mean of the model values corresponding to the observed data points us-

ing the formula in Eq. (3.31). Again a value close to 1 represents a good approximation

to the data.

A confidence interval is an interval which might contain the true parameter estimate

and has an associated confidence level. A 95% confidence interval means that given

100 different samples and computing a 95% confidence interval for each sample, then

approximately 95 confidence intervals will contain the true mean value. In other words,

the 95% confidence interval contains the population mean 95% of the time. The con-

fidence intervals for the parameters were calculated using the inbuilt nlparci function

in Matlab (R2018b, Mathworks 2018). This function uses the Jacobian from lsqnonlin in

conjunction with optimised parameter values and corresponding residuals to calcula-

tion the 95% confidence intervals for a parameter.
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3.5 model analysis techniques

A range of analytical techniques can be used to obtain useful information from models

similar to those described above. Bifurcation and local stability theory are useful ways

to study long-term dynamics of an ODE system. A review of bifurcation and local

stability theory is not provided in this thesis. We recommend the reader to the works of

Guckenheimer et al. (1984) and Kuznetsov (2013) for a revision of the theory neccessary.

The Routh-Hurwitz stability criterion is revised in detail below. Once parameter values

that match experimental data have been obtained, a parameter sensitivity analysis is a

useful way to analyse local stability and relative sensitivity for a given metric.

3.5.1 Routh-Hurwitz stability criterion

The Routh-Hurwitz stability criterion provides a necessary and sufficient condition for

the stability of a linear time-invariant control system (Routh, 1877; Hurwitz, 1895). It is

used in bifurcation theory and control theory to determine whether all the roots of the

characteristic polynomial of a linear system have negative real parts Shinners (1998). In

that way, the criterion determines if the equations of a linear system have only stable

solutions without solving the system directly. Consider an nth order polynomial

D(s) = ans
n + an−1s

n−1 + ... + a1s+ a0

the Routh array has n+ 1 rows and is given by the following structure:

an an−2 an−4 ...

an−1 an−3 an−5 ...

b1 b2 b3 ...

c1 c2 c3 ....

... ... ... ...
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where the elements bi and ci can be computed as follows:

bi =
an−1 × an−2i − an × an−(2i+1)

an−1

ci =
b1 × an−(2i+1) − an−1 × bi+1

b1

and the number of sign changes in the first column determines the number of non-

negative roots.

3.5.2 Parameter sensitivity

Sensitivity analysis is a commonly used technique to quantify the dependency of the

output of a mathematical system on the variables or parameters of the model (Saltelli

et al., 2008). It is a useful way of studying the robustness of the results in the presence of

uncertainty. One of the simplest and most common approaches is to change one input

variable, keeping others at their baseline values, and measure the effect on the output

(Murphy et al., 2004). More generally, in a sensitivity analysis a metric is defined to

measure the change in the model value f(t,ppp,f0f0f0) for a set of parameters ppp and initial

conditions f0f0f0 from the original case denoted f(t,ppp∗,f0f0f0∗). This technique has been in a

large majority of the models previously discussed, such as de Pillis et al. (2005); Kim

et al. (2015); Wares et al. (2015).
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Figure 4.1: Subset of Fig.1.1, summarising the investigation of the virus-tumour inter-
action in this chapter

One major challenge in the field of oncolytic virotherapy is to determine which virus, out of a

burgeoning number of engineered derivatives, can maximise both viral spread and anticancer

cytotoxicity. To solve this problem, an in-depth understanding of the virus-tumour interaction

generated by the genetic material of the virus is crucial. The intracellular dynamics of the virus-

tumour interaction can, however, be extremely heterogeneous and difficult to model. In this

chapter, an integro-differential system with distributed parameters is developed to model the

intracellular dynamics of the virus-tumour interaction. Modifications to the viral E1B 19 and

E1B 55 genome are then mapped to specific viral characteristics, and the dominant processes

altered by the mutations determined. This allows for a thorough investigation into which genetic

attenuation would produce the optimal viral vector for cancer therapy.

Some of the work in this chapter was previously published in Jenner et al. (2018a).
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The adenovirus is a virus that has been investigated extensively for its potential as an

oncolytic virotherapy vector, see Section 2.4.1. Due to the popularity of adenoviruses

as a modality for cancer treatment, it is imperative that a way to understand the effects

of gene-attenuation of this virus is developed.

Traditionally, oncolytic virus dynamics are modelled using mean field systems of or-

dinary differential equations (ODEs), in which the infection time and replication time

period are set at the average value across the populations, see Section 3.2.3. In contrast

to those assumptions, it is likely that the proportion of uninfected cells encountering

a virus is initially low, and over time the probability that any uninfected cell has en-

countered a virus particle increases until the population of uninfected cells has been

exhausted. Similarly, life spans of cells, especially infected cells, need not necessarily

be exponentially distributed (Althaus et al., 2009; Dowling et al., 2005). Thus assuming

a common likelihood of cell death can result in biologically inaccurate models. Pre-

viously, modellers have developed ways to take a distributed parameter approach to

modelling viral dynamics of HIV, see Section 3.2.5, and these approaches now need to

be integrated into a model designed to probe the effects of viral genetic variations.

Developing a biologically accurate model that describes the interaction between

gene-attenuated viruses and cell monolayers in vitro is challenging as the viral replica-

tion process is complex, see Section 2.4. With the motivation of improving adenoviral

vectors for cancer gene therapy, Kim et al. (2002) constructed genetically attenuated

adenoviruses and investigated the possibility of enhanced oncolytic and replication ef-

fects. Each gene-attenuated virus constructed differed slightly, depending on the pres-

ence or absence of the E1B 55 and E1B 19 genes.

Due to the nature of the experiments few measurements could be taken by Kim et al.

(2002) during their investigations. Model parameter inference when the data is sparse

is difficult. In this chapter, a parsimonious approach is taken to determine the effects

of the genetic mutations, focusing on the variations to the dynamic processes rather

than determining precise parameter values, using a multi-layer model investigation.

In Section 4.2, a model that considers heterogeneity in the virus-cell interaction is

developed using an integro-differential equation system. The relationships between

the E1B 19 and E1B 55 genes and the downstream characteristics they control in the
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viral-tumour interaction is then determined by applying the model from Section 4.2 to

the results from Kim et al. (2002).

4.1 gene-attenuation of an oncolytic adenovirus

Gene-attenuated replication-competent adenoviruses are emerging as a promising new

modality for cancer treatment. The E1B gene of the adenovirus encodes two distinct

tumour antigens, the E1B 19 kDa and E1B 55 kDa proteins, which are both independ-

ently capable of significantly influencing the adenoviruses behaviour, see Section 2.4.3.

Experimental studies have shown that the E1B 55 kDa protein could be responsible for

viral potency and non-selective replication (Kim et al., 2002; Lee et al., 2000). The E1B

19 kDa protein on the other hand, is correlated with the rate of cell lysis (Kim et al.,

2002; Rao et al., 1992).

Kim et al. (2002) evaluated the possibility of improving the adenovirus for cancer

gene therapy by constructing genetically attenuated adenoviral vectors with different

combinations of E1B genes. Four viruses were constructed: three E1B mutant adenov-

iruses, Ad-∆E1B19, Ad-∆E1B55 and Ad-∆E1B19/55, and one control virus Ad-wt. The

Ad-∆E1B19 virus was designed to be deficient in the E1B 19 gene, whereas the Ad-

∆E1B55 virus lacked the E1B 55 gene. The Ad∆E1B9/55 virus was designed as a form

of negative control, expressing neither the E1B 19 nor the E1B 55 genes. The final virus,

Ad-wt, is the wild-type version of the gene-attenuated viruses. A wild-type virus is

the naturally occurring, non-mutated strain of a virus. The Ad-wt was, therefore, used

as a positive control for the experiments as it contained both the E1B 19 and E1B 55

genes (Kim et al., 2002). A summary of the different viruses and their commonalities is

illustrated in Fig. 4.2.

To investigate how the attenuation of the E1B 19 and E1B 55 genes affect the sys-

tem performance, Kim et al. (2002) performed an in vitro experiment using virus titer

and plaque assays (see Section 2.5.1). Replication competency of the four viruses was

determined by comparing virus titer measurements on two cell monolayers: a Human

embryonic kidney cell line (HEK293) and a brain cancer cell line (U343). Approximately

2− 8× 104 HEK293 and U343 cells were plated onto a 6-well plate for each experiment.
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Figure 4.2: Gene tree diagram. The tree diagram above displays the presence or dele-
tion of the E1B 19 and E1B 55 genes in each of the four viruses engineered
by Kim et al. (2002). First published in Jenner et al. (2018a).

To assay for viral growth, the cells were infected with either Ad-∆E1B19, Ad-∆E1B55,

Ad-∆E1B19/55 or Ad-wt at a multiplicity of infection (MOI) of 1. The MOI is the aver-

age number of virus particles infecting each cell, i.e., the ratio of the number of virus

particles to the number of target cells in a defined space. Supernatant and monolayer

samples were assayed by plaque assay at various times of incubation to determine the

virus titer. Virus titer measurements were calculated as the sum of viral particles within

the pellet and supernatant. The sum of these quantities is assumed to be a proxy for

all intracellular and extracellular virus in the plate at the specific time points.

4.2 distributed-parameter model of intracellular viral-tumour cell

dynamics in vitro

One of the key mechanisms that ensure cancer robustness is tumour heterogeneity

(Karev et al., 2006). Different tumour cells can show distinct morphological and phen-

otypical properties, leading to a variety of responses to treatment. Additionally, the
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ability of viral particles to infect and replicate within a cell can differ substantially

from cell to cell even within the one culture. Timm and Yin (2012) measured virus

production from single cells and found that production rates and virus yields spanned

values over a 300-fold range, highlighting an extreme diversity in virus production for

cells from the same population (Timm and Yin, 2012).

Using distributed delays, mathematicians have made some progress in investigating

heterogeneity in the viral replication process, see Section 3.2.5 and Eqs. (3.25)-(3.25).

To model heterogeneity in the virus-tumour interaction, this chapter considers that the

distribution of viral replication start times and lengths of replication for a population

of viruses can each be drawn from a probability distribution. To derive the model,

the interaction of a single virus and a single cell is first considered. The bold line in

Fig. 4.3 depicts a schematic of the virus population over time in a single infected cell in

the population, clearly accounting for the three stages of the viral replication process:

infection, transport and disassembly; replication; and cell death (see Section 2.4.2).

In the initial stage of infection, the virus is yet to enter the nucleus of the cell, no

replication occurs and the virus population remains unchanged. This period of time

is denoted by τ. After τ it is assumed that the viral DNA arrives in the nucleus and

commences replication at a linear rate k. Replication occurs for a period l after which

the cell will be full to capacity with viral progeny, causing it to burst. After this time

no new viral particles are created by that cell, as the cell has died at time δ = τ+ l.

The viral replication hijacks the usual protein replication machinery of the cell, which

is assumed here to work at a constant average rate. The processes that govern extra-

cellular and intracellular transport of the virus to the nucleus are independent of the

replication machinery of the cell (Tokarev et al., 2009). As such, the length of time the

viruses spends replicating is independent of the time it takes for the virus to enter the

nucleus and start replicating.

It is plausible that there may be more than one viral infection per cell. In this case, the

rate of replication may vary depending on how many virus particles are within one cell.

In the current model, the rate of replication can be thought of as the mean rate over

all possible multiplicities of infection experienced by the cell during the replication
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Figure 4.3: Illustration of the single virus-single cell dynamics. After the initial infec-
tion, the virus particle undergoes transport and disassembly (see Fig. 2.3).
In this time period τ, no new virus particles are created. After time τ the
virus has arrived in the nucleus and undergoes replication at a rate k for
a period l, after which the cell bursts at time δ = τ+ l. The solid line de-
picts the process for a particular cell in the population. The shaded region
is illustrative of the spread due to the heterogeneity of the processes across
a population of viruses and tumour cells. Note the replication rate, k, is
taken to be constant for a given cell, and can be thought of as the average
replication rate (at all MOI experienced by that cell during the replication
period). First published in Jenner et al. (2018a).

process. This is an approximation to what is, in reality, an infection and reinfection

process.

To derive a model for a group of cells infected by virus particles, consider a pop-

ulation of the single virus-single cell interactions, all following the same replication

process represented in Fig. 4.3. Heterogeneity is assumed to exist within the cell and

virus populations and to relate directly to the start time of replication, τ, and the period

of time spent replicating, l. To model the delay between viral infection and the produc-

tion of virus particles, let τ be the random variable that describes the time between the

start of the experiment and the first replication with a probability distribution fτ. Let l

be the random variable that depicts the replication period of the virus particles with a

probability distribution fl.

To calculate the total number of virus particles (intracellular and extracellular) at

any point in time, an expression for the proportion of the initial number of cells C0
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that contain replicating virus particles is derived. This is equivalent to determining the

probability that the time t is in the random interval [τ, τ+ l], i.e. {t > τ} ∩ {t < τ+ l}.

This gives the number of cells with replicating virus particles as

C(t) = C0

∫t
0

∫∞
t

fτ,τ+l(x,y)dydx,

where fτ,τ+l(x,y) is the joint density function for τ and τ+ l. Due to the independence

of τ and l, the joint distribution, and hence C(t) becomes

C(t) = C0

∫t
0

∫∞
t

fτ(x)fl(y− x)dydx,

where this can be derived using either the law of total probability or the Jacobian

matrix transformation. For more detail see Appendix A.

The change in the total virus (both intracellular and extracellular), Υ, at any point

in time t, is the cumulative number of cells actively producing virus multiplied by the

rate at which the virus replicates:

dΥ

dt
= kC = kC0

∫t
0

∫∞
t

fτ(x)fl(y− x)dydx, (4.1)

where k is the mean viral replication rate, taken to be common across the cell popu-

lation of C0 cells. It is assumed each cell is not actively producing virus until time τ,

chosen from the distribution fτ, and that they then produce for a period, l, chosen from

the distribution fl. At time t, the number of cells with virus replication within the nuc-

leus is equal to the proportion of cells that have reached time τ minus the proportion

that have reached time τ+ l.
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4.3 choosing a biologically reasonable distribution

To examine how the overarching model dynamics depends on the choice of underlying

distribution, Eq. (4.1) has been simulated for a range of distributions. Assuming fτ and

fl are uniform distributions gives

fτ(x; τ̄, s) =


1
s for x ∈ [τ̄− s

2 , τ̄+ s
2 ]

0 otherwise

fl(x; l̄, s) =


1
s for x ∈ [l̄− s

2 , l̄+ s
2 ]

0 otherwise
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Figure 4.4: Model simulations based on the uniform distribution. The effects of indi-
vidually varying (a) average replication start time τ̄; (b) average replication
period l̄; (c) replication rate k; and (d) width of the support s, are shown
with the colour indicating the varied parameter value. First published in
Jenner et al. (2018a).
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where the width of the support of fτ and fl has been fixed as s and the mean of each

distribution is denoted by τ̄ and l̄ respectively. Simulations with uniform distributions

are shown for a range of parameter values in Fig. 4.4. It is clear that each parameter

controls a unique dynamic of the virus count from the model.

To compare this then to the dynamics of the model when the distribution is a triangu-

lar distribution, Eq. (4.1) was also simulated with fτ and fl as triangular distributions:

fτ(x; τ̄, s) =


4
s2
(x− τ̄+ s

2) for x ∈ [τ̄− s
2 , τ̄]

4
s2
(τ̄+ s

2 − x) for x ∈ [τ̄, τ̄+ s
2 ]

0 otherwise

fl(x; l̄, s) =


4
s2
(x− l̄+ s

2) for x ∈ [l̄− s
2 , l̄]

4
s2
(l̄+ s

2 − x) for x ∈ [l̄, l̄+ s
2 ]

0 otherwise

where the width of the support for fτ and fl has been fixed as s and the mean of each

distribution is denoted by τ̄ and l̄. The results of the simulations are shown in Fig. 4.5.

The triangular distributions were also fixed to have symmetric shape, thus allowing

the re-parameterisation of the distributions in terms of their mean and support.

Eq. (4.1) is also simulated with fτ and fl as Lévy distributions, see Fig. 4.6. For this

distribution, the variance could not be fixed as Lévy distributions have infinite variance.

Similarly, since Lévy distributions have an infinite mean, the parameter perturbations

cannot be linked in this example to the mean replication start time τ̄ and mean replic-

ation period l̄ in the previous examples. Instead, the location, δ1 and δ2, and scale γ1

and γ2, give the form of the Lévy distribution:

fτ(x, δ1,γ1) =
√
γ1
2π

e
−

γ1
2(x−δ1)

(x− δ1)3/2

fl(x, δ2,γ2) =
√
γ2
2π

e
−

γ2
2(x−δ2)

(x− δ2)3/2
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Figure 4.5: Model simulations based on the triangular distribution. The effects of indi-
vidually varying (a) average replication start time τ̄ (b) average replication
period l̄ (c) replication rate and (d) width of the support s, are shown with
the colour indicating the varied parameter value. First published in Jenner
et al. (2018a).

The overall model behaviour does not depend significantly on the underlying distri-

bution being a uniform, triangular or Lévy distribution (see Fig. 4.4, 4.5 and 4.6). When

fτ and fl are Levy distributions (Fig. 4.6), the model behaviour for the shape and scale

of these distributions reflects the behaviours of the model when the underlying dis-

tribution was the uniform or triangular distribution, albeit with different parameters.

The parameters for the processes of replication - start time and period - are, therefore,

not overly dependent on the nature of the underlying distribution.

Gamma distributions are widely used in engineering, science and business to model

continuous variables that are always positive. These distributions are commonly used

throughout the literature to model biologically plausible delays, see for example Banks

et al. (2003); Blythe et al. (1984); Chattopadhyay et al. (2002); Culshaw et al. (2003); Cush-
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Figure 4.6: Model simulations based on the Lévy distribution. The effects of individu-
ally varying (a) the scale of fτ, γ1 (b) the location of fτ, δ1 (c) the scale of fl,
γ2 (d) the location of fl, δ2, are shown with the colour indicating the varied
parameter value. First published in Jenner et al. (2018a).

ing (1977); Mittler et al. (1998); Nelson and Perelson (2002). Their popularity in the

field of biological modelling is due to their ‘tunable’ distribution that can mimic both

exponential declines and general bell-shaped distributions. Since a gamma random

variable is simply the sum of independent exponential random variables, the gamma

distribution is a natural choice when modelling biological events, such as delay in viral

replication. In this case, the waiting time before replication commences is a random

event occurring in a Poisson process with some mean time between the events.

While the Lévy distribution is commonly used in biological modelling, there are

advantages to choosing the gamma distribution over the Lévy distribution. The gamma

distribution has a finite mean and finite variance, both of which a biological system is

expected to contain, whereas the Lévy distribution does not. Numerically simulating

the Lévy distribution is also costly.
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For the purposes of this study, the distribution of replication start times fτ and the

distribution of replication time lengths fl are set as gamma distributions; although as

discussed above, other distributions of similar character, such as the Lévy distribution,

can also be employed. The two distributions were also reduced to a three-parameter

family by linking the variances of fτ and fl giving the resulting forms below:

fτ(x; τ̄, s) =
sτ̄s

Γ(τ̄s)esx
xτ̄s−1, (4.2)

fl(x; τ̄, l̄, s) =

(
l̄s/τ̄

)l̄2s/τ̄
Γ
(
l̄2s/τ̄

)
el̄s/τ̄x

xl̄
2s/τ̄−1 (4.3)

where τ̄ is the average replication start time, l̄ is the average period the virus particles

spend replicating, and s describes the shape of the distributions. The linking of the

variances could be relaxed, however, the parameter reduction was undertaken here

due to the sparsity of the data that is optimised in the following section.

4.4 optimisation of the virus titer measurements

Due to the limited number of experimental time points compared to the degrees of

freedom in the model, a tiered optimisation was employed to improve the efficiency of

the search of the parameter space, and to identify the dominant processes affected by

each mutation of the E1B gene. Kim et al. (2002)’s virus titer measurements for the E1B

gene-attenuated adenovirus were undertaken on two cell types: human embryonic

kidney cells (HEK293) and brain cancer cells (U343). Based on the assumption that

these cells will have different sizes and cellular machinery, it was hypothesised that the

cell type will predominantly affect the mean replication period l̄. This accounted for

cell differences causing variation in the length of time virus particles spend replicating

in a cell. Leading on from this, it was also hypothesised that the viral replication rate k

was cell type dependent. These hypotheses were then investigated in the primary tier

optimisation below.
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4.4.1 Primary tier optimisation

To reduce the degrees of freedom in the model, the initial number of cells C0 was

assumed to be common across all cell types as the wells were filled to 70% confluence.

The data from Kim et al. (2002) was then normalised by dividing through by the mean

of the first data point of the experiments.

Given the underlying differences in the genetic make-up of each of the oncolytic

viruses, two subgroups in the virus titer measurements for U343 cells were evident,

see Subgroup 1 and Subgroup 2 in Fig. 4.7. Subgroup 1 is comprised of the viral titer

measurements for Ad-wt and Ad-∆E1B19, and Subgroup 2 of the viral titer measure-

ments for the Ad-∆E1B55 and ∆E1B19/55. Based on the experimental work of Kim et al.

(2002), the differences in the gene attenuation of the viruses should largely influence

the replication rate of the virus k. Therefore, the optimisation of the model parameters

allowed for there to be a different replication rate for each subgroup.

To investigate the major cause of the different behaviour between the cell types, all

parameters in the system were initially linked across the cell types. Then, this assump-

tion was relaxed for a single parameter at a time. When the replication rate alone was

decoupled between cell types, leaving the other parameters linked, it was insufficient

to produce an accurate approximation to the data for the first 4 days. In this case, the

model was unable to determine a replication period l̄ that was suitable for both the

HEK293 and U343 cells simultaneously. As seen in Fig. 4.7, the virus production of

these two cell types had very different extremes, 4 days in comparison to 8 days. This

led to the introduction of an average replication period, l̄, that differed with cell type.

A cell-specific mean replication start time τ̄ (with all other parameters linked) was

then investigated to be sufficient to explain the dynamics across the three sub-groups of

data. In keeping the mean replication period distribution common across the cells, the

different steady state virus populations could not be modelled. The best result under

this restriction produced an overly quick growth in virus for U343 cells compared to

the HEK293 cells to compensate for the lack of time the system had to reach the viral

steady state before cell death.
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A summary of the parameter values that represent the broad features of the data

is shown in Table 4.1 and a comparison of the model and data in Fig. 4.7. Some of

these parameters were unique to the individual experiments but others were linked

between the classes of experiments. To optimise the data, the numerical implementa-

tion described in Section 3.4 was followed.
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Figure 4.7: Results of the optimised model, Eq. (4.1) representing the main features
of the virus titer of Kim et al. (2002) for (a) HEK293 cells and (b) U343
cells. The data is represented as large coloured shapes and the model’s
approximation is a solid or dotted black line. The solid grey line represents
the gamma distribution of start times fτ and the dashed grey line represents
the gamma distribution for the replication period fl. The parameter values
are listed in Table 4.1. Note the two distinct groups of dynamics in the U343
cell based experiments: Subgroup 1 comprises of Ad-wt and Ad-∆E1B19,
and Subgroup 2 comprises Ad-∆E1B55 and Ad-∆E1B19/55. First published
in Jenner et al. (2018a).

Table 4.1: Parameter values for Eq. (4.1) representing the main features of the virus
titer of Kim et al. (2002) for Fig. 4.7. Some parameters were linked across the
different experiments as indicated in the table.

Parameter HEK293 Subgroup 1 U343 Subgroup 2 U343
mean replication start time τ̄ 2.4
mean replication period l̄ 0.27 4.8
replication rate k 760 41000 19

shape parameter s 12

The purpose of this optimisation is not to obtain a perfect representation of the data.

Instead, by doing the primary tier optimisation, the parameter values are placed in

the correct region of the parameter space. Due to the sparse nature of the data it is
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not possible to obtain the parameter values with any certainty, but it is possible to

demonstrate the suitability of the model.

It is worth noting the dominance of the Ad∆E1B55 data in the fit for Subgroup 2. This

indicated that an additional mechanism was needed to explain the difference between

the Ad-∆E1B55 and Ad-∆E1B19/55 virus titer measurements, leading to the secondary

tier optimisation below.

4.4.2 Secondary tier optimisation investigation

While the primary tier optimisation in the previous section provided an overall under-

standing of the key dynamical differences between the two cell types and the two sub-

groupings of the U343 cells, it did not explain all the differences within the subgroups.

Considering Subgroup 2 of the U343 cells, it is clear that there exists a difference in the

viral genome population generated by these two gene attenuated viruses: Ad-∆E1B55

and ∆E1B19/55. To examine whether any parameters could capture the characteristic

differences between these results, τ̄, l̄, k and s were individually perturbed about the

values obtained in the primary tier optimisation, see Fig 4.8.

The ranges of parameters explored were dependent on the relative change of the

solution compared to the virus titer data measurement. The fan of model solutions

produced for the perturbations in the parameters shows how effective the model can be

at producing a variety of dynamics. From the model solutions based on the parameter

perturbations, Fig. 4.8, the key differences in the effects of the genes on the virus titer

of Subgroup 2 were inferred.

Perturbations in the average cell replication period l̄, Fig. 4.8(b), resulted in a peel-

off of the virus titer measurements from the steady state. In the case of the shape

parameter s, Fig. 4.8(d), there was no long-term effect on the virus titer measurement,

but rather a displacement of the initial take-off time of the virus titer. This indicates that

changes in neither l̄ nor s were sufficient to describe the main mechanistic differences

between the Ad-∆E1B55 and Ad-∆E1B19/55 viruses. The range of solutions produced

when these parameters are varied, however, still gives insight into their influence on

the model behaviour.
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Figure 4.8: Model simulations for the Ad-∆E1B55 and Ad-∆E1B19/55 viral dynamics
on U343 cells (Subgroup 2). The optimal model parameter dynamics are
indicated as a dotted black line overlaid on the data, represented by col-
oured shapes. The effects of individually varying (a) average replication
start time from 0.5 to 5.5, τ̄ (day−1), (b) average cell replication period 0.1
to 6, l̄ (day−1), (c) replication rate from 0.5 to 30, k (day−1) and (d) distri-
bution shape from 0.01 to 20, s, are shown with the colour indicating the
varied parameter value. First published in Jenner et al. (2018a).

Changes in the steady-state value of the virus titer were observed under perturb-

ations in the replication rate of the virus, k, Fig. 4.8(c), with minor influence on the

gradient of the virus titer measurement. The average replication start time τ̄, Fig. 4.8(a),

appeared to be the major determinant of the difference between the two virus titer

measurements. Not only did it affect the steady state of the model, but also the time

at which viral replication took off. From Fig. 4.8, it can be seen that changes in the

average replication start time alone were sufficient to explain the differences between

the Ad-∆E1B55 and Ad-∆E1B19/55 viruses.
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Figure 4.9: Model simulations for the Ad-wt and Ad-∆E1B19 viral dynamics on U343
cells (Subgroup 1). The optimal model parameter dynamics are indicated
as a dotted black line overlaid on the data, represented by coloured shapes,
and the effects of individually varying (a) average replication start time
from 0.5 to 5.5, τ̄ (day−1), (b) average cell replication period from 1 to
6, l̄ (day−1), (c) replication rate from 10000 to 50000, k (day−1) and (d)
distribution shape from 0.01 to 20, s, are shown with the colour indicating
the varied parameter value. First published in Jenner et al. (2018a).

The two virus titer time-series measurements of Subgroup 2, Ad-∆E1B55 and Ad-

∆E1B19/55, were more dissimilar in their initial levels than the members of Subgroup 1.

Examining the virus titer measurements on U343 cells, Fig. 4.7(b), clear differences can

be seen for each gene attenuated virus. Recall that the mean start time and replication

period, τ̄ and l̄ respectively, for Subgroups 1 and 2 of the U343 cells were different. To

identify the processes that could determine the differences within Subgroup 1, again

τ̄, l̄,k and s were perturbed individually about the Subgroup 1 values to explore the

effects on the dynamics, see Fig. 4.9.
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Figure 4.10: Model simulations for the HEK293 cell viral dynamics. The optimal model
parameter dynamics are indicated as a dotted black line overlaid on the
data, represented by coloured shapes. The effects of individually varying
(a) average replication start time from 1.5 to 2.5, τ̄ (day−1), (b) average cell
replication period from 0.1 to 2, l̄ (day−1), (c) replication rate from 50 to
2500, k (day−1) and (d) distribution shape from 0.01 to 20, s, are shown
with the colour indicating the varied parameter value. First published in
Jenner et al. (2018a).

In the case of the differences in virus titer measurements of Subgroup 1, it was less

clear which parameters could be influencing the changes in viral dynamics. Parameters

τ̄, l̄ and k, Fig. 4.9(a), 4.9(b) and 4.9(c), were all possible determinants of the relatively

small virus titer differences in this subgroup. As the average replication rate k was key

to explaining the differences between Subgroups 1 and 2, it would seem a likely can-

didate to be the dominant parameter that described the differences within Subgroup 1

as well.
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To examine how the variation in the model parameters could describe the effects of

gene attenuation on virus particles infecting HEK293 cells, this analysis was repeated

for the virus titer measurements on HEK293 cells, Fig. 4.10. Note that in this case, it was

more challenging to determine the major differences between the four viruses, as there

was significant overlap in their virus titer measurements. It is possible that all four

parameters varied slightly to produce the minor variability observed between these

four viruses. Kim et al. (2002) intentionally designed the experiments on HEK293 (non-

cancerous) cells as a way of showing the antitumour specific potency of the oncolytic

adenovirus. The primary motivation of the current investigation was to determine

the specific effects of deletion of the E1B 55 and E1B 19 genes on the adenoviruses

antitumour potency. The analysis on the HEK293 cells is included for completeness,

and as expected, the differences between the virus titers for gene-attenuated forms of

the adenovirus were less significant in HEK293 cells, compared to U343 cells.

To generate the parameter perturbation model solutions seen in Fig. 4.8, 4.9 and 4.10

a Monte Carlo simulation was employed as a cross check for the numerical approxim-

ations using ode45 and integral2.

4.4.3 Compatibility map summary

To summarise the effects of parameter perturbations in the model, a compatibility map

is presented in Fig. 4.11. This maps parameter values to three specific dynamics of

the model: “Steady state”, “Start time” and “Rapidity”. Each parameter τ̄, s, l̄ and k

has been perturbed individually and the corresponding increase or decrease on the

dynamics of the model are grouped into two levels: dominant or secondary. In this

way, the models dynamics and parameters can be directly linked so that hypothesises

may be drawn on future improvements on this virus or other viral therapies.

The steady state of the model’s predicted virus titer measurement decreases with

increases in the mean replication start time τ̄. In other words, if the average virus starts

replicating later, then there will be less virus produced overall. Increasing the mean

replication start time also has the obvious effect on the models start time, or take of

time, as the virus titer will start increasing later if τ̄ is larger.
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Figure 4.11: Compatibility map. In this figure, the parameters τ̄, s,k and δ̄ are linked
to the Steady state, Start time and Rapidity of the dynamics. The level
and nature of the effect of the parameter changes on the processes is also
indicated.

Increasing the variance and shape s of the distributions fτ and fl results in the

rapidity of the virus titer population growth decreasing. This indicates that the larger

the variance of the distribution s, the slower the population of viruses grows over time.

Increasing s has a secondary effect of increasing the start time of replication. This can

be interpreted as the distribution of virus particles approaching the same mean-field

behaviour, similar to what was examined in Section 3.2.3.

The replication rate k also has a dominant and secondary effect on the model. In-

creasing k decreases the rapidity of virus titer growth while increasing the start time

of virus titer growth. Increasing the mean time between replication onset and lyse of

cells l̄, increases the virus titer steady state measurement. This is intuitive, since the

longer a virus spends replicating, the more virus will be obtained overall.

Categorising the dynamics of the model with the compatibility map in Fig. 4.11,

allows for the the virus titer measurements in Figs. 4.8, 4.9 and 4.10 to be linked to

specific processes in the model that can be linked to viral characteristics.
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An identifiability analysis of the model parameters has not been conducted in this

chapter; however, the compatibility map in Fig. 4.11 and the parameter perturbations in

Figs. 4.8-4.10 can be used to deduce the identifiability of the model. For a model to be

identifiable, different parameters must generate different probability distributions of

the observable variables. It is clear that all parameters, apart from s, are identifiable in

Figs. 4.8-4.10 as each parameter controls a very specific dynamic which is summarised

by the compatibility map in Fig. 4.11. It is, therefore, unlikely that there will be any

identifiability issues for the data and the model. Future work will consider a method

such as those published by Little et al. (2010) as a way of confirming the identifiability

of the model.

4.5 summary

Using the model presented in this chapter, the mechanisms controlled by the presence

or deletion of E1B 19 and E1B 55 genes can be inferred. First, by considering how the

cell type affects the overall virus titer, it is likely that cell type heavily influences the

average cell replication period l̄ and replication rate k. This can be seen by examining

the results of the optimisation of the three distinct groupings of experiments: HEK293

cells and Subgroups 1 and 2 of the U343 cells, Fig. 4.7 and Table 4.1. By allowing the

replication rate k and replication period l̄ to vary between cell types, the model was

able to capture the dynamic differences between the three groupings. Furthermore, al-

lowing the viral replication rate k to be subgroup specific was sufficient to capture the

major differences in the virus titer measurements on U343 cells. All other parameters

could be linked and identical across the different experiments. From this it would ap-

pear that cell type primarily affects the average replication period and viral replication

rate.

To reinforce the conclusion that the average replication period in a cell, l̄, solely de-

pends on the cell type, perturbations about the optimal values for the three groups of

experiments, Fig. 4.8(b), 4.9(b) and 4.10(b) were examined. Perturbing the replication

period alone was insufficient to capture the variation in each case, except perhaps the

case of Subgroup 1 for U343 cells, Fig. 4.9(b), where the dynamics between the viruses
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were already quite similar. Overall, the average replication period, l̄, was able to repro-

duce the major observed differences (i.e., the primary tier of the optimisation), leading

to the conclusion that this is solely a cell-specific parameter. Allowing for changes

in l̄ between the cell types then enabled the discovery of the specific effects of gene

attenuation on the viral dynamics.

The replication rate was suggested by the experiments of Kim et al. (2002) to be a

key factor in describing the differences in virus titer measurements of the four viruses.

It was clear from Fig. 4.7 that the replication rate, k, of the HEK293 and U343 cells

was different. However, the replication rate was also dissimilar in the optimal fit to

Subgroups 1 and 2 of the U343 cells. As shown in the parameter values, Table 4.1,

changes in k allowed a much higher virus titer measurement to be attained by the

Ad-wt and Ad-∆E1B19 viruses (Subgroup 1) compared to that of Ad-∆E1B55 and Ad-

∆E1B19/55 (Subgroup 2). This leads to the idea that the replication rate, k, is heavily

affected by the presence of the E1B 55 gene, as, unlike Subgroup 2, both viruses in

Subgroup 1 have their E1B 55 gene intact.

Analysing further the results of the tiered hierarchical optimisation, the differences

between the individual viruses and the effects of certain gene combinations were de-

termined, indicating which combination of genes that may be optimal for viral pro-

duction and cell death. First considering the results of the parameter perturbations

for Subgroup 2, Fig. 4.8, the difference in the two virus titer measurements for the

Ad-∆E1B55 and Ad-∆E1B19/55 was clearly explained by changes in the average rep-

lication start time, τ̄. It would appear that deletion of both E1B 55 and E1B 19 delays

the average start of replication of the virus but the deletion of E1B 19 without the dele-

tion of E1B 55 does not, as the difference in the Ad-∆E1B55 and Ad-∆E1B19/55 is the

presence of the E1B 19 gene.

Thus the presence or absence of the E1B 55 gene changed the effect of the deletion

of the E1B 19 gene. When both E1B 19 and E1B 55 were deleted, the start time of viral

replication, τ̄ was delayed. However, in the presence of the E1B 55 gene, deletion of

the E1B 19 gene reduced the replication rate, k, as seen in Fig. 4.9 for the Ad-wt and

Ad-∆E1B19 viruses.
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Linking the two sets of model simulations on Subgroups 1 and 2 (Fig. 4.8 and 4.9)

the modelling indicates that combined gene deletion may give effects beyond the sum

of the parts: deletion of both the E1B 19 and E1B 55 genes compounds the effect of the

deletion the single genes alone. While reducing the replication start time, τ̄, appears

to be sufficient to describe the differences in the Ad-∆E1B55 and Ad-∆E1B19/55, it

is likely a combination of both the replication rate and replication start time that is

reduced and delayed in the deletion of the E1B 19 gene from a virus deficient in the

E1B 55 gene.

Examining the virus titer measurements of the four viruses on HEK293 cells, Fig. 4.10,

it is less evident how the gene attenuation affects the viral characteristics. There is

no clear connection to conclude regarding how the gene attenuation affects the viral

characteristics in the HEK293 cell experiments. However, note that varying the viral

replication start time, τ̄, and the viral replication rate, k, as in Fig. 4.10(a) and 4.10(c),

would be sufficient to explain the small differences between the data sets in this cell

type.

The results of the study are not unique to the choice of distribution. While the under-

lying heterogeneity in the current study is derived from a gamma distribution, many

other distributions can be used and produce similar results as mentioned in Section 4.3.

The dynamics of Eq. (4.1) with the underlying distributions either uniform, triangu-

lar or Lévy distribution, results in similar qualitative dynamics to those presented in

Fig. 4.8, 4.9 and 4.10.

By creating a compatibility map, Fig.4.11, the dynamics of ‘Steady state’, ‘Start time’

and ‘Rapidity’ can be linked to viral characteristics. From this, hypothesis for the effects

of genetically engineering a virus with particular characteristics can be tested. For

example, if the aim was to increase the overall virus titer, then the most effective way

to do this would be to increase the average start time and increase either the shape of

the variance or the replication rate k, as a secondary effect.

By modelling the virus titer measurements for different genetic attenuations of the

oncolytic adenovirus, an understanding can be developed for which viral characterist-

ics ultimately drive treatment efficacy. In Chapter 5, this idea is investigated further by

developing an in vivo extracellular modelling framework for an oncolytic virus treat-
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ing a growing tumour. In this way the viral characteristics of infectivity and lysis rate,

which have been linked in this study to genetic markers, may be investigated for their

influence in the overall efficacy of treatment.
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Figure 5.1: Subset of Fig.1.1, summarising the investigation of the virus-tumour inter-
action in this chapter

While in vitro investigations into oncolytic viruses and their lytic and replication compet-

ency reveal important details about their efficacy, it is only by considering the in vivo nature

of treatment that further understanding of this therapy may be obtained. Currently, much is

still unknown about the sensitivity of oncolytic virotherapy to individual tumour and viral

heterogeneity. Additionally, optimal protocols detailing dose and treatment lengths are not yet

universally established. In this chapter, a set of hierarchically developed models focusing on the

interaction between tumour cells and virus particles engineered to infect and destroy cancerous

tissue are presented. A local stability analysis and bifurcation analysis of these models quan-

tifies the effectiveness of oncolytic virotherapy in vivo in an extracellular context. From this,

conditions driving tumour extinction or survival are determined for a generic tumour-virus

interaction.

The work in this chapter was previously published in Jenner et al. (2018c) and Jenner

et al. (2019).
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Over the past decade, hundreds of patients with cancer have been treated in clinical

trials with oncolytic viruses, see Section 2.4. Unfortunately, due to the heterogeneous

nature of cancer, success has been elusive, and there is a growing need to quantify

the dependency of treatment outcome on cancer characteristics. Chapter 4 provided

an in-depth understanding of the virus-tumour interaction as a function of a virus’

genetic material. However, to improve therapy at the clinical level, an extracellular in

vivo understanding is crucial.

A number of mathematical models have been constructed to understand the in vivo

dynamics of proliferation and diffusion of oncolytic viruses in cancerous and healthy

tissues (Section 3.2.3). The two hierarchically developed models of oncolytic virother-

apy outlined in this chapter are extensions of the work by Wodarz (2001) and Titze

et al. (2017) (Eqs. (3.6)-(3.8)). The models presented in this chapter focus on determ-

ining which aspects of virus-tumour interactions drive the success of oncolytic viro-

therapy both mathematically and biologically. The outcomes of oncolytic virotherapy

predicted by the models are analysed using a range of mathematical techniques. A

complete local stability analysis and bifurcation analysis of the system are used to find

that stable equilibria only exist in the absence of tumour growth or viral decay, and fur-

ther modelling shows the dependence of tumour size as a function of injection profile,

in the case of intratumourally administered viral loads. In this chapter, parameter val-

ues and initial conditions are simulated over biologically reasonable intervals. These

were determined primarily from the experimental conditions and model optimised

performed in the following Chapter 6 (see Table 6.1).

5.1 a bifurcation and local-stability analysis of a minimal mean-

field oncolytic virotherapy model

To model the interaction between an oncolytic virus and a growing tumour, a system of

three ODEs is used. While ODE models do not address spatial spread, they do provide

a mathematical framework within which the mean-field interactions between tumour



5.1 bifurcation and local-stability analysis for minimal mean-field model 74

cells and viral particles can be explored. The state variables in the model are

• u(τ) - uninfected tumour cells,

• i(τ) - virus-infected tumour cells,

• v(τ) - free virus particles,

where τ represents the number of days.

In this section, an aggressive form of tumour is modelled, assuming that uninfected

tumour cells replicate at a rate r proportional to their population. This unbounded ex-

ponential tumour growth is not biologically realistic in the long-term due to nutrient

and space limitations. However, given the short time frame of the interaction between

virus particles and tumour cells, exponential growth is considered a sufficient approx-

imation for the tumour growth under treatment with an oncolytic virus.

The rate of infection of the uninfected tumour cell population is assumed to be

proportional to the product of the virus and tumour cell populations (Novozhilov

et al., 2006) and occurs with rate constant β. Once infected, it is assumed that tumour

cells are incapable of division as the virus particle within the cell takes control of the

cellular machinery for self-replication (Section 2.4.2). Virus-infected tumour cells will

then burst due to lysis at a rate dI, releasing α new virus particles.

Fig. 5.2 shows a schematic of the interaction between the uninfected tumour cell

population u (or U in non-dimensional form), infected tumour cells i (or I in non-

dimensional form) and the virus population v (or V in non-dimensional form). The

corresponding system of equations describing the interaction is given below:

du

dτ
= ru−βuv, (5.1)

di

dτ
= βuv− dIi, (5.2)

dv

dτ
= −dVv+αdIi. (5.3)

This model complements other oncolytic virotherapy models in the literature dis-

cussed in Section 3.2.3. The model above differs to the one developed by Titze et al.

(2017) (see Eqs. (3.6)-(3.8)) as tumour cell death due to factors unrelated to treatment

are neglected. In this thesis, unrelated tumour cell death is considered negligible in
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comparison to virus-induced tumour cell death. The model above also resembles some

previous modelling work by Baccam et al. (2006) on the kinetics of influenza in humans,

i.e. the so called TIV model (see Section 3.2.2). Baccam et al. (2006) derived a model for

target-cell limited influenza infection, which is equivalent to Eqs. (5.1)-(5.3) when r = 0.

The minimal and adaptive nature of the results in this chapter can be easily translated

to influenza and infectious disease modelling.

V

U

I

Virus 

particles

Uninfected 

tumour cells

Infected 

tumour cells

infection

growth

lysis

β

αd
I

d
V

r

decay

ω

χ

Original model parameter

Non-dimensional model parameter

Figure 5.2: Flow diagram for the interaction between a population of uninfected tu-
mour cells, U, virus-infected tumour cells, I, and virus particles, V. The
diagram lists parameters relating to the original model, Eqs. (5.1)-(5.3), in
grey boxes and parameters relating to the non-dimensionalised form of the
model, Eqs. (5.4)-(5.6), in blue boxes. First published in Jenner et al. (2018c).

A bifurcation and local stability analysis allows for quantification of the success of

oncolytic virotherapy as a function of the viral and tumour characteristics. To simplify

this mathematical analysis while preserving the essential properties of the model let
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k1U = u, k2I = i, k3V = v and k4t = τ, in the original system of Eq. (5.1)-(5.3).

Rearranging gives

dU

dt
= rk4U−βk3k4UV ,

dI

dt
= β

k1k3k4
k2

UV − dIk4I,

dV

dt
= −dVk4V +αdI

k2k4
k3

I,

then letting k1 = k2 = dI/αβ,k3 = dI/β and k4 = 1/dI gives the non-dimensional

system of equations

dU

dt
= ωU−UV , (5.4)

dI

dt
= UV − I, (5.5)

dV

dt
= −χV + I, (5.6)

where ω = r/dI and χ = dV/dI, and the scaled variables are

U =
u

k1
=
αβ

dI
u,

I =
i

k2
=
αβ

dI
i,

V =
v

k3
=
β

dI
v,

t =
τ

k4
= dIτ.

For all numerical simulations, the state variables are scaled by the initial conditions: i.e.

U/U(0), I/I(0) and V/V(0).

This model pertains to an idealised situation of homogeneous tumour properties

and virus spread. It is well documented that oncolytic virotherapy can fail due to in-

tratumoural obstructions (such as the extracellular matrix) pressure and impermeable

veins (Ariffin et al., 2014). To investigate conditions driving tumour extinction based

solely on the mean-field virus-tumour interaction, spatial obstacles that may inhibit

treatment efficacy are ignored. In Chapter 8 these obstacles are modelled and discussed

in more detail.
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5.1.1 Local stability analysis

While parameter estimates for tumour cell replication, viral decay, and viral infectiv-

ity are readily available in the literature, see Komarova and Wodarz (2010); Titze et al.

(2017), they represent only one adaptation of the tumour-virus interaction. In this sec-

tion, a detailed local stability analysis is used to quantify how the system behaves

under various tumour and virus characteristics and determine the possible treatment

outcomes.

5.1.1.1 Equilibrium solutions

The equilibria for the non-dimensionalised system Eqs. (5.4)-(5.6) is given by

U = 0, I = 0, V = 0, and (5.7)

U = χ, I = χω, V = ω. (5.8)

For the specific case of χ = 0 or ω = 0, two more equilibria exist. For χ to be equal

to zero, dV = 0, i.e. viral particles are not decaying. Biologically, this represents the

case when the virus is not cleared by the immune system. The resulting equilibrium

for χ = 0 is U = 0, I = 0 and V ∈ IR.

Similarly, when ω = 0, r = 0, i.e. tumour cells are not replicating. This can be

thought of biologically as a stagnant or non-growing tumour. The oncolytic viruses

will, therefore, only be removing existing tumour cells. The resulting equilibrium at

ω = 0 is at I = 0, V = 0 and U ∈ IR. Therefore, there are four equilibria in total, two of

which only exist for the specific cases χ = 0 or ω = 0.

5.1.1.2 Stability of the equilibrium at the origin: U = 0, I = 0,V = 0

To achieve complete tumour eradication in the model, the equilibrium at the origin

must be stable. Evaluating the Jacobian of the non-dimensionalised model at the equi-

librium at the origin gives the following eigenvalues:

λ1 = ω, λ2 = −1, λ3 = −χ.
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Thus, the equilibrium is a stable node for χ > 0 and ω 6 0 and a saddle point for all

other regions in the parameter space, as summarised in Fig.5.3.
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χ

Figure 5.3: Stability of the equilibrium at the origin as a function of the (ω,χ)-
parameter space. The shaded region of the parameter space represents the
(ω,χ)-parameter set corresponding to a stable node at the origin. First pub-
lished in Jenner et al. (2018c).
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Figure 5.4: Numerical simulation of the non-dimensionalised model, Eqs. (5.4)-(5.6),
for the parameter regime where the equilibrium at the origin is stable. The
time-series model solution, (a), and 3-D model curve, (b), are plotted for
parameter values ω = 0 and χ = 0.1, and initial conditions U = 0.4, I = 0

and V = 0.1. The green asterisk represents the stable equilibrium at the
origin. First published in Jenner et al. (2018c).

Biologically, both ω and χ need to be non-negative real numbers. As such, the reas-

onable parameter values resulting in a stable node at the origin are ω = 0 and χ > 0.

When ω = 0, there is no tumour growth, i.e. r = 0, and there is a benign tumour or a
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malignant tumour growing at a negligible rate. Fig. 5.4 shows a numerical simulation

of Eqs. (5.4)-(5.6) for typical parameter values that result in a stable node at the ori-

gin: all tumour cells and virus particles die out over time, achieving complete tumour

eradication.

5.1.1.3 Stability of the non-zero equilibrium: U = χ, I = χω and V = ω

Evaluating the Jacobian for the non-dimensionalised model at the non-zero equilibrium

U = χ, I = χω and V = ω, gives the characteristic equation:

ρ(λ) = −λ3 − (1+ χ)λ2 − χω. (5.9)

The eigenvalues corresponding to the non-zero equilibrium are the roots of the charac-

teristic equation, Eq. (5.9). The position and nature of the stationary points of the char-

acteristic equation are used to deduce the sign and number of real roots of Eq. (5.9).

See Fig. 5.5 for a more detailed explanation.

Stationary points of the characteristic equation, Eq. (5.9), occur for two values of λ:

λ∗1 = 0, λ∗2 = −
2

3
(1+ χ).

The first stationary point listed, λ∗1, is fixed on the vertical axis λ = 0. The corres-

ponding value of the characteristic equation at the stationary point λ∗1 is ρ(λ∗1) = −χω.

The second derivative at the stationary point λ∗1 is ρ ′′(λ∗1) = −2(1+ χ). Therefore the

stationary point at λ∗1 is a minimum for χ < −1 and a maximum for χ > −1. This is

summarised in Fig. 5.6(a) along with the sign of ρ(λ∗1).

The location of the second stationary point, λ∗2, depends solely on the value of χ, i.e.

for χ < −1 it is positive and for χ > −1 it is negative. The value of the characteristic

polynomial at λ∗2:

ρ(λ∗2) = −
4

27
(1+ χ3) − χω,

determines the nature of the stationary point, summarised in Fig. 5.6(b).

The Routh-Hurwitz criterion (for details see Section 3.5.1) is used to determine

whether there exists a ω,χ combination resulting in stable solutions, i.e. all roots of
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Figure 5.5: All possible cubics for the characteristic function in Eq. (5.9). Collection of
the possible shapes displayed by the cubic determining the sign and nature
of the eigenvalues for the non-zero equilibrium: U = χ, I = χω,V = ω. The
values of λ for which the characteristic function has stationary points are
λ∗1 and λ∗2. First published in Jenner et al. (2018c).

the characteristic equation having negative real part. The Routh-Hurwitz stability cri-

terion is a necessary and sufficient condition for the stability of a linear time invariant

control system. For the Routh-Hurwitz criterion to be satisfied χω needs to both less

than and greater than zero, which gives a contradiction. As such, there is no set of χ

and ω that will result in all roots of the characteristic equation where the real parts are

negative and, therefore, the non-zero equilibrium will always be unstable.

The sign of the eigenvalues for the non-zero equilibrium, and hence the nature of

the non-zero equilibrium, are determined by the position of the two stationary points

λ∗1 and λ∗2 in the (λ, ρ(λ))-plane, refer to Fig. 5.5. The nature of the equilibrium for

each region of the (ω,χ)-parameter space is plotted in Fig. 5.7. There are three possible

values of the non-zero equilibrium: an unstable focus node, a saddle focus and a saddle.

For biologically reasonable parameters, ω > 0 and χ > 0, there is a saddle focus,
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Figure 5.6: The nature of the stationary points λ∗1, (a), and λ∗2, (b), as functions of the
(ω,χ)-parameter space. In all figures the shaded regions represent a max-
imum and the white regions represent a minimum. The sign of the charac-
teristic equation ρ(λ) is noted as a function of the (ω,χ)-parameter space at
the stationary point λ∗1, (a), and λ∗2, (b). Additionally, in (b), positive λ∗2 oc-
curs in the white shaded and negative λ∗2 occurs in the blue shaded regions.
First published in Jenner et al. (2018c).

which consists of one negative real eigenvalue and a pair of complex eigenvalues with

positive real parts.
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Figure 5.7: The nature of the non-zero equilibrium as a function of the (ω,χ)-parameter
space. The three shaded regions correspond to the three possible equilib-
rium stabilities: unstable focus node, saddle focus and saddle. First pub-
lished in Jenner et al. (2018c).

To illustrate the behaviour of the saddle focus, the numerical solution to the model,

Eqs (5.4)-(5.6), is plotted in Fig. 5.8 for initial conditions close to the non-zero equilib-

rium. For biologically reasonable parameters there are growing oscillations in all of the
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variables for the first 30 days of the oncolytic virus tumour interaction, illustrating that

this regime of the virus-tumour interaction does not result in tumour eradication.
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Figure 5.8: Numerical simulations of the non-dimensionalised model, Eqs. (5.4)-(5.6),
for χ = ω = 0.5. The time-series, (a), and 3-D solution curve, (b), are plot-
ted for initial conditions U = 0.4, I = 0.0243 and V = 0.56. The asterisks
represent the equilibrium at the origin (green) and the non-zero equilibrium
(purple). First published in Jenner et al. (2018c).

Note that the choice of scaling for U, I and V corresponds to the proportion of the

initial amount of those populations. As such U = 1,V = 1 and I = 1 indicates the cell

and virus amounts present initially in the dimensional system of Eqs. (5.1)-(5.3).

5.1.2 One-parameter bifurcation analysis

To determine how the value of the equilibrium solutions change to variations in the

virus and tumour characteristics, a bifurcation analysis of the non-dimensionalised

model was conducted. In Fig. 5.9, the branches of equilibria were plotted for χ = 0.1.

Given that ω > 0, both equilibria are unstable, as previously illustrated in the local

stability analysis. The effect of changing χ is that as χ approaches zero from above, the

non-zero equilibrium value for U and I decreases and the value for V remains constant,

while the stability of the equilibria stays the same (not plotted).

In Fig. 5.9(a), at ω = 0 there is a zero eigenvalue on the branch of equilibria labelled

B2 (i.e. the axis U = 0). As such, between the two branch points (BP1 and BP2) and

below the branch point at the origin (i.e. BP1), there are two eigenvalues with negative
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Figure 5.9: One-parameter bifurcation plot for (a) U and (b) V as functions of ω with
χ = 0.1. A solid line represents a stable branch and a dotted line represents
an unstable branch. A branch point is labelled BP. The equilibrium branches
have been labelled B0, B1 and B2 for referencing. First published in Jenner
et al. (2018c).
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Figure 5.10: Numerical simulations for the non-dimensional model for χ = 0.1 and
ω = 0. The time-series, (a), and 3-D solution curve, (b), are plotted for
initial conditions U = 0.15, I = 0 and V = 0.1. The green asterisk repres-
ents the equilibrium at the origin and the purple asterisk represents the
non-zero equilibrium U = χ, I = χω,V = ω. First published in Jenner et al.
(2018c).

real part and one zero eigenvalue. Above BP2 there is one eigenvalue with negative real

part, one eigenvalue with positive real part and one zero eigenvalue. Therefore branch

B2 has a two dimensional manifold that is stable below BP2 and a one-dimensional

stable manifold above BP2. To illustrate the behaviour of this branch, in Fig. 5.10 a

numerical simulation was presented for Eqs. (5.4)-(5.6) when ω = 0 and χ = 0.1.
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Recall that this case represents a non-growing tumour so treatment will only amount

to eradicating already existing cells. The model solution tends to a stable fixed point

where I = V = 0 and U ≈ 0.02.

From the analysis in Fig. 5.3 and 5.4, for ω = 0 (i.e. a static tumour) the equilibrium

at the origin is also stable. This means, in general, that there is a set of initial conditions

that will tend to the origin and a set of initial conditions that will tend to a non-zero

fixed point for ω = 0 and χ > 0 (the case when the tumour cells are not replicating). In

Fig. 5.11, the solution curves for the model were plotted for a fixed χ = 0.1 and ω = 0,

and a range of initial conditions. For a subset of initial conditions in the parameter

space, the resulting stable equilibrium is non-zero for the uninfected tumour cells. This

occurs for small vales of initially infected cells, I, and virus particles, V , and is a subset

of the (larger) basin of attraction of the portion of branch B2 between BP1 and BP2. .
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Figure 5.11: Numerical solution curves for the non-dimensional model for a range of
initial conditions. The colour of the line corresponds to the equilibrium
value for U, labelled Utf. First published in Jenner et al. (2018c).

An interesting case occurs when χ = 0, representing a virus decay rate of zero,

i.e. the virus is not cleared from the tumour site. In Fig. 5.12, the numerical model

solution for χ = 0 and ω > 0 is shown. Note that the uninfected and infected tumour

populations are quickly eradicated whilst the virus population tends to a non-zero

fixed point. This corresponds to the branch of stable equilibria at U = I = 0 and V ∈

IR (see Section 5.1.1.1). While the virus population is still non-zero in this situation,

the tumour populations have been eradicated and, therefore, this is a positive outcome

for oncolytic virotherapy. This result is interesting, as it says that if it were possible
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Figure 5.12: Numerical simulations for the non-dimensional model for χ = 0 and ω =
0.1. The time-series (a), and 3-D solution curve (b), are plotted for initial
conditions U = 0.5, I = 0.05 and V = 0.2. The green asterisk represents the
equilibrium at the origin and the purple asterisk represents the non-zero
equilibrium U = χ, I = χω,V = ω. First published in Jenner et al. (2018c).

to avoid viral clearance, treatment could be more effective irrespective of the tumour

growth rate.

5.1.3 Incomplete eradication and long-period orbits

The goal of the previous section was to determine whether there was a parameter

regime that would result in complete tumour eradication. Unfortunately, since the

equilibrium at the origin is unstable for χ > 0 andω > 0, tumour eradication cannot be

achieved for a growing tumour and decaying virus. However, numerically simulating

Eqs. (5.4)-(5.6) for a long time period shows the existence of stable long-period orbits,

see Fig. 5.13. These orbits could be indicating that, in the limit for χ→ 0+, the system

shows a quasi-homoclinic state. By simulating the non-dimensionalised system for

three biologically reasonable initial conditions, time-series and phase portraits were

produced for a range of parameter values. It is clear from Fig. 5.13 that the lower the

value of χ or ω, the closer the orbit gets to the long-period orbit state.

To quantify the dependence of the orbits on the parameter values, the amplitude and

period were numerically calculated as a function of χ and ω in Fig. 5.14. The period
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Figure 5.13: Numerical simulations of the non-dimensionalised model in Eqs. (5.4)-
(5.6). Forω = 0.1 and χ = 0.01 (a)-(b), forω = 0.06 and χ = 0.01 (c)-(d) and
for ω = 0.06 and χ = 0.001 (e)-(f). Each coloured line represents a different
initial condition: U = 0.9, I = 0,V = 0.5 (green), U = 0.8, I = 0,V = 0.1
(red) and U = 0.15, I = 0,V = 1 (blue). Long-period orbit attractors are
black dotted curves. After a transient, all shown orbits appear to collapse
onto the attractor. First published in Jenner et al. (2018c). Note the different
scales in the plots.
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Figure 5.14: Numerical calculation of the period, (a), and amplitude, (b)-(d), for the
orbits produced by the non-dimensionalised model in Eqs. (5.4)-(5.6) as a
function of χ and ω. The colourbar links the colour of the circles to the
corresponding value ofω used in the calculation. First published in Jenner
et al. (2018c).

between oscillations has been calculated as a function of χ (i.e.: dV/dI, the ratio of

viral death to cell burst rate) and ω (i.e.: r/dI, the ratio of tumour cell replication

to cell burst rate), see Fig. 5.14(a). Decreasing χ and increasing ω results in a longer

period of time between the oscillations. Therefore, a slower growing tumour relative

to cell burst rate would produce longer intervals of no growth between its rapid burst-

like growths. Equivalently, a more rapid clearance of the viral particles relative to cell

burst rate would result in longer periods between the oscillations. This can happen

when the immune system has a strong response to the presence of an oncolytic virus.
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The role of the immune system in oncolytic virotherapy is explained in more detail in

Chapter 6 and 7.

Fig. 5.14(b)-(d) shows how the amplitude of the oscillation depends on χ and ω.

There is an inverse relationship between the amplitude of the oscillation for uninfected

tumour cells, U, and the amplitude of oscillation for infected tumour cells, I, and virus

particles, V . Increasing ω results in a lower amplitude for U, and a larger amplitude

for I and V . Improving treatment correlates to obtaining the lowest possible tumour

population and therefore the lower the amplitude of the uninfected tumour cells close

to the long-period orbit state, the more effective the treatment.

5.2 analysis of an extended model for oncolytic virotherapy

The dimensional model in the previous Section 5.1 can be extended to consider how the

outcome of oncolytic virotherapy may vary when more complex modelling terms for

tumour growth and virus-infection are used. In Eqs. (5.1)-(5.3), an aggressively grow-

ing tumour was modelled; however, in vivo tumour growth is controlled by nutrient

and spatial limitations. As such, tumour growth naturally grows towards a carrying ca-

pacity (Section 2.2.2). To account for this, the Gompertz function is now used to model

tumour growth, i.e. g(u) = r log(L/u)u, where L is the carrying capacity of the tumour

and r is the proliferation constant, see Section 3.2.1.

The rate at which virus particles infect tumour cells depends on a number of factors.

In the model outlined in Section 5.1, the rate of infection was assumed to be propor-

tional to the number of virus particles and uninfected tumour cells. It is also common

in epidemic modelling to consider that virus infection occurs at a frequency dependent

rate, where the likelihood of a virus infecting a tumour cell depends on the number

of tumour cells available to infect. In this case, viruses are modelled as being suffi-

ciently close to the tumour, so that the infection rate is dominated by the number of

viral particles and the occurrence of uninfected cells in the overall tumour mass. An

example of this modelling term is in Kim et al. (2015)’s model for the effectiveness of

an oncolytic virus expressing 4-1BBL and IL-12, Eqs. (3.17)-(3.21).
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To model the virus infection, a frequency-dependent function, rather than a simple

mass-action term, is now introduced: virus particles at the tumour site infect suscept-

ible tumour cells according to the expression βuv/(u+ i), where β is the infectivity

rate.
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Figure 5.15: Flow diagram for the interaction between a population of uninfected tu-
mour cells, U; virus-infected tumour cells, I; and virus particles, V . The
diagram lists parameters relating to the original model Eqs. (5.10)-(5.12),
in grey boxes and parameters relating to the non-dimensional form of
the model, Eqs. (5.13)-(5.15), in blue boxes. First published in Jenner et al.
(2019).

Introducing these new assumptions for the tumour growth rate and virus-infection

rate into the equivalent terms in Eq. (5.1)-(5.3) gives the following system of equations:

du

dτ
= r ln

(
L

u

)
u−

βuv

u+ i
, (5.10)

di

dτ
=
βuv

u+ i
− dIi, (5.11)

dv

dτ
= −dVv+αdIi. (5.12)

Fig. 5.15 depicts the flow diagram of the three populations described in the Eqs. (5.10)-

(5.12). To arrive at a scaled version of the system, consider the units of state variable



5.2 analysis of an extended model for oncolytic virotherapy 90

v and the parameter α: [v] =# virions, [α] =#virions per cell. So, v can be re-scaled to

give:

v̂ =
v

α
, [v̂] =

[v]

[α]
=

#virions
#virions per cell

= #cells,

which represents cell numbers, like u and i for the tumour. Substituting this re-scaled

variable into the model gives:

du

dτ
= r ln

(
L

u

)
u−

βαuv̂

u+ i
,

di

dτ
=
βαuv̂

u+ i
− dIi,

dv̂

dτ
= dIi− dV v̂.

To eliminate time, β is used to rescale τ. The units of β are

[β] =
1

#virions
1

per unit time
,

so for β̂ = βα, the units of β̂ would be [β̂] = 1/time. Scaling time by β̂ gives [t] = [β̂][τ]

and the system of equations can now be rewritten for the independent dimensionless

variable t:

dU

dt
= m ln

(
L

U

)
U−

UV

U+ I
, (5.13)

dI

dt
=

UV

U+ I
− ξI, (5.14)

dV

dt
= ξI− γV , (5.15)

where m =
r

β̂
, ξ =

dI

β̂
,γ =

dV

β̂
and β̂ = βα are dimensionless parameters, and t

represents a dimensionless time, with t = β̂τ. Note that the state variables are now

U, I and V , which have units # cells. The three parameters m, ξ and γ that regulate the

behaviour of the system represent tumour growth, tumour cell death and viral decay,

respectively. As a result of the non-dimensionalisation process, where parameters are

all scaled by the infectivity rate, the rate of conversion of uninfected cells U to infected

cells I due to the viral load V , i.e. the term ± UV

U+ I
, is not affected by any parameter.
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Similar models to Eqs. (5.13)-(5.15) were discussed in Chapter 3, see Eqs.(3.1)-(3.3),

Eqs.(3.13)-(3.16) and Eqs. (3.17)-(3.21). While similar, none of these models considered a

growth term with a carrying capacity (logistic or Gompertz) combined with a frequency-

dependent infection term as is the case in Eqs. (5.13)-(5.15).

5.2.1 Local stability analysis

Similar to the analysis in Section 5.1.1, a local stability analysis of Eqs. (5.13)-(5.15)

shows a number of interesting results. Of particular relevance is the existence of a

stable equilibrium corresponding to eradication, which is characterised by a singular

Jacobian matrix. This solution can coexist with other equilibria, for example a stable

focus or a stable node, which correspond to incomplete eradication of the tumour. In

Section 5.2.2, this occurrence is shown to give rise to bistability for some biologically

relevant parameter ranges.

5.2.1.1 Equilibrium solutions

Setting the right-hand-side of Eqs. (5.13)-(5.15) to zero, three equilibria are found: (a) a

solution at a value for the uninfected cells equalling the carrying capacity, indicating a

treatment with no effect; (b) a non-zero solution representing incomplete eradication,

characterised by a quiescent tumour despite the viral load being constant and non-

zero; and (c) an equilibrium at the origin corresponding to complete eradication of the

tumour (in the limit as all three variables go to zero). The populations corresponding

to such cases are

(a) U = L, I = 0, V = 0;

(b) U = L exp
(
ξ

mγ
(γ− 1)

)
= U∗, I =

L

γ
(1− γ) exp

(
ξ

mγ
(γ− 1)

)
= I∗,

V =
Lξ

γ2
(1− γ) exp

(
ξ

mγ
(γ− 1)

)
= V∗;

(c) U = 0, I = 0, V = 0.
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The Jacobian of the system is given by

J =


m ln

(
L

U

)
−m−

VI

(U+ I)2
UV

(U+ I)2
−

U

(U+ I)

VI

(U+ I)2
−ξ−

UV

(U+ I)2
U

U+ I

0 ξ −γ

 , (5.16)

and the character of the eigenvalues for the above equilibria is discussed below.

5.2.1.2 (a) Stability of ineffective treatment equilibrium: U = L, I = 0, V = 0

The first equilibrium (a) corresponds to a failed treatment where uninfected tumour

cells U grow to the system’s carrying capacity L and no viral particle survives. Evalu-

ating the Jacobian at this point gives

J =


−m 0 −1

0 −ξ 1

0 ξ −γ

 ,

which gives rise to the characteristic equation

ρ(λ;m,γ, ξ) = −(λ+m)
(
λ2 + (ξ+ γ)λ+ ξ(γ− 1)

)
. (5.17)

For a non-zero tumour growth m > 0, the overall stability of this equilibrium depends

on the roots λ2 and λ3 of the quadratic factor, because the root λ1 = −m of the linear

factor is negative. After calculating λ2 and λ3, the equilibrium is found to be either

a stable node or stable focus when ξ+ γ > 0 and ξ(γ− 1) > 0. Since the parameter

values in this model are considered to be always positive, the first condition holds. The

second condition implies that, if γ < 1, the equilibrium is unstable, and vice versa for

γ > 1.
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5.2.1.3 (b) Stability of partial eradication solution: U = U∗, I = I∗, V = V∗

The model emits a second, non-zero equilibrium where a small tumour mass coexists

with virus particles. The characteristic equation for this solution, after substituting

U∗, I∗,V∗ in the Jacobian, is given by

ρ(λ;m,γ, ξ) = −λ3 − λ2(γ+m+ ξ) + λ

(
γm(ξ− 1) +

ξ2

γ
− ξ(2m+ ξ)

)
+ γmξ(γ− 1).

(5.18)

For this cubic, the Routh-Hurwitz criterion, in particular the Routh array method (see

Section 3.5.1), is used to deduce the parameter values that produce three roots with

negative real parts. This criterion states that, given a general cubic of the form ρ(λ) =

a0λ
3 + a1λ

2 + a2λ+ a3, two conditions need to be met simultaneously for all roots to

have negative real parts, i.e.

(i)
a1a2 − a0a3

a1
< 0 and (ii) a3 < 0

with, in this case, a0 = −1, a1 = −(γ+m+ ξ), a2 =
(
γm(ξ− 1) + ξ2

γ − ξ(2m+ ξ)
)

and a3 = γmξ(γ− 1). Condition (ii) is easily satisfied for 0 < γ < 1, given that all

parameters are assumed to be positive. Condition (i) requires that a1a2 > a0a3, since

a1 < 0. The region in the ξ,m,γ parameter space that satisfies this condition can be nu-

merically computed and is depicted in Fig. 5.16(a). Using the discriminant of Eq. (5.18)

and imposing the appropriate conditions, subsections of the region corresponding to

a stable node or stable focus are illustrated in Fig 5.16(b) and (c). Note that all regions

are smooth and connected.

It is also interesting to consider which parameter regimes result in a low tumour

burden (or threshold) UT . To visualise how the value of the equilibrium U∗ changes as

a function of parameter values, the regions of parameter space satisfying the following

equality for a given threshold UT can be computed using:

ξ =
m

γ− 1
ln
(
UT
L

)
. (5.19)
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Figure 5.16: Regions representing the stability of the nonzero equilibrium, (a)-(c), and
the influence of system parameters on tumour cell numbers at the equi-
librium value U∗. Note that carrying capacity is chosen as L = 100. In (a),
the section of parameter space where the non-zero equilibrium is stable
is shown. Note that (b) represents the volume in (ξ,m,γ) giving rise to
a stable node solution for the equilibrium (U∗, I∗,V∗), whereas (c) is the
section for a stable focus. Combining the regions in (b) and (c) gives the
volume in (a). Plot (d) is the stable parameter space for different values
of U∗, within the following intervals: orange for 20 < U∗ < 25, yellow for
35 < U∗ < 40, green for 50 < U∗ < 55 and blue for 65 < U∗ < 70. Note
that these “slices” are almost symmetrical. First published in Jenner et al.
(2019).

Plots for four different UT , varying within intervals, are shown in Fig. 5.16(d). For

convenience, the value for L was set as L = 100 and fixed for all the remaining analysis.

The regions are roughly symmetric, with parameter γ being the major contributor to

changes in U∗ values. For example, when γ / 0.5, there is a set of ξ and m values



5.2 analysis of an extended model for oncolytic virotherapy 95

resulting in 20 / U∗ / 25. Since m represents the growth rate of tumours and U∗ is

mostly insensitive to its variations, the analysis indicates that a value of ξ (the lysis

rate) can always be chosen to decrease the volume of the tumour, so long as the decay

rate γ is low (i.e. the virus does not decay too quickly). This suggests that, irrespective

of how aggressive the tumour is growing, it can be stabilised when the virus is able to

induce lysis slowly and additionally avoids clearance.

5.2.1.4 (c) Stability of full eradication solution: U = 0, I = 0, V = 0

The last equilibrium of the model represents the case of complete eradication, where

all variables are zero. As anticipated, the Jacobian is singular due to the presence of

logarithmic and rational terms in U and (U+ I) respectively. An analytical treatment

of the Jacobian is not possible and, in particular, the presence of logarithmic terms

m ln(L/U) is not treatable with straightforward expansions for U → 0. A different ap-

proach based on numerical integration and computation of eigenvalues, under specific

assumptions on U, I and V , is instead used to discuss the possibility of this being a

steady-state solution in the next section.

From the biological point of view, it is important to note that the Gompertz function

does not represent a mechanistic model of growth and does not describe how a tu-

mour proliferates from first principles. It is instead mostly employed as a fitting curve

that describes the size of a growing tumour over time. Further, a value of uninfected

tumour cells U = 1 equates, in this model, to a tumour volume of 1 mm3, i.e. roughly

corresponding to 106 cells. In the simulated time series presented and when the ei-

genvalues of the Jacobian have been computed, U is always treated as being zero for

values U << 10−6, which effectively represents the case when tumour cells have been

thoroughly eradicated.

As far as the equilibrium’s stability is concerned, the eradication solution can be

stable or unstable, depending on the value of model parameters. As a general rule,

it is observed that parameter sets where ξ is high, corresponding to a fast infected

cell death rate, tend to yield a stable equilibrium as long as the viral decay rate γ

is not excessive. This suggests that the engineered virus has to induce infected cell

death quickly, whilst also being sufficiently resilient: one characteristic alone is not
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sufficient. If, for example, the infected cells die at rate ξ and the virus dies too fast,

then the equilibrium turns into an unstable point and no eradication is possible. A

clear picture of how eradication depends on viral characteristics will emerge with the

aid of bifurcation plots, which are discussed in the next section.

5.2.2 Characteristic dynamical regimes

The model supports a number of dynamical regimes that represent interesting long-

term possible outcomes of oncolytic virotherapy. In Fig. 5.17, four distinctive beha-

viours associated with the equilibria previously described are presented. Case (1) is

an example of an equilibrium solution where the virus co-exists with uninfected and

infected tumour cells, i.e. equilibrium (b): U = U∗, V = V∗ and I = I∗. The time

series is for an attracting node, but similar long-term dynamics exist for the case of

an attracting focus, with the only difference being an initial, oscillatory transient that

then dampens to a plateau. Note how the uninfected cells U are the first to reach the

equilibrium U∗ = L exp( ξmγ(γ− 1)), which corresponds, for the chosen parameters, to

U∗ ≈ 40.65. This behaviour, under the right parameter perturbation, can transition into

stable oscillatory dynamics, visible in Case (2).

Case (2) shows stable oscillations, characterised also by a quiescent phase where

the system variables are close to zero and periods of growth and decay of cells and

virus exist. Generally, it is observed that this refractory state tends to have a longer

duration than the active phase. Also, in this case, the uninfected cells U are the first

to grow, with a subsequent increase in the infected cells I and then in the virus load

V . The duration of the rest and active phases of oscillations depends on the system

parameters and changes continuously from Case (2) to the limiting Case (3) (illustrated

with a bifurcation analysis in the following section).

Case (3) is an extreme scenario where the system oscillates between two long plat-

eaus of quasi-complete eradication (i.e. U = I = V ≈ 0) and quasi-ineffective treatment

(i.e. U ≈ L = 100, I = V ≈ 0). The inset shows the “square wave” appearance of the

system’s trajectories on a long time scale, whereas the switch from the two states is

illustrated in the main figure, showing how the growth in I and V causes the uninfec-
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ted cell numbers to decrease. It is important to note that the system cannot stabilise

on either equilibria, because both equilibria are unstable (illustrated with a bifurcation

analysis in the following section).

In Case (3) there are long periods where the tumour is practically undetectable,

followed by a rapid instantaneous increase to the tumour carrying capacity, where the

tumour stabilises for a period of time, followed by a rapid reduction to an undetectable

tumour. These dynamics could be explained by the presence of two or three different

time scales. Biologically this is plausible as the infection and lysis of cancer cells can

occur at a different time scale to the replication of cancer cells. A suitable rescaling of

the mode would introduce a small parameter which in theory could reduce the model

to a simpler system. Future work will investigate this; however for this thesis the full

model is used as in the following chapter it will be optimised to experimental data.

Finally, a complete eradication solution is depicted in Case (4). Although, for the

chosen initial conditions and parameters, the model shows a monotonic decline to

zero for U, other examples have been found where U first shows a maximum, followed

by an exponential decrease. Also in this final case, as for the other three scenarios just

discussed, observe that U is the fastest to reach its equilibrium value, with I and V

following.

To appreciate where these regimes occur and how the parameters influence their

existence, two bifurcation plots with respect to system variables ξ and γ versus U are

presented in Fig. 5.18. In both plots, stable branches are indicated with continuous lines,

whereas unstable ones are dashed. The two black branches at U = 0 and U = L = 100

indicate the full eradication and failed treatment solutions, respectively. The red line

indicates the partial eradication case, where a non-zero value for the tumour volume

and the viral load is present. Numbers point to areas where the typical dynamics just

discussed in Fig. 5.17 can be found.

For the case of a codimension one plot with respect to ξ (Fig. 5.18(a)), two branch

points are present: one at U = 100 and ξ = 0, where the partial eradication solution

coalesces with the failed treatment case, and a second at U = 100 and ξ ≈ 0.098 where

the oscillatory, stable branch (green line) terminates. For this second branch, AUTO

was unable to conclusively determine whether these were branch points, the software
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Figure 5.17: Numerical simulations of Eqs. (5.13)-(5.15) demonstrating different types
of dynamics, for initial conditions U(0) = 50, I(0) = 10,V(0) = 10 and
fixed parameters m = 0.1,γ = 0.1, with values for ξ increasing from Case
(1) to Case (4). Type (1) corresponds to a stable co-existence of virus and
tumour due to incomplete eradication, occurring at ξ = 0.01, (2) depicts
a stable oscillatory solution for ξ = 0.06, (3) shows stable long-period
oscillations of “square wave” shape for ξ = 0.097 and (4) is a case of com-
plete eradication for ξ = 0.12. Note that the carrying capacity is chosen as
L = 100. First published in Jenner et al. (2019).

indicated it was a bifurcation point and that there was a switch between the two stabil-

ities of the branch. This branch originates from a supercritical Hopf bifurcation (HB),

which causes the initial partial eradication branch to lose its stability. Note how, at

this value of ξ, a change in the stability of the eradication solution U = 0 (black line)

also occurs, with a “pseudo” saddle-node bifurcation (SN) occurring and a stable, fully

eradicating regime appearing for ξ > ξSN ≈ 0.098. The saddle-node is considered as

“pseudo” because the singularity of the Jacobian implies that one eigenvalue is infinite

at the origin. So, for values of the system close to zero, but not strictly zero, a change

of sign in the eigenvalues occurs in the neighbourhood of SN (explained below). This
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eradication solution branch regains its stability at ξ = 0 through a second “pseudo”

saddle-node bifurcation (SN). Note also that the partial and full eradication branches

(i.e. red and black lines, respectively) do not intersect. Finally, note that solution for

parameter values that are negative do not bear any biological value.

BP

HB

BP

U

ξ

1

3

2

4SNSN

0.00 0.05 0.10 0.15

0

20

40

60

80

100

120

140

(a)

(a)

BP BP

HB SN

U

γ

SN

BP

HB

2

1
4

3

2

1

1

0

20

40

60

80

100

0

20

40

60

80

100

0.0 0.2 0.4 0.80.6 1.0 1.2

0.00 0.01 0.02 0.03 0.04

(b)

(b)

Figure 5.18: Examples of typical bifurcation plots in one parameter for the model, for
(a) ξ and (b) γ, both versus U. Circled numbers correspond to the dy-
namical regimes illustrated in Fig. 5.17 and, for the case of periodic or-
bits originating from a Hopf bifurcation, only the maximum value of U
is shown. For (a), the other model parameter are m = 0.1, γ = 0.1. Note
that the switch to Case (4) (complete eradication) occurs when the branch
of periodic orbits (in green) ceases to exist, for a value ξ ≈ 0.098. Similar
results for a continuation in γ are shown in (b), with the switch to Case
(4) dynamics also occurring in correspondence of a branch point for the
periodic orbit, at γ ≈ 0.0103. An inset with a magnification on the area
that shows the richest dynamical variability is also shown. The value of
the other, fixed parameters are given in this case by m = 0.1, ξ = 0.01. In
both cases, solutions for negative ξ and γ have been included for reasons
of consistency, but do not correspond to any biologically meaningful state.
First published in Jenner et al. (2019).

It is worth noting that, along the red branch of coexisting solutions, U can span a

large range of values, with U increasing as the infected cell death rate ξ decreases. For

example, close to the HB, which occurs at ξHB ≈ 0.042, a partial eradication solution

for ξ = 0.04 gives a tumour burden U ≈ 2. Note also the extension of the plateau

of the periodic branch (green) close to the U = 100 unstable equilibrium, before the

branch point. This indicates that a “square wave” type of oscillation can be present for

a moderately extended parameter interval in ξ.
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Although not shown in the diagram, the switch between the node and the focus

equilibrium typical of the partial eradication solution takes place along the red branch.

For the chosen parameters in Fig. 5.18(a), this happens at ξ̂ ≈ 0.01675, with focus’s

existing for a value ξ such that ξ̂ < ξ < ξHB. Generally speaking and as shown in

Fig. 5.16(b)-(c), the value at which the equilibrium type changes depends also on the

other parameters m and γ of the model.

The system’s behaviour also shows a strong, nonlinear dependence on viral death

rate γ, as illustrated in Fig. 5.18(b). With respect to the case of ξ, the sensitivity of the

model to γ is somewhat reversed: intuitively, a surge in infected cell death ξ should

act on the model in a similar way as a reduction in virus death rate γ and vice versa.

For example, the branch of oscillatory solutions (green) out of the supercritical Hopf

bifurcation (HB) shows an increasing maximum in U as γ decreases, opposite to what

happens for ξ (see the inset, in particular).

The stable, impartial eradication solution branch (red) shows higher tumour volumes

with increasing γ, and coalesces with the unstable U = 100 branch (in black) at γ = 1.

For γ > 1, the ineffective treatment solution is stable, as previously found from the

analysis of the characteristic equation corresponding to this solution, i.e. Eq. (5.17). A

virus with a decay rate γ > 1 has no effect on the tumour. It is important to note that a

mechanism identical to that observed in the bifurcation plot for ξ allows the existence

of Case (4) solutions, i.e. complete eradication. At a value of γ ≈ 0.0103, the inset shows

the termination of the oscillatory solutions (in green) and the occurrence of a “pseudo”

saddle-node point in the full eradication branch, making complete destruction of the

tumour possible. From the biological perspective, this indicates that the right balance

between the death rate of infected cells and the viruses mortality must be achieved for

an eradication to occur, depending on the growth rate m of the tumour. In particular,

as γ is increased from zero, the model goes from full eradication to oscillations with an

amplitude that decreases with γ, and subsequently to incomplete eradication up until

γ = 1.

As previously mentioned, the full eradication solution gives rise to a singular Jac-

obian, making a purely numerical approach to continuation impossible. For solutions

where U 6= 0, results have been obtained by using AUTO (Doedel, 2007) and XP-
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PAUT (Ermentrout, 2002) softwares. For the case of solutions occurring for U = 0, a

combination of numerical methods and symmetry arguments have been employed. It

is assumed that U < I < V , as exemplified by Case (4) shown in Fig. 5.17. If ε > 0 and

small, and it is imposed that U → εn, V → εm and I → εl with n > m > l, then the

eigenvalues of the Jacobian in Eq. (5.16) can be numerically computed.

For example, in determining the stability of the full eradication branch in Fig. 5.18(a),

the values U = 10−7, V = 10−5 and I = 10−4 were substituted into the Jacobian in

Eq. (5.16) and the eigenvalues were evaluated numerically. For ξ > ξSN ≈ 0.0975,

all three eigenvalues were negative and real, whereas for ξ < ξSN two were positive

and one was negative. For example, choosing ξ = 0.095 gave eigenvalues λ1 ≈ −0.15,

λ2 ≈ −0.06 and λ3 ≈ 8 · 10−5. For the case ξ = 0.099, the first two eigenvalues were

basically unchanged, but the last one changed sign and is λ3 ≈ −2 · 10−3. Similar

results hold for the “pseudo” SN on the eradication branch for continuation in γ (see

Fig. 5.18(b)), and the method is consistent for all the parameters m,γ and ξ tested (not

all shown here). These results were also checked by integrating the equations of motion

with XPPAUT, and confirming that the solution was indeed attracting when stable or

repelling when unstable, as shown in the bifurcation diagrams. Numerical integration

in most cases allows for the variables U, V and I to go to values as low as 10−20.

One important feature of the model is that stable oscillations exist for some biolo-

gically meaningful combinations of parameters. There is evidence of oscillations in tu-

mour size under treatment with an oncolytic virus occuring in vivo (Dingli et al., 2009).

For some parameter choices, a different structure of bifurcation plots emerge, with sig-

nificant consequences from the biological perspective. In this sense, a typical example

for a continuation in ξ is illustrated in Fig. 5.19(a). An unstable periodic branch (green)

originates from a subcritical Hopf bifurcation (HB) and maintains its unstable charac-

ter until it collapses with the U = L = 100 (black) branch. For this diagram, viral decay

γ is the same as in Fig. 5.18(b), but a value of m = 0.5 (moderately high growth rate) is

chosen, whereas both previous diagrams in Fig. 5.18 have been obtained with m = 0.1

(moderate growth rate). A more aggressive tumour, assuming that the viral decay is

the same, does not engage in oscillatory behaviour with the virus, but only partial or

full eradication is possible (i.e. black and red lines).
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As shown in Fig. 5.19(b), the “pseudo” saddle-node (SN) on the full eradication

U = 0 branch (in black) occurs for a value ξSN that is less than the value ξHB at

which the subcritical Hopf (HB) originates. This occurrence is due to the fact that the

periodic branch shows increasing values of max U for decreasing values of ξ when it is

unstable. This is the opposite of what happens for the stable periodic branch described

in Fig. 5.18(a), where ξHB < ξSN and the stability of the eradicated solution does not

switch in this way.
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Figure 5.19: Bifurcation plots and bistable solutions for fixed parameter values m =
0.5, γ = 0.1. The rectangle in (b) shows the area where two solutions of
different nature coexist, delimited by ξSN ≈ 0.1359 and ξHB ≈ 0.1388. A
spiralling solution to an incomplete eradication is shown in (c) and occurs
for initial conditions U(0) = 60, I(0) = 10, V(0) = 40, for a parameter
ξSN < ξ = 0.136 < ξHB . A fully eradicated solution is shown in (d) and
instead occurs for U(0) = 40, I(0) = 10, V(0) = 5, for the same value
ξ = 0.136. Nullclines, i.e. the loci of points corresponding to U ′ = 0 and
V ′ = 0, are in red and green. First published in Jenner et al. (2019).
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The change in the order in which the SN and HB emerge as ξ is increased is re-

sponsible for the generation of a region of bistability, where two separate and distinct

equilibria exist for an interval of infected cell death values. For values of ξ in this region,

different initial conditions can lead to different outcomes, as shown in Fig. 5.19(c)-(d).

The initial dosage of viral load and the numbers of infected and uninfected tumour

cells can strongly influence the final fate of the system and, lead to somewhat unexpec-

ted results. In the first case (Fig. 5.19(c)), a spiralling solution achieves an incomplete

eradication, which belongs to the red branch in Fig. 5.19(b). Conversely, the second

case shows a complete eradication to a vanishing tumour, after traversing two maxima

in U and V respectively, corresponding to the black branch in Fig. 5.19(b). A small vari-

ation in the initial conditions can hence result in the therapy being effective or instead

giving rise to a partial eradication.

The existence of this area of bistability is associated with the presence of a subcritical

Hopf bifurcation whose loci of points in ξ and m, and for different values of γ, are

plotted in Fig. 5.20(a). Generalised Hopf points (GH) separate subcritical Hopf points

(dashed lines) from supercritical Hopf bifurcations (continuous lines). For a revision on

Generalised Hopf points see the works of Guckenheimer et al. (1984) and Kuznetsov

(2013). Note that, if the growth m is sufficiently small, no Hopf bifurcation can be

present and the system does not support oscillations, either stable or unstable. For

example, as a result of the interruption of the Hopf branches shown in the inset of

Fig. 5.20(a), any one-parameter bifurcation plot in ξ for a fixed γ = 0.1 and values

of m / 0.008, does not contain a stable or unstable oscillatory branch, since no Hopf

point exists for such values. Biologically this indicates that there is a lower bound on

the tumour growth rate for oscillations (stable or unstable) to exist, implying that a very

slow growth in general leads to a complete eradication for sufficiently high infected

cell death rates, and so long as the viruses death rate is not excessively pronounced.

A numerical analysis of the model for a range of ξ,γ and m values shows that limit

cycle amplitudes for U do not follow a clear pattern, as captured by Fig. 5.20(b). Oscil-

lations of different amplitudes can be achieved by the system and depending on the

growth rate of the tumour, they can be enhanced by increases in ξ and decreases in

γ (see the bifurcation diagrams in Fig. 5.18). Large and small values of γ are qualitat-



5.2 analysis of an extended model for oncolytic virotherapy 104

ively the primary drivers of large amplitude stable oscillations. Also, there are visible

large regions of the parameter space for which small oscillations in U can be achieved.

These low oscillations are primarily achieved when the decay rate of the virus is low,

suggesting that low tumour sizes can be achieved when the virus is decaying slowly.
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Figure 5.20: Different, two-parameters continuations in (a) for m and ξ for branches of
Hopf bifurcations at different values of γ. Branches of supercritical Hopf
bifurcations are shown in continuous lines, whereas those for subcritical
bifurcations are in dashed lines. Generalised Hopf points are indicated by
GH. Note that the branches cease to exist for low values of (m, ξ), indicat-
ing the system cannot support either stable or unstable oscillations when
parameters are sufficiently small (see the inset). Plot of the corresponding
amplitude of stable limit cycles for points in the ξ,m,γ parameter space
are in (b). The colour of the point corresponds to the maximal value of the
amplitude of the limit cycle in U. First published in Jenner et al. (2019).

5.2.3 The effect of dosage applications and their optimisation

As shown, there are large sections of parameter space that give birth to regimes with

dormant tumours or tumour-virus oscillations, which can give rise to different out-

comes when coupled with clinical therapies. A typical treatment application protocol

considered by experimentalists is constant dosages of virus via external intratumoural

injections at given time intervals (Section 2.4.5). If the treatment is administered over
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the course of n injections with φ number of days between injections, a virus injection

protocol uV(t) can be summarised by the following generic schedule:

uV(t) =


VT0
n
δ(t− ti) ti = (i− 1)φ, where i = 1, . . . ,n,

0 otherwise.
(5.20)

where VT0 is the total virus dosage and δ is the delta function. This injection function

is added into the dV/dt equation in Eqs. (5.4)-(5.6). To numerically simulate the model

in Matlab, the model was implemented as an impulsive differential equation.

Given this simple scheme in Eq. (5.20), it was possible to consider how dosage per-

turbations affect regions of the bifurcation diagrams and whether they result in either

tumour eradication or a stable tumour size below a given threshold. The two typical

scenarios considered are oscillations and bistability.

5.2.3.1 Effects of injections on a stable, oscillatory trajectory

After numerically exploring different areas of the parameter space that give rise to

oscillations, simple therapies given by Eq. (5.20) did not alter the long term behaviour

of the model. If an oscillatory, stable state were to exist between virus and tumours,

increments in the viral load through injections were not predicted to achieve complete

eradication. From the dynamical point of view, an increase in viral load via external

perturbation cannot force the system out of the basin of attraction of a stable limit cycle.

Nonetheless, transient phenomena do exist and are worth discussing.

Considering two injections, i.e. n = 2, for a system already in a stable oscillatory

state, the number of days φ between injections altered the size of the tumour and virus

populations as the system returned to its stable state. Assuming the first injection was

a fixed initial injection, in Fig. 5.21 a single period of two different stable limit cycles

of the model is shown, with arrows representing the instants at which injections that

increased the viral load have been administered. The corresponding maximum and

minimum tumour size, along with the maximum virus count reached, are also presen-

ted.
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Figure 5.21: Perturbations in the days between two treatments φ. Two different limit
cycle regimes have been plotted for γ = 0.1,m = 0.2 and (a) ξ = 0.06915 or
(c) ξ = 0.06993. The maximum and minimum uninfected cell number and
maximum virus count is plotted as a circle in (b) and (d) for the corres-
ponding value of φ represented by an upward arrow in (a) and (c). Note
the different scales used on the left and right axis, since the maximum and
minimum amplitude of oscillations have different values. First published
in Jenner et al. (2019).

Injections that occur at different phases of the cycles have different outcomes. As

seen in Fig. 5.21(b)-(d) for the red and magenta curves around φ ≈ 62, dosing the

virus close to the minimum in tumour population provides a typical outcome: the

tumour initially responds to the injection by achieving a minimal size, but this is fol-

lowed by a rebound that causes U to reach the highest value (max U in the plot) of all

other tested injections. Note that, in some cases and for sufficiently high dosages, the

minima achieved by U can be pushed to values so low that it becomes experimentally

undetectable. Injections at other instants within one oscillation period yield rebounds
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proportional to the original amplitude of the limit cycle, with best results occurring for

the lowest amplitudes.

Perturbing the number of days between additional injections φ, the total injection

amount VT0 or the number of injections n did not affect the long term dynamics (not

shown here), which remains oscillatory in the long term. Reinforcing that there is

no dosage protocol that can be administered for virus-tumour interactions in these

parameter regimes that will result in tumour eradication.

5.2.3.2 Effects of injections on a trajectory in the bistable region

For a solution in a bistable region, the final outcome of any injection was highly de-

pendent on the initial tumour size and viral load. In particular, due to the complex

structure of the basin of attraction of the two competing solutions, i.e. full eradication

and an incomplete quiescent state, doses that were higher than a specific threshold

(highly dependent on the system parameters) could lead to a partial eradication rather

than a complete one.

Consider the administration of single injections of increasing dosage as depicted in

Fig. 5.22. Depending on the initial uninfected tumour population size U(0), injections

can lead to different outcomes or even have no effect on the final state. Considering the

case of a high tumour size (Fig. 5.22(a), U(0) = 100), different dosages always resulted

in final eradication. Some dosages lead to transient oscillations in the U−V plane, but

eventually eradication was achieved for all plotted trajectories.

For a smaller initial tumour size (Fig. 5.22(b), U(0) = 50), full eradication was only

obtained if the dose was either sufficiently low or sufficiently high. There exists a con-

siderable interval of possible doses that push the system to a stable focus correspond-

ing to a dormant state, where eradication is not complete. Note that the first two low

dosage injections, i.e. injections 1 and 2 in Fig. 5.22(b), also lead to a final eradication

state after few oscillations on the U− V plane.

This result is interesting, as it suggests that, for given initial tumour size and char-

acteristics of the virus, there can be a unique interval of dosage sizes that does not

result in treatment success. Boosting the amount of virus does not always guarantee a

successful outcome.
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Figure 5.22: Typical cases of dependence on injected viral dosage VT0 for a system in
a bistable scenario. Examples of two injections with increasing dosage (i.e.
injections 1 and 2) are also sketched. The effect of these injections is to
push the starting point to larger values of V(0), depending on the dose
that is administered. For the same initial tumour size, different dosages
result in either tumour eradication or tumour stabilisation. Initial fixed
conditions in (a) are given by U(0) = 100, I(0) = 10 and in (b) are given
by U(0) = 50, I(0) = 10. In both cases, V(0) varies from a minimum of 20
to a maximum of 120 in constant steps and the parameters are m = 0.5,
γ = 0.1 and ξ = 0.138. First published in Jenner et al. (2019).

5.3 summary

Before considering the effects of specific tumour types and engineered viral derivat-

ives, it is important to obtain an overview of what drives the efficacy of oncolytic

viruses. In this chapter, two models were hierarchically developed and analysed to

show a number of interesting features, both from the mathematical and the biological

points of view. Firstly, a range of possible long term dynamical outcomes and stabil-

ity conditions have been found for the virus-tumour interaction. From this, a number

of nontrivial singular bifurcation scenarios emerged, with the presence of an import-

ant system equilibrium (i.e. full tumour eradication) in the case of the more complex

model in Section 5.2. Additionally, comparing the two hierarchical models allows for a

more in-depth understanding of what drives the different dynamics both mathematic-

ally and biologically. In discussing the stability of these two mathematical models, it is

possible to deduce and suggest possible treatment perturbations or regimes that result

in an improved outcome.
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To introduce the possible long-term behaviour of virus-tumour interactions, a local

stability analysis and bifurcation analysis was first conducted for the minimal model

developed, Eqs. (5.4)-(5.6). The core dynamics of this interaction were captured in χ

and ω representing the ratio of tumour replication and viral decay to cell burst rate

respectively. Dynamics of this model can be grouped into two sub-categories: those

that occur for either benign tumours or non-decaying viruses, and those that occur in

the presence of tumour growth and viral decay.

The equilibrium at the origin is unstable for all biologically reasonable parameter

values, except the case where ω = 0 and χ > 0. When ω = 0, there is no tumour

growth in the model: this can only occur for a specific type of tumour, i.e. a benign

tumour or a tumour whose growth is extremely slow relative to the time scale of

therapy. For this tumour type, the model predicts that complete tumour eradication

can be obtained for a specific range of initial conditions, see Fig. 5.11. High enough

initial viral dosages and initial tumour sizes result in complete tumour eradication:

benign or slow growing tumours would do well under this treatment, given the right

initial tumour sizes and viral dosages.

The non-zero equilibrium in Eqs. (5.4)-(5.6) is stable in the absence of viral decay,

i.e. for χ = 0. In Fig. 5.12 the corresponding model simulations for χ = 0 and ω > 0

show how the system tends to equilibrium U = I = 0 and V = IR. Whilst developing

a virus that rigorously does not decay is impossible, experimentalists have developed

ways to shield viral particles from immune detection and clearance (an example of this

is the polymer polyethylene glycol (Kim et al., 2011a) that is discussed in Chapter 6).

However, at the moment, this is a purely hypothetical scenario, as the non-decaying

virus, while harmless, will still need to be removed after it has eliminated the tumour.

The model predicts that if it were possible to genetically engineer an oncolytic virus to

remain within the system indefinitely, complete tumour eradication can be obtained.

Analysis of equilibria for the case of an exponentially growing tumour and viral

particles undergoing decay, i.e. χ > 0 and ω > 0, suggested that there is no way

for treatment to eradicate the tumour, as both equilibria are unstable. As shown in

Fig. 5.7 and 5.8, the non-zero equilibrium is a saddle focus and the origin is a saddle,

causing model solutions to spiral outwards with increasing amplitude. However, nu-
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merically simulating the non-dimensionalised model for a long time period showed

the appearance of long-period orbits, see Fig. 5.13. This suggests the possibility of a

tumour eradication state, where long periods of tumour remission would occur.

The complexity in the behaviour of the tumour and virus populations increased with

the addition of the Gompertzian tumour growth and frequency-dependent infection

expression in Eqs. 5.13-5.15. As shown in Fig. 5.18, an increase in infected cell lysis ξ

or a decrease in viral death rate γ drives the system through similar stages of typical

dynamics, from partial eradication to tumour-virus oscillations, as those seen in the

dynamics of the minimised model.

A metastable regime that appears somewhat counter-intuitive is represented by the

so-called “square wave” oscillations, which are observed in a small interval of biologic-

ally relevant parameters (see Fig. 5.17(c)). Given the size of the parameter space where

this dynamics takes place, it may be unlikely that such extreme tumour expansions

can be directly observed in a clinical setting. Nonetheless, the switch between a quasi-

eradicated to a quasi-ineffective treatment regime points to the importance of achieving

a complete elimination of the tumour if a sudden resurgence is to be avoided.

There are two primary ways to interpret biologically the presence of long-period

orbits in oncolytic virotherapy: complete tumour eradication or tumour remission. A

long-period orbit can be considered as an example of complete tumour eradication: if

the population of cells drops below certain levels, this could mean extinction. This in

a more realistic setting could occur if increased likelihood of clearance or death due to

nutrient deficiency is taken into account. In the long-period orbits shown in Fig. 5.13

close to zero (<< 10−6), and in this time frame other effects are likely to eradicate the

negligible number of remaining cells.

Long-period dynamics are a known feature in virotherapy models. Previously, No-

vozhilov et al. (2006) showed that for a model of oncolytic virotherapy there is a region

of the parameter space where trajectories form a family of homoclinics to the origin.

From the biological point of view, this occurrence implies that tumour cells can be elim-

inated with time, and complete recovery is possible. Similarly, Berezovskaya et al. (2001)

showed that the origin can have its own basin of attraction in the phase space, which

corresponds to deterministic extinction of both species. Berezovskaya et al. (2007) also
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showed how certain models possess a dynamical regime of deterministic extinction,

through the presence of homoclinics.

To quantify how the behaviour of long-period orbits is influenced by the parameter

space, the period of oscillations as a function of both χ (the ratio of the decay of

viral particles to cell burst rate) and ω (the ratio of tumour replication to cell burst

rate) is computed. In Fig. 5.14(a), decreasing the ratio of viral death to cell death,

i.e. χ, irrespective of the rate of tumour cell replication r and to cell burst rate dI,

i.e. ω, results in a longer period between oscillations, i.e. more time between tumour

regrowth. Alternatively, decreasing the ratio of tumour cell replication to cell burst rate,

i.e. ω, increases the period. Therefore, decreasing both the ratio of the decay of viral

particles to cell burst rate and the ratio of tumour replication rate to cell burst rate is a

very effective strategy for increasing the period of the long-period orbits.

The existence of an extended area of the parameter space where oscillations among

system variables arise is also seen in the more complex model in Section 5.2. These

regimes, which also tend to respond nonlinearly to external injections (see Fig. 5.22),

have been known for quite some time in clinical settings (Dingli et al., 2009; Wodarz,

2016). One major finding for this model is that virotherapy can prevent oscillations

from occurring if the resulting infected cell death rate is sufficiently strong or, alternat-

ively, the virus tends to survive for sufficiently long times in the infected population.

Furthermore, and this is particularly interesting, oscillations tend to have larger amp-

litudes and periods for increasing γ (or increasing m), before they disappear com-

pletely for sufficiently high values. This is worth reflecting on, especially from the

clinical perspective. Designing a virus that results in fast infected cell death and that is

still not sufficiently resilient may turn out to be a riskier strategy, since it could trigger

larger fluctuations in the tumour population. These oscillations also occur at relatively

distant time intervals from each other and long periods of tumour inactivity may be

misinterpreted as successful eradication.

Looking at Fig. 5.18(a) and assuming that a low value of uninfected tumour cells

U represents a good outcome, a slower infected cell death rate, say with a ξ ≈ 0.04,

results in a quiescent tumour of a smaller size than the amplitude of oscillations caused

by a fast infected cell death rate with, for instance ξ ≈ 0.08 (i.e. twice as fast). This is
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also true from the point of view of resilience, see in particular the inset of Fig. 5.18(b):

a virus that remains active for longer, say γ ≈ 0.015, produces oscillations with very

high values of U, whereas a virus decaying twice as fast, say with γ ≈ 0.03, produces

a stable tumour of a smaller size. All this shows that therapeutic strategies must be

chosen carefully and thoughtfully, and that optimal design of an oncolytic virus must

be targeted on the tumour characteristics, in particularly its proliferation rate.

Another key feature of the oscillations for the first model in Section 5.1, see Fig. 5.13,

is their amplitude. In Fig. 5.14(b)-(d) the dependence of the amplitude of the oscilla-

tion on χ (the ratio of the decay of viral particles to cell burst rate) is examined. In

all cases, the lower the value of χ the lower the amplitude of the oscillation. However,

consideringω (the ratio of tumour replication to cell burst rate), increasingω increases

the amplitude of the oscillation for infected tumour cells and virus particles and de-

creases the amplitude for uninfected tumour cells. One of the primary objectives of a

therapy is to reduce the number of uninfected tumour cells, and therefore reduce the

amplitude of the oscillation for U. In that respect, a decrease in the ratio of the decay

of viral particles to cell burst rate, χ, and an increase in the ratio of tumour replication

to cell burst rate, ω would be ideal. This will result in the lowest possible amplitude

for the uninfected tumour cells. Note that this suggestion is also associated with a long

period between oscillations, so it represents overall the most effective way of improving

oncolytic virotherapy.

When considering perturbations of the treatment strategy for the more complex

model, therapies that couple with external injections of viral loads could have very

different outcomes depending on the state of the system. They can perturb a trajectory

that was meant to be of full eradication into a dormant state, see Fig. 5.22.

Comparing both models illustrates the driving mechanisms behind some of the in-

teresting dynamics seen in the models stability. For both models, achieving complete

tumour eradication is challenging and it is with the addition of the Gompertzian tu-

mour growth and frequency-dependent virus infection that regions resulting in tumour

death for growing tumours exist.

Oscillations in tumour cell population size have been seen in vivo in several other

viral dynamic models (Bajzer et al., 2008; Dingli et al., 2009; Wodarz, 2016). Komarova
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and Wodarz (2010) showed that using mass action to model the viral infectivity leads

to strong oscillations in the population of viruses and cancer cells. Titze et al. (2017)

suggested that the rise and fall of tumour growth, seen in oscillations, could be due to

the lack of bioincubators for viral replication. This is analogous to behaviours typical

of predator-prey systems, where oscillations occur due to a heavy dependence of each

population on the other for survival.

One of the main limitations of both models in this chapter is the endless influx

of viral load that occurs in the model: once the viral cycle is set into motion, and

unless viral death rate is excessive (i.e. γ > 1 for the Gompertz model), there is no

natural stopping mechanism for viral infections. This simplification is, for example,

responsible for the appearance of dormant, partially eradicated tumours, which, after

an initial transient, perpetually coexist with a constant viral load. These dynamics are

common for models with unlimited reservoirs of populations (Wilkie, 2013) .

From the local stability and bifurcation analysis of two generic models for oncolytic

virotherapy, it was possible to determine parameter regions resulting in treatment suc-

cess or failure. Additionally, the effects of different treatment profiles were examined

for a generic oncolytic virus. In the following Chapter, the model developed in Sec-

tion 5.2 is used to optimise tumour time-series measurements for an oncolytic adenov-

irus conjugated with Herceptin. This allows for a specific virus and tumour parameter

set to be obtained, and a subset of the full model bifurcation analysis to be discussed

in detail.
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overview
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Figure 6.1: Subset of Fig.1.1, summarising the investigation of the virus-tumour inter-
action in this chapter

The overview of long-term dynamics for oncolytic virotherapy in Chapter 5 forms the basis of

this chapter’s study for a particular treatment modality: a PEG-modified oncolytic adenovirus

conjugated with Herceptin. This treatment was engineered by Kim et al. (2011a) to overcome

the clearance of viral particles in the blood by the immune system. Unfortunately, PEG and

Herceptin modification are unable to overcome the effect of another obstacle, interferon-mediated

antiviral cell-immunity. This antiviral immunity is initiated by infected cells releasing inter-

feron that obstructs viral replication in neighbouring cells. While this mechanism can impede

the efficacy of the virus, a strong antitumour immune response (killer immune cells stimu-

lated by virus-infected tumour cells) can be sufficient to counteract this effect and result in

tumour eradication. This chapter investigates interventions that could improve the efficacy of

a PEG-modified oncolytic adenovirus conjugated with Herceptin and considers how the treat-

ment outcome may vary in the presence of interferon-mediated antiviral cell immunity and the

antitumour immune response.

Most of the work in this chapter was previously published in Jenner et al. (2018b) and

Jenner et al. (2016).
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A major obstacle for oncolytic virotherapy is the short retention of virus particles in

the blood due to immune clearance (Kim et al., 2011a). To combat this, Kim et al. (2011a)

modified an oncolytic adenovirus (Section 2.4) with the non-immunogenic polymer

polyethylene glycol (PEG). Additionally, to increase the ability of the virus to bind

to and be internalised by host cells, Kim et al. (2011a) conjugated the PEG-modified

adenovirus with a monoclonal antibody known as Herceptin (see Fig. 2.3).

PEG is an uncharged, hydrophilic, non-immunogenic polymer that is known to re-

duce protein-protein interactions (Kim et al., 2011a). Modification of adenovirus vectors

with PEG is known to increase the survival of virus particles as they travel through

the bloodstream by shielding them from immune detection (Mok et al., 2005). PEG-

modified viruses, therefore, have a higher chance of initially reaching the tumour cells

before being cleared (Mok et al., 2005). The disadvantage of PEG modification is that it

weakens the ability of the virus to interact with and target tumour cells, which inhibits

virus infectivity (Kim et al., 2011a).

For some cancer types, the decrease in efficacy of oncolytic virotherapy incurred

through PEG modification can be overcome by conjugating the viruses with Herceptin.

Herceptin is a Her2/neu-specific monoclonal antibody that is used regularly in breast

cancer treatment as it recognises and binds to Her2, found over-expressed on the sur-

face of certain types of breast cancer cells (Section 2.2.3.1). The conjugation of an on-

colytic adenovirus with Herceptin allows the modified virus to selectively accumulate

within tumours expressing Her2, leading to a higher probability of tumour cell infec-

tion and in turn tumour cell death.

6.1 validation of a peg-modified adenovirus conjugated with herceptin

To quantify the effectiveness of modifying an adenovirus with PEG and Herceptin, Kim

et al. (2011a) conducted three in vivo experiments. The first experiment looked at the

tumour volume in six mice under treatment with different perturbations of the virus.

The second experiment measured the viral decay in the blood over the first 60 minutes.

The third experiment measured the spatial distribution of the viral genome on day 5.
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Kim et al. (2011a) measured tumour volume changes under four different treatment

protocols: one control treatment and three varying oncolytic adenoviruses. The control

treatment was an injection of 100µL of phosphate buffered saline (PBS), and the three

virus-based injections were an oncolytic adenovirus without any modification (Ad), a

PEG-modified adenovirus (Ad-PEG) and a PEG-modified adenovirus conjugated with

Herceptin (Ad-PEG-HER). Each treatment protocol was intravenously injected into dif-

ferent groups of six nude mice (mice with non-functioning immune systems) with pre-

established tumours of size 100-120mm3 that were made up of Her2/neu-expressing

human breast cancer cells MDA-MB435 (Section 2.2.3.1). In each experiment 1× 1010,

viral particles were injected intravenously on days 0, 2 and 4. The tumour volume in

each mouse was recorded every second day for 60 days from the first injection (Sec-

tion 2.5.3).

Kim et al. (2011a) also conducted experiments to measure the viral genomes present

over the first 60 minutes. The purpose of this experiment was to understand how rap-

idly viral particles decay after injection. Kim et al. injected 1× 1010 viral particles of

each Ad, Ad-PEG and Ad-PEG-HER into six BALB/c mice. The total viral genomes

present in each mouse was recorded at 5, 10, 20, 30, 40 and 60 minutes after first injec-

tion (Section 2.5.4).

Kim et al. also assessed the viral distribution 5 days post injection. Similar to the pre-

vious two experiments, mice with pre-established tumours of size 100-120mm3 were

injected intravenously with 1× 1010 viral particles of Ad-PEG-HER on days 0, 2 and

4. On day 5, the organs from each mouse were harvested and the number of viral

genomes in each sample was assessed (Section 2.5.4).

6.2 optimisation of tumour growth measurements under treatment

with a peg-modified adenovirus conjugated with herceptin

Mathematical models have been used extensively to provide insight into oncolytic viro-

therapy (Section 3.2.3). In Chapter 5, a local stability analysis and bifurcation analysis

was conducted for a model of the virus-tumour interaction, considering Gompertzian

tumour growth and frequency-dependent virus infection (Eqs. (5.10)-(5.12)). As the tu-
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mour growth measurements of Kim et al. (2011a) were conducted on nude mice, the

model in Eqs. (5.10)-(5.12) can be used to understand the efficacy of the PEG-modified

adenovirus conjugated with Herceptin in the absence of an immune response (such as

the interferon-mediated antiviral immunity or antitumour immune responses). See the

restated model equations below:

dU

dt
= r log

(
L

U

)
U−

βUV

U+ I
, (6.1)

dI

dt
=
βUV

U+ I
− dII, (6.2)

dV

dt
= uv(t) − dVV +αdII, (6.3)

uV(t) =

 V0δ(t− ti), ti = 0, 2, 4,

0, otherwise,
(6.4)

where the uninfected tumour population is represented by U, signifying cells suscept-

ible to infection, I is the infected cells and V is the virus particles. The injection func-

tion uV(t) has been included to account for V0 virus particles injected intravenously

on days 0, 2 and 4. Note that U and I represent numbers of cells, V represents the

number of viral particles and t is time.

Any virus produced via replication within the tumour cells loses PEG modification

and conjugation with Herceptin. A single average infectivity β (which also accounts

for tumour cell discovery by the virus) and a single decay rate dV are assigned for the

combined populations of original and replicated viruses, noting that the population is

dominated by naked (replicated) viruses over the majority of the time course of the

experiments. Here the tumour volume is assumed to be proportional to the number of

tumour cells, and the density is assumed to be 106cells/mm3 (Wares et al., 2015).

To obtain parameter estimates for the model, individual and simultaneous optim-

isations following the implementation detailed in Section 3.4 were performed on the

tumour time-series data. Firstly, the model was optimised using the data of the tumour

cell population for each individual mouse to obtain independent estimates of all para-

meters, see Fig. 6.2 and Table 6.1. To numerically simulate the model in Matlab, the

model was implemented as an impulsive differential equation: at each injection time,
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ti, the ode solver was stopped, the virus population, V , was increased by V0 and the

simulation was iterated forward.
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Figure 6.2: Tumour population over time for (a) PBS (Control), (b) Ad, (c) Ad-PEG
and (d) Ad-PEG-HER treatments. The data for each mouse are shown with
joined circles and the optimised model outputs for individual cases are
shown as a thicker lines of the same colours. Note V = I = 0 for the control
case. First published in Jenner et al. (2018b).

Initially, the V and I populations were zero. In the case of the PBS (control) experi-

ment, there were no viral particles in the PBS injection and therefore no infected cells.

For the viral experiments, V0 = 1010 particles. The number of new virus particles cre-

ated through lysis (viral burst size) was fixed at 3500 as reported in Chen et al. (2001).

When solving Eqs. (6.1)-(6.4) numerically, the denominator was replaced by U+ I+ ε

for ε = 0.0001 to avoid the singularity as U+ I→ 0 (discussed in the previous chapter).

It is clear from Fig. 6.2 that there is quite a varied response to each treatment, re-

flected in the range of parameter values returned in the fit of each individual tumour
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Table 6.1: Parameter values for the optimisation of the individual mouse data in
Fig. 6.2. The colours used to plot the individual tumour measurements cor-
respond to the parameter values given in the table below. Values have been
rounded to two significant figures.

PBS

Param. Units Description Dark blue Light blue Green Black Red Pink

L cells×106 carrying capacity 5300 10000 7300 2400 1200 450

r day−1 growth rate 0.043 0.024 0.03 0.05 0.26 0.24

U0 cells×106 initial tumour size 220 230 230 250 95 150

Ad

Param. Units Description Dark blue Light blue Green Black Red Pink

α virus×109 viral burst size 2 2 2.5 2 4 4

L cells×106 carrying capacity 5600 3700 3000 10000 2100 10000

r day−1 growth rate 0.036 0.057 0.05 0.022 0.049 0.039

dI day−1 burst rate 0.1 2 2 2 0.1 0.1
dV day−1 viral decay rate 3.5 3.05 2.5 2.4 3.5 2

β day−1 infection rate 0.2 1.5 0.85 1.2 0.2 1.4

Ad-PEG

Param. Units Description Dark blue Light blue Green Black Red Pink

α virus×109 viral burst size 4 2 4 3.3 4 4

L cells×106 carrying capacity 7500 2300 3900 3500 1200 830

r day−1 growth rate 0.042 0.09 0.28 0.055 0.12 0.1
dI day−1 burst rate 0.24 2 0.15 2 0.86 0.48

dV day−1 viral decay rate 2.1 1.8 2.1 1.9 1.4 1.4
β day−1 infection rate 0.58 0.8 0.6 0.63 0.43 0.47

Ad-PEG-HER

Param. Units Description Dark blue Light blue Green Black Red

α virus×109 viral burst size 2.03 2 3.8 2 3.8
L cells×106 carrying capacity 3200 5000 7900 8500 940

r day−1 growth rate 0.073 0.022 0.032 0.038 0.6
dI day−1 burst rate 2 2 0.1 2 0.1
dV day−1 viral decay rate 3.3 3.5 1.9 2.09 1.8
β day−1 infection rate 1.5 0.2 1.2 1.1 1.4

time-series measurement to the model, see Table 6.1. As such, it is not possible to use

the optimised parameter values to the individual tumour time-series measurement to

predict the characteristics of treatment, instead the averaged response needs to be used.
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Table 6.2: Common and experiment-specific parameters for the simultaneous optimisa-
tion in Fig. 6.3.

Experiment
Parameter PBS Ad Ad-PEG Ad-PEG-HER
Tumour growth rate r

Tumour carrying capacity L

Tumour cell burst rate - dI
Viral decay rate - dV
Initial tumour size U0 PBS U0 Ad U0 Ad−PEG U0 Ad−PEG−HER

Infection rate - β Ad β Ad−PEG β Ad−PEG−HER

In future work, it may be worth investigating the variability in individual response us-

ing a random effects model, where parameters are random variables.

To quantify the average response to the treatment protocol, the model parameters

were then optimised using all the experimental data simultaneously for both common

parameters and those specific to that experiment, see Table 6.2. The tumour growth

dynamics, governed by parameters r and L, were considered to be common across all

experiments. Similarly the parameters relating to cell lysis rate, dI, and viral decay, dV ,

were considered to be common to all viral experiments. The infectivities and initial

tumour sizes were taken to be protocol specific. The different levels of modification in

the virus were hypothesised to result in different infectivity rates; therefore, this value

must be free to vary between experiments. Overall, 11 parameters were optimised

using 750 data points across four protocols of five or six data sets each. The fit equally

weighted each of the experimental data sets, accounting for any differences in the

number of data time points between sets (for example, the PBS experiment had 198

data points and the Ad experiment had 186 data points, but each set was taken to have

equal weight in the optimisation, see Section 3.4).

The four data sets (PBS, Ad, Ad-PEG and Ad-PEG-HER) were used simultaneously

to optimise the model parameters. The model output is shown overlaid with the ex-

perimental data in Fig. 6.3. The parameter values and fit characteristics of the simul-

taneous optimisation are shown in Table 6.4. The parameter values obtained from both

the individual and the simultaneous optimisations are shown in Fig. 6.4. Some of the

simultaneous fit parameters lie within the distribution of the estimates obtained in the

individual optimisations.
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Figure 6.3: Tumour populations over time for (a) Control, (b) Ad, (c) Ad-PEG and (d)
Ad-PEG-HER. The experimental data are plotted as circles (grey), and the
trajectories for the simultaneous optimisation to all data points are shown
as solid lines. The means of the data are shown as dashed lines. Note I = 0
for the control case. First published in Jenner et al. (2018b).

As evident in Fig. 6.2 and 6.3, the simple mathematical model in Eqs. (6.1)-(6.4), de-

scribes the interaction between an oncolytic virus and tumour cells. The model is able

to identify the primary processes and capture observed experimental results. When fit

to the data for individual cases it can be seen that the model easily replicates a wide

range of treatment responses. The ability of the model to reproduce the data closely is

measured by the R-squared and Pearson’s r Correlation coefficient Table 6.4. From this,

the model is a reliable representation for the interaction between an oncolytic virus

and tumour cells.

For parameters held in common across experiments, all data points constrained the

values. However, in the case of experiment-specific parameters such as the infectiv-

ity rate, β, which took different values for different experiments, fewer data points
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constrained the values. Thus for some experiment-specific parameters the simultan-

eous estimates were dissimilar to those from the individual optimisations (Fig. 6.4).

Although each data set was weighted equally, the constraints on the common paramet-

ers resulted in different optimal values.

6.2.1 Simulating perturbations in tumour and virus characteristics

To determine if the outcome of Ad-PEG-HER treatment was dependent on the tumour

characteristics, the tumour population over time was simulated with separate perturb-

ations to the growth rate r and initial tumour size U0, keeping the other parameters

constant, see Fig. 6.5. Perturbations in viral characteristics are also thought to alter

the treatment outcome. To examine the effect of changes in the viral infectivity on the

tumour population, perturbations in β are shown in Fig. 6.5(c).

It is clear that there is a relationship between a successful treatment outcome and

the aggressive nature of the tumour. Treatment efficacy is highly dependent upon the

initial tumour size and proliferation rate. The simulations suggest that the slower the

tumour cells are proliferating, the higher the likelihood of the viral treatment reducing

the tumour to a manageable size. For aggressive tumours, there is an initial plateauing

of the tumour cell population, showing the treatment taking effect; however, this is

followed by an increase in tumour size. Increasing virulence of the virus by increasing

viral infectivity is also shown to reduce the tumour size significantly.

6.2.2 Simulating the effects of different treatment dosage protocols

In Section 5.2.3, a general investigation into the effect of changes to the dosage pro-

tocols for the model was undertaken. Perturbations in dosage amounts were shown

to result in significantly different long-term outcomes in the region of bistability, see

Fig. 5.22, and also influence the maximum and minimum tumour sizes in regimes of

stable limit cycles, see Fig. 5.21. The equivalent non-dimensional form of the variables
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Figure 6.4: Parameter estimates from the individual and simultaneous optimisations to
the data. The small (grey) circles correspond to the estimates of the paramet-
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the initial tumour size, U0, were experiment specific. The central white lines
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parameters. First published in Jenner et al. (2018b).
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Table 6.3: Parameter values for the simultaneous optimisation of the model with all data, shown in Fig. 6.3.

Parameter Units Description PBS Ad Ad-PEG Ad-PEG-HER 95% Confidence Interval

α virus×109 viral burst size - 3500 3500 3500 -
L cells×106 carrying capacity 3490 3490 3490 3490 (2230, 4750)
r day−1 growth rate 0.037 0.037 0.037 0.037 (0.018, 0.056)
dI day−1 burst rate - 0.1 0.1 0.1 (-2, 2)
dV day−1 viral decay rate - 1.38 1.38 1.38 (-52, 55)
U0PBS cells×106 initial tumour size 251 - - - (139, 453)
U0Ad cells×106 initial tumour size - 200 - - (63, 337)
U0Ad−PEG cells×106 initial tumour size - - 223 - (69, 378)
U0Ad−PEG−HER cells×106 initial tumour size - - - 153 (37, 269)
βAd day−1 infection rate - 0.562 - - (-16, 17)
βAd−PEG day−1 infection rate - - 0.771 - (-19, 21)
βAd−PEG−HER day−1 infection rate - - - 0.862 (-20, 22)

Table 6.4: Fit statistics for the simultaneous optimisation of the model with all data, shown in Fig. 6.3.

Goodness of fit statistics Value

R-squared 0.4286

Pearson’s r correlation coefficient 0.6547
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Figure 6.5: Tumour population over time predicted by the simultaneously optimised
model for various (a) growth rates r between 0.001 and 0.3 (day−1), (b)
initial tumour populations U0 between 1 and 300 (cells ×106) and (c) in-
fectivity rates β between 0.4 and 4.5 (day−1). The colourmap bar matches
the corresponding parameter value. All other parameters for each set were
given by Table 6.4 for common and Ad-PEG-HER experiment-specific val-
ues. The dashed line represents the model solutions for unperturbed Ad-
PEG-HER parameters in Table 6.4. Note the plots have different vertical
scales. First published in Jenner et al. (2018b).

for the Ad-PEG-HER virus are m = 0.0429, γ = 1.6009 and ξ = 0.1160, (see Eqs. (5.13)-

(5.15)), which according to the two-parameter bifurcation plot in Fig. 5.20, is not in a

region close to a Hopf bifurcation. As such, for the Ad-PEG-HER parameter set, limit

cycles or bistability will not emerge.

While the interesting dynamics in Section 5.2.3 will not be seen for the Ad-PEG-HER

virus, it is still worth investigating the sensitivity of the model to alterations in the

application profile uV(t) for this virus. Using the generic dosage schedule previously

defined in Eq. (5.20) the effect on the tumour cell population was simulated from day
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0 to 100 under different total dosages and application profiles uV(t). The model was

simulated using the parameters simultaneously optimised for the Ad-PEG-HER virus,

Table 6.4, with the dose, VT0, between 0 and 1500, the number of injections, n, between

0 and 6 and the period between injections, φ, between 0 and 10 days.

One major concern in viral treatments is the toxicity caused through the accumula-

tion of the virus in the system. To examine this, the maximum virus level reached at any

time between day 0 to 60 for each application profile was determined, Fig. 6.6(a). To

quantify the effects of differing application profiles on treatment outcome, the changes

in eradication half-time were measured. The eradication half-time is defined as the

time taken for the tumour to decrease to and remain smaller than half its initial size.

The minimum viral dose required for a finite eradication half-time was determined

for each application profile, Fig. 6.6(b). From Fig. 6.6(b), it would seem that the best

strategy for fast tumour eradication is a single high dose injection.
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Figure 6.6: Effect of treatment profile. (a) Maximum viral population as a function of
the total viral dose, VT0, for each application profile with inset detail at low
doses. (b) Eradication half-time as a function of the minimum total viral
dose, VT0, required. Seven different application protocols were simulated
for the simultaneous optimised model for Ad-PEG-HER, Table 6.4 for the
indicated number of injections, n, and days between injections, φ. First
published in Jenner et al. (2018b).
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6.3 compartmentalisation of the viral population to optimise viral

genome clearance and spatial distribution measurements

To use the viral genome clearance measurements and spatial distribution data from

Kim et al. (2011a) described in Section 6.1, the virus population V is now compart-

mentalised to virus in the blood, organs and tumour site. In the previous model,

Eqs. (6.1)-(6.4), the viral decay was modelled using the approximation dV/dt = −dVV .

To capture data for the clearance of the virus from the blood, the interaction and trans-

fer of virus between the blood, organs and tumour must be modelled explicitly. The

timescales of the two viral genome experiments are significantly different and this is

considered when extending the model to compartmentalise the virus populations.

6.3.1 Viral genome clearance from the blood

The viral genome clearance data measured the viral number in the blood over 60

minutes post injection. In this time, the liver quickly removes the bulk of the virus

particles circulating in the blood (Ganesan et al., 2011). Liver sinusoidal endothelial

cells (LSECs) are the most efficient endocytotic cell population of the body; they scav-

enge molecules from the bloodstream and possess potent immune functions (Knolle

and Wohlleber, 2016). Ganesan et al. (2011) showed in their experiments with an ad-

enovirus, that nearly all virus was cleared by LSECs. Ganesan et al. (2011) suggested

that LSECs take up and destroy the majority of an injected virus, doing so quickly

(minutes) and extensively (>90%), leaving only a small fraction of circulating virus to

infect the body. Ganesan et al. (2011) notes that virus in the bloodstream undergoes

rapid biexponential clearance.

A minimal model for the clearance of viral particles in the blood VB by LSECs LC is

given by

dVB
dt

= −dLLC − dBVB − τOVB, (6.5)

dLC
dt

= aLVB, (6.6)
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where t is time. Viral particles are cleared by LSECs at a rate dL proportional to the

number of LSECs. Virus is also cleared from the blood by other factors (e.g. comple-

ment immune system) at a rate dB. Additionally, viral particles leave the blood and

travel to the organs at a rate τO. Initially there is a population L0 of LSECs, and more

LSECs are stimulated and recruited by the presence of virus in the blood at a rate aL.

See the schematic in Fig. 6.8.

Since dB and τO can be combined, these viral decay terms can represented by a

single parameter dB+ τO = ω. Solving the system in Eqs. (6.5)-(6.6) gives a biexponen-

tial expression for VB(t):

VB(t) = Ae
k1t + (V0 −A)e

k2t, for k1,2 =
−ω±

√
ω2 − 4dLaL
2

, (6.7)

where the initial condition VB(0) = V0 has been used to eliminate one constant of

integration. Fitting Eq. (6.7) to the viral genome measurements in the blood by Kim

et al. (2011a) gives the resulting curve in Fig. 6.7 and values in Table 6.5. It is clear from

Fig. 6.7, that the dynamics of the Ad-PEG virus are significantly different to those of

Table 6.5: Parameter values for the simultaneous optimisation of the model with all
data.

Parameter Units Ad Ad-PEG Ad-PEG-HER

A virus 2.013× 108 7.775×106 3.155× 107
k1 day−1 −0.8563 −0.02412 −0.2923
k2 day−1 −0.0001 −4.149 −0.003715
V0 virus 11× 102 1022 1012

the Ad and Ad-PEG-HER viruses. As such, it is not possible to assume that this model

is able to capture the dynamics of the Ad-PEG data. The underlying mechanisms of

viral clearance for the Ad-PEG virus are unexpected and future work will investigate

this in further detail.

To use these results in the second viral genome experiment by Kim et al. (2011a), the

quasi-steady-state dynamics for Eq. (6.7) needs to be considered as the time scale of the

second experiment was on the order of days. As t increases, one term will dominate the
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Figure 6.7: The results of fitting biexponential decay to the viral time-series data from
Kim et al. (2011a). Fig.6.7a is for the fit to the Ad data, Fig.6.7b is for the fit
to the PEG data and Fig.6.7c is for the fit to the HER data. The solid line
(blue) represents the fit, and the data is plotted as circle (yellow).

expression for VB(t). For k1 >> k2, this means that Aek1t → 0 faster than (V0−A)e
k2t,

and therefore the quasi-steady-state form of this equation is

VB(t) = A2e
k2t = (V0 −A)e

−k2t

with the rate of change for VB(t) approximated by

dVB
dt

= k2(V0 −A)e
k2t = k2VB (6.8)

with initial condition now VB(0) = V0 −A. Since the units of the decay rate is minutes,

this is re-scaled into days to obtain the parameter for the decay from the blood for the

second viral genome experiment, i.e. dB + τO = k2 × 60× 24. Note that variations on
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the model in Eqs. (6.5)-(6.6) were examined; however, since the viral genome in the

blood was measured on a much faster time scale then the other experiments, further

complexity was not needed.

6.3.2 Spatial distribution of virus

In the second set of virus-based experiments, Kim et al. (2011a) measured the viral

genome number in the organs and tumour site. In this experiment, the viral genome

distribution was measured on day 5. The model in the previous section considered the

viral clearance in the first 60 minutes in the absence of both the immune response and

tumour cells. To model the spatial distribution of viral genome on day 5, the quasi-

steady-state approximation in Eq. (6.8) is combined with the model used to optimise

the tumour time-series measurements, Eqs. (6.1)-(6.4). See the below system of equa-

tions:

dVB
dt

= uV(t) − dBVB − τOVB − τTVBT , (6.9)

dVO
dt

= τOVB − dVVO, (6.10)

dVT
dt

= τTVB(S+ I) − dVVT +αdII (6.11)

dU

dt
= r log

(
L

U

)
U−

βUVT
U+ I

, (6.12)

dI

dt
=
βUVT
U+ I

− dII, (6.13)

uV(t) = (V0 −A)(δ(t) + δ(t− 2) + δ(t− 4)), (6.14)

where VO is the virus population in the organs and VT is the virus population at the

tumour site. The virus in the blood is cleared by the immune system at a rate dBVB

proportional to the amount circulating. Virus in the blood travels to other organs at

a rate τOVB proportional to the amount of virus in the blood. The population of the

virus in the regions other than the blood or tumour arrives at a rate τOVB proportional

to the amount in the blood, and decays at a rate dVVO proportional to the amount

in the other location. The virus from the blood then arrives at the tumour site at a
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rate dTVB(U+ I) proportional to the amount in the blood and the total population of

tumour cells, accounting the effects of Herceptin. See the schematic in Fig. 6.8.
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Figure 6.8: Diagram of the interaction between a population of uninfected tumour cells U,
infected tumour cells I and an intravenously injected oncolytic virus in the blood
VB, organs VO and tumour site VT , see Eqs. (6.9)-(6.14). The variable T represents
the total tumour population U+ I. The dashed lines represent the fast dynamics
of the system which is due to clearance from LSECs L. These are approximated by
simple exponential decay.

To optimise the measurement of viral genome in the organs and tumour on day 5,

the parameter values of r,K,α,dI,U0 and dV were fixed to those obtained from fitting

to the tumour time-series data, see Table 6.4. Since the virus used in these experiments

is the Ad-PEG-HER virus, the value of βwas fixed to be the value for the Ad-PEG-HER

virus. Using the results of the previous fit to the viral time-series data (Section 6.3.1),

τO was fixed to be: τO = k2 − dB, where k2 has been re-scaled to units of day−1 as

opposed to min−1. Fitting the viral genome in the organs and tumour on day 5 to

the model, while allowing dB and τT to vary, gives the fit in Fig. 6.9 and parameter

values in Table 6.6. The optimisation algorithm followed the numerical implementation

in Section 3.4.
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(a) (b)

Figure 6.9: Optimisation of the model in Eqs. (6.9)-(6.14) to the virus genome accu-
mulation data for the organs and tumour from Kim et al. (2011a). The total
model’s predicted virus count (a) in the organs, VO, is plotted as a solid line
(orange) and (b) at the tumour, VT , is plotted as a solid line (dark green).
The experimental data from Kim et al. is plotted in the form of a box plot
(purple) with the data represented as circles (black).

Table 6.6: Parameter values for the optimisation of the viral genome in the organs and
tumour on day 5, see Fig. 6.9.

Parameter Units Description Value 95% Conf. Inf

dB day−1 Decay rate from the blood 5.3495 (5.3483, 5.3507)
τT day−1 Transfer to the tumour site 3.3×10−4 (0.0001,0.0006)

As the confidence intervals were tight on these parameters and visual inspection of

the fit shows the model’s predicted viral counts sit well within the range of experi-

mental results, it is possible to conclude that these parameter values provide a good

model approximation to the data.

6.4 the effects of the antiviral and antitumour immune responses

To establish infections in vivo viruses must compete against powerful immune defence

mechanisms. The immune system is developed to respond to the presence of viral

particles in the body and clear any virus-infected cells (see Section 2.3). The previous

experiments by Kim et al. (2011a) considered only nude mice (mice without a function-

ing immune system) and the immune response was neglected. It is worth considered
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how the system would behave in the presence of interferon-mediated antiviral cell

immunity and the antitumour immune response.

6.4.1 Interferon-mediated cell antiviral immunity

Infection of a cell by a virus triggers the production of antiviral factors that induce

an antiviral state in neighbouring cells (Hertzog, 2012; Shiroki and Toth, 1988). The

main antiviral factor is the cytokine interferon (IFN), which is a known preventer of

intracellular viral replication (Barber, 2001; Goodbourn et al., 2000). IFN stimulates

an antiviral state in target cells, whereby, once these cells are infected, the replication

of the virus is blocked due to synthesis of a number of enzymes that interfere with

the replication processes (Goodbourn et al., 2000). Infection of cells in an antiviral

state causes the induction and secretion of more interferons that alert nearby cells and

activate the immune system, (Levy et al., 2001). It has been hypothesised that antiviral

factors play a crucial role in the outcome of treatment of tumour cells with an oncolytic

virus (Wodarz et al., 2012), and the work in this section looks to investigate this further.

6.4.2 Antitumour immune response

In recent years the interplay of the immune system with cancer therapies has become

a topic of increasing interest. As an oncolytic virus replicates only within tumour

cells, the localised viral infection recruits the immune response to the tumour site.

Once there, the immune cells kill virus-infected cells through inducing apoptosis (Sec-

tion 2.3). Immune cells also have the ability to kill tumour cells, even if they aren’t

infected by a virus. Studies have shown that the release of tumour antigen into the

microenvironment, through lysis of tumour cells, stimulates the immune cells and in-

stigates killing of uninfected tumour cells (Section 2.3). In this thesis, the ability of

immune cells to kill uninfected tumour cells is referred to as the antitumour immune

response.
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6.4.3 Model extension

There are currently many virus-tumour-immune mathematical models in the literature

(Section 3.2.4). However, none have accounted for the combined effects of interferon-

mediated antiviral immunity, the antitumour immune response and the intravenous

injection of an oncolytic virus. Kim et al. (2011a)’s tumour time-series experiment (Sec-

tion 6.2) and two viral genome experiments (Section 6.3) considered the response to an

oncolytic adenovirus in nude mice. Therefore, in these experiments the function of the

antiviral immunity and the antitumour immune response were negligible. In reality,

the antitumour and antiviral immune responses can play a major role in the outcome

of therapy.

The model in the previous section is now extended to include the effects of the

antiviral cell immunity and antitumour immune response, giving the below system of

equations:

dVB
dt

= uV(t) − dBVB − τOVB − τTVBT , (6.15)

dVO
dt

= τOVB − dVVO, (6.16)

dVT
dt

= τTTVB − dVVT +αdII, (6.17)

dU

dt
= r log

(
L

U

)
U−

βUVT
T

−
γU(I+ RI)

T
+ τRRS −

κUK

T
, (6.18)

dI

dt
=
βUVT
T

− dII−
κIK

T
, (6.19)

dRS
dt

=
γU(I+ RI)

T
−
βRRSVT

T
− τRRS, (6.20)

dRI
dt

=
βRRSVT

T
− dRIRI, (6.21)

dK

dt
= sK(I+ RI) − dKK, (6.22)

T = U+ I+ RS + RI, (6.23)

where RS is the uninfected cells in an interferon-mediated antiviral state, RI is the in-

fected tumour cells in an interferon-mediated antiviral state and K is the killer immune

cell population. Cells in an antiviral (or refractory) state are those that have been tem-

porarily removed from the uninfected population due to signalling by antiviral factors.
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A single state variable has been chosen to account for the complex antitumour immune

response. In Chapter 7, the antitumour immune response is considered in more detail,

but for the analysis to follow this assumption is sufficient.

V
B

Uinjection

decay

decay

decay

transfer

transfer

lysis

infection

decay

growth

refraction

re-introduction

killing

killing

stimulation

stimulation

u
v
(t)

d
B
V

B

d
V
V

O

d
V
V

T

   αd
I
I

βUV
T

T

rlog      U
U
L ĸUK

T

τ
R
R

S

γU(I+R
I
)

T

s
K
IĸIK

T

s
K
R

I
d

K
K

K

τ
T
V

B
T

τ
O
V

B

V
T

V
O

R
S

I

R
I

infection

β
R
R

S
V

T

T

   d
RI

R
I cell death

Figure 6.10: Compartmental diagram of the interaction between a population of uninfected
tumour cells U, infected tumour cells I, and an intravenously injected oncolytic
virus in the blood VB, organs VO and the tumour site VT . Tumour cells may join
the uninfected refractory population RS or the infected refractory population RI
through interferon-mediation. Killer immune cells K are able to remove tumour
cells through the antitumour immune response. See Eqs. (6.15)-(6.23) for the full
model. First published in Jenner et al. (2016).

The new interactions in the model are detailed as follows. Uninfected cells join the

refractory population due to antiviral factors released by the infected tumour cells at a

rate γ proportional to the frequency of the interferon-producing populations, I and RI.

Cells in the refractory state can be infected by the virus to become infected refractory

cells, RI, at a rate βR. Cells leave the refractory population to re-join the uninfected

population at a slow rate τR, where τR << γ. Apoptosis, or programmed cell death

occurs due to infection at rate dRI. It is assumed the immune cells are stimulated pro-

portionally by the infected tumour populations, I and RI, at rate sK. This stimulation

is due to antigen presentation and the secretion of antiviral factors. Immune cells die

at a rate dK. The uninfected and infected cells are killed by the immune system at a

frequency-dependent rate κ. See Fig. 6.10 for a summary of model interactions.
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For the most part, the parameters in the model can be approximated based on literat-

ure and the previous optimisations in Sections 6.2 and 6.3. The decay rate of the killer

cell population was approximated by the decay rate of T cells which have a half-life

of 48 hours giving dK = 0.35(day−1) (De Boer et al., 2001). Killer immune cells are

stimulated by the infected tumour cells, I and RI, through antigen presentation and

the secretion of antiviral factors. This stimulation takes 1 day, so sK = 1(day−1) (van

Stipdonk et al., 2001; Veiga-Fernandes et al., 2000). For the killing rate parameter κ,

de Pillis et al. (2005) estimated a maximum fractional kill rate of 1.43 (day−1), which

we approximate with κ = 2(day−1). All of these parameter values can be found in

Table 6.7.

Table 6.7: Parameter values for Eqs. (6.15)-(6.23). Note the reference to other paramet-
ers that may be found in Table 6.4

Parameter Units Description Value

dB day−1 decay rate of virus in the blood 5.3495
τO day−1 transfer rate of virus from blood to organs 0.0001
τT day−1 transfer rate of virus from blood to tumour 3.3× 10−4
γ day−1 antiviral stimulation rate of tumour cells β/50

τR day−1 re-introduction rate 10−4

κ day−1 killing rate 2

βR day−1 infection rate of antiviral tumour cells β

dRI day−1 infected antiviral cell burst rate dI
sK day−1 stimulation rate of immune cells 1

dK day−1 decay rate of immune cells 0.35

Unfortunately, it is difficult to find approximations for the rate γ of removal of un-

infected cells into the refractory state and the rate τR these cells re-join the uninfected

population. For now, it is assumed that γ is 1/50th the rate of the viral infection, i.e.

γ = β/50. In addition, the rate at which the refractory cells rejoin the uninfected pop-

ulation is assumed to be slow, so we set τR = 10−4.

Whilst refractory cells have increased viral defences, it is assumed that the infection

rate of refractory cells is equivalent to the infection rate of uninfected cells, i.e., βR = β.

Similarly, the rate of programmed cell death due to viral infection is equivalent to the

rate of lysis, i.e., dRI = dI.
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6.4.4 Influence of the antiviral and antitumour immune responses

To quantify the importance of the antiviral and antitumour immune responses, a para-

meter sensitivity analysis was conducted for Eqs. (6.15)-(6.23), see Fig. 6.11. To gain a

thorough understanding of what underlying interactions were most affected by small

perturbations, two sensitivity measures were chosen. The first metric was a measure-

ment of how the total number of tumour cells from day 0 to 100 changed with perturb-

ations in each parameter value in Table 6.7. The second measure monitored whether

or not the tumour volume had decreased below 10−1, which was deemed as tumour

death. The parameter sensitivity analysis can be used to discuss the sensitivity of the

unknown parameters βR and γ. The sensitivity of the parameter τR has not been

plotted as the relative tumour volume only changed 10−1 fold, which can be considered

negligible. Instead, the viral-infectivity rate β has been included.

Parameters relating to the antiviral immune response are apparently insensitive in

comparison to parameters relating to the antitumour immune response. This could be

due to the approximation for these parameters being in a regime where the antiviral

response is insignificant. Overall, the sensitivity analysis shows that heterogeneity in

the antiviral immune response has a lesser effect on overall treatment outcome in

comparison to heterogeneity in the antitumour immune response.

Fig. 6.11(f) shows that perturbations in dB lead to the lowest total tumour population

compared to all other parameter perturbations. This suggests that a reduction in the

rate of decay of viral particles in the blood would lower the tumour growth substan-

tially. However, whilst producing a low total tumour population over time, the tumour

is not eradicated within the time interval.

6.4.5 Perturbations in the initial tumour size U0.

To investigate the effect of the initial tumour size U0 on overall treatment efficacy, nu-

merical solutions to Eqs. (6.15)-(6.23) are plotted for initial tumour sizes (×106) ranging

from 1 to 400, see Fig. 6.12(a). Parameter values were fixed to those in Table 6.2 and
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Figure 6.11: Sensitivity analysis of parameters in the Eqs. (6.15)-(6.23) using values
from Table 6.2 and 6.7 as base parameters. The change in the total number
of tumour cells from day 0 to 100 dependent on the relative change in
each parameter value is plotted as a solid (blue) line. The (purple) circles
plotted over the blue line represent the death of the tumour within 100
days.

Table 6.7. Perturbations in U0 suggest that the larger the initial tumour size, the quicker

the tumour will die out. Fig. 6.12(a) also suggests that starting treatment on a tumour

of size < 40 will both delay the maximum turning point and increase the maximum

tumour size reached.

To evaluate what role the antitumour immune response plays in the sensitivity of U0,

the killer immune population was set equal to zero and the same numerical simulation
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Figure 6.12: Numerical solution to Eqs. (6.15)-(6.23) using a range of initial tumour
populations U0 for (a) K 6= 0 and (b) K = 0. The colourmap bar on the
right hand side matches the corresponding U0 value with the model’s
predicted tumour volume over time. First published in Jenner et al. (2016).

as for Fig. 6.12(a) was conducted, see Fig. 6.12(b). In the absence of the antitumour

response, the change in initial tumour size has a monotonic effect on the total number

of tumour cells. In comparing Fig. 6.12(a) and Fig. 6.12(b), the effect of initial tumour

size is evidently extremely different, reinforcing that the addition of an antitumour im-

mune response causes the dynamics of the system to change dramatically. The larger

the initial tumour size the better the treatment outcome, and the smaller the initial

tumour size the larger the tumour will grow over time. Without the antitumour im-

mune response, the initial tumour size has no substantial effect on treatment outcome,

leading to the conclusion that with the addition of the antitumour immune response,

a dramatic shift in the dynamics of the model occurs, largely dependent on the initial

tumour size.

6.5 summary

By extending the model derived in Chapter 5, it is possible to closely reproduce the

experimental results from Kim et al. (2011a) for a PEG-modified adenovirus conjugated

with Herceptin. The tumour time-series measurements for the PEG-modified adenov-

irus conjugated with Herceptin were obtained using the model in Eqs. (6.1)-(6.4). To

determine the decay rate of virus in the blood over 60 minutes using the viral gen-
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ome measurements, a compartmentalisation of the virus population was developed,

see Eqs. (6.5)-(6.6). Then, by combining the two models, a model was developed to

embody the spatial distribution of the virus genome collected by Kim et al. (2011a),

see Eqs. (6.9)-(6.14). The parameter values obtained in all optimisations in this chapter

were then combined to develop a model for the efficacy of the virus in the presence of

the interferon-mediated antiviral immunity and antitumour immune response.

An individual and simultaneous optimisation approach was used for the tumour-

time series measurements in this chapter. When fit to the data for individual cases, it

can be seen visually that the model easily captures a wide range of treatment responses,

see Fig. 6.2 and Table 6.1. The ability of the model to reproduce the data closely in the

simultaneous optimisation is reaffirmed by the R-squared and Pearson’s r Correlation

coefficient Table 6.4 and the results in Fig. 6.3. This illustrates that the model is a reli-

able and adaptable representation for the interaction between a PEG-modified adenov-

irus conjugated with Herceptin and tumour cells. Examining specifically the parameter

values in Table 6.4 obtained through the simultaneous fitting of the model to the tu-

mour time-series data, it is evident that increasing viral modification, Ad to Ad-PEG

to Ad-PEG-HER, increased the infectivity of the treatments with Ad-PEG-HER having

the highest infectivity rate.

It is widely known that humans are incredibly heterogeneous and as such, indi-

vidual responses to treatment will vary. The treatment efficacy is highly dependent

upon the initial tumour size and proliferation rate, Fig. 6.5(a) and 6.5(b). Simulations of

the treatment protocol on tumours of differing characteristics shows that the treatment

is capable of slowing and possibly reversing tumour growth. The results of Fig. 6.5(a)

suggest that the slower the tumour cells are proliferating the more likely the viral treat-

ment can reduce the tumour to a manageable size. However, for aggressive tumours

with high growth rates r, there is an initial plateauing of the tumour cell population

showing the viral treatment taking effect; however, this is followed by an increase in

tumour size. This suggests that the overall tumour proliferation is eventually too high

for the viral lysis to overcome and an increase in tumour cell population with time

occurs. If the infectivity of the virus were higher then the outcome would most likely

be similar to that of less aggressively growing tumours.
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Interestingly, it would appear that the treatments are more effective in halting tu-

mour progression when the initial tumour size, U0, is mid-range, around 50 × 106

cells (or 50 mm3), see Fig. 6.5(b). It may be that smaller tumours are initially hidden

from the treatment, delaying the treatment effect. This may be caused by the infectivity

rate being highly depending on the frequency of uninfected cells to total cells, which

would be variable for an initially small tumour. The maximum tumour population was

reduced as U0 reduced and the peak was delayed. However, for extremely small U0,

the tumour appears to escape the treatment with the peak tumour population again

increasing as U0 decreases. Considering this dependence on initial tumour size, in the

presence of interferon-mediated antiviral immunity and the antitumour immune re-

sponse, there is quite a different outcome, see Fig. 6.12. For larger initial tumours, the

treatment is more effective on day 60, when compared to smaller initial tumours in the

presence of the antiviral and antitumour immune responses. Then, in the absence of

the antitumour immune response, this dynamic is absent and tumour growth for all

initial tumour sizes is seen.

One major concern in viral treatments is toxicity. Tracking the maximum viral level

during the first 100 days of treatment shows an initial decrease as the application dose

increases, independent of the application profile, Fig. 6.6(a). This likely corresponds to

the increasing effectiveness of the dose in decreasing the tumour population, and thus

also limiting the maximum viral population. For small values of the total injection, VT0,

one injection achieves a smaller maximum virus level compared to spreading the dose

over increasing numbers of injections. The maximum viral population then goes on to

climb linearly as VT0 is further increased irrespective of the application profile. This

can be interpreted as the virus being too effective in killing off the tumour cells before

they proliferate, thus also slowing viral replication.

By spreading the total viral dose into multiple injections, the peak viral load is con-

strained, despite having an initial higher dose as seen in the lesser gradients of the

multiple-injection profiles, see Fig. 6.6(a) and 6.6(b). From this, it could be possible

that viral replication is not the driving force behind tumour cell eradication in these

scenarios, but rather the intravenous virus is the major player in the eradication. Nat-

urally many application profiles can be considered. Given a particular viral treatment,
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and the biological constraints such as maximum viral load tolerance, the model can be

used to optimise the proposed application profile.

In Section 6.3, a simple model for the clearance of virus by Liver Sinusoidal En-

dothelial Cells (LSECs), see Eqs. (6.5)-(6.6), was used to reproduce the dynamics of

viral genome measurements in the blood over 60 minutes, see Fig. 6.7. Comparing

the parameter values obtained for this optimisation, Table 6.5, it is clear that the PEG-

modification and conjugation with Herceptin decreases the rapid initial decay of the

virus, but increases the slow rate of decay.

Taking the quasi-steady-state approximation to the model for LSEC clearance of

the viral genome in the blood and the model for the overall virus-tumour interaction,

a model for the spatial distribution of the virus on day 5 is presented in Eqs. (6.9)-

(6.14). Parameter values are then obtained for an optimisation of the model to the viral

genome measurements on day 5, see Fig. 6.9 and parameter values in Table 6.6. Since

the confidence intervals were tight, the parameter values were then fixed for the decay

rate from the blood and transfer rate to the tumour site and used to build a model that

considered the antiviral cell immunity and antitumour immune responses.

To understand the significance of the antiviral and antitumour immune responses,

a sensitivity analysis of the model developed in Eqs. (6.15)-(6.23) was conducted, see

Fig. 6.11. Overall, the antitumour immune response appears more sensitive than the

antiviral immune response. Perturbations in the killing rate κ, the stimulation rate

of killer immune cells sK and the death rate of killer cells dK are all able to achieve

significant changes in the tumour size with tumour eradication possible for subsets of

the parameter perturbations. It is worth noting that decreasing the stimulation rate of

killer immune cells or the killing rate has an adverse effect on the tumour size and

renders the treatment unsuccessful.

In this chapter, the outcome of treatment with a PEG-modified adenovirus conjug-

ated with Herceptin was shown to depend on the initial tumour size and the presence

of the antitumour immune response. The field of immunotherapy looks to harness the

power of the antitumour immune response and increase the stimulation of specific

immune cells. In Chapter 7, an investigation into a perturbation of the oncolytic aden-
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ovirus in this chapter is examined and the antitumour immune response is investigated

in more detail.
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Figure 7.1: Subset of Fig.1.1, summarising the investigation of the virus-tumour inter-
action in this chapter

Combined virotherapy and immunotherapy has been emerging as a promising and effective

cancer treatment for some time. As discussed in Chapter 6, the strength of the antitumour

immune response can be crucial to the outcome of oncolytic virotherapy. In this chapter, this re-

sponse is investigated in more detail by considering an oncolytic adenovirus expressing immun-

ostimulatory cytokines interleukin 12 (IL-12) and granulocyte-monocyte colony-stimulating

factor (GM-CSF). These cytokines are known to heighten the antitumour immune response

by stimulating the activation of killer T cells and helper T cells. Extending the framework in

Chapter 6, a system of ordinary differential equations (ODEs) is developed to model the immune

response to an oncolytic adenovirus modified with IL-12 and GM-CSF. To quantify the impact

of clearance on this treatment, two delivery mechanisms are considered: single intratumoural

injection and degradable virus-loaded hydrogels. Gel-release mechanisms allow for a sustained

release of the therapy so that their efficacy may be extended. A major challenge facing gel-release

therapies is determining the optimal release profile. Using the mathematical model developed,

perturbations to the application protocol that achieve optimal treatment effectiveness can be

determined.

Some of the work in this chapter was previously published in Jenner et al. (2018a).
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The focus of immunotherapy is to overcome the suppression of the immune system

by cancer, through stimulating an antitumour immune response (Section 2.4.7). As

discussed in Chapter 6, oncolytic viruses represent a promising novel immunotherapy,

as they elicit an immune response that can lead to the death of tumour cells.

Interleukin 12 (IL-12) and granulocyte-monocyte colony-stimulating factor (GM-CSF)

have been used regularly as immunotherapeutic agents in cancer gene therapy, see Sec-

tions 2.3.2.1 and 2.3.2.2. To strengthen the therapeutic efficacy of these cytokines, Choi

et al. (2012a) modified an oncolytic adenovirus to express IL-12 and GM-CSF. They in-

vestigated how intratumoural injections of viruses expressing different combinations

of the cytokines prevented tumour growth. IL-12 is known to have potent anti-tumour

effects through promotion of the immunity of helper T cells and activation of killer

T cells, see Section 2.3.2.1. Choi et al. (2012a) found that intratumoural doses of ad-

enovirus expressing IL-12 strongly induced the activation and recruitment of T cells,

including helper T cells and killer T cells. The cytokine GM-CSF is known to enhance

the processing and presentation of antigen on antigen presenting cells (APCs), see

Section 2.3.2.2. Choi et al. (2012a) found that intratumoural injections of adenovirus

expressing GM-CSF strongly recruited APCs to the tumour site.

One major challenge for the oncolytic adenovirus expressing IL-12 and GM-CSF is

sustaining the antitumour immune response. Oh et al. (2017) developed a gelatin-based

hydrogel for sustained virus release. They also examined the impact of co-delivery

of the virus and dendritic cells (DCs) from within the gel. DCs are highly efficient

and specialized APCs that can induce a T cell response to antigen, see Section 2.3. By

presenting tumour-associated antigens to killer T cells, DCs can induce tumour-specific

immunity. These closely related therapies of Choi et al. (2012a) and Oh et al. (2017) have

the potential to be an effective therapeutic tool if their delivery can be optimised.

7.1 therapeutic efficacy of an oncolytic adenovirus expressing il-12

and gm-csf , and dendritic cells

To determine whether modification of an oncolytic adenovirus with either IL-12 or

GM-CSF could improve oncolytic virotherapy, Choi et al. (2012a) investigated the antitu-
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mour effect of an oncolytic adenovirus (Ad) co-expressing IL-12 and GM-CSF (Ad/IL12/

GMCSF) compared to an oncolytic adenovirus expressing IL-12 (Ad/IL12) or GM-

CSF (Ad/GMCSF). B16-F10 murine melanoma (Section 2.2.3.2) tumours in six to eight

C57BL/6 mice were injected intratumourally with either phosphate-buffered saline

(PBS), Ad, Ad/IL12, Ad/GMCSF or Ad/IL12/GMCSF on days 0, 2 and 4. Beginning

when the average size of the tumour was 80-100mm3, tumour size was measured from

initial treatment injection (Section 2.5.3).

Building on the experiments of Choi et al. (2012a), Oh et al. (2017) considered the

effectiveness of a gelatin-based hydrogel as a co-delivery system for Ad/IL12/GMCSF

and DCs. The gel matrix enables sustained release of both the virus and DCs while

preserving their biological activity over a considerable time period, leading to efficient

retention of both therapeutics in tumour tissue. Oh et al. (2017) conducted an in vitro

study to determine the release profiles for the dendritic cells (DCs) loaded onto the

hydrogel, see Section 2.5.5.

Oh et al. (2017) then examined how tumour size changed under treatment in an in

vivo setting. Once Lewis lung carcinoma (LLC) cell based tumours reached an average

size of 100− 150mm3 in C57BL/6, they were administered with a single treatment of

PBS, gel, Ad/IL12/GMCSF (2× 1010 VP), DC (2.5× 106 cells), Ad/IL12/GMCSF (2×

1010 VP) in combination with DCs (2.5×1010 cells) (Ad/IL12/GMCSF+DC) or combin-

ation of Ad/IL12/GMCSF and DCs encapsulated in GHPA gel (Ad/IL12/GMCSF+DC

+gel). See Section 2.2.3.3 for more information on lung cancer and LLCs or Section 2.5.3

for the tumour growth measurement protocol.

7.2 antitumour immune response to adenovirus expressing il-12 and

gm-csf

To create a model for the antitumour effect of an oncolytic adenovirus expressing IL-

12 and GM-CSF, the previous model in Eqs. (6.1)-(6.4) for an oncolytic virus and a
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population of tumour cells is extended to consider individual immune cell types. There

are six state variables considered in the system of equations below:

dU

dt
= r log

(
L

U

)
U−β

UV

T
− κ

KU

T
, (7.1)

dI

dt
= β

UV

N
− dII− κ

KI

T
, (7.2)

dV

dt
= uV(t) − dVV +αdII, (7.3)

dA

dt
= sAI− dAA, (7.4)

dH

dt
= sHA− dHH, (7.5)

dK

dt
= sKHH+ sKAA− dKK, (7.6)

uV(t) =

 V0δ(t− ti), ti = 0, 2, 4,

0, otherwise,
(7.7)

U(0) = U0, V(0) = 0, H(0) = 0,

I(0) = 0, A(0) = 0, K(0) = 0,

where t is time (days), U is the uninfected tumour population, I is the infected tumour

population and V is the number of virus particles. As the model was developed for an

adenovirus expressing IL-12 and GM-CSF the populations of immune cells considered

here are those most affected by these cytokines: antigen-presenting cells (APCs), A;

helper T cells, H; and killer T cells, K. The total cell population at the tumour site at

any time t is given by T = U+ I+A+H+K. In Fig. 7.2 there is a schematic for the inter-

actions modelled. As the virus was administered intratumourally, there is no need to

model the virus in the organs and blood (as was discussed in Chapter 6). Additionally,

the influence of the interferon-mediated antiviral immunity is not considered crucial

in this chapter. Note that this is the same killer T cell population that was considered

in Eqs. (6.15)-(6.23), but this time the activation mechanism is modelled in more detail.

Note that the above model is similar to the model used by Kim et al. (2015) detailed in

Eqs. (3.17)-(3.21).

APCs include dendritic cells and macrophages. These cells are stimulated by infected

cells at rate sA and decay at a rate dA. Helper T cells are then stimulated by APCs at



7.2 antitumour immune response to adenovirus expressing il-12 and gm-csf 150

V

U I

A

H

K

V
0

injection

decayd
v

decay

decay

decay

lysis

d
I

β

α

infection

growth
r,L

activations
A

activation

activation

activation

s
KA

s
KH

s
H

d
A

d
H

d
K

κ
killing

activation

killing
decay

transfer

Figure 7.2: Compartmental diagram for the tumour-virus interaction of an oncolytic
adenovirus expressing IL-12 and GM-CSF. U and I are the uninfected and
infected tumour cell populations respectively. V is the virus population, A
is the APC population, H is the helper T cells population and K is the killer
T cells population. Transition between states (e.g. uninfected to infected) is
represented by a solid line, stimulation or activation is represented by a dot-
ted line, death or decay is represented by a double arrow and programmed
killing of tumour cells is represented by a dashed line. First published in
Jenner et al. (2018a).

rate sH and decay at rate dH. Both APCs and helper T cells then activate killer T

cells at rate sKA and sKH respectively. Killer T cells induce apoptosis in uninfected

and infected tumour cells at a frequency-dependent rate with constant κ. Killer T cells

decay at rate dK. Initially, it is assumed there are no stimulated immune cells as these

are only generated through the presence of virus-infected tumour cells, I. For more

biological detail about the immune interactions, see Section 2.3.

The interaction between tumour cells and immune cells are modelled using mass

action as an approximation of the geometric and spatial effects. Frequency-dependent

rates have been incorporated to model cell-cell and cell-virus interactions at the tumour
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site as it is assumed these occur at a rate proportional to the frequency of the interacting

cells. In other words, virus infection or killer T cell killing of tumour cells just depends

on the number of viruses or killer T cells and the frequency of the population they are

infecting or killing.

To fit the model to the data from Choi et al. (2012a), certain parameters were fixed

to those found in the literature. The average time taken for an infected tumour cell

to undergo lysis is one day, so d1 = 1(day−1) (Ganly et al., 2000). The estimation for

the rate that the virus leaves the tumour site dV is based on laboratory observations

of Li et al. (2008) and Wang et al. (2006), which observe 90% of the virus population

decays in one day. Using the half-life decay formulas assuming expoential decay gives

dV = − log(0.1) = 2.3/day. Helper T cells are known to have a half-life of 3 days (Kim

et al., 2011c), which gives dH = − log(2)/3 = 0.23/days. For the immune cell death

rates, it was assumed that APCs and helper T cells die or exit the system at a similar

rate, therefore dA = dH = 0.23/day (Kim et al., 2011c). The number of viral particles

created through lysis α and the decay rate of killer T cells dK was set to the values in

Table 6.1 and 6.7.

All of the parameter estimates are summarised in Table 7.2. The remaining para-

meters in the model were obtained by sequentially fitting parameters for submodels of

Eqs. (7.1)-(7.7) to the data, and fixing their values for higher level models in accordance

with gradual modifications of the base adenovirus, see Table 7.1 for the summary. Se-

quential or hierarchical fitting is different to the simultaneous fitting method employed

in Chapter 6, where all parameters were fit to their corresponding data sets simultan-

eously. The numerical implementation of the optimisation is detailed in Section 3.4.

To assess the antitumour effectiveness of the immunostimulatory adenovirus, Choi

et al. (2012a) first conducted a control (PBS) experiment that monitored tumour growth

in the absence of treatment. Since there were no viral particles present in the control

experiment, the model was reduced to the uninfected tumour population, U, by fixing

V = I = A = H = K = 0 in Eqs. (7.1)-(7.7). The tumour volume is assumed proportional

to the number of tumour cells, and the density to be 106cells/mm3. The parameter

values, describing the tumour replication constant, r, and carrying capacity, L, were fit

to the data and fixed for all subsequent simulations.
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Table 7.1: Experiment-specific optimisation conditions Choi et al. (2012a). Equations
used to optimise each experiment are listed along with the state variables
considered and parameters fitted or fixed.

Experiment
PBS Ad Ad/GMCSF Ad/IL12 Ad/IL12/GMCSF

Relevant Eq. (7.1) Eq. (7.1) Eq. (7.1) Eq. (7.1) Eq. (7.1)
equations Eq. (7.2) Eq. (7.2) Eq. (7.2) Eq. (7.2)

Eq. (7.3) Eq. (7.3) Eq. (7.3) Eq. (7.3)
Eq. (7.4) Eq. (7.4)

Eq. (7.5) Eq. (7.5)
Eq. (7.6) Eq. (7.6) Eq. (7.6)

Variables U U, I,V U, I,V ,H,K U, I,V ,A,K U, I,V ,A,H,K
Params r,L,U0 β sH, sKH, sA, sKA, sKA, sKH,
fit κ κ κ

Params - r,L,U0, r,L,U0 r,L,U0 r,L,U0
fixed (Table 7.2) β,dI β,dI β,dI

α,dV α,dV ,dH, α,dV ,dA, α,dV ,dA,
dK dK sA, sH,dH,dK

The first virus-based experiment was the oncolytic adenovirus (Ad) with no immun-

ostimulatory cytokines. It is assumed that the immune reponse to Ad alone would

be significantly less than the response to oncolytic adenovirus modified with either

IL-12 or GM-CSF. As such, the presence of the populations of immune cells were as-

sumed negligible, i.e. A = H = K = 0 in Eqs. (7.1)-(7.7). This resulted in the PEG and

Herceptin-modified adenovirus model in Eqs. (6.1)-(6.4). The remaining parameters of

the model describing the infection rate of the virus β and initial tumour size U0 were

fit and their values were fixed for all subsequent simulations.

The last three viruses tested were modifications of the adenovirus with the different

cytokines Ad/GMCSF, Ad/IL12 and Ad/IL12/GMCSF. Choi et al. (2012a) found that

intratumoural doses of adenovirus expressing IL-12 strongly induced the activation

and recruitment of T cells, including helper T cells and killer T cells. Hence, to fit the

tumour time-series measurements under treatment with Ad/IL12, the population of

APCs was considered negligible, A = 0 in Eqs. (7.1)-(7.7). Similarly for the adenovirus

expressing GM-CSF, it was assumed the effect on the helper T cell population was neg-

ligible as GM-CSF primarily stimulates the antigen presenting cells (Choi et al., 2012a).

Therefore, for this experiment the model was adjusted to exclude the helper T cells by

setting H = 0, and the remaining model was fit to the data. For the Ad/IL12/GMCSF
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virus the full model, Eqs. (7.1)-(7.7), was used to fit the model parameters as both

cytokines were present.

Due to the overlap in the cytokines expressed by the three viruses, the stimulation

rates of the APCs, sA, and helper T cells, sH, could be determined specifically from

optimisation to the Ad/GMCSF and Ad/IL12 data respectively. Once the values were

obtained, they were fixed in the fit of the model to the Ad/IL12/GMCSF experiment.

The remaining parameters sKA, sKH and κ were then allowed to vary between the

three experiments and were used to quantify the major differences in the outcome

of treatment from the cytokine expression of the three viruses. A full summary of

the experiment-specific sequential optimisation for the five data sets can be found in

Table 7.1.

The model was fit to the mean of the data with normalisation using the standard

error. When solving Eqs. (7.1)-(7.7) numerically, T was replaced by T + ε for ε = 0.001,

to avoid the singularity occurring as T → 0. As a second and third injection of treatment

was given on days 2 and 4, the model was solved piecewise to account for the addition

of V0 virus particles at each injection time.

7.2.1 Tumour growth under treatment with an oncolytic adenovirus co-expressing IL-12 and

GM-CSF.

The model parameters r, the replication rate of tumour cells, and L, the carrying ca-

pacity of the tumour, were first optimised using the PBS tumour time-series measure-

ments, see Fig. 7.3. The trajectory of tumour growth arising from the optimised model

is close to the tumour growth data from the experiment. The estimates obtained for the

parameters are presented in Table 7.2 with the corresponding goodness of fit estimates

in Table 7.3. These values were then used when optimising the model parameters using

the other, virus-based, experiments.

To create a baseline for the effectiveness of oncolytic adenoviruses without IL-12 or

GM-CSF, Choi et al. (2012a) monitored the growth of pre-established tumours in 8 mice

after treatment with an adenovirus, previously discussed in Section 7.1. The tumour

time-series measurements exhibited high variability and illustrate the heterogeneity
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Figure 7.3: Output of the optimised tumour growth model, Table 7.1, for the PBS (con-
trol) case. The individual mouse data are plotted as grey circles with the
mean and standard error bar at each time point in blue. The model output
is plotted as a solid black line. First published in Jenner et al. (2018a).

in response to treatment, see Fig. 7.4. Multiple mice did not survive the experiments

duration. Within this data, however, there were three clear subgroups of treatment re-

sponses: those that died early, Fig. 7.4(a); low responders, those whose tumours grew

slowly until about day 10, after which point the tumours grew exponentially, Fig. 7.4(b);

and high responders, those with small tumours over the whole duration of the experi-

ment, Fig. 7.4(c).

To determine whether the model could adequately represent the observed behaviour,

model and parameter values were optimised using each subgroup of data, Fig. 7.4. The

optimised values for the infection rate, β, and initial tumour size, U0, differed for the

different subgroups. For the subset that died early β = 1.3 and U0 = 220. For the low

responder subgroup β = 0.92 and U0 = 27, and for the high responder subset β = 1.1

and U0 = 18.

The dynamics of the model optimised to each subgroup was qualitatively similar:

each of the solutions rises to a maximum and then decays. Perturbations in β and U0

alter the location and value of the turning point, not the existence. The large range

of initial tumour sizes, U0, obtained is an accurate reflection of the initial tumour

sizes observed in the experiment. The difference in the infection rates, β, between the

three treatment response subgroups was less variable, and the model output was less

sensitive to changes in β than U0.
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Figure 7.4: Output of the optimised tumour growth models for the adenovirus (Ad)
with no immune-stimulatory cytokines. The model parameters were optim-
ised using (a) the early-death subgroup, (b) the low-responder subgroup, (c)
the high-responder subgroup and (d) all data. The individual mouse data
are plotted as grey circles with the mean and standard error bar at each
time point shown in (d) in blue. The model outputs are plotted as solid
black lines. Note the time axis has been extended in (b) and (c) to reveal
the longer-term behaviour of the dynamics. First published in Jenner et al.
(2018a).

Optimising the parameters to all data simultaneously, Fig 7.4(d), resulted in β = 1.2

and U0 = 85, inside the range obtained for the 3 subgroups. Due to the different traject-

ories, the mean trend of the data and the individual points diverge around day 11 and

do not represent any given mouse in the observations. For mice undergoing different

treatment protocols it is not possible to predict whether they would have been high or

low responders if treated with adenovirus with no immunostimulatory cytokines. The

estimates β = 1.2 and U0 = 85 obtained using all the data simultaneously lie within

the range of the other subgroup estimates, and all the model outputs exhibit the same
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features. Thus, these values are used when optimising the other model parameters

using the data from the more highly modified treatments.

The model parameters were optimised to each immunostimulatory adenovirus-based

experiment of Choi et al. (2012a) (i.e. Ad/IL12, Ad/GMCSF, Ad/IL12 GMCSF) as de-

tailed in Table 7.1. Fig. 7.5 shows the tumour cell population over time for each experi-

ment overlaid with the optimised model. The parameter values obtained are presented

in Table. 7.2 and the goodness of fit measures in Table 7.3.

It can be seen that the model is a good representation of the features of the tumour

growth trajectories. As with the Ad experiments, some of the experiments show differ-

ent response levels to the treatments. In these cases, the model presented reflects the

mean behaviour of the data rather than that of any particular subgroup (for instance

in Fig. 7.5(c) the mean value straddles two subgroups of responders).

7.2.2 Simulating heterogeneity in immune efficacy

To determine ways of improving the efficacy of Ad/IL12/GMCSF, it helps to consider

how the outcome of treatment depends on heterogeneity in immune characteristics. Us-

ing model parameters from the optimisation to the Ad/IL12/GMCSF data (Table 7.2),

the effects of perturbations in the rates of immune stimulation and apoptosis induction

were investigated. The effect of increasing the immunostimulatory capability of infec-

ted cells on APCs or APCs on helper T cells was considered. To investigate stronger im-

mune stimulation, the APC stimulation rate, sA, and the helper T cells stimulation rate,

sH, were perturbed individually by approximately 20-30%, keeping the other paramet-

ers constant, see Fig. 7.6(a) and 7.6(b) respectively. To further investigate how changes

in the rate of killer-T-cell-induced apoptosis alters treatment outcome, the killing rate

of killer T cells, κ, was also perturbed, Fig. 7.6(c). As the experiments of Choi et al.

(2012a) showed significant tumour growth over the space of 33 days, it is assumed that

this is the therapeutic window over which this treatment needs to be effective.
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Figure 7.5: Output of the optimised virus-tumour-immune models for the (a) Ad/IL12,
(b) Ad/GMCSF and (c) Ad/GMCSF/IL12 treatment cases, see Table 7.1.
The individual mouse data are plotted as grey circles with the mean and
standard error bar at each time point shown in blue. The model outputs are
plotted as solid black lines. First published in Jenner et al. (2018a).

In Fig. 7.6(a), it is evident, as expected, that the higher the stimulation rate of APCs

by infected tumour cells, the larger the number of tumour cells. Decreasing the stim-

ulation rate of APCs, results in a much smaller tumour burden, smaller than even the

initial tumour size. These findings suggest that increasing APC stimulation has a neg-

ative effect on the ability of the treatment to reduce tumour size, and this rate should

actually be decreased for an optimal treatment to be obtained. Comparing this to the

perturbation in the immunostimulatory rate of helper T cells, Fig. 7.6(b), the opposite

occurs with the larger stimulation rates resulting in the smallest tumour size.
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Table 7.2: Parameter estimates fixed from the literature and obtained from the sequential fit shown in Figs. 7.3, 7.4 and 7.5 to the measure-
ments of Choi et al. (2012a)

.

Parameter Units Description PBS Ad Ad/IL12 Ad/GMCSF Ad/IL12/GMCSF
Fi

xe
d

α virus×1010 viral burst size - 3500 3500 3500 3500

dI day−1 burst rate - 1 1 1 1

dV day−1 viral decay rate - 2.3 2.3 2.3 2.3
dA day−1 decay of APCs - - 0.23 - 0.23

dH day−1 decay of helper T cells - - - 0.23 0.23

dK day−1 decay of killer T cells - - 0.35 0.35 0.35

Fi
t

r day−1 tumour growth rate 0.066 0.066 0.066 0.066 0.066

L cells×106 carrying capacity 3.2×105 3.2×105 3.2×105 3.2×105 3.2×105
β day−1 infection rate - 1.2 1.2 1.2 1.2
U0 cells×106 initial tumour size 85 85 85 85 85

sA day−1 APC activation rate - - 1.2 - 1.2
sKA day−1 APC activate killer T cell - - 5.4 - 7.1
sH day−1 helper T cell activation - - - 0.78 0.78

sKH day−1 helper T cell activate killer T cell - - - 5.0 1.6
κ day−1 killing rate - - 0.84 1.1 1.4

Table 7.3: Goodness of fit measures for each parameter optimisation

Residual norm Coefficient of determination Pearson’s correlation coefficient
PBS 0.33 0.99 0.99

Ad 7.4 0.99 0.87

Ad/GMCSF 90 0.99 0.96

Ad/IL12 6.6 0.99 0.97

Ad/GMCSF/IL12 26 0.99 0.91



7.2 antitumour immune response to adenovirus expressing il-12 and gm-csf 159

0 10 20 30

Time (days)

0

50

100

150

200

250
N

o
. o

f 
tu

m
o

u
r 

ce
lls

 (
 1

0
6

)
s

A

1

1.25

1.5

(a)

0 10 20 30

Time (days)

0

50

100

150

200

250

N
o

. o
f 

tu
m

o
u

r 
ce

lls
 (

 1
0

6
)

s
H

0.5

0.75

1

(b)

0 10 20 30

Time (days)

0

3000

6000

9000

12000

N
o

. o
f 

tu
m

o
u

r 
ce

lls
 (

 1
0

6
)

κ

1

1.25

1.5

1 10
0

400

(c)

Figure 7.6: Tumour cell population over time predicted by the optimised model for
Ad/IL12/GMCSF for various values of (a) APC stimulation rates sA ∈
(1,1.5), (b) helper T cell stimulation rates sH ∈ (0.5,1)and (c) killer T cell
killing rate κ ∈ (1,1.5), indicated by the colour. The remaining parameters
were fixed to the values presented in Table 7.2 column Ad/IL12/GMCSF, a
detailed view for short times is shown inset for (c). First published in Jenner
et al. (2018a).

In Fig. 7.6(c), larger κ values resulted in effective early containment of tumour

growth. For very large values of κ, close to κ = 1.5, the tumour is completely erad-

icated (for this model, we consider complete tumour eradication to occur if the total

tumour population drops below 10−3) in this window of time. However, for mid-range

values of the apoptosis rate, e.g. κ = 1.25, the treatment results in a large growth of

the tumour around day 25. These two treatment responses (complete eradication or

unbounded growth) mimic the results seen in Fig. 7.5(c).
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Interestingly, when κ is much smaller, e.g. κ = 1, a lower maximum tumour count is

achieved within this time frame. These findings suggest the existence of a mid-range in-

terval of κ values for which the treatment is significantly less effective in the time frame

of 33 days (the therapeutic window discussed earlier) than may have been anticipated

outside of this interval. Also, for large values of κ complete tumour eradication can be

obtained. This indicates that tumour cell apoptosis is a critical feature in the efficacy of

treatment.

7.3 response to treatment with dendritic cells and adenovirus ex-

pressing il-12 and gm-csf released from an injectable gel

In the previous section, the model developed assumed that the primary driver of the

immune response was virus-infected tumour cells. The virus-infected tumour cells

stimulated APCs which in turn activated killer T cells and helper T cells. Using the

Ad/IL12/GMCSF virus created by Choi et al. (2012a), Oh et al. (2017) considered injec-

tions of both the virus and immature dendritic cells (DCs). As such, the stimulation of

the immune system by uninfected tumour cells needs to be modelled explicitly. Below

is a modified version of Eqs. (7.1)-(7.7) from Section 7.2:

dU

dt
= r log

(
L

U

)
U − β

UV

T
− κ

KU

T
, (7.8)

dI

dt
= β

UV

T
− dII − κ

KI

T
, (7.9)

dV

dt
= uV (t) − dVV + αdII , (7.10)

dAI
dt

= uDC(t) − sAUAIU + rAII − sAIAII − dAIA , (7.11)

dAA
dt

= sAUAIU + sAIAII − dAA , (7.12)

dH

dt
= sHA − dHH , (7.13)

dK

dt
= sKHH + sKAA − dKK , (7.14)

where t is time. A schematic for the model is given in Fig. 7.7.
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Figure 7.7: Compartmental diagram for the tumour-virus interaction of co-delivered
DCs and oncolytic adenovirus expressing IL-12 and GM-CSF. Variables U
and I are the uninfected and infected tumour cell populations, V is the
virus population, AI is the immature APC population, AA is the mature
APC population, H is the helper T cell population and K is the killer T cell
population. Transition between states (e.g. uninfected to infected) is repres-
ented by a solid line, stimulation or activation is represented by a dotted
line, death or decay is represented by a double arrow and programmed
killing of tumour cells is represented by a dashed line. This schematic
builds on the one presented in Fig. 7.2.

The function uV (t) is now the rate at which virus is introduced into the system,

either from an intratumoural injection or released from a hydrogel. Immature DCs are

introduced into the system either through direct intratumoural injection or release from

the gel at a rate described by the function uDC(t). The immature DCs are activated by

interacting with uninfected or infected tumour cells at rate sAU and sAI respectively.

Infected cells recruit immature DCs to the tumour site at rate rAI and immature DCs

die at rate dAI .
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Using the in vitro study on the gel-release profile by Oh et al. (2017) (see Section 7.1),

the function describing the release of DCs, uDC(t), can be determined. This function

will then be used to optimise the in vivo tumour time-series measurements.

7.3.1 In vitro DC release profile

To obtain the function uDC(t) that describes the rate at which DCs leave the gel, first

consider the simple model for DCs:

dD

dt
= uDC(t) − dDCD, (7.15)

where D is the number of DCs outside the gel, and DCs in the gel leave at a rate

uDC(t) and decay at a rate dDC. Let D0 be the initial number of DCs. The function

for the rate that dendritic cells flow out from the gel, uDC, is a function of time as

it depends on the rate at which the gel is degrading, which can either occur slowly

or quickly depending on the stiffness of the gel (soft or hard). It also depends on the

number of DCs left inside the gel. The schematic in 7.8 summarises the model.

D
u

DC
(t) d

DC
D

DCs released

 from gel
DCs loss 

of viability

Figure 7.8: Schematic for the simplified model for the release of DCs from the gel. It
relates to Eq. (7.15).

The viable DC count (in the absence of the gel medium) can be used to obtain the

decay rate dDC. Since there is no gel in this experiment, only the decay rate of the DCs

is present in the model, see Fig. 7.9 and Table 7.9 for the resulting fit.

The results for the number of DCs released from the soft and hard gel are plotted

in Fig. 7.10(b) and 7.10(d) respectively. These relate to the function D(t) in Eq. (7.15).

Since the function for D(t) and uDC(t) are both left undetermined, the most that can

be obtained from the data is an approximation to uDC(t) at each time-point of D(t).

Using a finite difference approximation, Eq. (7.15) can be written as
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Figure 7.9: Viability profile of dendritic cells (DCs) not loaded into a gel system. Circles
represent the number of released viable DCs as counted by trypan blue
staining from three experiments. Fit of viable DC number data to exponen-
tial decay is given by the grey curve.

Table 7.4: Parameter estimates relating to Fig 7.9

Parameter Units Description Value 95% confidence interval
dDC day−1 decay rate of DCs 0.7889 (-0.9972, 0.5805)
D0 No. of DCs Initial number of DCs 967100 (840500, 1094000)

D(t+ h) −D(t)

h
≈ uDC(t) − dDCD(t). (7.16)

Rearranging gives an expression for uDC(t):

uDC(t) ≈ D(t+ 1) + (dDC − 1)D(t). (7.17)

Assuming that DCs outside the gel lose viability at a rate dDC, equivalent to that

obtained in Table 7.4 for Fig. 7.9, the expression for the rate of change of DCs outside

the gel can be used to calculate uDC(t). Taking the forward finite difference in Eq. 7.17

for all time points up until day 6, where the backward finite difference equivalent is

used, uDC(t) can be calculated. The results of this approximation to the soft gel data

are plotted in Fig. 7.10(a) as stars.

To extract a function describing the release rate of DCs from the gel, it is sufficient to

approximate uDC(t) as closely as possible. Fitting a 6th order polynomial to Eq. (7.17),

gives the curve for uDC(t) in Fig. 7.10(a). Using this expression for uDC(t) and simu-

lating Eq. (7.15) gives the curve overlayed on the DC measurements for soft gels, see
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Figure 7.10: Sustained release profile of dendritic cells (DCs) from soft (a)-(b) and hard
(c)-(d) gelatin gel system. The stars in (a) & (c) represent the finite dif-
ference approximation to the release rate uDC(t) of DCs from the gel,
Eq. (7.17), along with the 6th order polynomial fit to the approximations.
The circles in (b) & (d) represent the number of released viable DCs from
GHPA gels as counted by trypan blue staining from three experiments.
The curve is the approximation to the number of DCs using Eq. (7.15)

Fig. 7.10(a)-(b). Repeating this for the DC measurements for hard gel, gives Fig. 7.10 (c)-

(d), assuming that the expression for uDC(t) is a 6th order polynomial. As uDC(t) > 0,

for values of the 6th order polynomial approximation that are negative, uDC(t) = 0.

To determine whether there was a simpler biologically reasonable way to model the

DCs released from the gel, two other models were tested. Assuming the rate at which

DCs leave the gel is a constant rate k gives

dD

dt
= k− dDCD. (7.18)
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Optimising this model for the value of k to the data gives the approximation in

Fig. 7.11(a). It is clear from this fit, that a constant release rate from the gel is un-

able to capture the dynamics of the data. This can be seen mathematically, since the

rate of change of D(t) with this formulation will be exponential as opposed to linear.

Considering instead that the rate of release of DCs from the gel is proportional to

the number of DCs in the gel at any point in time, DI, gives

dDI
dt

= −kDI, (7.19)

dD

dt
= kDI − dDCD. (7.20)

Optimising k from this model gives model solution in Fig. 7.11(b). Again, this simple

assumption is unable to produce a model that can approximate the data. This high-

lights that, while a 6th order polynomial is not a biological representation of the re-

lease rate of DCs from the gel, it is able to approximate the data more accurately than

models that were based on biological reason. Note that the expression for uDC(t) is

only an approximation of the true release profile, motivated by the need to model the

gel-release profile in the in vivo experiments in the following section.
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Figure 7.11: Fit of constant release and DC proportional release rates to the dendritic
cells (DCs) released from soft gelatin gel systems. In (a) the constant re-
lease rate model in Eq. (7.18) is fit to the viable DCs released from. In (b)
the DC proportional release rate model in Eqs. (7.19)-(7.20) is fit to the
viable DCs released. The fitted model solution is the purple curve and the
green circles are the data.
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Table 7.5: Experiment-specific optimisation conditions Oh et al. (2017). Equations used
to optimise each experiment are listed along with the state variables con-
sidered and parameters fitted or fixed. Note that Ad/IL12/GMCSF has been
shortened to Ad/I/G

Experiment
PBS & Gel Ad/I/G DC DC+Ad/I/G DC+Ad/I/G+Gel

Relevant Eq. (7.8) Eq. (7.1) Eq. (7.8) Eq. (7.8) Eq. (7.8)
equations Eq. (7.2) Eq. (7.9) Eq. (7.9)

Eq. (7.3) Eq. (7.10) Eq. (7.10)
Eq. (7.4) Eq. (7.11) Eq. (7.11) Eq. (7.11)
Eq. (7.5) Eq. (7.12) Eq. (7.12) Eq. (7.12)
Eq. (7.6) Eq. (7.13) Eq. (7.13) Eq. (7.13)

Eq. (7.14) Eq. (7.14) Eq. (7.14)
Variables U U, I,V U U, I,V U, I,V

A,H AI,AAH AI,AAH AI,AA,H
K K K K

Params r,L,U0 β,U0 sAU,U0, rAI, sAI,U0, a,b,U0,
fit κ κ

Params fixed - r,L r,L, r,L,β, r,L,β,
(Table 7.6) dAI dAI, κ dAI, rAI, sAI, κ
Params fixed dV ,α, sH,dH sH,dH, dV ,α, sH,dH, dV ,α, sH,dH,
(Table 7.2) dI, sA,dA dA dI, sAU,dA, dI, sAU,dA

sKH, sKA,dK sKH, sKA,dK sKH, sKA,dK sKH, sKA,dK

7.3.2 Tumour growth under treatment with DCs and oncolytic adenovirus co-expressing IL-

12 and GM-CSF

In a similar manner to the sequential fit to the data from Choi et al. (2012a) in Sec-

tion 7.2, the model in Eqs. (7.8)-(7.14) was fit sequentially to the tumour time-series

measurements of Oh et al. (2017) for PBS, gel, Ad/IL12/GMCSF, DC+Ad/IL12/GMCSF

and DC+Ad/IL12/GMCSF+gel. Table 7.5 gives a summary of the fitting algorithm.

Oh et al. (2017) conducted two control experiments: one where the tumour growth

was measured over time with a PBS injection and the other where the tumour growth

was measured over time with an injected empty gel, see Fig. 7.12. In both of these

experiments the underlying tumour growth should be identical; however, it is clear

that they are different. Fitting r,L and U0 with the model from Eqs. (7.8)-(7.13) in the

absence of treatment and immune cells, i.e. I = V = AI = AA = H = K = 0 gave the fits

in Fig. 7.12 and the value for the tumour growth rate and carrying capacity r = 0.082

and L = 1800 for the PBS injection, and r = 0.127 and L = 12000 for the gel. It was not
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possible to deduce whether the gel influences the growth of the tumour or whether the

difference was inherent heterogeneity. As such, the PBS control and gel control were

fit together to given Fig. 7.12 and parameter values in Table 7.6. To fit the remaining

in vivo treatment data sets, the underlying growth rate of the tumour was fixed to the

parameter values obtained from the simultaneous fit of the PBS and gel data.
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Figure 7.12: Output of the optimised control data, Table 7.5 for the (a) PBS (control)
case and (b) gel (control) case. The individual mouse data are plotted as
grey circles with the mean and standard error bar at each time point in
blue. The model output is plotted as a solid black line. In (c), both data
sets were fit together. The individual mouse data are plotted as purple
squares for gel data and blue circles for PBS data with the mean and
standard error bar at each time point in blue for PBS data and purple for
gel data.

.

In the previous Section 7.2, the model parameters in Eqs. (7.1)-(7.6) were optimised

to Choi et al. (2012a)’s B16-F10 cell tumour measurements in C57BL/6 mice under

treatment with an adenovirus expressing IL-12 and GM-CSF. Oh et al. (2017) used the

same adenovirus expressing IL-12 and GM-CSF and measured the size of Lewis Lung
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Carcinoma (LLC) cell generated tumours under treatment with this virus in C57BL/6

mice. The treatment protocols were also different; Choi et al. (2012a) injected 1× 1010

VP on days 0, 2 and 4, whereas Oh et al. (2017) injected 2× 1010 on day 0.

As there was no injection of DCs initially, it was assumed that immune stimulation

is driven solely by the injected virus with the effects of endogenous DCs assumed

negligible. As the modifications to the model were made for the addition of a DC

injection, the original Eqs. (7.1)-(7.6) were used to fit the injection of Ad/IL12/GMCSF

into LLC tumours. Additionally, since the underlying virus and mice are the same, the

parameter values obtained in Section 7.2 for the Ad/IL12/GMCSF virus were used for

the optimisation of the Ad/IL12/GMCSF virus in Oh et al. (2017)’s experiment. Note

to obtain the original model in Section 7.2 from Eqs. (7.8)-(7.14), AI = 0 in Eq. 7.11 and

AA are directly stimulated by infected cells I, i.e., sAI.

As different tumour cell lines were used for the experiments of Choi et al. (2012a)

and Oh et al. (2017), this was hypothesised to affect both the viruses infectivity β, along

with the killing rate of the immune cells κ. Fixing all other parameter values to those

in Table 7.2 for the Ad/IL12/GMCSF results and Table 7.6 for the underlying tumour

growth and allowing the initial size S0, the infectivity rate β and the killing rate κ to

vary gave the fit in Fig. 7.13(a) and parameter values in Table 7.6.

To determine the true effectiveness of combined DC and Ad/IL12/GMCSF injec-

tions, Oh et al. (2017) also tested tumour growth under a single injection of 2.5× 106

immature DCs. The likelihood of a DC recognising and becoming activated by a tu-

mour cell is much lower than that of a DC recognising and becoming activated by an

infected tumour cell. Since there was no virus present, the model in Eqs. (7.8)-(7.13)

simplified by fixing I = V = 0

The in vitro experiment in Section 7.3.1 fitted the decay rate dDC of a group of

immature DCs and this value was used to approximate the decay rate dAI of immature

DCs. Assuming that the rate at which APCs stimulate helper cells and helper cells

stimulate killer cells was independent of the type of antigen, the parameter values

were taken from those used in Section 7.2, Table 7.2. The parameters left to fit were

then the stimulation rate of the immature DCs, sAU, and the killing rate of killing cells,

κ. The killing rate κ was allowed to vary as previously it was fit considering a virus
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Figure 7.13: Output for the fit of the virus-tumour-immune models for (a) Ad/IL12/
GMCSF injection, (b) single DC injection and (c) DC+Ad/IL12/ GMCSF
single injection. The individual mouse data are plotted as grey circles with
the mean and standard error bar at each time point in blue. The model
output is plotted as a solid black line. All parameters fitted are in Table 7.6

treatment, see Fig. 7.5(b) and Table 7.6, providing optimised parameter values for β,U0

and κ.

As expected the stimulation rate of immature DCs by tumour cells is very low, and

the killing rate is on par to the one obtained in the previous section. This leads to the

hypothesis that the killing rate κ is not affected by the antigen that has been used to

stimulate the killer T cells.

In Section 7.2, and for the Ad/IL12/GMCSF fit in Fig. 7.13(a), the immature and

mature DCs were considered to be one population of APCs. It was assumed that, since

the experiment looked at only a virus treatment, APCs would only be stimulated by

infected tumour cells. This term in the previous sections model incorporated the rate

of recruitment of new immature DCs to the tumour site as well as the rate at which
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they were stimulated to be activated DCs. For the injection of immature DCs and

Ad/IL12/GMCSF, the immature and mature populations and the rate at which they

are recruited and stimulated was considered separately as in Eqs. (7.8)-(7.13).

Assuming the rate sAU that uninfected tumour cells stimulate immature DCs can

be taken from the previous optimisation in Fig. 7.13(b), the rates rAI and sAI at which

infected cells recruit inactivated APCs and also stimulate inactivated APCs were ob-

tained. Fixing κ to be what was also obtained in the Ad/IL12/GMCSF optimisation,

gave the optimised parameter values for rAI, sAI and U0 with the simulated tumour

cell number in Fig. 7.13(c) and parameter values in Table 7.6.

The final experiment of Oh et al. (2017) combined all the previous in vitro and in vivo

experiments to examine the effects of virus and DC release from a hydrogel material.

Oh et al. (2017) injected DC+Ad/IL12/GMCSF loaded gel into C57BL/6mice with LLC

tumours. The release profile of the DCs was fixed to be uDC(t) from the in vitro soft

gel release profile optimised in Section 7.3.1. Once outside the gel, the dynamics of the

tumour, DC and virus interaction were assumed to be the same as the model optimised

to the DC+Ad/IL12/GMCSF tumour time-series measurement, Fig. 7.13(c).

Oh et al. (2017) added 2× 1010 virus particles and 2.5× 106 DCs to the gel which

was more initial DCs than in the in vitro experiment. As there were no time-series data

for the viral release profile from the gel, the function uV(t) was obtained from the data

for the DC+Ad/IL12/GMCSF+gel experiments. All other parameter values were fixed

to those obtained in the previous section. Assuming the release rate was linear with

time, similar to the dynamics evident in the uDC(t) finite difference approximation,

gave the formula

uV(t) =

 at+ b, for t 6 6

0 otherwise

where a > 0 and b > 0. Fixing all parameters to that obtained in Table 7.6, it was then

possible to fit for a and b and U0 to give Fig. 7.14 and the parameter values in Table 7.6.

A full summary of the experiment-specific sequential optimisation followed above for

the five data sets can be found in Table 7.5.

As evident in Fig. 7.14(a), the model is able to approximate the data. The optimisa-

tion returns a release profile for the virus, plotted in Fig. 7.14(b), that is similar to that
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Figure 7.14: Output of the optimised virus-tumour-immune models for the gel
DC+Ad/IL12/GMCSF, see Table 7.5. In (a) the individual mouse data are
plotted as grey circles with the mean and standard error bar at each time
point shown in blue. The model outputs are plotted as solid black lines. In
(b) the model simulations for U, I,V ,AI,AAH and K are plotted as num-
bers of cells

of that of the DCs, by definition. From the plot of all the populations in Fig. 7.14(b),

it is clear that the initial immune response is driven by a large increase in helper T

cells consecutively with mature APCs. This then prolongs the killer immune cell pop-

ulation’s survival. From the model, it does appear though, that it is the initial viral

infection that drives the tumour population down significantly. From this, it is possible

to investigate how the release profile of the gel could be altered to optimise and reduce

the tumour burden further.

7.4 optimal release profile for dc+ad/il12/gmcsf-loaded gel

As seen in the previous section, the gel-based medium effectively delivered a sustained

therapeutic efficacy for the Ad/IL12/GMCSF treatment combined with a population

of immature DCs. Unfortunately, due to high costs and large multitude of possible

engineered derivatives, Oh et al. (2017) were not able to determine whether they had

created a gel with an optimal treatment release profile. Using the model parameters

for the DC+Ad/IL12/GMCSF+gel experiment of Oh et al. (2017), it was possible to

investigate whether the gel’s release profile could be altered to result in a more effective

therapy using an exhaustive numerical approach.



7.
4

o
p

t
i
m

a
l

r
e

l
e

a
s

e
p

r
o

f
i
l

e
f

o
r

d
c

+
a

d
/

i
l
1
2/

g
m

c
s

f-
l

o
a

d
e

d
g

e
l

1
7

2

Table 7.6: Parameter estimates from the sequential optimisation of the model following the algorithm in Table 7.5 to the experimental
measurements of Oh et al. (2017). Note that Ad/IL12/GMCSF has been shortened to Ad/I/G.

Param Units Description PBS& Gel Ad/I/G DC DC+Ad/I/G DC+Ad/I/G+gel
Fi

t
dAI day−1 Immature DCs decay rate 0.7889 0.7889 0.7889

L cells×106 carrying capacity 14000 14000 14000 14000 14000

r day−1 growth rate 0.10 0.10 0.10 0.10 0.10

U0 cells×106 initial tumour size 20 86 50 41 55

β day−1 infection rate - 0.7286 - 0.7286 0.7286

κ day−1 killing rate - 0.8231 0.5633 0.8231 0.8231

sAU day−1 APC activation rate by U - - 5.5×10−6 5.5×10−6 5.5×10−6
rAI day−1 recruitment rate of AI - - - 0.0006 0.0006

sAI day−1 APC activation rate by I - - - 0.0001 0.0001

a linear release slope - - - - 157

b initial linear release - - - - 43

Fi
xe

d
(T

ab
le

7
.2

)

α virus ×1010 viral burst size - 3500 - 3500 3500

dI day−1 burst rate - 1 - 1 1

dV day−1 viral decay rate - 2.3 - 2.3 2.3
dA day−1 decay of APCs - 0.23 0.23 0.23 0.23

dH day−1 decay of helper T cells - 0.23 0.23 0.23 0.23

dK day−1 decay of killer T cells - 0.35 0.35 0.35 0.35

sA day−1 APC activation rate - 1.2 - - -
sKA day−1 APC activatet killer T cell - 7.1 7.1 7.1 7.1
sH day−1 helper T cell activation - 0.78 0.78 0.78 0.78

sKH day−1 helper T cell activate K - 1.6 1.6 1.6 1.6
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To investigate possible optimal release profiles from the gel, three general release

rate functions were chosen: constant, linear and sigmoidal, given by

f(x) =
A0
tr

, f(x) = ax+ b f(x) =
A

1+ e−k(x−x0)
, (7.21)

where A0 is the initial amount of either DCs or virus, tr is the length of time the

treatment is released from the gel, a and b are the gradient and initial release rate, and

A, k and x0 are the maximum release rate, steepness of the curve and the midpoint

of the curve. Fixing the total virus and DCs released over tr days to the V0 and D0

amounts determined in the previous section gives the constraint

V0 =

∫tr
0

uV(s)ds, D0 =

∫tr
0

uDC(s)ds, (7.22)

where uV(t > tr) = uDC(t > tr) = 0, and restricts the parameter search space. Fixing

all parameter values not related to the release curves to those in the DC+Ad/IL12/GMC

SF+gel column in Table 7.6, the tumour size on day 20 under different gel release pro-

files was simulated using Eqs. (7.8)-(7.13).

Starting with the constant release function described above in Eq. (7.21), the release

period, tr, was allowed to be independent for DCs and virus. Varying this constant

release rate gave the tumour size on day 20 in Fig. 7.15. To illustrate how the tumour

growth changes under different constant release profiles, two simulated release profiles

corresponding to the red points in Fig. 7.15 are plotted in Fig. 7.16. It is clear there is a

major shift in the dynamics of the tumour growth, depending on the length of time that

the DCs and virus are released from the gel, and a global minimum of approximately

10mm3 is achieved.

The original gels developed by Oh et al. (2017) had an increasing linear release, see

Fig. 7.10. Considering variations on this linear release rate could improve the efficacy

of the therapy. Assuming that the gradient of the release rate from the gel is increasing,

i.e., a > 0, then using Eq. (7.22) to conserve the total amount of virus and DCs released

from the gel, leaves two free variables to describe the linear release rate from the gel: the

length of time the gel is releasing, tr, and the initial release rate, b. By fixing the release

time tr to be equal for the virus and DCs, the values of b and tr were simulated to give
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Figure 7.15: Tumour size at day 20 as a function of the constant gel-release period, tr,
which varies for the virus (uV(t)) and DCs (uDC(t)), see Eq. 7.21. The red
points correspond to the simulated release profiles in Fig. 7.16.
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Figure 7.16: Constant gel-release profiles for the DCs (uDC(t)) and virus (uV(t)) where
the release period, tr, corresponds to the red points in Fig. 7.15 where (a)
tr = 3 for DCs, tr = 18 for virus, and (b) tr = 15 for DCs, tr = 10 for virus.
The top row of figures corresponds to the total number of tumour cells
U+ I and the bottom row of figures is the corresponding release profile.

different tumour sizes at day 20, see Fig. 7.17. To illustrate how the tumour growth

changes under different release profiles, two linear release profiles corresponding to

the red points in Fig. 7.17 are simulated in Fig. 7.18. The global minimum achieved

under an increasing linear release in Fig. 7.17 is 500mm3.

The tumour size under treatment with a gel releasing at a increasing linear rate is

clearly influenced by how long the gel releases the virus and DCs, i.e. tr, see Fig. 7.17.

To investigate how different values of tr for the virus and DC might influence this

tumour size minimum, b was fixed to 41.2 for the virus and DCs and tr was allowed
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Figure 7.17: Tumour size at day 20 as a function of the gel-release period, tr, and the
initial release rate, b, for the virus (uV(t)) and DCs (uDC(t)). Each plane
corresponds to the labelled value of tr in the inset and the red points
correspond to the simulated release profiles in Fig. 7.18.
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Figure 7.18: Increasing linear gel-release profiles for the DCs (uDC(t)) and virus
(uV(t)) where the initial release rate and release period for each vector cor-
responds to the red points in Fig. 7.17 where (a) b = 154 for DCs, b = 13

for virus and tr = 13, and (b) b = 358 for DCs, b = 18 for virus and tr = 5.
The top row of figures correspond to the total number of tumour cells
U+ I and the bottom row of figures is the corresponding release profile.

to vary, see Fig. 7.19. Interestingly, this simulation resulted in a qualitatively similar

optimisation surface to that in Fig. 7.15, suggesting that a very short release period for

the DCs and a release period of 10 to 15 days for the virus may be able to achieve a

global minimum of 60mm3.

While the gel release mechanisms measured by Oh et al. (2017) had an increasing

gradient, it is worth considering how effective a treatment would be when released

at a decreasing linear rate. In contrast to the previous linear-release investigations,
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Figure 7.19: Tumour size at day 20 for increasing linear release rates as a function of
the release period, tr, for the virus (uV(t)) and DCs (uDC(t)) fixing the
initial release rate at b = 41.2.

a negative linear release function meant that under the constraint in Eq. 7.22, if the

function crossed the horizontal axis before tr, i.e. −b/a < tr, then the release function

would be zero at t > −b/a. Alternatively, if −b/a > tr then the function would always

be positive. This meant that modifying the constraint in Eq. 7.22 to be

D0 =

∫−b/a
0

(as+ b)ds, V0 =

∫−b/a
0

(as+ b)ds,

would mean that the value of the dosage from the gel could be less than or equal to D0

and V0 and that initial release rate b would be the only free variable. In Fig. 7.20, the

tumour size on day 20 after treatment with a gel with a decreasing release gradient has

been plotted. It is clear that there are values for which the tumour size is minimised.

Time evolutions of the release profiles corresponding to the red points in Fig. 7.20 are

plotted in Fig. 7.21. A quite interesting result from Fig. 7.21 is the global minimum of

20mm3 is obtained when both the initial rate of DCs released and the total amount of

DCs released is low, see the uDC(t) profile in Fig. 7.21(b).

Using the constraint in Eq. 7.22, there are two possible formulations of A for either

an increasing or decreasing sigmoidal release rate:

A =
D0k

ln
(
1+ek(tr−x0)

1+e−kx0

) , A =
−D0k

ln
(
1+e−k(tr−x0)

1+ekx0

) ,
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Figure 7.20: Tumour size at day 20 for a gel releasing virus, uV(t), and DCs, uDC(t),
at a linear rate with a decreasing gradient. The initial release rate b has
been varied for both the virus and the DCs. The red points correspond to
the simulated release profiles in Fig. 7.21.
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Figure 7.21: Decreasing linear gel-release profiles for the DCs (uDC(t)) and virus
(uV(t)) where the initial release rate b corresponds to the red points in
Fig. 7.20 where (a) b = 277 for DCs, b = 490 for virus, and (b) b = 1

for DCs, b = 3186 for virus. The top row of figures correspond to the
total number of tumour cells U+ I and the bottom row of figures is the
corresponding release profile.

where the sign of k depicts either an increasing or decreasing sigmoid function. If the

profiles for the virus and the DCs are considered equivalent, the increasing sigmoidal

release results in the range of tumour sizes plotted in Fig. 7.22(a) for tr = 18. Redu-

cing tr reduces the surfaces overall tumour size until tr = 10, after which point the

surface’s minimum begins to increase again, see Fig. 7.22(b) for tr = 10. In Fig. 7.23

are simulations of the release profiles corresponding to the red points in Fig. 7.22. For

a decreasing sigmoidal release curve, variations in the curve steepness k and curve
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midpoint x0 gives Fig. 7.24(a). It is clear this dosage profile performs the worst out of

possible gel profiles, with an example simulation in Fig. 7.24(b).
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Figure 7.22: Simulations of increasing sigmoidal release profiles for the DCs (uDC(t))
and virus (uV(t)) where k and x0 are varied for the fixed value of (a)
tr = 18 and (b) tr = 10. The red points correspond to the release profiles
simulated in Fig. 7.23.
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Figure 7.23: Simulations of increasing sigmoidal release profiles for the DCs (uDC(t))
and virus (uV(t)) corresponding to the red points in Fig. 7.22 where (a)
k = 8.6, x0 = 5, tr = 18 and (b) k = 24, x0 = 7.5, tr = 10 . The top figure
corresponds to the total number of tumour cells U + I and the bottom
figure is the corresponding release profile.

7.5 summary

The two mathematical models presented in this chapter were used to identify the

primary processes in the interaction between a population of tumour cells and an
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Figure 7.24: Simulations of increasing sigmoidal release profiles for the DCs (uDC(t))
and virus (uV(t)) where (a) k and x0 are varied for the fixed value of
tr = 18. The red point in (a) corresponds to the release profile simulated
in (b) where k = 24, x0 = 14. The top figure corresponds to the total
number of tumour cells U+ I and the bottom figure is the corresponding
release profile.

oncolytic adenovirus co-expressing IL-12 and GM-CSF with and without a DC injec-

tion. The results of Choi et al. (2012a) and Oh et al. (2017) related to this therapy, were

successfully replicated by parameter optimisation, see Fig. 7.3-7.5, 7.9 and 7.12-7.14. It

is evident through visual inspection of these figures, that the model, along with the

hierarchical fitting algorithm in Table 7.1 and 7.5, provides a reliable representation of

the data. Goodness of fit measurements in Table 7.3 for the optimisation to variants of

an Ad/IL12/GMCSF virus (Section 7.2), confirm that the model closely approximated

the true system with R2 values greater than 0.98 and Pearson’s correlation coefficient

greater than 0.87.

Heterogeneity within individual mice tumour responses is visible under all treat-

ment’s investigated in this chapter. Most significant is the tumour response to an un-

modified oncolytic adenovirus (Ad), Fig. 7.4. There are three noticeable subgroups of

treatment responses: those that died early; low responders, those whose tumours grew

slowly until about day 10, after which point the tumours grew exponentially; and high

responders, those with small tumours over the whole duration of the experiment. To

examine the differences behind the heterogeneity between the subgroups, and to see

whether the model was sufficiently flexible to embody all the observed behaviour, the

model was optimised to each subgroup. All were well explained by the model. The sub-
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groups had slightly different rates of infectivity of the treatment, but more importantly

started with different initial tumour sizes. Examining the models for the subgroups

and that for all the data, Fig. 7.4, it is evident that the long-term dynamics of these

underlying subgroups are qualitatively similar.

Quantifying the effects of IL-12 and GM-CSF combinations on treatment efficacy

is possible through optimising parameters in the model to the experiments of Choi

et al. (2012a). The nature of the hierarchical experiments allows for the primary differ-

ences between the immunostimulatory oncolytic adenoviruses to be examined. Com-

paring killer-T-cell-induced apoptosis rates, κ, for the Ad/IL12 and Ad/GMCSF vir-

uses, Table 7.2, it is clear that expression of cytokine IL-12 results in a higher immune

cell killing rate. Therefore, the addition of IL-12 has a greater effect on improving

immune-cell killing rate κ, and consequently tumour-cell death. This is also evid-

ent when comparing the tumour time-series measurements obtained in Fig. 7.5(a)

and 7.5(b) where it is clear that Ad/IL12 has a greater antitumour potency then

Ad/GMCSF. The largest immune-cell killing rate was obtained for co-expression of

both cytokines -Ad/IL12/GMCSF. This suggests that it is only with both cytokines

that the treatment reaches its maximal effectiveness in stimulating the immune system

to attack the tumour cells.

While the results of the Ad/IL12/GMCSF experiments reduce the tumour popula-

tion most significantly out of the virus-only five experiments, the finding that helper

T cell activation is decreased requires further investigation. How exactly this might

be hindering the immune interaction and the obtaining of optimal treatment efficacy

will be the subject of future work. In Fig. 7.5, it can be seen that only one mouse in

the Ad/IL12/GMCSF experiment had tumour growth after day 20. The optimisation

results propose that tumour cells in this case may have escaped immune removal by

down-regulation of helper T cell activation.

Since Oh et al. (2017) used the same Ad/IL12/GMCSF virus developed by Choi

et al. (2012a) to treat LLC tumour cells, it is possible to quantify further the impact

of this combined cytokine combination on the killer T cell killing rate. Since the only

difference between the Ad/IL12/GMCSF tumour time-series experiments was the un-

derlying tumour cell type, it was assumed this would only influence the infectivity
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rate, β, and the killing rate, κ. Both the infectivity rate of virus particles and the killing

rate of the killer T cells was decreased when treating LLC tumours. This shows that

it is quite possible that immune activity may be driven by the underlying tumour cell

type.

To investigate the possible effects of immune heterogeneity, individual responses to

changes in immune efficacy were simulated. The analysis in Fig. 7.6 suggests there

is a counter-intuitive relationship between treatment efficacy and immune stimulation

rates. The dependence of treatment efficacy on APC simulation, sA, and helper T cell

stimulation, sH, differs significantly (Fig. 7.6(a) and 7.6(b)) when using the model op-

timised for Ad/IL12/GMCSF on B16F10 tumour cells (Table 7.2). Simulations show

that increasing the stimulation rate of APCs has a negative effect on the treatment ef-

ficacy, allowing for the tumour cell population to escape the control of treatment and

grow unbounded. However, increasing helper T cell stimulation rates has a positive ef-

fect on treatment efficacy, allowing for the tumour cell population to be controlled for

longer and, for certain parameters, to be completely eliminated. These results suggest

that there is a sensitive threshold of APC stimulation, above which a negative effect on

the immune response occurs. Biologically, this could signify an over-stimulation of im-

mune cells results in the original virus treatment becoming ineffective as the immune

cells kill off the virus. On the other hand, increased stimulation of helper T cells con-

sistently promoted tumour cell death. The results presented are purely hypothetical

and suggest that further investigations of this cancer treatment could examine how

increasing the expression of IL-12 cytokine and decreasing GM-CSF expression has a

downstream effect of the probable increase in helper T cell stimulation and decrease

in APC stimulation.

Heterogeneity in immune-cell-induced apoptosis is a key determinant of treatment

outcome. Perturbations in the rate of killer-T-cell-induced apoptosis, κ, for the Ad/IL12

/GMCSF model, see Fig. 7.6(c), demonstrate a very interesting phenomenon: the exist-

ence of a parameter window for which the treatment is relatively ineffective compared

to parameter values outside this interval. An extremely sensitive non-linear relation-

ship exists between treatment outcome and κ. In Fig. 7.6(c), at lower values of κ, the

tumour population is initially controlled with slow growth over time, reaching a turn-
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ing point after which tumour volume decreases. It may be that the immune system is

able to control the tumour growth even with this smaller killing rate.

Interestingly, if the killer T cell killing rate is increased, the tumour volume at the

turning point increases and, for a range of κ values, the tumour population is able

to grow unbounded. Increasing κ further, the tumour population can be completely

eradicated (in this model, we assume complete eradication is obtained when the total

tumour population drops below 10
−3). From this result, the different responses in

the mice in Fig. 7.6 (i.e. tumour eradication or unbounded growth) could possibly

be explained by a difference in the immune cell killing rate of tumour cells. These

results also suggest that there may be a window of killer-T-cell-induced apoptosis rates

for which the treatment is ineffective, but outside of which either controlled tumour

growth within the time period of 33 days is achieved or complete eradication.

In Fig. 7.6(c), it is also evident that there is an exchange in the dominant processes

acting as a function of the cell-induced apoptosis rate, κ . For high values of κ, it is clear

that tumour cells are predominantly removed by the immune system, which is why the

tumour is eventually completely eradicated. However, reducing the value of κ results

in the initial decrease in tumour cell numbers due to viral interactions rather than

the immune system. This result reinforces the importance of stimulating the correct

mechanisms at the right stage of tumour growth when investigating improvements for

combined oncolytic virotherapy and immunotherapy. This sensitivity of the killer T cell

response was also seen in the analysis of de Pillis et al. (2005), detailed in Section 3.2.4

While it is helpful to understand how the immune characteristics can be manipu-

lated to improve the outcome of treatment, realistically this may be challenging. Oh

et al. (2017) decided to further extend the work of Choi et al. (2012a) to consider an

additional injection of immature DCs. By extending the model in Eqs. (7.1)-(7.6) to con-

sider the activation of APCs from immature to mature APCs, Eqs. (7.8)-(7.14), it was

possible to reproduce their tumour time-series measurements, see Fig. 7.13. Follow-

ing this, Oh et al. (2017) investigated a gel-release mechanism for delivery of their

DC+Ad/IL12/GMCSF therapy. They found that tumour size under the gel-release

mechanism decreased by 50% on day 20; however, tumour eradication was not ob-

tained, see Fig. 7.14(a). To help understand ways of improving this therapy, it was
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necessary to obtain the release profile of the virus from the gel, something not meas-

ured by Oh et al. (2017). By fixing the parameter values in the model to all previous

optimisations, it was possible to obtain the curve describing the rate at which the virus

was released from the gel, see Fig. 7.14(b). Using this model as a platform, it was

then possible to investigate alternative gel-release profiles and determine if an optimal

exists.

One of the simplest gel-release profiles is a constant. This is qualitatively similar to

what could be thought of as a prolonged transfusion of a drug or treatment. Fixing

the underlying model parameter values to those in Table 7.2 and 7.6 and simulating

unique lengths of time for the virus and DCs to be released from the gel gives the

tumour size on day 20 in Fig. 7.15. There is a global minimum tumour size of 10mm3

achieved for a very short release period of the DCs and a prolonged release period

of the virus. This implies that an initial burst of a large number of DCs stimulates an

immune response that under a prolonged constant release of virus from the gel is able

to result in approximate tumour eradication.

The original gel-release profile was approximately linear, and a natural extension

was to examine the tumour volume under different linear releases. If the release period

tr is equivalent for both the DCs and the virus, as is the case with the original gel, an

increasing linear release is unable to achieve a tumour volume much lower than what

was already achieved with the current gel, see Fig. 7.17. A gel with a release period of

approximately tr = 11 and initial release rate of b = 50 is able to reduce the tumour

volume by 50% of what was obtained in the original gel.

Allowing for the gel to have different increasing linear release periods for the virus

and DCs results in a minimum tumour size at day 20 of 60mm3, see Fig. 7.19. Inter-

estingly, to achieve this minimum, similar constraints are needed on the release period

for the DCs and virus as that of the constant gel-release simulations in Fig. 7.15. This

reinforces that tumour treatment is significantly improved when the DCs are given

very rapidly and the virus is given over an extended period of time. The converse to

this is seen when considering a gel with a decreasing linear release rate, see Fig. 7.20.

A minimum tumour size of 20mm3 is achieved by releasing a very small amount of

DCs for a long time, with a rapid release of the initial virus dose, see Fig. 7.21(b). This
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infers that if the immune response is not too heavily stimulated initially, the virus is

able to reduce the tumour volume considerably.

A sigmoidal gel-release profile was unable to achieve a tumour volume as low as that

of the constant and linear release profiles. Simulations of increasing sigmoidal release

profiles in Fig. 7.22 show that as tr is decreased from 18 to 10 days, it is possible to

obtain a low tumour volume of 225mm3, which is still an improvement on the original

gel’s efficacy. Unfortunately, changing the release profile to be a decreasing sigmoidal

curve increases the tumour size overall, see Fig. 7.24. For low enough release periods,

e.g. tr = 16, there is still a reduction in tumour volume when compared to the original

gel. However, this is still much larger than if an optimal constant or linear release

profile is used.

One major assumption in the models developed in this chapter is that the rate at

which immune cells are stimulated is independent of the antigen type. The immune

response modelled in this chapter allows for killer T cells to kill both uninfected and

infected tumour cells; however, in reality immune cells are antigen specific (Janeway

et al., 2005). In response to an oncolytic virus there will be two types of antigen: tumour-

specific and virus-specific. This results in immune cells becoming activated as either

tumour-antigen or virus-antigen specific. In Eq. 7.11, this was considered by allowing

for immature APCs to be stimulated by both uninfected tumour cells (tumour-antigen)

and infected tumour cells (virus-antigen). Unfortunately, there is insufficient data to

determine the individual activation and stimulation rates of the antigen specific im-

mune cells for the APCs, helper cells and killer T cells. As such, they were modelled as

one activated immune population, similar to the works of Wares et al. (2015) and Kim

et al. (2015) (Section 3.2.4).

From the results in this chapter, it is clear that systems of ODEs can be used to

replicate data and determine possible treatment improvements. The limitation in this

style of modelling is the inability to consider the possible spatial dependency of tumour

growth or viral movement. It is possible that the position of the intratumoural injection

or the gel could significantly influence the outcome of treatment. Additionally, while

the effects of heterogeneity were discussed through a parameter sensitivity analysis,

it is not possible to model a heterogeneous population of cells through an ODE or
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PDE system. In the following chapter, an agent-based model is developed that aims to

capture these missing aspects and investigate them in relation to oncolytic virotherapy.
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Figure 8.1: Subset of Fig.1.1, summarising the investigation of the virus-tumour inter-
action in this chapter

The previous Chapters 5-7 presented investigations of oncolytic virotherapy using predomin-

antly mean-field mathematical approaches. It is well known that spatial interactions can influ-

ence the behaviour and outcome of cancer therapy. In this chapter, a spatially driven Voronoi

cell-based model (VCBM) is developed to investigate the hindrance of oncolytic virotherapy

previously mentioned in Chapter 6: the rapid decay of virus particles within the body. The

VCBM derived captures the interaction between oncolytic virus particles and cancer cells in a

2-dimensional setting by using an underlying agent-based model framework, where the agents

are cells defined by edges of a Voronoi tessellation. The sensitivity of treatment efficacy is invest-

igated in response to the configuration of the initial treatment injections for different tumour

shapes: circular, rectangular and irregular. Additionally, the effect of delaying the infection of

cancer cells by modifying viral particles with alginate (a hydrogel polymer used in a range of

cancer treatments) is investigated.

The work in this chapter has been submitted to the Journal of Theoretical Biology (Nov.

20 2018) entitled “Enhancing Oncolytic Virotherapy: Observations from a Voronoi cell-

based Model ”.
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The rapid decay in the concentration of viral particles due to clearance and disper-

sion at the tumour site shortens the window of effectiveness for oncolytic virotherapy.

The treatment needs to act quickly and effectively to compete with the division of

the cancer cells. Additionally, the inability to efficiently distribute the viruses within

solid tumours represents a significant barrier limiting the success of clinical trials (Liu

et al., 2007; Parato et al., 2005). The relatively static viral distribution within a tumour

is caused primarily by two factors: the non-uniformity of the tumour structure and the

increase in viral clearance as a function of the number of infected tumour cells.

Regardless of whether the therapeutic viral vector has been administered through

intravenous injection (discussed in Chapter 6) or intratumoural delivery (discussed in

Chapter 7), inhomogeneous infection and diffusion of the viral particles will occur.

Some studies have tried to improve the efficacy of oncolytic virotherapy by combining

it with treatments to disrupt the tumour structure and reduce viral clearance, including

degradation of the extracellular matrix (ECM) with relaxin (Ganesh et al., 2007; Kim

et al., 2011b) and Anti-VEGF therapies (Kottke et al., 2010). This chapter investigates in

silico how coating the virus particles in alginate (a hydrogel polymer used in a range

of cancer treatments) to delay viral infection could help overcome the effects of viral

clearance and inhomogeneous infection and diffusion.

Mean-field mathematical models of an oncolytic virus interacting with cancer cells

have been shown to effectively provide insight into a range of treatment perturbations

(Chapters 5-7). For aggressive tumours, however, stochasticity in tumour cell character-

istics and behaviours can be the dominant driver of cancer progression, and mean-field

models are unable to fully capture this process.

In this investigation an agent-based approach (Section 3.3.2) is developed to model

tumour formation and treatment with an oncolytic virus. A Voronoi tessellation is

used in an off-lattice framework to mimic tumour formation. Researchers have demon-

strated that Voronoi tessellations successfully replicate tumour histopathological im-

ages (Haroske et al., 1996). Voronoi tessellations allow for tumour cells to be modelled

as heterogeneous convex polygons which reflects the abnormal morphology of tumour

cells. Therefore, the use of this Voronoi cell-based model (VCBM) allows for a more spa-
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tially realistic representation of the interaction between cancer cells and virus particles

compared to other off-lattice model formulations, see Section 3.3.1.

8.1 model development

Agent-based models can be used effectively to simulate mechanical and physiological

phenomena in cells and tissues, see Section 3.3. In off-lattice agent-based models, in-

teractions between cells are usually described by forces or potentials, and position

changes in cells can be obtained by solving an equation of motion (Metzcar et al., 2019;

Van Liedekerke et al., 2015). The Voronoi cell-based model (VCBM) designed in this

chapter is an off-lattice agent-based model that mimics tumour formation and treat-

ment with an oncolytic virus. In the model, cells are generated from a set of points

with boundaries obtained from a Voronoi tessellation. Viruses are modelled as a sep-

arate agent-based population that diffuses across the Voronoi tessellation of cells. The

model evolution is driven by the virus and cell characteristics.

8.1.1 Virus characteristics

The success of oncolytic virotherapy relies on the inherent ability of viruses to replicate

and lyse cells. Oncolytic viral particles are genetically engineered to replicate prefer-

entially within tumour cells (Kim et al., 2006b; Russell et al., 2012). A summary of the

infection process of an oncolytic virus and corresponding death of a tumour cell is

shown in Fig. 8.2. Viruses are unable to distinguish between tumour cells and healthy

cells and can infect both; however, it is assumed that the effects of viral infection of

healthy cells are negligible as a result of the viral genetic modifications. More than one

virus can infect a single cell (Phan and Wodarz, 2015; Syverton and Berry, 1947) but it

is assumed here that the multiplicity of infection does not affect the replication rate.

The immune system is stimulated by the presence of virus-infected cells 2.3.3, initiat-

ing the clearance of extracellular virus particles. Virus-infected cells activate a cascade

of killer T cells, and these cells clear viral particles from the tumour. In this model,
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Virus

Infection Replication Cell death

Viral decayReinfection

Uninfected tumour cell Infected tumour cell Dead cell

Figure 8.2: Oncolytic virus life cycle. Virus particles infect either uninfected or infected
tumour cells. Once inside a cell, virus particles undergo replication for a
period of time. Eventually they lyse the cell, causing it to burst, and release
new viral progeny that will infect other tumour cells.

immune clearance and viral decay are proportional to the number of infected cells in a

neighbourhood of a given virus particle, as defined by the quadrant within which the

virus lies.

The movement of individual viral vectors in tumour tissues is governed by the struc-

ture of the tumour, see Section 2.4.4. Current continuous spatial models for oncolytic

virotherapy either do not explicitly model viral movement (Wein et al., 2003; Wodarz

et al., 2012) or model viral movement by classical diffusion (Friedman et al., 2006; Mok

et al., 2009). Agent-based models that consider individual viral movement have simil-

arly used lattice random walks to model individual viral movement through a tumour

(Paiva et al., 2011). However, since virus particles can struggle to diffuse due to the

dense extracellular matrix and disorganised structure of the tumour cells, particles

commonly can get stuck for long periods of time at their initial entry site (Kim et al.,

2006b). This is analogous to a population of particles diffusing anomalously. This dif-

ference in diffusive motion of the virus can be crucial to the outcome of oncolytic
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virotherapy, as particles cannot disseminate and infect cells within the tumour if they

get stuck at the periphery.

Anomalous diffusion, as opposed to classical diffusion or lattice random walks, has

been chosen to model the possible crowding or trapping of viruses at the initial injec-

tion site. Anomalous diffusion is a diffusion process whose variance scales non-linearly

with time. The analogy between anomalous diffusion and diffusive motion of macro-

molecules due to overcrowding has previously been discussed in Höfling and Franosch

(2013). The movement of viral vectors through the tumour microenvironment is thus

achieved using subdiffusion, a type of anomalous diffusion. In this way, the move-

ment of viral particles can be modelled using a continuous-time random walk (CTRW),

where a stable distribution is used to determine the waiting times between individual

particles consecutive movement. In this model, anomalous diffusion of a population of

virus particles is approximated on discrete-time intervals.

8.1.2 Cell characteristics

To model the interaction between an oncolytic virus and a growing tumour, consider

five different types of cell agents: uninfected tumour cells, virus-infected tumour cells,

dead tumour cells, empty space and normal healthy cells. The position of each cell in

2-D space is defined by a singular point and when all points are connected they form a

lattice. The Voronoi tessellation of the lattice is used to define the edges of a particular

cell in the VCBM and determine the neighbourhood of interaction for a particular point

in the lattice, see Fig. 8.3(a).

The Voronoi tessellation is generated by determining the region of space where the

Euclidean distance to a point is less than the distance to any other point in the lattice.

The boundary of a particular cell is the line equidistant from that cell’s point and

another point in the lattice, such that the set of cells generated by all the points of

the lattice forms the tessellation. Voronoi cells on the boundary of the tessellation

will have infinite area, by definition. To avoid any interference from these boundary

Voronoi cells, the generated grid of points is always made to be sufficiently larger than

the simulation area so that the boundary cells do not influence the dynamics of the
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model. The advantage of the chosen lattice topology is that cells are not fixed in space,

and are not inherently confined to a particular arrangement.

(a) (b)

Figure 8.3: Initial Voronoi tessellation. Healthy cells are coloured pale pink and tumour
cells are bright green. The boundaries for each cell are represented by a
solid line and the lattice points are small dots in the centres of the cells
in (a). (b) shows the tessellation overlaid with the network of connected
lattice points obtained using a Delaunay triangulation. The neighbourhood
of interaction is indicated in blue for one point in the lattice.

A finite domain of tumour cells and the surrounding environment is considered

and Dirichlet boundary conditions are employed (i.e. cell states are fixed beyond the

boundary). The complete grid of points is larger than the necessary domain for the

dynamics seen in all simulations in this study. Initially, the points in the lattice are

arranged so that the corresponding Voronoi cells form a hexagonal tessellation (see

Fig. 8.3(a)) analogous to other work in the literature (Buijs et al., 2004; Lobo, 2014).

There are many mechanisms governing cell movement within a tumour, such as

pressure-driven motility. The primary movement of tumour cells in the VCBM is driven

by cell proliferation. The spatial relationship between points in the lattice is defined by

a network of springs and modelled using Hooke’s Law. The lattice employed uses the

Hooke’s Law formalism to maintain a fixed separation between mature cells by setting

the spring rest lengths between the points of mature cells to be identical.

The neighbourhood of interaction for a particular Voronoi cell is defined as the neigh-

bouring cells that share a connecting edge with it, i.e. the nearest neighbour set of

points in the lattice that are joined to that point by a single spring, see Fig. 8.3(b).
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These points are determined by taking a Delaunay triangulation of the lattice and find-

ing the set of cells that are conntcted in the triangulation. Cells in the neighbourhood

of interaction for a particular Voronoi cell are the cells that can influence the movement

of that cell at each time step.

A known hallmark of cancer is rapid cell proliferation. For tumour cells to divide,

there must be sufficient surrounding space and nutrients. Pressure from closely packed

neighbouring cancer cells restricts the access of oxygen and nutrients, hence cells to-

wards the centre of an enlarging tumour receive a smaller level of nutrients than those

near the edge and tend to form a quiescent tumour cell population, see Section 2.2.2.

Neither virus-infected tumour cells nor healthy cells proliferate in the model. Typ-

ically, viruses replicate their genomes and generate new progeny by deregulating

cell-cycle checkpoint controls and modulating cell proliferation pathways (Bagga and

Bouchard, 2014). Hence, the likelihood of a virus-infected cell proliferating is low and

the effects are taken to be negligible in the model. Additionally, to facilitate the rapid

formation of a tumour in a static tissue environment, it is assumed that healthy cells

divide at a much slower rate than tumour cells, so for the timescale and extent of the

model, the effects of healthy cell proliferation are also neglected. It is also assumed

that healthy cells do not die as viral particles do not replicate within them.

Once a cancer cell has died from viral-induced cell lysis, the remnants disintegrate

over a period of time. Once a dead cell has disintegrated, it turns into empty space.

In the model, there are cells designated as empty space. These cells are removed from

the lattice and do not contribute to the force calculation for any individual cell. These

empty cells are only part of the model to keep the size of each living cell bounded in

the visualisation.

8.2 model implementation

At any given time, there exists a set of virus and cell agents, each obeying the rules

defined below. Each cell is endowed with one of five possible states: uninfected tumour

cell, virus-infected tumour cell, dead tumour cell, empty space or normal healthy cell.

Uninfected tumour cells can either proliferate, move or become infected cells. Virus-
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infected tumour cells can either move or die. Dead cells can disintegrate into empty

space. Healthy cells can only move over the time-scale of the investigation.

Since it is assumed that healthy cells can only move and do not proliferate, healthy

cells are unable to regenerate and proliferate back into the empty space left by any

dead tumour cells in the time frame of the simulations. This is biologically plausible,

for example in the case with breast cancer. Once the tumour has been resected, patients

are often left with soft tissue defects and disfigurations due to the inability of the

nearby tissue to regenerate (Stosich and Mao, 2005).

8.2.1 Viral movement

In the VCBM, it is assumed that the movement of virus particles through a tumour can

be captured realistically with random waiting times between consecutive movements

drawn from a heavy-tailed distribution of the form P(W > w) ∼ w−1−α where α ∈

(0, 1). Trajectories of particles with waiting times W from this probability measure may

be simulated exactly on a discrete-time grid by drawing a waiting time W for each

particle after a single step from the stable distribution with stability parameter α using

W =
sin(α(V + π/2))

cos(V)1/α

(
cos(V −α(V + π/2))

E

) 1−α
α

, (8.1)

where V is uniformly distributed on the interval (−π/2,π/2) and E is exponentially dis-

tributed with unit rate parameter, see Carnaffan and Kawai (2017); Janicki and Weron

(1993).

To simulate the viral motion, the following algorithm is used. Initially, each virus

particle is assigned a waiting time W, drawn from the distribution in Eq. (8.1). Once

the virus has waited the appropriate number of time intervals, the step length of the

displacement of the virus particle is drawn from a gamma distribution with mean rµ

and variance rσ. The angle the virus rotates relative to its previous position is a random

variable drawn from the uniform distribution [0, 2π). Whilst other distributions could

have been used, the choice of the gamma distribution was motivated by its strictly

positive bell-shape, definite average and ‘tunable’ characteristics, (Frank, 2009). This
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was similar to the reasoning in Section 4.3 for the virus titer model. After each step

in the virus particle’s motion, a new waiting time W is then drawn from the above

distribution in Eq. (8.1).

In Fig. 8.4, the density of viral particles after 200 hours is compared with and without

waiting times W (Fig. 8.4(a)-(b) and Fig. 8.4(c) respectively). The variance of the distri-

bution of the anomalously diffusing population scales as a power-law, proportionally

to tα (Carnaffan and Kawai, 2017). Smaller values of α (corresponding to heavier tails

in the waiting time distribution) result in slower spreading of viruses, while as α→ 1,

linear scaling of variance with time is recovered as the regularity of long trapping

events decreases (Carnaffan and Kawai, 2017; Janicki and Weron, 1993). As a result, as

the value of α is increased in Fig. 8.4(a)-8.4(b), the spread in the histograms is notice-

ably increased.

To provide more insight into how subdiffusive viral motion differs from a continuous

random walk, in Fig. 8.4(d) the mean-squared displacement (MSD) is plotted, corres-

ponding to the density of viral particles after 200 hours in Fig. 8.4(a), (b) and (c). It is

evident from Fig. 8.4(d) that viral movement without waiting times results in a linear

MSD as a function of time. This is in contrast to viral particles with waiting times

between consecutive movement generated from Eq. (8.1) with stability parameter of

α = 0.6 and α = 0.8which resulted in a nonlinear MSD over time. Initially the displace-

ment of viral particles from the initial seeding location increases quickly, and then as

time goes on, there is a decrease in how rapidly the mean displacement increases. For

a review of the time averaging of CTRW with a broad distribution of waiting times,

see Neusius et al. (2009).

8.2.2 Viral clearance

To simulate rapid clearance of virus due to immune stimulation, individual viral

particles are assumed to die based on the proportion of the total number of infected

cells IT in that quadrant i that the virus is in, i.e. Ii/IT .
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Figure 8.4: Spatial histograms of the distribution of 3000 virus particles initially loc-
ated at the origin after 200 hours, where particles are diffusing with stable
distributed waiting times with (a) α = 0.6, (b) α = 0.8 and (c) no waiting
times. The corresponding mean-squared displacement (MSD) of the virus
particles in (a), (b) and (c) are plotted in (d).

8.2.3 Cell movement

The position of each cell (except for dead and empty cells) is updated by calculating the

effective displacement of the cell’s lattice point using Hooke’s Law. Force is modelled

as a network of damped springs connecting the kth point to its neighbouring points.

The spring connecting the kth and jth point has a rest length sk,j(t), which can vary

over time t. All points in the lattice are connected in this way and the spring rest lengths

between points can be unique. Fig. 8.5 shows an example of the set-up between three

points k, j and i. In this example the spring connecting sk,j is shorter than the spring

connecting sk,i, allowing for cell growth and decay.
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 𝑟𝑘,𝑗

 𝑟𝑘,𝑖

𝑘

𝑗 Spring rest length

Figure 8.5: Schematic illustrating the connection between points k, j and i in the lattice
at a fixed time t. Springs connect points in the lattice and the movement
of each point depends on the force derived from Hooke’s Law, assuming
that motion is overdamped due to strong friction. The spring rest length
between point k and j is sk,j, and point k and i is sk,j.

Following the implementation in Meineke et al. (2001); Murray et al. (2009); Osborne

et al. (2017), the displacement of the kth point (cell) on the lattice is given by

mk
d2rrrk
dt2

=
∑

j∈Ñ(k)

FFFIk,j +FFF
V
k , (8.2)

where mk is the mass of the kth point, rrrk is its spatial position, FFFIk,j is the interaction

force between a pair of neighbouring points, FFFVk is the viscous force acting on the

kth point, and the sum is taken over neighbouring points to k in the lattice, i.e. Ñ(k),

determined by the Delaunay triangulation. The total interaction force FFFIk(t) acting on

the kth point at time t is equal to the sum of all forces from the springs of all points i

connected to k:

FFFIk(t) =
∑

j∈Ñ(k)

FFFIk,j = µ
∑
∀i

rrrk,i(t)

||rrrk,i(t)||
(sk,i(t) − ||rrrk,i(t)||) , (8.3)

where µ is the spring constant, rrrk,i(t) is the vector from the kth to the ith point at time

t, sk,i is the spring rest length from the kth to the ith point at time t and ||rrrk,i(t)|| is the

L2-norm of the vector rrrk,i(t), see Fig. 8.5.

Eq. (8.2) can then be simplified using two key assumptions. The first is that the

viscous force FFFVk,j, i.e. point-point, point-medium and point-matrix interactions, can be
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modelled by assuming that the drag on the kth point is independent of the springs

and is proportional to its velocity, with constant of proportionality η. Secondly, the

points are assumed to be in a relatively dissipative environment, so point motion can

be approximated as being overdamped due to strong friction. Hence

mk
d2rrrk
dt2

∼ 0.

Prior cell-centered models have used this same inertialess assumption (mkd
2rrrk
dt2

≈ 0)

(Drasdo et al., 1995; Galle et al., 2005; Macklin et al., 2012). Thus

FFFIk = −FFFVK = ηvvvk,

where vvvk is the velocity of the kth point. Approximating this velocity over a small time

interval ∆t, gives

FFFIk ≈ η
rrr(t+∆t) − rrr(t)

∆t
.

Thus the effective displacement of the kth point within a small time interval ∆t in the

overdamped limit is

rrrk(t+∆t) = rrrk(t) +
1

η
FFFk(t)∆t = rrrk(t) + λ

∑
∀i

rrrk,i(t)

||rrrk,i(t)||
(sk,i(t) − ||rrrk,i(t)||) , (8.4)

where rrrk(t) is the position of the kth point in the lattice at time t and η is the damping

constant. Cell mobility is described by the ratio λ = µ/η, which is known to influence

the velocity of the relaxation process (Meineke et al., 2001).

Adhesion effects between neighbouring cells are modelled using a linear force and

cut-off distance al. When the Euclidean distance between points on the lattice of neigh-

bouring cells is longer than sk,l + al, no interaction takes place, see Fig. 8.6.
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Figure 8.6: Schematic illustrating how cell-to-cell adhesion is assumed to be negligible
after the cells have reached a distance apart greater than s+ al.

8.2.4 Cell proliferation

To model cell proliferation, a cell’s distance to the nutrient source and local spatial lim-

itations are considered. The distance from a cell to the nutrient source d is assumed to

be the Euclidean distance between the cell and its closest peripheral tumour cell, which

are assumed to be adjacent to nutrient sources. The effect of mechanical confinement

pressure is accounted for by dmax, the maximum radial distance that still allows a cell

to obtain nutrients from its surroundings. If d > dmax, then the cell does not prolifer-

ate, essentially becoming a quiescent cell. The probability of a cell dividing based on

the nutrients it receives is

pd = p0

(
1−

d

dmax

)
, (8.5)

where p0 is a proliferation constant. Note that p0 is dimensionless as pd is the dimen-

sionless probability of a cell proliferating in a given time step t+∆t.

Fig. 8.7 illustrates how dmax segregates the tumour into a rim of proliferating and

non-proliferating cells. Additionally, to account for the spatial limitation on prolifera-

tion, tumour cells only divide if there is least rmin space between a tumour cell and

any cell in its neighbourhood of interaction. This formulation is based on similar prob-

ability calculations in cellular automata and agent-based models (Jiao and Torquato,

2011; Kansal et al., 2000b).

If a cell proliferates, the framework also allows the encoding of the addition and

movements of lattice points (and the associated VCBM) as a cell divides into two
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𝑑𝑚𝑎𝑥 𝑑

Figure 8.7: Schematic for the probability of a particular cell proliferating given a par-
ticular distance d from the edge of the tumour, see Eq. (8.5). The maximum
radial distance for which proliferation occurs, dmax, separates the tumour
into proliferating and non-proliferating sections, with the cells inside the
shaded circle having a distance greater than dmax from the edge, and hence
being unable to proliferate.

daughter cells. When a cell at position k divides, a new lattice point l is created, so

that k and l are now the points associated with the two daughter cells, see Fig. 8.8.
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Figure 8.8: Schematic for cell motility, illlustrating the proliferation of cell k into two
new cells k and l. The resulting spring rest length sk,l between daughter
cells is then s/gage, which increases over time to s, the mature cell separa-
tion.

To simulate the enlargement and repositioning of the daughter cells, allowing for

gradual cell volume changes (Ghaffarizadeh et al., 2018; Mumenthaler et al., 2013), the

resting spring length of the connection between k and l is taken to be a linear ramp

from a value s/gage up to the mature resting spring length, s, over a time gage as

indicated in Fig. 8.9. Note the two daughter cells are placed at a random angle of

orientation from the original position of the mother cell at a random distance less than
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or equal to s/gage apart. Once a cell has proliferated, it takes page time steps before

the daughter cells will proliferate again, including the gage time steps for the daughter

cells to mature and re-position.
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Figure 8.9: Schematic for cell adhesion. Fig. 8.9 illustrates how the spring rest length
sk,l increases as a function of the time since division.

8.2.5 Cell infection

In each time step, all uninfected and infected tumour cells are checked to see whether

they will be infected. If there is at least one virus agent within the perimeter of a cell,

then the cell becomes infected with probability pi. If there are ζT virus particles within

the perimeter of a cell, then a random number of virus particles ζ, drawn from a uni-

form distribution of the number of viruses able to infect that cell, i.e. ζ = U(0, ζT ),

infects the cell. These virus agents are then removed from the extracellular virus pop-

ulation and the tumour cell becomes an infected cell.

8.2.6 Cell death

Once inside a tumour cell, viral particles undergo replication for iage time steps, after

which the cell will burst and release ν new virus particles. These new particles are

placed randomly within the perimeter of the cell that burst. If the cell bursts, it becomes

a dead cell. Once a cell has died from a virus infection, it is assumed that it takes dage

time steps to disintegrate: at each time increment, the spring rest lengths of the dead

cell to all its neighbours reduces by dfrac to simulate cell disintegration.
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8.3 parameter optimisation and sensitivity

All parameters in the model are collated in Table 8.1. The parameters relating to cell

state characteristics were optimised using time-series measurements for the growth of

cervical cancer SK-OV3 cells (Section 2.2.3.4) in vivo (Kim et al., 2011b). The model was

assumed to be updated on a time step of 4 hours for the parameter optimisation and

all future numerical simulations.

Table 8.1: Parameters in the model and their meanings.

Cell parameters
gage Time steps taken for a daughter cell to grow to adult size
p0 Probability constant for proliferation
d Distance from a tumour cell to the nearest cell on the tumour edge
dmax Radial distance that nutrient reached by diffusing from the tumour edge
rmin Minimum distance between neighbouring cells for proliferation to occur
page Age a cell needs to reach before it can proliferate again
dfrac Distance spring length of a dead cell decreases at each time step
dage Time taken for dead cell to disintegrate
Cell motility parameters
s Spring rest length
µ Spring constant
η Damping constant
al Adhesion distance between two cell positions
Virus parameters
iage Time steps taken from infection to when the infected cell bursts
pi Probability of infection occuring
rµ Mean distance of viral movement per time step
rσ Standard deviation for virus displacement
ν Number of new virus agents created through lysis

8.3.1 Optimising cell state characteristics

To verify the robustness and predictive capability of the model, the growth of cervical

cancer in mice was investigated. The volume of cervical cancer SK-OV3 cells has been

measured in three mice over time by Kim et al. (2011b). SK-OV3 cells have an average

diameter of 14.1µm (Chen et al., 2011) and, interpolating the calculation of Del Monte

(2009), this equates to approximately 4.8× 108 cells per mm3. Due to computational

and geometric constraints in the model, rather than representing a single cell in the
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2D setting, each Voronoi cell was taken to represent the average characteristics of 1010

SK-OV3 cells, and the data scaled accordingly by a factor of 1010. The VCBM was

then used to determine the growth of SK-OV3 cells, with the trend showing good

correspondence with the data, see Fig. 8.10 and Table 8.2.
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Figure 8.10: Model calibration for in vivo cervical cancer SK-OV3 cell growth. Indi-
vidual mouse tumour cell numbers recorded by Kim et al. (2011b) are
plotted as grey circles. Overlayed in light blue dotted lines are 15 model
simulations of tumour growth with the mean of these simulations in black.

Table 8.2: Cell parameter values. The calibrated parameters are obtained by optimising
the model to the measurements of SK-OV3 cell growth seen in Fig. 8.10.
The fixed parameters rmin and s are taken from the original lattice set up,
parameters µ,η and λ are taken from Meineke et al. (2001), but scaled to the
time step of 4 hours, and al is arbitrary.

Calibrated parameters SK-OV3 data
gage(hour) 12

p0 0.7
dMAX (µm) 45

page (hour) 28

Fixed parameters
rmin (µm) 17.28

s (µm) 18.50

µ(µg/hour2) 0.01

η (µg/hour−1) 0.133

al (µm) 0.15

Note that the volume of cervical cancer SK-OV3 cells was measured over 25 days,

and the parameters returned were therefore a function of days. The number of Voronoi

cells is plotted as a function of hours, see Fig. 8.10 as are the parameter values in
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Table 8.2. The simulation implementation was additionally tested to ensure that there

were no artefacts in the results due to the choice of time step.

8.3.2 Viral characteristic parameters

Table 8.3: Virus characteristic parameter values

Parameter Value Source
pi 0.9 Chapter 6

iage (hour−1) 24 Chapter 6

ν (no. of virus particles) 5 Chapter 6

rµ (µm) 0.05 Mok et al. (2009)
rσ (µm) 0.1 Mok et al. (2009)

The remaining parameter values in the model were approximated from the literat-

ure. The probability pi of infection occurring was approximated by the rate of infection

determined in Chapter 6, assuming that the infection rate can be modelled by an ex-

ponential probability distribution. The decay rate was approximated using the average

duration of cell lysis of 24 hours. The number of new viruses created, ν, was approxim-

ated from the value of α in Chapter 6, increased slightly, because this chapter considers

individual virus agents rather than a mean-field approximation to the viral dynamics

(closer to some of the individual mice values returned in Table 6.1). The mean and vari-

ance for viral step length were scaled from the diffusion coefficient of HSV particles

reported at 5× 10−10cm2s−1 by (Mok et al., 2009). See Table 8.3 for a summary.

8.3.3 Model simulation

Cancer cell proliferation, spatial limitations and obstructions influence the shape of a

tumour, see Section 2.2.2 and Fig. 2.2. To understand the sensitivity of the treatment

to tumour shape, the outcome of virotherapy is investigated on three generic tumour

shapes: circular (Fig. 8.11(a)), rectangular (Fig. 8.11(c)), and irregular (Fig. 8.11(e)). To

generate each shape, the same basic underlying VCBM rules have been used, with

some additions in the case of rectangular and irregular tumour growth.
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Circular tumours can be generated directly using the model described in the pre-

vious section If there are no spatial limitations for proliferating cancer cells in vivo,

a roughly circular tumour will form, similar to the cross-section of a hanging drop

tumour spheroid (Weiswald et al., 2015), see Fig. 2.2. Note the apparent difference

between the exponential growth seen in Fig. 8.10 and the more linear growth seen in

Fig. 8.11(b). The difference is due to the slower growth of the tumour on the time scale

of hours as opposed to days, and also due to the smaller number of cells.

When there is an obstruction above and below an initial seeding of tumour cells

in vivo, a rectangular tumour shape will form. This obstruction can be considered as

stiffer stromal tissue, similar to that seen in breast ductal carcinomas in situ (DCIS), see

Fig. 2.2, which have approximately rectangular cross sections. These tumours form in a

rectangular shape due to spatial limitations above and below the tumour. To encourage

rectangular tumour formation in the VCBM, a horizontal impenetrable boundary is

positioned above and below the initial grouping of tumour cells. This was simulated

by placing a dense horizontal line of points into the lattice (not plotted) at the position

of the impenetrable boundary, and then requiring that all healthy cells above and below

this horizontal boundary are unable to move.

In certain cancers, cells on the periphery of a tumour can become invasive cells, al-

lowing them to degrade the ECM and remove nearby cells, forming irregular branches,

see Fig. 2.2. To generate an irregular tumour, a collection of tumour cells on the tumour

periphery are designated that are able to invade the space of healthy cells and occupy

their position. These cells move in a direction that maximises their nutrient and oxygen

supply (Jiao and Torquato, 2011). In the model, nutrients are assumed to flow in from

the boundary of the domain, so these invasive cells move in a direction away from the

tumour.

Typical evolutions of the model for three tumour shapes: circular, rectangular and

irregular are presented in the Appendix B Fig. B.1, B.2 and B.3 respectively. While

the shapes generated have not been directly matched to experimental tumour images,

they represent shapes occurring in tumour formation as discussed above and in Sec-

tion 2.2.2.
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Using the aforementioned automaton rules for oncolytic viruses and corresponding

parameter values in Table 8.1 and 8.3, a representative model evolution is shown for

a circular tumour with viral treatment in Fig. 8.12. Over time, healthy cells are sur-

rounded by the tumour cell population and this is reminiscent of the true biological

scenario, since healthy cells are regularly found within tumours (Park et al., 2000).

All simulations presented in the following results section use the same VCBM virus

rules, unless specified otherwise. Since the size of the adenovirus is approximately 90-

100 nm (Appert et al., 2012), this means that based on the size of an SK-OV3 cell, an

adenovirus is 0.65%-0.7% of the cell’s size. Therefore virus transport mechanisms are

assumed to not be influenced by whether they are in a cell filled area or an area with

no cells.

8.4 results : simulating alternative treatment protocols

In this chapter, oncolytic virotherapy effectiveness is only considered on small tumours,

aiming to improve the diffusive viral properties of this therapy for early-stage cancers.

Two major therapy perturbations are examined in the following subsections: the con-

figuration of the viral injections entry sites and the effects of delaying the infection of

cancer cells by viral particles. These modifications to the current therapy are examined

in detail on the three tumour shapes generated.

8.4.1 Dependence of treatment outcome on entry site configuration

Traditional viral therapy is administered by either intravenous or intratumoral injection

(Wang and Yuan, 2006). However, the possible dependence of therapy outcome on the

position of initial treatment injection has not been investigated systematically. Using

the VCBM, it is investigated whether there is an optimal injection configuration for the

three tumour shapes: circular (Fig. 8.13), rectangular (Fig. 8.14) and irregular (Fig. 8.15).

The varying initial injection configurations considered are represented pictorially by
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Uninfected tumour cell Healthy cell Unrelated tissue Invasive cellQuiescent cell

Figure 8.11: Representative tumour shapes considered for treatment with an oncolytic
virus (a)-(b) circular, (c)-(d) rectangular, and (e)-(f) irregular. The corres-
ponding number of tumour cells as a function of time from 12 simulations
has been plotted for each shape. Typical evolution plots for each of these
shapes can be found in the Supplementary material, Fig. B.1, Fig. B.2 and
Fig. B.3 respectively. Note the different scale for (f) due to the extremely
fast growth of the irregular tumours.
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0 hours 80 hours

160 hours 240 hours

Uninfected tumour cell Healthy cellInfected tumour cell Dead cell VirusQuiescent cell

Figure 8.12: Representative evolution of the VCBM model in a circular configuration.
The four snapshots above represent equal intervals of model dynamics.
Pale pink cells represent healthy cells, dark green cells represent tumour
cells, light green cells represent quiescent cells, bright pink cells represent
infected tumour cells and grey cells represent dead cells with empty space
shaded in light grey.

enumerated and coloured virus shapes with the resulting number of tumour cells as

a function of time also shown. Across all injection configurations considered, the total

dosage was the same. In the case where more than one injection was considered, the

dosage was split evenly amongst the injections.

Increasing the multiplicity of the treatment injection sites improved the overall treat-

ment efficacy for circular tumours, see Fig. 8.13. On average, the tumour cell count at

280 hours and the overall rate of tumour growth was highest when the total viral dose
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was given in a single injection, profiles A, B and C in Fig 8.13(b), irrespective of the

injection location. In comparison, the average tumour size at 280 hours was smaller

for three radially symmetric treatment injections, profiles D, E and F Fig 8.13(d). Fur-

thermore, the tumour size was dramatically reduced in the first 160 hours when three

radially symmetric injections were administered mid tumour, see injection profile E.

While a greater initial reduction in tumour size occurred with injection profile E than

profile F, the average tumour size achieved at 280 hours was smaller when radially

symmetric injections were applied at the periphery of the tumour, profile F. The reason

for injections on the periphery performing better than intratumoural injections, is due

to peripheral injections controlling the outward growth of the tumour more than in-

tratumoural injections. These dynamics are similar to three non-symmetric injections at

the same radial position from the tumour centre, as in profiles G, H and I in Fig. 8.13(f).

However, overall injections need to be given radially symmetrically to see an optimal

effect in the treatment efficacy.

In rectangular tumours, the size after treatment was slightly more variable than

in circular tumours, see Fig. 8.14. On average, single injections resulted in smaller

tumour reductions, see injection profiles A, B and C in Fig. 8.14(b) respectively, along

the major (long) axis of the rectangle, and G in Fig 8.14(f), which was off both the

major and minor (short) axes of the rectangle at the periphery of the long edge of the

tumour. There were examples of individual tumour growths after a single injection

that stabilise; however, these occurred rarely. This shows that despite the tumour’s

vertical growth being restricted, a single injection along a major or minor axis was

unable to control the tumour growth to the same extent as two injections. Apart from

two injections off the short-axis of the rectangular tumour on the periphery of the long

side (injection profile F), all other two injection profiles lowered the tumour growth see

profiles D and E and profile H in Fig 8.14(d).

The lowest tumour size was obtained with two intratumoural injections in the direc-

tion of the long edge, i.e. profile D, and on the periphery of the long edge of the minor

axis, and off the major axis, i.e. profile H in Fig. 8.14(f). Additionally, the rate of growth

on average was significantly reduced when two injections are given intratumourally or
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Figure 8.13: The effects of the multiplicity and configuration of the injection site on a
circular tumour. The initial injection configurations considered are repres-
ented in Fig. 8.13(a), 8.13(c) and 8.13(e) by the coloured regions, depicting
viral particles. The corresponding total number of tumour cells over time
for each injection type is plotted in Figs. 8.13(b), 8.13(d) and 8.13(f), re-
spectively for 12 simulations. For reference, untreated tumour growth is
plotted for 12 simulations in grey. Note quiescent cells are not plotted.
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Figure 8.14: The effects of the multiplicity and configuration of the injection site on
a rectangular tumour. The initial injection configurations considered are
represented in Fig. 8.14(a), 8.14(c) and 8.14(e) by the coloured regions, de-
picting viral particles. The corresponding total number of tumour cells
over time for each injection type is plotted in Figs. 8.14(b), 8.14(d) and
8.14(f), respectively for 12 simulations. For reference, untreated tumour
growth is plotted for 12 simulations in grey. Note quiescent cells are not
plotted.
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Figure 8.15: The effects of the multiplicity and configuration of the injection site on an
irregular tumour. The initial injection configurations considered are rep-
resented in Fig. 8.15(a) and 8.15(c) by the coloured regions, depicting viral
particles. The corresponding total number of tumour cells over time for
each injection type is plotted in Figs. 8.15(b) and 8.15(d), respectively for
12 simulations. Note the shorter timescale, and greater growth compared
to Fig. 8.13 and 8.14. For reference, untreated tumour growth is plotted for
12 simulations in grey. Note quiescent cells are not plotted.

on the periphery and off-centre. Profile D intuitively results in a low tumour burden

as these injections have access to more tumour cells than any other injection; however,

this is not the case for profile H. In this case, the efficacy of this injection comes from

the virus controlling one of the proliferating directions of the tumour.

For the irregular tumours, spreading the dose across multiple injection sites lowered

the tumour size. A single intratumoural injection, profile G Fig. 8.15(d), produced

the largest average tumour at 160 hours. This is not surprising, since the irregular

tumour has invasive cells that generate rapid tumour growth away from the centre of

the tumour, where only quiescent cells would be present. If the injection multiplicity
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is increased to three, then intratumoural radially symmetric injections profiles A and

C in Fig. 8.15(b) resulted in a marginally better treatment in the first 80 hours than

three diagonal injections (profile B in Fig. 8.15(b). Long-term, the best injection profile

for three injections was along the diagonal of the tumour bulk, i.e. profile B. However,

overall, three injections were unable to inhibit the tumour growth significantly, possibly

due to the irregular arms of the tumour providing a higher surface area of tumour

growth.

When ten injections were administered for an irregular tumour, the velocity of tu-

mour growth was significantly reduced compared to the untreated system, see Fig. 8.15(c)-

(d). In early stages, the lowest tumour growth was obtained when multiple injections

were given on the tumour periphery, i.e. profile E in Fig. 8.15(c)-(d). However, later on,

injections that wiped out the invasive cells, profile D in Fig. 8.15(c)-(d), ultimately re-

duced the tumour burden the most. Comparing the difference at 60hours for injection

profiles D and E in Fig. 8.15(d) to 160 hours, it is evident that the tumour evolution

was significantly different. While initially profile D seemed to be not as effective, over

time it was the most successful administration protocol.

8.4.2 Treatment with delayed initial viral-infection

To improve virotherapy, a more advanced delivery system that provides sustained in-

fection of tumour cells is needed (Choi et al., 2013b). While optimising the injection

configuration shown in the previous section can help, more needs to be done to im-

prove the treatment. One idea is to modify viral vectors with a substance, such as an

alginate gel, to delay the initial infection time, allowing for further diffusion through

the tumour bulk prior to the initial infection and activation of clearance.

Alginate, a naturally occurring biopolymer, has several unique properties that have

enabled it to be used for delivery of a variety of biological agents, including viruses

(Choi et al., 2013b; Sharma et al., 2003). The ability to encapsulate viral particles in

alginate microbeads has been tested as a vaccine delivery system, (Kwok et al., 1989;

Wee et al., 1995). Choi et al. (2013b) show that the biological activity of viral particles

loaded in alginate gel is prolonged compared with naked virus (Choi et al., 2013b). The
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microenvironment around the gel-encapsulated virus also provides protection from

clearance by the immune system over an extended time period (Choi et al., 2013b;

Muruve et al., 1999; Ruzek et al., 2002). This idea is theoretical and has not yet been

shown to be biologically plausible. Additionally, as the size of an adenovirus is 0.6%-

0.7% the size of an SK-OV3 cell, it is assumed that alginate coating will not influence

the size as significantly as to warrant a change in the transport properties and rates.

The effects of delayed viral treatment on circular, Fig. 8.17, rectangular, Fig. 8.18, and

invasive tumours, Fig. 8.19, was investigated. In each of these figures, the predicted

number of tumour cells under treatment with the original oncolytic virus is overlaid

with that of the delayed-initial infection virus for the various values of the delay time.

The pore size, degradation rate and release kinetics of alginate can also be controlled

(Gombotz and Wee, 1998), so four different initial infection delays of 40, 52, 60 and 80

hours were simulated.

Delaying the infection of viral particles allows the treatment to disseminate further

into the tumour before the first infection, see Fig. 8.16 for a visual representation of the

dynamic, and Figs. 8.17(f) and 8.18(f) for the distribution of viral particles at different

times. In Fig. 8.17(f) and 8.18(f), it is clear that the variance of the position of the viral

particles initially is smaller than that of the delayed viral particles before their initial

infection, after their corresponding wait periods. Typical evolutions of the model for

circular tumours under treatment with a non-delayed and delayed virus is plotted in

the Appendix B, see Fig. B.4 and B.5 respectively.

The treatment was administered in three injections on the periphery for circular tu-

mours (profile F, Fig. 8.13(c)), two injections on the short ends for rectangular tumours

(profile E, Fig. 8.14(c)) and three injections on the tumour bulk periphery for irregu-

lar tumours (profile A, Fig. 8.15(a)). For circular and rectangular tumours, Fig. 8.17

and Fig. 8.18, the modified delayed virus resulted in lower tumour cell numbers than

that of the non-delayed virus. Each injection had the same amount of virus particles,

irrespective of the tumour shape or delay length.

In the circular tumours, the delay of the onset of viral infection initially allowed the

tumour cell numbers to increase rapidly compared to the tumours undergoing non-

delayed viral treatment, Fig. 8.17. At the onset of the infection, however, a dramatic
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(a) (b)

Uninfected tumour cell Healthy cellInfected tumour cell Dead cell Virus

Figure 8.16: Virus diffusion for (a) non-modified and (b) modified virus particles at 52
hours. A comparison of the two cases shows that the region within which
the virus particles have diffused is similar in both cases; however, there
are less virus particles in the non-modified case due to immune clearance.

.

drop in tumour cell numbers was observed. For shorter delay times, Fig. 8.17(a) and

(b), the tumour numbers were similar under the delayed and non-delayed treatments

following the onset time. For treatments with longer delays, Fig. 8.17(c) and (d), the

tumour numbers under the delayed treatment dropped below that of the non-delayed

treatment at the onset time, and the trend of the subsequent increase was on average

below that of the non-delayed treatment. This illustrates that while the addition of a

delay in the viral infection allows the tumour to grow to a size larger than the initial

one, the viral treatment’s effectiveness is increased due to its ability to disseminate

further into the tumour, see Fig. 8.17(f).

For non-circular tumours, delaying the onset of viral infection results in tumour

growths with equivalent slopes. In the case of rectangular tumours, Fig. 8.18, delaying

the viral infection means that once the virus particles infect, the size of the tumour is

lower at that point than the size of the tumour under treatment with non-delayed virus.

So while the tumour growths have the same rate, the size of the tumour is smaller for

the delayed viral treatment. In the case of irregularly shaped tumours, Fig. 8.19, whilst

the dramatic drop in tumour cell numbers was observed upon the onset time in the



8.4 results : simulating alternative treatment protocols 216

0 40 80 120 160 200 240 280

Time (days)

250

300

350

400

450

500

550
N

o
. 
o

f 
tu

m
o
u

r 
c
e
lls

(a)

0 40 80 120 160 200 240 280

Time (days)

250

300

350

400

450

500

550

N
o

. 
o

f 
tu

m
o
u

r 
c
e
lls

(b)

Time (hours)

250

300

350

400

450

500

550

N
o

. o
f 

tu
m

o
u

r 
c

e
ll

s

28024020016012080400

(c)

Time (hours)

250

300

350

400

450

500

550

N
o

. o
f 

tu
m

o
u

r 
c

e
ll

s

28024020016012080400

(d)

0 40 80 120 160 200 240 280

Time (hours)

0

2

4

6

8

10

12

14

R
a
ti
o
 o

f 
v
ir
u
s
 t
o
 u

n
in

fe
c
te

d
 t
u
m

o
u
r 

c
e
lls

No wait time

Wait time 40 hours

Wait time 52 hours

Wait time 60 hours

Wait time 80 hours

(e) (f)

Figure 8.17: Circular tumour size under treatment with a delayed infecting oncolytic
virus. The number of tumour cells predicted by the model over time is
plotted under treatment with the original oncolytic virus (light blue) and
with the delayed virus (dark blue) applied using profile F, Fig. 8.13. Twelve
model simulations were considered for each case. The wait times for the
delayed virus cases were (a) 40, (b) 52, (c) 60 and (d) 80 hours. Note the
dramatic drop in tumour cell numbers upon initial viral infection in each
case. In (e), the ratio of the number of extracellular virus particles to unin-
fected tumour cells is plotted for each treatment as a function of time. The
corresponding distribution of viral particles before they can initially infect
for the case of no wait time, 40 hours wait time, 60 hours wait time and 80
hours wait time is plotted in (f).
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Figure 8.18: Rectangular tumour size under treatment with a delayed infecting onco-
lytic virus. The number of tumour cells predicted by the model over time
is plotted under treatment with the original oncolytic virus (light blue)
and with the delayed virus (dark blue) applied using profile E, Fig. 8.14.
Twelve model simulations were considered for each case. The wait times
for the delayed virus cases were (a) 40, (b) 52, (c) 60, and (d) 80 hours. Note
the dramatic drop in tumour cell numbers upon initial viral infection. In
(e), the ratio of the number of extracellular virus particles to uninfected
tumour cells is plotted for each treatment as a function of time. The cor-
responding distribution of viral particles before they can initially infect for
the case of no wait time, 40 hours wait time, 60 hours wait time and 80
hours wait time is plotted in (f).
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Figure 8.19: Invasive tumour under treatment with a delayed infecting oncolytic virus.
The number of tumour cells predicted by the model over time is plotted
under treatment with the original oncolytic virus (light blue) and with the
delayed virus (dark blue) for profile A, Fig. 8.14. Twelve model simulations
were considered for each case. The wait time for the delayed virus cases
was (a) 40, (b) 52, (c) 60, and (d) 80 hours.

delayed treatments, this did not decrease the numbers below that of the non-delayed

treatments, and the long term trends were the same, possible caused by the rapid

growth of the irregular tumours. Therefore, while modifying viral particles to delay

their infection could significantly improve therapy, the model simulations showed that

it depends heavily on tumour shape.

In Fig. 8.20, a comparison of the treatment effectiveness at discrete time points is

presented. The number of tumour cells as a function of the virus delay, at 100, 140 and

200 hours have been summarised for circular and rectangular tumours. In every case

it is clear that the delayed virus was more effective on average than the non-delayed

treatment, or the control case when no treatment was administered, irrespective of the
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Figure 8.20: Comparison of treatment effectiveness at discrete time points. Individual,
mean and standard deviation measurements corresponding to the number
of tumour cells from the simulations Fig. 8.17 and 8.18 after (a) & (d) 100
hours, (b) & (e) 140 hours and (c) & (f) 200 hours is plotted for circular
tumours (a)-(c) and rectangular tumours (d)-(e). The number of tumour
cells without treatment, Fig. 8.11(b) and (d) has also been plotted on each
figure as a control. Note the vertical axis break in the top row and the
different vertical scales.

length of the delay. It was clear however that at 100 hours, the choice of delay had an

effect on the number of tumour cells, with a delay of 52 hours resulting in the smallest

average tumour cell number for both circular and rectangular tumours. However, at

200 hours, there was less sensitivity to the initial delay. This illustrates that in the short

term, the length of the delay before the initial viral infection can play a significant role

in the size of the tumour. To determine whether this result solely relied on the fact

that the tumour size at the start of a delayed virus’ infection is larger, the two types of

treatment were simulated on the same size tumour at the start of their infection time

(image not included). Since the delayed virus had disseminated further, the treatment

performed much better than the non-delayed virus, given its inability to disseminate

as far.



8.5 summary 220

8.5 summary

The rapid clearance of viral particles is a major obstacle in the effectiveness of oncolytic

virotherapy. Viral particles are cleared by the immune system, reducing both the num-

bers of particles acting and the window of time within which the treatment persists.

In this chapter, a Voronoi cell-based model (VCBM) is developed for the interaction

between a growing tumour and an oncolytic virus treatment and ways to optimise the

treatment protocol are investigated. By optimising the injection site configuration and

modifying the viruses to delay their infection, it is possible to improve the efficacy of

this therapy with a particular focus on small early stage tumours.

There are two primary protocols for administering an oncolytic virus, either intrat-

umourally or intravenously. When treatment is administered intravenously, it is chal-

lenging to predict where the treatment will enter a tumour and it is usually at multiple

sites on the tumour periphery. Alternatively, when treatment is administered intrat-

umourally, it is possible to designate the entry site location to some extent. In Fig. 8.13,

8.14 and 8.15, the application location is shown to be a crucial determinant of treatment

efficacy for circular, rectangular and irregular tumours. The position and multiplicity

of the intratumoural injections can significantly affect the outcome of the therapy.

To determine which injection profile results in the most effective treatment, the num-

ber of tumour cells over time for 12 model simulations has been plotted in Fig. 8.13-

8.15. From visually inspecting the plots, it is not clear in every case which treatment

is the most effective, and so the mean and standard deviation for each injection pro-

file was also calculated. Using these measurements it was established that the best

treatment outcome across the different shapes was achieved with 3 or more injections,

where the same total dosage was divided evenly among the number of injections. In

the short-term, injections that were within a tumour produced the most effective treat-

ment. However, long term, the optimal injection configuration depends significantly

on the tumour shape.

For a circular tumour, Fig. 8.13, single injections of oncolytic virus particles gave

rise to the highest average tumour size over time of any of the injection configurations

considered. The location of the single injection had no significant effect on the tumour
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size. The lack of response to the single injection protocol is due to single injections pro-

moting an increased multiplicity of infection with a subsequent enhancement of viral

trapping that limits the breadth of spread irrespective of the location on the tumour.

In contrast, the mean and standard deviation of a circular tumour size at 280 hours

was noticeably lower for three injections along the radius of the tumour or at the peri-

phery. Increasing the injections allows for an improved diffusivity and virus to cell

contact rate. The best performing injection protocol on circular tumours for a window

of 50 hours was three radial and rotationally symmetric injections. After 50 hours, the

efficacy of central tumour injections was overtaken by injections on the tumour peri-

phery. This effect is due to injections on the periphery of circular tumours restricting

cell growth on the boundaries, where the growth rate is usually the fastest.

The optimal treatment injection configuration for rectangular tumours, Fig. 8.14, was

not dissimilar to that of circular tumours: on average, increasing the injection multipli-

city improved the treatment efficacy. However, there were some cases where a single

injection close to the edge of a tumour caused a reduction of tumour growth similar

to that of multiple injections, see Fig. 8.14(b) and (d). This stochasticity of tumour re-

sponse is explained by the fact that the tumour’s primary growth occurs in a horizontal

direction. Since Ductal Carcinoma In Situ (DCIS) have approximately rectangular cross

sections, this could suggest that treating these cancers with virotherapy would result in

a wide variety of unpredictable responses, depending on the location and multiplicity

of injection.

From the injection configuration model simulations, the optimal injection profile for

rectangular tumours can also be determined. Two intratumoural injections positioned

halfway from the centre along the horizontal semi-axes (profile D, Fig. 8.14) reduced

the tumour volume the most out of all injection configurations considered. However,

administering treatment in this way could be difficult. An alternative is to administer

two injections above and below the tumour (profile H, Fig. 8.14), a third of the way

along the horizontal. In real tumours, this could be a simpler way of administering

treatment as the tumour itself does not need to be penetrated.

It is also interesting to note that there is a pronounced oscillation in tumour cell num-

bers soon after injection for both the circular and rectangular tumours, see Fig. 8.13,
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8.14, 8.17 and 8.18. There are two reasons why oscillations occur in the model. Firstly,

the oscillations are caused by the increase in free-space within the tumour allowing

cells to proliferate that were previously too confined. The second reason is, in the case

of the delayed virus, a significant amount of cells are infected once the virus delay

has passed, and these cells lyse simultaneously, allowing nutrients to access cells, that

previously had a low probability of proliferating.

For an irregular tumour shape, it is shown in Fig. 8.15 that the most successful treat-

ment outcome in the first 60 hours was obtained when the treatment was administered

at the periphery of the tumour bulk as opposed to the invasive spines. The multitude

of injections significantly affects this outcome: when ten injections are given at the peri-

phery of the tumour, the treatment did considerably better than when three injections

were administered at the periphery. Additionally, comparing this option to one single

intratumoural injection, it fared the worst out of all the possible profiles. After 60 hours,

the optimal injection configuration was the one that eliminated all invasive cells on the

tumour spines. By eradicating the invasive cells the tumour growth is reduced signific-

antly so that, while treatment takes longer to be effective, the overall tumour growth

rate gets reduced.

While optimising the treatment injection configuration can help to improve the stand-

ard of the current treatment, there is more that can be done to increase the efficacy. To

tackle the diffusivity obstacle presented by the tumour microenvironment, oncolytic

viral particles can be modified to delay their infection for a specific period of time.

Delaying the onset of viral infection within a tumour allows for further infiltration of

the tumour prior to the onset of immune clearance.

For circular tumours it was shown that the delayed virus caused an average reduc-

tion of tumour volume at 200 hours of between 5% and 11% (depending on the length

of the delay), Fig. 8.17. While the delay of 100 hours resulted in the largest initial in-

fected cell population of 105 cells, the long-term average size of a tumour was lowest

for the treatment with a 52-hour delay, the latter is the treatment recommended for

further investigation. Future investigations will look at whether additional doses of

the treatment can further improve this result.
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The success of delayed virus infection on circular tumours can be attributed to the

diffusive properties of the virus. Since the infection of the tumour cells is initially

delayed, the virus is able to disseminate further into the tumour before it initially

infects the cells. Additionally, due to the coating of the virus, the immune system is

unable to clear the virus during the period of time before its initial infection. Therefore,

since the mean squared displacement of the virus is larger for a virus that has had a

delayed infection, then more virus undergoes the first round of infection. From this,

more secondary virus is created from the first round of infection than the non-delayed

virus’ first round of infection.

In Fig. 8.17, it is clear there is an optimal timing for the delay of initial viral infection

with a 52-hour delay resulting in the lowest tumour size. This has to do with the

tumour growth relative to the length of infection delay. If the virus is delayed from

infecting the tumour cells for too long, then the tumour will have grown to a size that

is too large for the current diffusion rate of the virus to have an effect. Future work will

investigate optimising the relationship between the delay of infection onset, the size of

the initial tumour and the diffusivity of the virus.

For rectangular tumors, the modified virus, irrespective of the delay, had a consid-

erable effect on reducing the tumour burden Fig. 8.18. By 200 hours (Fig. 8.20), each

delayed virus reduced the tumour numbers to approximately the same level: the only

major difference in the delay was how many cells were initially removed by the virus,

but even this was not significant. There appeared to be no optimal delay in this case

as all worked just as well as each other. This is due to rectangular tumours having a

maximum tumour growth rate, since they are bounded above and below by an impen-

etrable boundary. The overall growth rate of rectangular tumours was less affected by

the delayed viral infection treatment compared to that of the circular tumours. Since the

virus diffuses radially from the initial injection and rectangular tumours grow primar-

ily horizontally, the effectiveness of the delayed virus, due to its ability to disseminate

further into the tumour, could be reduced accordingly. It is clear, however, that the

use of a delayed onset virus overall improved the treatment outcome for rectangular

tumours.
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In the case of irregular tumour formation, the modified delayed virus was no more

effective than the original non-delayed form. In a few cases, the non-delayed form

resulted in lower tumour sizes than the delayed form. This is due to the aggressive

nature of the tumour shape. Invasive tumours are able to grow away from the treatment

sites in a multitude of ways, evading the viruses swiftly and efficiently.

The sensitivity of the number of tumour cells as a function of the treatment delay is

summarised in Fig. 8.20. By comparing the different tumour cell numbers, at 100 hours

a delay of 80 hours led to a higher tumour cell count, compared to the other delays,

whereas at 200 hours, a delay of 80 hours had a lower average that most of the other

delayed viruses. This illustrates how the delayed virus takes time to catch up with a

growing tumour.

In general, after around 140 hours, the chosen delay doesn’t contribute significantly,

with all delays resulting in smaller tumour cell numbers on average than the treatments

with no delay or for a tumour growing without treatment. As such, the effectiveness

of the delay is a function of time. If this treatment was to be tested experimentally,

this suggests that only early measurements would reveal any difference between the

effectiveness of the different delay treatments. Overall, this result suggests that there

could be a significant dependence of tumour size on the timing of the measurement.

In conclusion, for circular and rectangular tumours, modifying viral particles to

delay their infection can produce a notable advantage to therapy; however, for irregu-

lar tumours the benefit remains unclear. This model is presented in 2-dimensions and

with the addition of a third dimension, the drop in tumour cell numbers could be signi-

ficantly larger. Future work will investigate the delayed virus efficacy on 3-dimensional

tumour shapes.

It is worth noting here that the results are dependent on the underlying dynamics

of the model. To investigate the possible validity of these results on a more hetero-

geneous sampling of tumour types and viral treatment modalities, it would be worth

considering different viral dissemination profiles, tumour growth dynamics and viral

clearance rates. In the next stage of this work, it also would be worth investigating

how the immune system dynamics may influence the viral clearance and whether the

delayed virus is truly more effective in the presence of an antiviral immune response.
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The spatial investigation in this chapter has allowed for a visual in-depth appre-

ciation of the general virus-tumour cell dynamics in oncolytic virotherapy. Using a

Voronoi tessellation to form the shapes of cells, combined with force balance equa-

tions, allows for a good approximation of the real life spatial effects of pressure and

cell-to-cell interactions.
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In this thesis, mathematical models have provided valuable insight into oncolytic

virotherapy and immunotherapy. Deterministic, probabilistic and agent-based model-

ling were used to model the intricate and complex interactions between viruses, im-

mune cells and tumour cells at the intracellular and extracellular scale. Often the data

used to optimise parameter values was sparse and creative techniques were developed

to draw insight from this data.

summary of thesis results

A challenge facing oncolytic virotherapy is determining how to maximise both viral

spread and anticancer cytotoxicity. Many experimentalists are investigating genetic

attenuation for this purpose. To assist in the understanding of variations in character-

istics and effect of these gene-attenuated viruses, a novel integro-differential system

with distributed parameters was developed (Eq. (4.1)). Intracellular viral and tumour

heterogeneity was modelled using distributed parameters for viral replication start

times and cellular burst times. This is an important and significant inclusion as the

intracellular replication process is known to be extremely stochastic (see Section 2.4.2).

Miyashita et al. (2015) showed that stochastic processes govern the number of viral

genomes that establish infection and the accumulation of their progenies in an infected

cell. Additionally, as reviewed in Section 3.2.5, time delays are intrinsic to the infection

and replication processes of viruses and have been considered in numerous models for

human immunodeficiency virus (HIV). As the generation of new viral progeny drives

the success of oncolytic virotherapy, it is crucial to model the intracellular dynamics

using distributed delays. At the smallest biophysical scale considered in this thesis, an

integro-differential model was used to understand the effects of E1B gene-attenuation

of the adenovirus (Chapter 4). This mathematical framework can be used to understand

the genetic characteristics of many oncolytic viruses and is a useful step in the direction

of creating a safer and more effective viral treatment platform.

Scaling up, an extracellular mean-field approach for the viral-tumour interaction

was developed (Chapter 5), consisting of two systems of ordinary differential equa-

tions (ODEs). Comparison to, and tuning with, experimental data showed that these
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deterministic models can be successfully used to represent the extracellular dynamics

of the virus-tumour interaction. Initially, a minimal coupled system of ODEs was in-

troduced to capture the infection and lysis of tumour cells, see Eqs. (5.1)-(5.3). Whilst

a number of biological limitations existed in this model (such as unimpeded tumour

growth) the simplicity allowed for a thorough local stability and bifurcation analysis to

be conducted. Interestingly, this model did not possess any regimes that could result

in complete tumour eradication, demonstrating that models similar to this would also

predict treatment failure.

Changing the biological assumptions of the minimal extracellular model to consider

Gompertzian tumour growth and frequency-dependent viral infectivity rates, resulted

in the extended model in Eqs. (5.10)-(5.12). This model showed a singular equilib-

rium and a number of highly nonlinear behaviours that had interesting biological con-

sequences, see Fig. 5.17. For example, the model predicts long-period “square wave”

oscillations, something not seen regularly in mean-field models of oncolytic virother-

apy. This suggests that long-periods of remission can be followed by rapid regrowth of

the tumour to the environmental carrying capacity. At this point, the virus population

builds back up and the brings the tumour back to remission (see Fig. 5.17 case (4)). Ad-

ditionally, the model illustrates regions of bistability, i.e. where two different outcomes

can occur depending on the initial conditions, see Fig. 5.22.

These interesting dynamics were the result of a number of non-trivial bifurcation

scenarios in the presence of an important system equilibrium (i.e full tumour eradica-

tion) that is characterised by a singular Jacobian. This occurrence required the use of a

hybrid combination of numerical continuation, symmetry considerations and integra-

tion of the model to map out the dynamics as a function of relevant model parameters.

The methodology could hopefully be used in future studies of singular equilibria sys-

tems.

The analysis of the minimal system of ODEs with Gompertzian tumour growth

was then applied to an experimental oncolytic adenovirus modified with polyethylene

glycol (PEG) and conjugated with Herceptin (Chapter 6), and an oncolytic adenov-

irus expressing IL-12 and GM-CSF (Chapter 7). Mean-field formulations were chosen

for these studies as the inclusion of spatial dependencies or stochasticity into these
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models would have added too many degrees of freedom to enable conclusions to be

drawn regarding optimisation of the therapies. The models allowed insight into the

efficacy of the viral infectivity and immune stimulation in improving oncolytic viro-

therapy and immunotherapy. For example, increasing the viral infectivity rate for a

PEG and Herceptin-modified adenovirus resulted in a dramatic drop in the tumour

size (see Fig. 6.5(c)). A similar effect was seen for the IL-12 and GM-CSF expressing

virus, where reducing the virus-infected cell stimulation of APCs was shown to in-

crease the effectiveness of the therapy (see Fig. 7.6).

Moving from consideration of well-mixed mean-field systems, geometric effects on

the virus-cell interactions were encoded using a Voronoi cell-based model (VCBM)

(Chapter 8). While deterministic models can provide invaluable insight, agent-based

models (ABMs) allow for more realistic simulations of the actions and interactions of

tumour cells and individual virus particles at the smaller scale. The two dimensional

investigations explored indicated the utility of the approach, justifying the extension

to model realistic three-dimensional geometries in future studies, and tuning to other

growth rates and formation characteristics. The VCBM could also be applied beyond

the particular cancer and viral interactions of the PEG and Herceptin-modified virus

and the IL-12 and GM-CSF expressing virus analysed in this thesis.

Additionally, the studies indicate that the VCBM can act as an excellent visualisation

tool for biologists and clinicians, for example to pinpoint the depth of the treatment

spread and its effectiveness, as shown in Fig. 8.12. One difference of this model to

previous spatial models for oncolytic virotherapy (Section 3.3.1) is that viruses are

assumed to follow a continuous-time random walk, with waiting times between suc-

cessive movements drawn from a stable distribution. This particular modelling was

chosen specifically to capture the trapping phenomena and the inability of viruses to

diffuse through the tumour microenvironment (Kim et al., 2006b), something that is

not captured through the use of classical diffusion (Friedman et al., 2006; Mok et al.,

2009) or simple lattice random walks (Paiva et al., 2011).
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optimisation approaches and applications

A large portion of this thesis centered around the development of fitting algorithms

that could optimise model parameters to a range of different experimental measure-

ments. To improve oncolytic virotherapy and immunotherapy, mathematical models

were optimised to data. Different approaches were used for time-series measurements

(e.g. Fig. 6.3) versus single time-point values (e.g. Fig. 6.9). Additionally, sparse data

sets (e.g. Fig. 4.7) required a different interpretation focusing on the identification of

the primary determinants of the system behaviour.

A simultaneous optimisation approach was taken for the PEG and Herceptin- mod-

ified adenovirus. The model for this virus was optimised both to individual data

sets and also simultaneously to the combined data for tumour growth (Fig. 6.2 and

Fig. 6.3 respectively). Whilst the tumour growth rate and the initial number of tumour

cells were relatively tightly distributed (due to the constraint of multiple data points)

amongst the individual parameter fits (Table 6.1), the lysis rate and the viral decay had

more variance (being constrained by fewer data points). More specifically, for the lysis

rate of the infected tumour cells there is evidence of a bimodal distribution from the

individual data set optimisations. This bimodal behaviour is not experiment specific,

but instead appears to be an underlying bimodal response in the mice. Restricting

this parameter to be common across all data sets in the simultaneous optimisation

(Table 6.2) constrained the search space and determined which mode best represents

the mean response under all experimental protocols.

Hierarchical fitting algorithms are useful when the processes differing between suc-

cessive data sets are clear. An extensive hierarchical fitting approach was taken to

tune the mean-field model for an oncolytic adenovirus expressing IL-12 and GM-CSF

(without immature dendritic cell (DC) injections, Eqs. (7.1)-(7.7), and with immature

DC injections, Eqs. (7.8)-(7.14)). Eleven time-series measurements from in vitro and in

vivo experiments were combined for the optimisation process. The results suggest some

underlying competition between the IL-12 and GM-CSF’s effectiveness on immune cell

stimulation. Examining the parameter values in Table 7.2 shows a decrease in the rate

of helper T cell activation, sH and an increase in the rate of antigen-presenting cell
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(APC) activation, sA, when both cytokines are being expressed. Mechanistically, this

suggests that combining both cytokines reduces the number of T cells produced and

increases the presence of APCs at the tumour site, indicating the existence of negative

feedback.

To improve treatment with the adenovirus expressing IL-12 and GM-CSF, the virus

was combined with a population of immature DCs. Hierarchically combining the pre-

vious virus-based experiments with the in vitro DC decay measurements, parameters

for the stimulation of immature DCs by infected and uninfected tumour cells were

estimated, see Table 7.6. From this work, the unknown release profile of the virus from

the gel could then be obtained, see Fig. 7.14, demonstrating the effectiveness of this

method in combining multiple data sets.

A two-tier hierarchical and simultaneous optimisation allowed the identification of

the key differences in the actions of the gene-attenuated adenoviruses: Ad-wt, Ad-

∆E1B19, Ad-∆E1B55 and Ad-∆E1B1955. This method was employed to combat the

sparse nature of the virus titer measurements, see Fig. 4.7. Firstly, the parameters af-

fected by the cell type were separated. The viruses were then grouped based on the

differences in their virus titer measurements with the replication rate as the main differ-

ence between subgroups. Simultaneous optimisations were used to obtain the overall

parameters for the subgroups of the viruses, see Table 4.1. Parameter perturbations for

each subgroup were then used to determine the defining process of each virus, see

Figs. 4.8 and 4.9. This two-tier hierarchical optimisation approach enabled differences

in related gene manipulations to be identified (summarised below).

determinstic and probabilistic modelling

There were limitations to each of the different modelling frameworks developed in this

thesis. In the ODE systems, only well-mixed populations were considered and the abil-

ity of the virus to infect already infected tumour cells was ignored. This restriction was

relaxed in the VCBM investigation and had a noticeably significant effect. For example,

in the case of the delayed-infection virus, Fig. 8.16, it is clear that with multiple viral

infections there is a reduction in the total number of extracellular viruses available to
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infect uninfected cells. This finding could be fed back into future mean-field model-

ling. By comparing the models and results from the different scales and modelling

bases, it is possible to make deductions about the sensitivity of biological extracellular

interactions.

lower scale modelling and its biological impact

Modelling the intracellular dynamics of viral infection, replication and cell lysis has

led to ways of improving viruses by attenuating their genetic material. The dominant

processes for induced genetic mutations of an oncolytic adenoviruses were identified

by a two-tier hierarchical optimisation of the integro-differential equation with distrib-

uted parameters to virus titer measurements. The E1B 55 gene primarily influences

the replication rate of the virus with the deletion of this gene resulting in a significant

reduction in the rate (Fig. 4.7(b)). On top of this, the deletion of both the E1B 55 and

E1B 19 genes resulted in a long delay in the average replication start time of the virus.

The differences in the Ad-wt and Ad-∆E1B19 virus populations (Fig. 4.9) indicated

that deleting only the E1B 19 gene has an effect on the replication rate, a characteristic

not previously hypothesised to be connected with this gene.

what can be inferred from parameter perturbations and modelling

choices

It is widely known that humans are incredibly heterogeneous and everyone’s response

to treatment is slightly different. The extracellular virus-cell interactions (such as virus

infectivity) and the way they influence treatment outcome has been a major theme of

this thesis. The parameter sensitivity analyses provided insight into which dynamics

are the key drivers of interactions and how parameters, and therefore interactions, may

be tuned to better improve treatment.

The juxtaposition of the two minimal models for the extracellular dynamics of vir-

uses and tumour cells (Chapter 5), allows for a comparison of how the outcomes of
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therapy change with different biological modelling assumptions. Assuming an expo-

nential tumour growth rate and mass-action viral infectivity, a bifurcation analysis

showed that oncolytic virotherapy is unable to eradicate the tumour, see Fig. 5.9. How-

ever, oscillations that appear like homoclinics emerge for certain regions in the para-

meter space, indicating a quasi-eradication or remission state is possible, see Fig. 5.13.

Extending this model to consider Gompertzian tumour growth and frequency -

dependent virus infection, it was shown through a bifurcation analysis that tumour

eradication can be achieved for viral characteristics that fit well with the growth rate of

the tumour, see Fig. 5.17 (4) and 5.18. Interestingly, the model shows that therapies in-

volving oncolytic viruses endowed with high potency do not universally constitute suc-

cessful strategies for eradication. The model points to a number of interesting findings

regarding the role of oscillations between a tumour and an oncolytic virus, specifically

in the region of bistability, see Fig. 5.22. This shows that including either the Gompert-

zian tumour growth or frequency-dependent virus dynamics was able to introduce

stability of the equilibrium at the origin.

Parameter regimes that result in tumour eradication were then investigated for the

PEG and Herceptin-modified adenovirus (Chapter 6). A constrained parameter per-

turbation was used to explore the effects of the alteration of different characteristics

of the treatment, see Fig. 6.5. The tumour characteristics were shown to have a pro-

found effect on the efficacy of treatment, along with viral infectivity. Increasing the

viral infectivity or decreasing the tumour replication rate reduce the tumour size most

significantly. These results suggest that there may be ways of manipulating viral in-

fectivity to achieve clinically realistic tumour eradication.

Interestingly, the efficacy of this PEG and Herceptin-modified treatment in the pres-

ence of the inteferon-mediated antiviral cell-immunity and antitumour immune re-

sponse is still driven by the viral infectivity rate (Fig. 6.11). This aligns with the intu-

ition that increasing the infectivity increases initial cell death and subsequent antitu-

mour immune response. Initial tumour size also influences the eventual tumour size

only in the presence of the antitumour immune response. In the absence of this re-

sponse, if the antiviral-immunity is present, this sensitivity is not present (comparing

Figs. 6.5(b) and 6.12).
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Further investigations into the immune sensitivity were made for an oncolytic aden-

ovirus modified with IL-12 and GMCSF (Chapter 7). The results showed the existence

of certain killer-T-cell-induced apoptosis rates for which this treatment is ineffective,

see Fig 7.6(c). For fast and slow killer T cell induced apoptosis rates, the tumour size

was dramatically reduced around day 30. This demonstrates that this interaction and

the time frame of the treatment can result in vastly different outcomes. Controlling the

killer-T-cell-induced apoptosis rates could be achieved through the introduction of an

experimental cancer treatment known as CTLA-4 blockades (Henson et al., 2008; Parry

et al., 2005). Using the CTLA-4 blockade, researchers have shown that this treatment

can enhance T cell cytotoxic responses and induce the differentiation of CD4 T cells (or

helper T cells) (Leach et al., 1996).

The model for the adenovirus modified with IL-12 and GM-CSF also suggested that

reducing APC stimulation and increasing helper T cell stimulation could possibly im-

prove treatment, see Fig 7.6(a) and (b). Researchers have suggested the possibility that

chemical inhibition of the MAPK ERK pathway in DCs reduces the maturation of these

APCs and therefore the stimulation rate (Liechtenstein et al., 2012; Puig-Kröger et al.,

2001). This is one possible avenue of investigation that could be undertaken to test the

results in Fig. 7.6(a). To increase the helper T cell activation, both cytokines IL-1 and

IL-12 are known to heavily stimulate the differentiation of naive T cells (Macatonia

et al., 1995; Liechtenstein et al., 2012). So to test the results seen in Fig. 7.6(b), an addi-

tional intravenous injection of IL-12 or IL-1 could be a possible way of increasing the

stimulation rate of helper T cells.

Whilst the immune system can be an asset to oncolytic virotherapy, it can also be a

hindrance. The rapid decay in the concentration of viral particles due to clearance by

the immune system shortens the window of effectiveness for oncolytic virotherapy. To

avoid this clearance, oncolytic viral particles can be modified to delay their infection

for a specific period of time as investigated by the VCBM in Chapter 8.

Delaying the onset of viral infection within a tumour allows for further infiltration

of the tumour bed, see Fig. 8.16. This modified treatment results in a reduced tumour

population over time for circular and rectangular tumour shapes, see Fig. 8.17 and 8.18.

This addition to therapy could prove to be a simple yet effective way to improve the
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efficacy of oncolytic virotherapy for some tumour types. The suggested viral modifica-

tion is worth investigating further and verifying experimentally as it could prove to be

a better treatment protocol. These simulations illustrate both the usefulness of math-

ematical modelling and the importance of the extracellular dynamics, specifically viral

clearance.

the impact of the treatment delivery system

The development of an effective delivery system would further advance virotherapy

and immunotherapy by maximising safety, efficacy and duration of transgene expres-

sion. In Chapters 5-8, alternative application protocols were investigated with two

main categories: administration protocol (intravenous vs intratumoural) and dosage

protocol (discrete versus continuous). The two possible administration protocols are

investigated generally (Chapter 5 and 8) and for specific therapies (Chapters 6 and

7). Whilst these investigations above considered discrete dosing strategies, continuous

delivery through the use of a gel-release mechanism was also considered (Chapter 7).

From all these investigations, conclusions can be drawn about the influence of dosage

protocol on the interactions. Overall, this thesis has used mathematics to illustrate ways

that oncolytic virotherapy and immunotherapy may be improved through better viral

application protocols.

Using the VCBM developed in Chapter 8 it was possible to find optimal intrat-

umoural injection locations as a function of tumour shape. The injection site configura-

tion was shown to play a significant role in the overall treatment outcome, see Figs. 8.13

- 8.15. The distance between intratumoural injections and their corresponding distances

to the centre of the tumour had a significant effect on the overall treatment outcome

for circular tumours, see Fig. 8.13. When the three injections reside at the same loca-

tion, the resulting tumour burden was quite high, irrespective of the distances from

the injections to the centre of the tumour. Whereas, if the injections were given at a

reasonable distance apart, the treatment reduced the tumour size significantly. Further-

more, in this scenario, the further the injections were from the tumour centre, the more
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effective the treatment. This suggests that intratumoural injections should be given far

from the tumour centre and distant from each other.

The sensitivity of the injection protocol was also considered for a rectangular tumour

shape and an invasive tumour shape, see Fig. 8.13 and 8.14. In the case of a rectangu-

lar tumour, the model predicated that injections at either end of the tumour would

be considerably more effective that injections in the centre or above and below the tu-

mour. For an invasive tumour shape, it was shown in Fig. 8.15 that the most successful

treatment outcome is obtained when the treatment is administered at the periphery as

opposed to the invasive spines. Also the multitude of injections significantly affected

the outcome. When ten injections were given at the periphery of the tumour, the treat-

ment did considerably better than when three injections were given at the periphery.

Additionally, comparing this to one single intratumoural injection, in every case this

fared the worst out of all the possible injection combinations.

Discrete injections of oncolytic virus can result in vastly different outcomes depend-

ing on the state of the virus-tumour interaction. The existence of a bistable region in

the extracellular virus-tumour interaction resulted in different initial viral loads caus-

ing vastly different outcomes, often in a counter-intuitive way (see Fig. 5.22). If the

initial tumour size is small, full eradication can only be achieved if the dose is either

sufficiently low or sufficiently high. Small viral loads are effective because they first

allow the tumour to growth to larger sizes, thus eliciting stronger viral responses. In

addition, this result indicates that if subsequent injections are given too quickly, the

system can be pushed into a dormant tumour regime, whereas if only a single initial

dose was administered the tumour could have been eradicated. The modelling could

then be used to design experiments to investigate this positive effect of low viral doses.

The initial results of this model also indicate the need to extend the system to include

the dynamics of virus penetration and diffusion which certainly play a fundamental

role in the success of virotherapy.

Not only can additional injections perturb a trajectory that may have resulted in full

eradication into a dormant state, but as shown for oscillations in Fig. 5.21, they can

have a transient, often negative effect on the whole system. If additional dosages are

administered when the system resides on a stable oscillating state, these injections, de-
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pending on when in the cycle are provided, tend to increase the amplitude a of few

cycles of oscillations before the system goes back to its original fluctuations with no

ability to drive the model out of this phase, see Fig. 5.21. Strategies that instead optim-

ise the quality of the oncolytic virus or reduce the tumour growth rate are preferable

as oscillations can be reduced or damped to zero either by increasing the speed of

infected cell death or the life span of virus at the right amount or suppressing tumour

growth, see Fig. 5.18. In this sense, rather than complex injection schedules or larger

amounts of externally provided virus, the model suggests that pharmacological inter-

ventions that aim at blocking or reducing the growth of the tumour would be most

effective.

Experimental studies can only explore a finite number of strategies, and using the

parameters optimised for the PEG and Herceptin-modified virus, the effects of increas-

ing the viral dose and dosage protocol were demonstrated (Fig. 6.6). In the absence of

negative effects of viral overload, it would seem from Fig. 6.6(b) that the best strategy

for fast-tumour eradication would be a single, very high dose injection. Realistically,

however, the choice of treatment strategy will depend on interplay between dosage

size and eradication half-time.

Comparing the high dose single injection to application protocols with ten days

between injections, it is clear that much lower viral doses are required to reach fi-

nite eradication half-times. Increasing the days between injections can lessen the dose

required to reach eradication, and this trend appears insensitive to the number of

injections. Overall, application protocols with two injections appear to provide good

combinations of lower doses and reasonably short eradication half-times. The analysis

shows that limiting and reducing tumour size and growth is a possibility under the cur-

rent or slightly modified treatment regime. Shrinkage and then surgical removal may

be a possible treatment design utilising oncolytic viruses and may be less detrimental

than chemotherapy.

Moving from discrete to continuous treatment administrations, hydrogels are an

effective way of providing a long-term continuous local treatment. A full numerical

simulation of the possible dosage protocols for a gel loaded with DCs and adenovirus

expressing IL-12 and GM-CSf was investigated in Chapter 7. Through an exhaustive
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numerical search using the optimised model for the IL-12 and GM-CSF-expressing ad-

enovirus combined with DC injections, it was possible to determine constant, linear

and sigmoidal gel-release profiles that would significantly reduce the tumour pop-

ulation. In essence, the optimal constant gel-release (Fig. 7.15) and increasing linear

gel-release (Fig. 7.19) profiles occur when DCs are released for a shorter period of time

than viruses. The idea of manufacturing a gel that released its contents at type-specific

rates such as this, does not appear to have been considered previously. The analysis in

Chapter 7 indicated this would make a significant impact on the efficacy of treatment.

Overall, the results around the treatment administration protocol provided insight

into the significance of the extracellular dynamics. Vastly different outcomes are seen

when mean-field modelling compared to agent-based modelling are used to simulate

discrete dosage protocols (Fig. 5.22, 6.6 and 8.13). For certain parameter regimes of the

mean-field models, it is possible to achieve tumour eradication either in the regions of

bistability (Fig. 5.22) or for a high enough initial dosage (Fig. 6.6). However, eradication

appears not to be possible in the VCBM (Fig. 8.13). This shows that modelling the

extracellular processes and the manner in which they are simulated can be crucial to

predicting the outcome of tumour eradication.

significance of the research

To significantly improve the prognosis of cancer treatments, there is a need for more

multidisciplinary collaborations. The range of stochastic and deterministic mathemat-

ical models and analysis techniques developed in this thesis are applicable in future

oncolytic virotherapy and immunotherapy studies. A large majority of the work is also

translatable to other novel cancer therapies that need further analysis with regards

to intracellular or extracellular dynamics. Through the treatment studies presented, a

range of data-fitting techniques have been applied and the relative advantages and ap-

plicability explored. This thesis has suggested a range of treatment improvements that

would significantly change the face of oncolytic virotherapy. With future collaborations

and mathematical analysis, it may be possible to advance these results and determine

a range of effective anti-cancer treatments.
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Cancer and cancer treatment presents a highly complex, multidisciplinary problem

and with the help of mathematical modelling, new effective ways of treating this dis-

ease can be devised. This thesis aimed to improve the efficacy of oncolytic virotherapy

and immunotherapy using a range of mathematical techniques. The mathematical mod-

els were created to embody the processes underlying the dynamic interactions between

cancer cells, normal tissue, the different treatment vectors and immune system. They

were tuned to accurately reflect the biological system using multiple in vitro and in

vivo experimental measurements from a range of different oncolytic virotherapies and

immunotherapies. These models then provided both quantitative and qualitative in-

sight into the virus-tumour interplay, the application protocols and the efficacy of the

treatments. The results indicate that the key features of viral infectivity and therapy

administration protocol are the primary determinants of the outcome of the therapy.

Drawing on both deterministic and stochastic modelling, it has been possible to de-

velop a useful representation of the biological interaction between an oncolytic virus,

the immune system and cancer. The mathematics has provided insight into the funda-

mental questions about the effects of gene-attenuation on an oncolytic adenovirus, and

identified the specific processes that particular mutations alter in the virus-cancer dy-

namics. In turn, through modelling the antiviral-mediated cell-immunity, it has been

possible to deduce the role refractory sub-populations of tumour cells play in therapy

outcome.

A core theme through the studies in this thesis is that both viral infectivity and ther-

apy administration protocols are key to improving the tumour eradication ability of

oncolytic viral vectors. The bifurcation analyses showed that regions of bistability res-

ult in a highly sensitive outcome to the application protocol. These results were seen

most significantly in the case of gel-release therapy, where it was clear that altering

the gel-release rate could improve the therapy to the point of complete tumour eradic-

ation. The inclusion of spatial heterogeneity also indicated the effect of the treatment

administration geometry on the optimal treatment results.

This thesis has identified key tunable features of both the virus and application

protocols that improve treatment outcomes for a range of different virotherapies. In

this work, it was shown how different mechanistic ways of modelling extracellular
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and intracellular interactions may influence the outcome of therapy. The scale of the

effects of the extracellular interactions were then clear. The studies have identified that

extracellular interactions are a major determinant of the success or failure of cancer

therapy.

Mathematical modelling has been showen to be a highly effective tool for improving

oncolytic virotherapy and providing insight into the mysteries surrounding the cancer-

virus interaction. The modelling work in this thesis has provided a range of useful and

malleable models that can be used both for the specific engineered viruses modelled

and also as a methodology for other therapies. Future extensions of the work in this

thesis, and applications of it to other therapies, will help to further cancer research and

hopefully bring us one step closer to a cure.

The mathematical and biological techniques and insight in this thesis provide a plat-

form for further work. In this section, an overview of some possible future directions

is provided. This is then followed by a preliminary investigation that complements the

work in the previous chapters of this thesis.

10.1 overview of future directions

The heterogeneous intracellular viral replication process was investigated in this thesis

using a minimal integro-differential model (Eq. (4.1)). The model developed is not

specific to oncolytic virotherapy, and could be used to understand the heterogeneity in

the intracellular processes of a wide range of viruses, such as HIV. The ability of the

model to capture the virus titer dynamics suggests that future modelling of oncolytic

viruses should consider the stochasticity induced by cellular heterogeneity. A logical

extension of the model is to include the extracellular dynamics examined in the other

chapters.

A simplifying assumption of the model in Eq. (4.1) was that the multiplicity of in-

fection (MOI) (i.e. the number of viruses entering a single cell) can be approximated

by an average replication rate. D’Halluin and Milleville (1984) demonstrated that the

MOI does actually influence the rate of synthesis of viral DNA during production. It
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is, therefore, worth adding this assumption for the multiplicity of infection into the

model, to determine its effect on the virus titer.

Surface modification of an oncolytic virus, for example PEG-modification and Her-

ceptin conjugation (Chapter 6), poses a problem in treatment optimisation: any virus

produced via replication within a tumour cell will lose surface modification after one

replication. This transformation was not explicitly modelled in Eqs. (6.1)-(6.4). A future

extension could investigate how different decay rates for the coated and non-coated vir-

uses influences the model dynamics. Additionally, it would be worth re-investigating

the dosage protocol to determine whether the loss of surface modification influences

the results of Fig. 6.6, i.e. a large single dosage preforms best.

The viral time-series measurements for the PEG-modified adenovirus were notice-

ably different compared to the measurements for the unmodified adenovirus, and the

PEG and Herceptin modified adenovirus, see Fig. 6.7. The standard model assumption

of biexponential decay was unable to capture the behaviour of the PEG-modified ad-

enovirus as there appears to be two clear phases to this viruses decay. An interesting

extension would be to determine what mechanism governs this virus’s clearance and

how it might effect the treatment’s efficacy.

A natural extension of the gel-release profile investigations (Section 7.4) is to analyse

this system using techniques from optimal control theory. Optimal gel-release profiles

to reduce the size of the tumour could then be determined computationally. Also of

note is the difference in the tumour growth under a single PBS or empty gel injection

(Fig. 7.12). Future work should examine the possibility of the gel having an effect on the

underlying tumour growth. Subsequently, the gel-release profile should be optimised

taking this effect into account.

The Voronoi cell-based model (VCBM) (Chapter 8) could be used to investigate other

oncolytic viruses. For example, oncolytic viruses expressing relaxin (a hormone which

breaks down the extracellular matrix) are becoming more popular as a treatment for

solid tumours (Kim et al., 2006b). Using the VCBM, the effects of relaxin on virus

spread and infectivity could be investigated by changing the cell-cell spring dynamics,

or changing the stability parameter of the stable distribution of viral movement wait-

ing times (see Fig. 8.4). The VCBM could also be broadened to a three-dimensional
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framework, allowing for other tumour characteristics to be included, such as vascular-

isation and necrosis. This extension would, however, increase the computational cost,

as both the number of cells and time period over which they require simulation would

be much larger than the current investigation.

Above, are just a few of the possible future directions and extensions from the re-

search in this thesis. The following section details a preliminary investigation that

was inspired by the work in this thesis. An agent-based modelling platform known

as PhysiCell (Ghaffarizadeh et al., 2018), was used to model an oncolytic adenovirus

expressing secretable tumour necrosis factor (TNF)-related apoptosis-inducing ligand

(TRAIL). Drawing on the work in the preceding chapters, models for the intracellu-

lar and extracellular dynamics of this oncolytic virus were developed. The model was

then used to investigate the influence of intravenous injections and TRAIL production,

providing insight into an unexplored biological mechanism. A succient overview of

the model is provided below with specific details of the PhysiCell setup and model

implementation given in Appendix C and D respectively.

10.2 a preliminary investigation into the influence of viral-induced

trail release kinetics : a physicell realisation

Virus

Tumour

Extracellular

Invivo

Figure 10.1: Subset of Fig.1.1, summarising the investigation of the virus-tumour inter-
action in this section
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Glioblastoma is an aggressive and malignant form of brain cancer. Most glioblastomas

develop from normal glial cells (such as astrocytes which support nerve cells) by mul-

tistep tumourigenesis (Urbańska et al., 2014). The tumours are characterised by infiltrat-

ing growth, making them difficult to distinguish from normal tissue (Urbańska et al.,

2014). Glioblastomas are is difficult to cure with conventional cancer therapies (Oh

et al., 2018). Some of this difficulty can be attributed to tumour cells failing to undergo

apoptosis. Research has thus begun to focus on triggering apoptosis in glioblastoma

cells via alternative routes (Hawkins, 2004). A wide variety of apoptosis-inducing mo-

lecules have been identified as possible alternative apoptosis triggers (Kim et al., 2006a).

The best characterised are the ligand-type cytokine molecules of the tumour necrosis

facor (TNF) family. Binding of TRAIL to the receptors of glioblastoma cancer cells has

been shown to effectively trigger the apoptosis pathway (Kim et al., 2006a; Hawkins,

2004). In addition, TRAIL has negligible effects on normal cells making it an excellent

addition to glioblastoma therapy (Hawkins, 2004).

While TRAIL has shown potent and cancer-selective killing activity, concerns over

delivery and toxicity have limited clinical progress (Jeong et al., 2009). As such, re-

searchers have been investigating using an oncolytic adenovirus as a delivery vector

(Kim et al., 2006a; Jeong et al., 2009; Oh et al., 2018). To evaluate the therapeutic po-

tential of TRAIL-based virotherapy in brain tumours, Kim et al. (2006a) engineered

a replication-incompetent adenovirus ri-Ad-stTRAIL to deliver the gene that encodes

secretable trimeric TRAIL. The ri-Ad-stTRAIL virus was designed to induce the secre-

tion of TRAIL in virus-infected cells, leading to apoptosis in uninfected neighbouring

tumour cells. Kim et al. (2006a) showed that the ri-Ad-stTRAIL effectively decreased

cell viability (Section 2.5.2) to 42% by day 3. They also showed that ri-Ad-stTRAIL

treatment of U-87MG glioblastoma murine tumours suppressed and controlled tumour

growth for the first 20 days, after which the tumour grew back.

To improve the effectiveness of the adenovirus-TRAIL therapy, Oh et al. (2018) de-

veloped a replication-competent oncolytic adenovirus expressing secretable TRAIL

(Ad-stTRAIL). They investigated the efficacy of this virus on U-87MG glioblastoma

tumours in vivo and showed that the cancer cell-killing effects were markedly higher
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with the expression of secretable TRAIL. Unfortunately, the treatment was unable to

completely eradicate the tumour, similar to the results of Kim et al. (2006a).

Oh et al. (2018) found that Ad-stTRAIL yielded a more extensive viral distribution

within tumour tissue than just the replication-competent adenovirus alone. They sug-

gested that this phenomenon could be mediated by neighbouring cell spread using

apoptotic bodies or cell death causing voids that influence treatment spread. Oh et al.

(2018) noted that the complex nature of the tumour microenvironment, such as the net-

work of blood vessels, is also a critical limiting factor of the spread of virus within the

tissue. In this section, a preliminary and introductory investigation is conducted into

the possible causes of treatment failure. Additionally, the dependence of the treatment

efficacy on the TRAIL-release mechanisms is explored.

10.2.1 Model development

While the Voronoi call-based model (VCBM) developed in Chapter 8 was helpful in

determining the dependence of treatment outcome on tumour shape, to understand the

effects of TRAIL secretion and intravenous injections, a smaller scale tissue off-lattice

agent-based model (ABM) is needed. To create this ABM, the open source multicellular

system simulator PhysiCell is used (Ghaffarizadeh et al., 2018). In the model, viruses

are modelled as a continuously diffusing population that interacts with glioblastoma

cells. The model’s evolution is driven by the biological assumptions detailed below for

the vein cell characteristics, glioblastoma cell characteristics and virus model.

10.2.1.1 Vein cell characteristics

Tumour vasculature can play a major role in tumour growth and therapeutic efficacy

(Section 2.2.2). In this work, static vein cells are established to simulate the influence

of the vasculature on tumour tissue formation and treatment delivery. These vein cells

put force on the surrounding proliferating tumour cells, but are unable to move or pro-

liferate. Normally cells that create blood vessels and line the veins, such as endothelial

cells, are highly proliferative in the tumour microenvironment (Section 2.2.2). How-
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ever, it is assumed that these cells are static as the core function of the vein cells is to

simulate the arrival of intravenously injected treatment.

To reduce the computational time of the simulations, a 2-dimensional framework

was chosen for the simulations. Since this limits the possible geometry of the vascular

system, two vein shapes were considered: triangular and circular, see Fig. 10.2. These

shapes are chosen based on a roughly conical tumour vasculature. Initially, all cells

were placed in a hexagonal pattern. Cells were then designated either vein cells or

glioblastoma cells based on whether they were in the region chosen to be a vein or not.

Figure 10.2: Illustration of the two vasculature cross sections considered for the simu-
lations in this chapter.

10.2.1.2 Glioblastoma characteristics

Glioblastomas are incredibly heterogeneous tumours, made up of a range of different

glial cells (Inda et al., 2014). For the purpose of this work, glioblastoma heterogeneity is

not considered to play a major role in TRAIL-mediated apoptosis or viral-induced lysis

(Kim et al., 2006a). As such, only a single homogeneous population of glioblastoma cells

is considered. These cells proliferate rapidly to form a crowded disorganised tissue

layer that reflects a typical section of a glioblastoma. To investigate the efficacy of the

oncolytic adenovirus expressing secretable TRAIL on tumour growth at the cell level,

only a small section of tumour tissue is modelled.
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In Chapter 8, the quiescent cell population and the influence of nutrient diffusion

was investigated in detail see Fig. 8.11-8.12. For now, only a section of tumour tissue

is considered and the influence of nutrient presence on the growth of tumour cells is

assumed to be uniform across the 2-D cross-section. Future extensions of this prelim-

inary work could investigate this on a larger scale. Additionally, since the virus is not

modified to express immunostimulatory cytokines, the effects of immune cells are not

considered. The initial set up of the vein and glioblastoma cells can be seen in Fig. 10.3.

(a) (b)

Figure 10.3: Initial setup of vein and glioblastoma cells. Glioblastoma cells are coloured
pink and vein cells are coloured brown. (a) is an example of the circular
vein cross section and (b) the triangular vein cross section.

10.2.1.3 Adenovirus expressing secretable TRAIL model

Similar to the work in Chapters 5-8, Ad-TRAIL virus particles infect glioblastoma cells,

replicate inside them, and then lyse the infected cells. To investigate whether the intra-

cellular replication of the virus influences the TRAIL-based virotherapy, intracellular

virus replication is explicitly modelled. Intracellular virus particles start replicating

only after enough particles have infected the cell. This results in a delay in the start of

virus replication similar to that considered in Chapter 4, see Fig. 4.3. This also allows

for some stochasticity in the start time of replication amongst the infect cell popula-
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tion. The likelihood of lysis occurring is a function of the number of intracellular virus

particles, resulting in a similar dynamic to Fig. 4.3.

During replication of the TRAIL-expressing virus, the cell creates new TRAIL mo-

lecules, see Fig 2.3. These molecules are secreted into the microenvironment by the

virus-infected cell and induce apoptosis in uninfected tumour cells. This occurs by

TRAIL binding to the receptors on the cell surface and signalling the apoptosis cascade.

TRAIL can induce apoptosis in infected cells, but for the number of cells modelled, this

is not considered significant. Fig. 10.4 is a schematic for the TRAIL-expressing adenov-

irus infection life-cycle.

Uninfected cell

Infected cell

Dead cell

Virus infects 
uninfected cell

Virus kills infected 
cell, creating new 
viruses and TRAIL

Vein cell Viruses
Virus 
released

TRAIL

Uninfected cells 
die from TRAIL

Figure 10.4: Life cycle of oncolytic adenovirus expressing secretable TRAIL. Virus
particles infect uninfected cells. Once inside a cell, virus particles undergo
replication for a period of time creating both new viruses and TRAIL mo-
lecules. Eventually the cell lyses, causing it to die and the viral progeny
and TRAIL are released. TRAIL then kills uninfected tumour cells through
apoptosis.
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10.2.2 Preliminary results: proposing reasons for TRAIL-secreting virotherapy failure

After treatment with an oncolytic adenovirus expressing secretable TRAIL, both Kim

et al. (2006a) and Oh et al. (2018) saw a regrowth in the tumour. In this section, initial

investigations are conducted into the possible mechanisms inhibiting treatment effic-

acy at a tissue level. The influence of the TRAIL secretion start time and secretion rate

on tumour tissue are simulated. Perturbations of different parameters is also used to

further understand the failing regimes of this treatment. The results in this section il-

lustrate the usefulness of the chosen modelling framework and motivate the need for

future, more extensive, investigations. The model used in this section is detailed extens-

ively in Appendix C and D. The PhysiCell setup for virus and TRAIL diffusion along

with cell movement and proliferation is given in Appendix C. The models developed

for virus replication, TRAIL creation and cell apoptosis from either viruses or TRAIL

particles is all detailed in Appendix D.

10.2.2.1 Influence of TRAIL release mechanism on treatment dissemination

There are two variable characteristics in the model for TRAIL release (Eq. (D.7)): the

length of time cells wait after replication has started before they begin secreting TRAIL

sτ, and the rate TRAIL is secreted from the cell sT . These characteristics control whether

TRAIL is primarily released during replication or when the cell lyses (which occurs δ

minutes after infection), see Fig. 10.5. To investigate the influence of the TRAIL release

mechanism, the number of tumour cells over 4 days is plotted in Fig. 10.6 for variations

in sT and sτ. The remaining parameter values were taken from Table D.1, where the

choice of each parameter has also been given in Appendix section D.1.0.4.

Since the virus arrives in the tumour tissue through the veins, the analysis was

conducted for triangular Fig. 10.6(a) and circular Fig. 10.6(b) vein cross sections. A

similar trend is observed in the case of circular vein cross sections, where a slower

TRAIL secretion rate, improves the treatment most significantly. The geometry of the

vein appears to play an important role in the diffusive spread of the virus, where it is

clear that multiple small circular veins allow for treatment to spread more effectively

than triangular veins. In Fig. 10.7 and 10.8 are simulations with the triangular veins
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and in Fig. 10.9 and 10.10 are the corresponding simulations for the circular veins. In

these figures the vein cells, uninfected and infected cells and dead cells are denoted in

Fig. 10.7 and Fig. 10.9 and the density of TRAIL and the virus are given in Fig. 10.8

and Fig. 10.10.

In Fig. 10.6 there are clearly two very different dynamics depending on the secretion

rate and release time of TRAIL. In the case of triangular vein cross sections, treatment

performs best when sT = 0.0001 and sτ = 500. This is most likely due to the virus

spreading further throughout the tissue before the initial onset of TRAIL induced ap-

optosis. This can be seen by comparing the simulations for sT = 0.1 and sτ = 500 in

Fig. D.6 and D.7 sτ = 500 in Fig. 10.7 and 10.8, to the simulations for sT = 0.0001 and .

Decreasing the secretion rate, appears to allow for more cells to become infected over

time.

Cell lysis Cell lysis

(a) (b)

Figure 10.5: Examples of the different TRAIL secretion dynamics that occur with per-
turbations in sτ and sT . (a) TRAIL molecules created through replicated
are secreted primarily at time of cell lysis sT ≈ 0, sτ ≈ δ. (b) TRAIL mo-
lecules are secreted whilst the virus is infected sT > 0, sτ << δ.
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Figure 10.6: Number of tumour cells over 4 days for perturbations in sT and sτ for (a)
triangular and (b) circular vein cross sections. Since this is just an initial
investigation, a range of different values for sT and sτ were chosen that
exhibited different dynamics. The remaining parameter values were taken
from Tables D.1 and D.2.
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(a) (b)

(c)

Figure 10.7: Simulation for virus infection in a layer of tissue with triangle veins at (a)
60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were
fixed to the values in Table D.1 and D.2 with sT = 0.0001 and sτ = 500. Red
cells represent vein cells, these cells secrete virus that infects tissue cells,
which are pink cells. Once a cell becomes infected it is coloured purple,
with the darker the shade corresponding to the more virus in the cell. The
infected cells die turning a pale yellow and eventually disappearing. The
remaining parameter values were taken from Tables D.1 and D.2.
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Figure 10.8: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d)
and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots
correspond to the simulations in Fig. 10.7.
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(a) (b)

(c)

Figure 10.9: Simulation for virus infection in a layer of tissue with circular veins at (a)
60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were
fixed to the values in Table D.1 and D.2 with sT = 0.0001 and sτ = 500. Red
cells represent vein cells, these cells secrete virus that infects tissue cells,
which are pink cells. Once a cell becomes infected it is coloured purple,
with the darker the shade corresponding to the more virus in the cell. The
infected cells die turning a pale yellow and eventually disappearing. The
remaining parameter values were taken from Tables D.1 and D.2.
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Figure 10.10: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d)
and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots
correspond to the simulations in Fig. 10.9.
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10.2.2.2 Initial parameter sensitivity analysis

To start to investigate how the treatment’s efficacy may depend on other mechanisms,

the number of tumour cells has been plotted for different values of the virus diffusion

coefficient DV , the cell uptake rate of virus cI and the replication rate of TRAIL in

the cell cR, see Fig. 10.11. Specific increases or decreases of these parameters were

chosen based on their qualitative impact they had in the model behaviour. Only one

parameter was perturbed at a time and the remaining parameters were fixed to the

values in Tables D.1 and D.2. The values of sT and sτ were fixed to sT = 0.1 and

sτ = 500. They were chosen such that the original simulation predicted tumour cell

population increase.
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Figure 10.11: Tumour cell number in triangular vein cross section model with para-
meter perturbations in DV , cI and cR (detailed by the legend). The re-
maining parameters were fixed to the values presented in Table D.1 and
D.2 with sT = 0.1 and sτ = 500.

10.2.3 Summary and discussion of initial investigation

TRAIL-based virotherapies hold significant promise as an effective treatment for glio-

blastoma. Currently, the treatment is unable to completely eradicate the tumour. Com-

bining intracellular and extracellular modelling from previous chapters, a PhysiCell

based model was developed as a platform to investigate the reasons for treatment
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failure. Perturbations in the TRAIL release mechanism were shown to influence the

dissemination and tumour suppression. An initial parameter sensitivity analysis also

predicted parameter regions where success was unobtainable.

The influence of the TRAIL release mechanism can clearly be seen in Fig. 10.6 where

the tumour cell population number was plotted as a function of the rate at which cells

secrete TRAIL, sT , and the delay from the start of TRAIL creation to TRAIL release sτ.

It is clear that treatment efficacy depends on the secretion rate of TRAIL. Decreasing

the secretion rate significantly decreases the tumour cell population for triangular and

circular vein cross sections. This implies that a slower release of TRAIL allows for

further treatment spread and tumour cell killing than one large burst at the time of

cell lysis. Biologically, this is most likely due to the competition of TRAIL and virus

particles for the same uninfected cell population.

Initially, the difference between fast and slow TRAIL release rates is not significant

in the spatial time-evolution of the model (Fig. 10.7 and D.6 respectively). It is only at

2 days, that these simulations show qualitatively different dynamics. The infiltration

of the virus infection into the tumour tissue is clearly more extensive in the case of

the slower TRAIL secretion D.6(c). This suggests that rapid release of TRAIL from in-

fected cells decreases the neighbouring tumour cell population and results in reduced

subsequent viral infections.

The ‘cross-talk’ between cells and the microenvironment can play a significant role

in the delivery of viral treatment to the tissue. Oh et al. (2018) noted that the blood

vessels can function as a limiting factor towards the TRAIL-based virotherapy. As such,

the PhysiCell model was simulation for different shaped veins (triangular and circular),

see Fig. 10.2.

The tumour cell population responds very differently to treatment arriving through

triangular vein cross sections compared to circular vein cross sections, see Fig. 10.6.

The triangular shaped veins resulted in a weaker initial outward propagation of the

infection region compared to circular veins (Fig. D.6(b) versus D.8(b)). However, as the

area of the infected region is smaller, this results in a prolonged effectiveness of the

treatment (Fig. D.6(c) versus D.8(c)). This behaviour is most likely an artefact of the

assumption that each vein cell starts with an equivalent initial amount of virus that it
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then secretes. Biologically, this is reasonable as veins within the tumour are extremely

permeable and wider sections of veins would have an increased likelihood of virus

particle extravasation (Section 2.2.2). The fact that the shape of the vein seems to have

a significant impact on the outcome of the simulations (Fig. 10.6 suggests that further

investigation on vein shape is needed.

To begin to explore whether there are other mechanisms that improve TRAIL-based

virotherapy treatment, the tumour cell population was simulated for different paramet-

ers values, see Fig. 10.11. The TRAIL release mechanism parameters sT and sτ were

fixed to values that resulted in tumour cell population growth for triangular vein cross

sections. Simulations of perturbations in parameter values for the triangular vein cross

sections, then showed that it is difficult to improve the treatment efficacy. One interest-

ing result from the simulation in Fig. 10.11, was that reducing the replication rate of

TRAIL, was able to stabilise tumour growth.

Increasing the diffusion coefficient for the virus, DV , had no significant influence on

the effectiveness of the therapy. This is likely due to the fact that the secretion rate of

TRAIL sT was high, so TRAIL was still able to infect and kill the neighbouring rim of

cells, which was enough to inhibit treatment propagation. Increasing the cells uptake

rate of the virus, cI, initially decreased the tumour cell population by creating more

infected cells. However, this in turn increased the number of cells secreting TRAIL and

resulted in the tumour cell population increasing significantly.

Interesting behaviour in the tumour cell population was observed with perturba-

tions in the rate TRAIL molecules are created in the cell, cR, (Fig. 10.11). Decreasing cR

results in a stabilising of the tumour cell number. This suggests that if less TRAIL is

created, then the TRAIL molecules and virus particles are able to stabilise the tumour

growth. Whereas, increasing the rate of TRAIL generation, is able to significantly re-

duce the tumour cell number. So if more TRAIL molecules are created, the treatment

can be just as effective as if the TRAIL molecules are secreted slower (Fig. 10.6). Overall,

Fig. 10.11 suggests that a more extensive parameter sensitivity analysis of the model

needs to be conduced so as to truly understand the dynamics.

As this is a preliminary study, there are limitations to the modelling platform and

the reliability of the results discussed. The next step of this investigation will be to use
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data from the experiments of Kim et al. (2006a); Jeong et al. (2009) and Oh et al. (2018)

to inform the parameters in the model that were estimated, see Table D.1 and D.2. To

investigate the initial results in Fig. 10.6 and 10.11, the model will be simulated with a

set of parameters from a Latin hypercube sampling of the parameter space. This will

help to determine whether the treatment outcome depends on the secretion rate of

TRAIL, or whether the dynamics in Fig. 10.6 were a result of stochastic fluctuations

in the model. Additionally, the defining features of glioblastoma tumours, such as

heterogeneous spatial growth and large regions of hypoxia, have not been included in

the model and need to be considered.

Preliminary investigations into an oncolytic virus engineered to stimulate the pro-

duction of TRAIL has further demonstrated the utility of the mathematical frameworks

developed in this thesis. While still at an elementary stage, the work in this section is a

good representation of the future of mathematical modelling in oncolytic virotherapy.
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The expectation for the total number of viral particles produced from a population

of cells over time (Eq. (4.1)) is derived using results from probability theory. The theory

behind the derivation is reviewed below, followed by a derivation of the model using

the Law of Total Probability and a derivation of the model using the Jacobian matrix

transformation.

a.1 probability theory background

The time at which an individual virus particle starts replicating and the length of time

it replicates are random variables. The expected value of a random variable is the long-

run average value of repetitions of the experiment it represents. An event is a set of

outcomes of an experiment (a subset of the sample space) to which a probability is

assigned. Two events are dependent if the outcome or occurrence of the first affects

the outcome or occurrence of the second so that the probability is changed. The events

of viral start time, τ, and length of time replicating, l, are therefore independent, but

the viral start time and end time, delta, are dependent. In other words, τ and l are

independent events and τ and δ are dependent events, since δ = τ+ l.

When considering the probability of multiple events occurring, a joint probability

density function can be useful. The joint probability density function (joint pdf) is a

function used to characterize the probability distribution of a continuous random vec-

tor. It is a multivariate generalization of the probability density function (pdf) (which

characterizes the distribution of a continuous random variable). Given random vari-

ables X, Y, that are defined on a probability space, the joint probability distribution for

X, Y, is a probability distribution that gives the probability that each of X, Y, falls in

any particular range or discrete set of values specified for that variable (DeGroot and

Schervish, 2012; Park and Park, 2018), i.e.:

fX,Y(x,y) = P(X 6 x, Y 6 y)

The joint probability distribution can be expressed either in terms of a joint cumu-

lative distribution function or in terms of a joint probability density function (in the
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case of continuous variables). The joint probability density function fX,Y(x,y) for two

continuous random variables is equal to:

fX,Y(x,y) = fY|X(y, x)fX(x) = fX|Y(x|y)fY(y)

where fY|X(y, x) and fX|Y(x|y) are the conditional distributions of Y given X = x, and

of X given Y = y respectively, and fX(x) and fY(y) are the marginal distributions for X

and Y respectively (DeGroot and Schervish, 2012; Park and Park, 2018).

The derivation of the model in Eq. (4.1) is presented in two ways (Section A.2.1

and A.2.2). The first uses the law of total probability and the second uses the Jacobian

matrix transformation. The law of total probability states that the probability of X, Y

being in the region B, i.e. P((X, Y) ∈ B) can be written as:

P((X, Y) ∈ B) =
∫∫
B

fX,Y(x,y)dxdy,

=

∫
P((X, Y) ∈ B|Y = y)fY(y)dy,

where fX,Y(x,y) is the joint density function for X, Y (DeGroot and Schervish, 2012;

Zwillinger and Kokoska, 2000). The logic behind the law of total probability is that

if Y = y is fixed, then the probability of X, Y being in the region is calculated for all

possibly X, Y values by multiplying by the marginal probability distribution fY(y) and

integrating over all possible values of Y. A schematic illustrating the concept of the

joint density function and how it is obtained by integrating over this function, is given

in Fig. A.1. Therefore, the probability of (X, Y) ∈ B is equivalent to calculating the area

under the surface fX,Y(x,y) on the set B, i.e.:

∫∫
B

fX,Y(x,y)dxdy

The second theory used to derive the model is the Jacobian matrix transformation.

That is, if the random vector (X, Y) has PDF fX,Y(x,y) then g(X, Y) has PDF:
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B

x

y

f
X,Y

(x,y)

Figure A.1: Illustration for the law of total probability, where fX,Y(x,y) is the joint
density function of X, Y and B is the region for which the probability of
X, Y in B is being calculated.

fX,Y(X, Y)(g−1(x,y))|Jg−1(x,y)|

where J is the Jacobian matrix (DeGroot and Schervish, 2012).

a.2 the setup and derivation for eq . (4 .1)

Consider an initial number of cells C0, each containing a single virus particle. Virus

particles start replicating at time τ which is a random variable drawn from the distri-

bution fτ(x). Virus particles stop replicating after they have replicated for a length of

time l (i.e. at time τ+ l) which is another random variable drawn from the distribution

fl(x) (whose parameters are not necessarily the same as those of fτ(x). Calculating the

expected proportion of cells C(t) that have virus particles replicating within them at

time t is equivalent to finding the probability of the event t occurring after time τ and

before time τ+ l, i.e. the region:

A = {t > τ}∩ {t < τ+ l}.
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Integrating the joint density function fτ,τ+l(x,y) of the random variables τ and l,

over the region A can determine the probability for a particle being at t of t > τ and

t < τ+ l, i.e. that a virus is replicating. There are two ways to derive this probability,

both of which are outlined below. The first method uses the law of total probability

and the second uses a Jacobian transformation.

a.2.1 Law of total probability model derivation

The expression for the joint density function fτ,τ+l can be derived using the law of

total probability. The probability that t > τ and t < τ+ l is equivalent to writing:

P({τ < t}∩ {t < τ+ l}) =
∫∞
0

P({τ < t}∩ {t < τ+ l}|τ = x)fτ(x)dx

where fτ is the PDF of τ. Now since τ = x, if x > t then the probability is zero. This

simplifies the above to

P({τ < t}∩ {t < τ+ l}) =
∫t
0

P({t < τ+ l}|τ = x)fτ(x)dx

which can be simplified further to

P({τ < t}∩ {t < τ+ l}) =
∫t
0

P({t < x+ l}|τ = x)fτ(x)dx =

∫t
0

P(l > t− x)fτ(x)dx

which is equal to

P({τ < t}∩ {t < τ+ l}) =
∫t
0

∫∞
t−s

fl(z)fτ(x)dzdx (A.1)

where fl is the PDF of l. With the change of variables y = z + x, Eq. (A.1) can be

rewritten for the proportion of cells with virus particles undergoing replication inside

them at any time t as:



A.2 the setup and derivation for eq . (4 .1) 265

C(t) =

∫t
0

∫∞
t

fτ(x)fl(y− x)dydx. (A.2)

From this, the change in the total virus (both intracellular and extracellular), υ, at any

point in time, t, is the cumulative number of cells actively producing virus multiplied

by the rate at which the virus replicates:

dυ

dt
= kC = kC0

∫t
0

∫∞
t

fτ(x)fl(y− x)dydx (A.3)

where k is the mean viral replication rate, across the cell population of C0 cells. Here it

is assumed that each cell is not actively producing virus until time τ, chosen from the

distribution fτ, and that they then produce for a period, l, chosen from the distribution

fl. At time t, the number of cells with virus replicating within the nucleus is equal to

the proportion of cells that have reached time τminus the proportion that have reached

time τ+ l.

a.2.2 Jacobian matrix transformation model derivation

Alternatively, to obtain the joint density function fτ,τ+l, a Jacobian matrix transforma-

tion can be used. Let the linear transformation u : R2 → R2 be defined by:

u(x,y) = (x, x+ y).

Now the density function fτ,τ+l(x,y), is the density of u(τ, l). Then using the Jacobian

matrix transformation, if the random vector (X, Y) has PDF fX,Y(x,y) then g(X, Y) has

PDF:

fX,Y(g
−1(x,y))|Jg−1(x,y)|
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where Jg−1 is the Jacobian matrix for g−1. Calculating g−1 and |Jg−1 |, also using the

fact that τ and l are independent (i.e. fτ,l(x,y) = fτ(x)fl(y), where fτ,l(x,y) is the joint

density function of (τ, l)) and substitute g−1(x,y) to obtain

fτ,τ+l(x,y) = fτ(x)fl(y− x)

Therefore, the probability of a cell having a virus replicating inside of it, is the same as

the proportion of cells that have replicating virus within them at any point t in time is

given by:

C(t) =

∫t
0

∫∞
t

fτ,τ+l(x,y)dydx (A.4)

where fτ,τ+l(x,y) is the joint density function for τ and τ+ l and substituting (10) into

(7) the proportion of cells with virus particles undergoing replication inside them at

any time t:

C(t) =

∫t
0

∫∞
t

fτ(x)fl(y− x)dydx

which is equivalent to the equation derived above, Eq. (A.2).
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Typical evolutions of the model for three tumour shapes: circular, rectangular and

irregular are presented in Fig. B.1, B.2 and B.3 respectively. Additionally, typical evol-

utions of the model for circular tumours under treatment with a non-delayed and

delayed virus is plotted in Fig. B.4 and B.5.

Hour 0 Hour 40

Hour 80 Hour 120

Hour 160 Hour 200

Uninfected tumour cell Healthy cell

Figure B.1: Typical evolution of the cellular automaton for a circular tumour.
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Hour 0 Hour 100

Hour 200 Hour 300

Hour 400 Hour 500

Uninfected tumour cell Healthy cell Unrelated tissue

Figure B.2: Typical evolution of the cellular automaton for a rectangular tumour.
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Hour 0 Hour 20

Hour 40 Hour 60

Hour 80 Hour 100

Uninfected tumour cell Healthy cell Invasive cell

Figure B.3: Typical evolution of the cellular automaton for an irregular tumour.
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Hour 0 Hour 80

Hour 160 Hour 240

Uninfected tumour cell Healthy cellInfected tumour cell Dead cell VirusQuiescent cell

Figure B.4: Typical evolution of the cellular automaton for a circular tumour with a
non-delayed viral treatment.
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Hour 0 Hour 80

Hour 160 Hour 240

Uninfected tumour cell Healthy cellInfected tumour cell Dead cell VirusQuiescent cell

Figure B.5: Typical evolution of the cellular automaton for a circular tumour with a
delayed viral treatment.
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c.1 physicell setup

To investigate the efficacy of the TRAIL-expressing adenovirus, a model for the inter-

actions described above are developed in the open-source physics-based multicellular

simulator known as PhysiCell (Ghaffarizadeh et al., 2018). PhysiCell provides a robust,

scalable C++ code for simulating large systems of cells on standard desktop computers.

It allows for biologically realistic modelling of cell cycling, apoptosis, necrosis and cell-

volume changes. It includes a standard library of sub-models for cell-fluid and solid-

volume changes, cycle progression, apoptosis, necrosis, mechanics and motility. It also

allows for specific models describing these characteristics to be user defined. Each cell

can dynamically update its phenotype based on its microenvirornmental conditions.

PhysiCell is directly coupled to a biotransport solver known as BioFVM (Ghaffariza-

deh et al., 2015). BioFVM simulates many diffusing substrates and cell-secreted signals

in the microenvironment. Each cell is able to dynamically update its phenotype based

on its microenvironment conditions. Each cell is modelled as a software agent with an

independent state, and its own rules to change its behaviour based on local environ-

mental conditions and communication. PhysiCell is an off-lattice modelling platform,

meaning that cells can have variable sizes and can move freely without grid artifacts.

Below is a brief overview of PhysiCell’s inbuilt substrate model (BioFVM), cell mech-

anics and motion setup, cell proliferation and time scale. For a more extensive and

in-depth explanation see (Ghaffarizadeh et al., 2018).

c.1.1 Substrate modelling

The in-built biotransport solver in PhysiCell is known as BioFVM (Ghaffarizadeh et al.,

2015). It can efficiently simulate secretion, diffusion, uptake and decay of multiple

substrates in a large 3-D microenvironemnt. BioFVM solves the PDE

∂p
∂t

=DDD∇2ppp−λλλppp+SSS(ppp∗ −ppp) −UUUppp+
∑

cells k
δ(rrr− rrrk)Wk [SSSk(ppp

∗ −ppp) −UUUkppp] in Ω

(C.1)
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with no-flux conditions on ∂Ω. Here Ω is the computational domain with boundary

∂Ω, ppp is the vector of substrate densities, ppp∗ are the substrate saturation densities, DDD

are the diffusion coefficients, λλλ are the decay rates, SSS is the bulk supply rates and UUU is

the bulk uptake rates. Here δ(x) is the Dirac delta function, rrrk is the kth cell’s position,

Wk is its volume, SSSk is its vector of source rates and UUUk it its vector of uptake rates.

All vector-vector products are element-wise. Note that the term p∗V −pVE assumes that

intracellular substrates (or molecules) are secreted at a rate proportion to the density

difference of the substrate on the exterior of the cell and the saturation density. For

more information see (Ghaffarizadeh et al., 2015, 2018).

The PDE in Eq. (C.1) is used to model the diffusion of extracellular virus particles

and TRAIL molecules. In other words ppp = [pV ,pT ] where pV is the density of the virus

and pT is the density of TRAIL molecules. In this way, individual viral particles are

not explicitly modelled as in the VCBM, saving computational time. Additionally, the

saturation densities are specific for viruses and TRAIL molecules, ppp∗ = [p∗V ,p∗T ]. The

diffusion coefficient was also substrate dependent, i.eDDD = [DV ,DT ].

To model the virus and TRAIL molecules in the microenvironment, the bulk source

and uptake rates SSS and UUU are set to zero, and only the supply and uptake rates of cells

Sk and Uk is considered. Supply and uptake rates of cells are specific for viruses and

TRAIL molecules, i.e. SSSk = [SkV ,SkT ] where SkV is the virus secretion rate from a cell,

and SkT is the TRAIL secretion rate from a cell, and UUUk = [UkV ,UkT ]. These rates also

depend on the cells in the microenvironment, with different functions of SkV ,SkT ,UkV

and UkT for vein cells and glioblastoma cells. Functions for the supply, SSSk, and uptake,

UUUk, of the virus and TRAIL into the microenvironment are developed in the following

Section D.1.

c.1.2 Cell mechanics and motion

Cell mechanics and motion are modelled using the PhysiCell built-in rules detailed

below (Ghaffarizadeh et al., 2018). Cell agents are assumed to bind to one another

within a prescribed interaction distance (some multiple of their radius), and they can

exert a pushing force on neighbours. Similar to the equations of motion for the VCBM
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(Eqs. (8.2)-(8.6)), PhysiCell uses potential functions to implement simple mechanics and

motion. Each cell’s position rrri is updated by calculating its current velocity vvvi based

upon the balance of forces acting upon it. For cell i at position rrri(t) with velocity

vvvi(t) and with a set N(i) of nearby cells (assuming there is no basement membrane

interactions), PhysiCell models the cell-cell adhesive, cell-cell “repulisve” forces and

drag forces using

mi
dvvvi
dt

=
∑
j∈N(i)

(FFFi,jcca +FFF
ij
ccr) +FFF

i
drag +FFF

i
loc, (C.2)

where FFFcca and FFFccr are cell-cell adhesive and “repulsive” forces, FFFdrag collects dissip-

ative, drag-like forces, and FFFloc is the locomotive forces. PhysiCell models the drag-like

forces by

FFFidrag = −νivvvi,

where ν is a (fluid) drag coefficient as in (Frieboes et al., 2007; Macklin et al., 2009, 2012).

The same inertialess assumption (miv̇vvi ≈ 0) used to simplify Eqs. (8.2) in Sec-

tion 8.2.3 is also used in PhysiCell. This assumes that forces equilibrate at relatively

fast time scales relative to the time scales of cell cycling, death, volume changes, and

mutlticellular patterning. This assumption allows Eq. (C.2) to be solved for vvvi:

vvvi =
1

νi

 ∑
j∈N(i)

(FFFi,jcca +FFF
ij
ccr) +FFF

i
loc

 .

PhysiCell uses potential functions for the adhesive interactions φ and repulsive inter-

actions ψ (Ghaffarizadeh et al., 2018). For adhesion, PhysiCell models

∇φn,RA(rrr) =


rrr
|rrr|

(
1−

|rrr|
RA

)n+1
if |rrr| 6 RA,

0 otherwise
.

Here, RA is the maximum adhesive interaction distance, and n is an integer power

(typically 1) chosen for the smoothness of the force’s behaviour as r → RA; n = 0
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gives minimal smoothness: continuity of the force itself, but not of any derivatives

(Ghaffarizadeh et al., 2018). For repulsion, PhysiCell models

∇ψn,R(rrr) =

 − rrr
|rrr|

(
1−

|rrr|
R

)n+1
if |rrr| 6 RA,

0 otherwise
,

where n is again the smoothness at the edge of interaction (Ghaffarizadeh et al., 2018).

Following previous work by Macklin et al. (2012) and D’Antonio et al. (2013), Physi-

Cell models cell-cell adhesive force between cells i and j with individual adhesion

parameters Ri,A and Rj,A as

FFFijcca = −CccaAiAj∇φncca,Ri,A+Rj,A(rjrjrj − ririri), (C.3)

where Ccca is the cell-cell adhesion parameter, Ai and Aj are the cells’ relative adhes-

iveness parameters (0 6 Ai 6 1), and ncca is the cell-cell adhesion exponent parameter.

By default Ai = 1 for all cells.

If cells i and j have radii Ri and Rj, respectively, then the cell-cell repulsive force in

PhysiCell is modelled by

FFFijccr = −Cccr∇ψnccr,Ri+Rj(rjrjrj − ririri), (C.4)

where Cccr is the cell-cell repulsion parameter, and nccr is the cell-cell repulsion expo-

nent parameter.

In addition to the forces due to interaction with other cells, cell may demonstrate a

net locomotive force to become motile. A cell changes its migration velocity stochastic-

ally between t and t+∆tmech with probability

Prob(change vvvmot) =
∆tmech
Tper

.

If a cell changes its migration velocity, it chooses a new migration direction dmigrate.

For this model, it is assumed that cancerous cells have completely unbiased random

motion. To calculate the contribution FFFloc to the cell’s velocity, the migration direction
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dmigrate is normalised and then multiplied by the cell’s migration speed, sloc(µm/min).

This then gives

vvvmot = sloc
dmigrate

||dmigrate||
.

Combining all the assumptions above then gives the formulation for the velocity of the

ith cell in PhysiCell as

vivivi =
∑
j∈N(i)

(
−

√
ciccac

j
cca∇φ1,Ri,A+Rj,A(ririri − rjrjrj) −

√
ciccrc

j
ccr∇ψ1,Ri+Rj(ririri − rjrjrj)

)
+vvvi,mot,

where cicca and ciccr are the ith cell’s cell-cell adhesion and repulsion parameters.

Note that if cell i and j have identical cell-cell adhesion and repulsion parameters

ccca and cccr, the cell-cell interaction coefficients simplify to the form in Eq. (C.3) and

(C.4). Additionally worth noting, the adhesion interaction potential function φn,R(xxx) is

zero for ||rrr|| > R, and approaches zero with smoothness given by n. Similarly, ψn,R(rrr)

is a repulsion interaction potential function that is zero for ||rrr|| > R. Thus, cell-cell

mechanical interactions occur over finite distances.

The cell’s position is then updated in PhysiCell using the second-order Adams-

Bashforth discretisation:

rrri(t+∆tmech) = ririri(t) +
1

2
∆tmech(3vivivi(t) − vivivi(t−∆tmech)),

where ∆tmech is the cell mechanics time scale (see Section C.1.4). For any further back-

ground into the derivation or for the parameter values in PhysiCell, see Ghaffarizadeh

et al. (2018); D’Antonio et al. (2013); Macklin et al. (2012).

c.1.3 Cell proliferation

PhysiCell includes a cell-cycle modeling framework, where each cell cycle model is

a collection of phases, transition rates between the phases, and a cell-division phase

transition (Ghaffarizadeh et al., 2018). Since glioblastomas are characterised by rapid

cell proliferation, each cancer cell in the model follows the PhysiCell cycle model live.

This model is equivalent to the exponential growth used in Chapter 5 Eqs. (5.1)-(5.3).



C.1 physicell setup 279

For a population of uninfected cancer cells U, the rate of growth for the population is

given by
dU

dt
= rU

where r is the proliferation rate. In PhysiCell, the transition rate (or replication rate)

is r. Note that birth is a stochastic event for each cell in the model. If such a process

occurs at rate r, then between time t and t+∆t, the probability of the event occurring

for that agent is r∆t.

When a cell divides, all sub-volumes are divided in half and a duplicate of the cell

(including all state and parameter values) is made. To determine where to place the

cell and its duplicate, PhysiCell calculates the vector ddd where

ddd =
xxx− (xxx ·θθθ)θθθ+ ((1− p)(xxx ·θθθ))θθθ
||xxx− (xxx ·θθθ)θθθ+ ((1− p)(xxx ·θθθ))θθθ||

.

and 0 6 p 6 1 is the degree of polarisation, and θθθ is the cell’s unit orientation vector

and xxx ∈ [−1, 1]× [−1, 1]× [−1, 1] is a random vectror. Note that if p = 1 then ddd is a

random unit vector perpendicular to θθθ, and if p = 0, then ddd is a random unit vector

in 3-D space. 2-D simulations should set θθθ = [0, 0, 1]. Different to the previous work

in Chapter 8, cells divide without checking for an open neighbour site, they can just

divide and push any neighbours out of the way.

c.1.4 Time scales in PhysiCell

There are three time scales in PhysiCell: biotransport ∆tdiff, cell mechanics ∆tmech

and cell processes ∆tcell. This is to account for diffusive biostransport occurring rel-

atively fast compared to cell mechanics and cell processes (Ghaffarizadeh et al., 2018).

The biotransport time step was chosen based on work by Ghaffarizadeh et al. (2015),

where they showed that ∆tdiff = 0.01 min gives stable and accurate results (relat-

ive error 5% or less) for diffusion, decay and secretion rates typical of cancer biology.

The other time steps were chosen from the work by Ghaffarizadeh et al. (2018). They

showed that ∆tmech = 0.1 min accurately and stably computes the cell mechanics
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(for tissue engineering and cancer biology problems), and ∆tcell = 6 min sufficiently

resolves the 1 hour time scales in cell cycling, death and volume changes.
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d.1 model implementation

The PhysiCell framework described in the previous section is now extended to include

models for the growth and treatment of glioblastomas using an oncolytic adenovirus

expressing secretable TRAIL. To do this, mathematical models for the amount of intra-

cellular virus in vein cells and glioblastoma cells are developed below. These are used

to calculate the secretion rates SSSk and uptake rates UUUk of cells in the BioFVM PDE

Eq. (C.1). These models are used to simulate viral secretion from vein cells, viral in-

fection, replication and lysis of glioblastoma cells, and TRAIL generation, section and

apoptosis induction of glioblastoma cells.

d.1.0.1 Vein cell secretion

The vasculature can play a major role in the efficacy of cancer therapies (Section 2.2.2).

To simulate intravenous injections of oncolytic adenovirus, static vein cells are each

initially endowed with V0/NV virus particles, where V0 is the total amount of virus in-

jected initially and NV is the number of vein cells in the model. Vein cells then secrete

the virus into the microenvironment, simulating the arrival of an intravenous injection

of treatment. The amount of virus secreted becomes part of the density of extracellu-

lar virus, which is simulated using BioFVM’s PDE formulation in Eq. (C.1). BioFVM

models the microenvironment substrates’ bulk source/sink terms as decoupled sets of

systems of ODEs, where one vector of ODEs is in each computational voxel. A voxel

in PhysiCell represents a value on a regular grid in three-dimensional space. Consider

pppE = [pEV ,pET ] to represent the density in each voxel of virus, pVE, and TRAIL, pTE.

Let nI(t) be the amount of virus inside a cell at time t. The vein cells secrete virus at

a rate
dnI
dt

= −svnI(p
∗
V − pVE), (D.1)

where sv is the secretion rate constant, p∗V is the virus saturation density (see Sec-

tion C.1.1) and pVE is the density of virus in the voxel containing the vein cell. The

rate at which virus leaves the vein cells is proportional to the amount inside the cell

nI and also the difference between the density of virus in the voxel and the saturation
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density (see Eq. (C.1)). The density of extracellular virus in the voxel will increase at

a rate proportional to volume of the voxel Vvoxel. Therefore the rate of change of the

density of virus in the voxel will be

dpVE
dt

= sv
nI

Vvoxel
(p∗V − pVE), . (D.2)

See Fig. D.1 for a summary of the vein secretion model.
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Figure D.1: Schematic for the secretion of virus from a virus-filled vein cell (red). In-
tracellular virus nI is secreted with rate constant sv into the voxel and
becomes part of the density of extracellular virus pVE.

To implement this in PhysiCell, the secretion rate in Eq. (C.1) SkV is given by

SkV =
1

Vvoxel
svnI,

as the multiple of p∗V − p∗VE is already factored into the PDE formulation of BioFVM.

For vein cells the uptake rate for virus particles and the secretion and uptake rate of

TRAIL molecules are set to 0, i.e. UkV = 0,SkT = 0 and UkT = 0. The intracellular

amount of the virus is approximated using a forward-Euler approximation:

nI(t+∆tcell) = nI(t) −∆tcellsvnI(t)(p
∗
V − pVE).

This value is calculated and stored in the cell phenotype as the model iterates.
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d.1.0.2 Glioblastoma cell infection, intracellular replication and lysis function

The viral infection, replication and lysis of glioblastoma cells is modelled as a three

stage process: (1) initial infection, (2) replication and additional infection, and (3) rep-

lication and lysis, see Fig. D.2. This is similar to the model developed in Chapter 4 for

the intracellular virus replication (see Fig. 4.3). The amount of intracellular virus nI in

a glioblastoma cell is modelled by

dnI
dt

= cIpVEVvoxel

(
1−

nI
nI,T

)
(1−H(nI −nI,T )) + cRH(nI −nI∗) (D.3)

where cI is the infection rate, nI,T is the maximum infection capacity, nI∗ is the min-

imum amount of intracellular virus needed for replication to commence, cR is the virus

replication and H is the Heaviside function. Virus is assumed to infect at cell at a rate

proportion to the amount available to infect, nE = pVEvoxel. The rate at which viruses

replicate is assumed to be constant. Once the total intracellular amount of virus has

reached nI,T the virus is no longer infected by any extracellular virus. This is to allow

for a controlled virus infection, where multiple infections of a single cell can occur.
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Figure D.2: Illustration of the amount of intracellular virus nI(t) in a single infected
cell. The cell needs to be infected with nI∗ virus particles before replication
can commence. Once replication starts at time τ, new virus particles are
still able to infect the cell; however, once the number of intracellular virus
reaches nI,T , further infection stops. The maximum likelihood of lysis oc-
curring is then reached when the amount of virus exceeds α. Lysis occurs
at time δ and can be before nI = α.
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Assuming that there is a capacity for the amount of virus, nI,T , a particular cell can

take up, the rate of uptake can be modelled using a logistic function. The density, pVE,

of virus in the voxel outside the virus-infected cell is modelled by

dpVE
dt

= −cIpVE

(
1−

nI
nI,T

)
(1−H(nI −nI,T )) .

To model this in PhysiCell, the uptake rate, UkV , in Eq. (C.1) is given by

UkV = cI

(
1−

nI
nI,T

)
(1−H(nI −nI,T ))

as the multiple pVE is already factored into the PDE formulation of BioFVM. Similar to

the vein wall cells, the amount of intracellular virus is approximated using a forward-

Euler approximation:

nI(t+∆tcell) = nI(t) +∆tcell

(
cIpVEVvoxel

(
1−

nI
nI,T

)
+ cRH(nI −nI∗)

)
(D.4)

Following the ideology of the virus titer modelling in Chapter 4, the lysis rate of virus-

infected cells is given by the Hill function

af(nI) =
nbI

(α/2)b +nbI
, (D.5)

where b is an integer exponent controlling the steepness of the curve (b > 1) and α

is the number of new virus particles created through lysis (used in Chapters 6 and

7). A number of studies have characterized biochemical switches from the perspective

of steady-state behavior and Hill functions (Ferrell Jr and Xiong, 2001; Ferrell and

Machleder, 1998), see the model from de Pillis et al. (2005) in Eqs. (3.13)-(3.16). To

make sure cells aren’t undergoing lysis too early, there are three stages to the lysis cell

death considered:

a(nI) =


0 nI < α/5,

af(nI) α/5 < nI < α,

∞ nI > α,

,
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where cells aren’t able to die unless they have at least α/5 viruses and lyse once they

reach α viruses. The time a cell undergoes lysis is δ. When the cell dies, the amount of

intracellular virus is secreted instantaneously into the voxel containing that cell, and

the density of the virus is updated. If the density in the voxel is close to or above

saturation p∗V , then only an amount of virus that would take the density in the voxel

to p∗V is released and the remainder is released over time. Similar to the model in

Chapter 8, death of uninfected tumour cells by causes other than viral lysis is assumed

negligible. See Fig. D.3 for a mathematical summary of the viral infection, replication

and lysis stages of TRAIL release.
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Figure D.3: Schematic for the intracellular and extracellular infection, replication and
lysis process. Extracellular virus pVE is taken up by a cell with rate con-
stant cI. The virus within the cell undergoes replication at a constant rate
cR. The cell then undergoes lysis, releasing its contents back into the extra-
cellular density of virus in the voxel.

d.1.0.3 TRAIL generation and secretion

As the oncolytic adenovirus expressing secretable trimeric TRAIL undergoes replica-

tion, new TRAIL molecules are created, see Section 2.4.2. TRAIL molecules are created
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at the same rate as new virus particles, giving the amount of intracellular TRAIL mo-

lecules, Ti, as
dTI
dt

= cRH(nI −nI∗) − sTTIH(t− sτ)(p
∗
T − pTE). (D.6)

where CR is the rate at which TRAIL is created, sT is the rate of TRAIL secretion, p∗T is

the TRAIL saturation density and pTE is the density of TRAIL in the voxel containing

the infected cell. For viral replication to occur, at least nI∗ virus particles need to be

present in the cell (Eq. (D.3)). Trail is secreted from the cell at a rate sT , proportional

to the amount of TRAIL present in the cell. Secretion starts at time sτ and continues

until time δ, at which point the cell undergoes lysis and the remaining viruses inside

the cell are released (similar to the model in Chapter 4). Fig. D.4 depicts an illustration

of the intracellular TRAIL amount for a single infected cell over time.
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Figure D.4: Illustration of the amount of intracellular virus, nI(t), in a single infected
cell. The cell needs to be infected with nI∗ virus particles before replication
can commence. Once replication starts, new virus particles are still able to
infect the cell; however, once the number of intracellular virus reaches nI,T ,
further infection stops. The maximum likelihood of lysis occurring is then
reached when the amount of virus exceeds α.

As for the previous intracellular amounts, TRAIL is calculated using a forward-Euler

approximation:

TI(t+∆tcell) = TI +∆tcell
dTI
dt

(p∗T − pTE).
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To make sure the value for TI does not become negative, a condition needs to be

imposed on p∗T such that

TI +∆tcell(cT − sTTI(p
∗
T − pTE)) > 0

TI(1−∆tcellsT (p
∗
T − pTE)) > 0

P∗T <
1

∆tcellsT
<

1

∆tcellsT
+ pTE.

The secretion rate of the cell for the BioFVM PDE, Eq. (C.1), is

dpTE
dt

= sT
TI

VVOXEL
H(t− sτ)(p

∗
T − pTE). (D.7)

To model this in PhysiCell, the secretion rate, SkT , in Eq. (C.1) is given by

SkT = sT
TI

VVOXEL
H(t− sτ),

where the term p∗T − pTE is already factored into the PDE formulation of BioFVM

Eq. (C.1). For glioblastoma cells, the secretion rate for virus particles and the uptake

rate of TRAIL molecules are set to 0, i.e. UkV = 0 and SkT = 0. When the cell lyses, it

releases the remaining TRAIL molecules until the saturation density of the voxel p∗T . If

more TRAIL is present in the cell then it is released over time, so that the density of

TRAIL in the voxel does not exceed p∗T .

The rate of TRAIL-induced apoptosis for a particular cell depends on the density

of TRAIL molecules in the local microenvironment, i.e. aT (pTE). A similar function to

that used for the viral lysis is used for TRAIL induced apoptosis:

aT (pTE) =
pbTE

Mb + pbTE
, (D.8)

again with the condition that minute traces of TRAIL will not induce apoptosis of cells:

a(pTE) =

 0 pTE < Tmin,

af(nI) pTE > Tmin
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d.1.0.4 Parameters and model simulations

To determine the base line glioblastoma cell replication rate r, measurements for the

growth of U-87MG glioblastoma murine tumours by Oh et al. (2018) were used. These

measurements were obtained using the same method for tumour growth in previous

chapters, see Section 2.5.3. Fitting an exponential growth curve to the data gave the

fit in Fig. D.5 and Table D.1. The confidence intervals returned were tight and the R2

value was 0.9996. The growth rate was only fit for the first 9 days as limiting factors

(such as carrying capacity) would influence the tumour growth after this time and

these are not explicitly modelled.
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Figure D.5: Output of optimising exponential growth rate r to U87MG glioblastoma
tumour growth measurements from Oh et al. (2018) for the first 9 days
(140000 minutes).

Most of the remaining parameters are estimated based on literature or work in the

previous chapters, see Table D.1. The mathematical and experimental work of Dinh

et al. (2005) is used to estimate parameters relating to the internalisation rate of the

virus cI and the replication rate cR. They developed an integrative computational

framework to model biophysical processes involved in viral gene delivery. Dinh et al.

(2005) derived the internalisation rate of cells to be cI = 0.072 min−1 from kinetic

studies of adenovirus trafficking and propagation. The transcription rate in Dinh et al.

(2005) proposed is 0.033min−1.

The diffusion coefficient of the virus, DV , was approximated using the work of

Yakimovich et al. (2012), where the transmission mode of human adenovirus (HAdV)
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in monolayers of epithelial cells was analysed by wet-lab experimentation and a com-

puter simulation. Assuming adenoviruses can be approximated as spherical, DV was

estimated to be 243µm2/min for particle motion in fibrous tumours. The diffusion

coefficient of TRAIL molecules DT is approximated using the diffusion coefficient of

molecules in fibroblast-contracted collagen gel measured by Kihara et al. (2013). Since

TRAIL has a molecular weight of 40 kDa, the diffusion coefficient of an equivalently

weighted molecule, FITC dextrain, is used to approximate TRAIL’s diffusion coefficient

D = 2682µm2/min (Kihara et al., 2013).

Since all the previous models in this thesis used a viral decay rate that considered not

just local intratumoural decay, but also loss to other organs (Chapter 6) and immune

clearance (Chapter 8), the decay rates λV and λT for virus particles and TRAIL are

estimated from the literature. The half-life of the adenovirus in tissue was estimated

by Ethier et al. (2004) to be 318 minutes, using the half-life decay formula this gives

the virus decay rate of λV = − ln(1/2)/318 = 0.0022/min. TRAIL is known to have an

average half-life of 630 minutes (Lim et al., 2011). Using the half-life decay formulas

gives the TRAIL decay rate of λT = − ln(0.5)/630 = 0.0011/min. This supports what

Jeong et al. (2009) concluded from their experiments with the ri-Ad-stTRAIL, that viral

copies decayed quicker than the TRAIL molecules.

The rate at which virus particles are secreted from vein cells is assumed to be equi-

valent to the rate determined in Chapter 6, for the rate of transfer of the virus from

the blood to the tumour site. As such, this gives sv = 0.4752/min. The initial virus

injection was taken from the experiments of Oh et al. (2018) who use V0 = 5× 109

TRAIL-expressing adenovirus particles when treatment murine U-87MG murine tu-

mours.

For some parameters it was not possible to determine their values from the literature,

so they have been estimated so that the system is in a qualitatively steady state (i.e.

tumour growth and treatment efficacy roughly stablise), see Table D.2. The saturation

density of the virus and TRAIL molecules (in other words the density at which the

cells stop secreting) was assumed to be equivalent p∗ = 10. The intracellular virus

capacity was set to nI,T = 100 to make sure that there wasn’t an unrealistic number

of viruses infecting cells. The minimum virus replication threshold was nI∗ = 10 to
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make sure that any cell that hadn’t been sufficiently infected did not start replicating.

The integer exponent for the Hill function was set as b = 3, so that both apoptosis

rates af(nI) Eq. (D.5) and aT (pTE) Eq. (D.8) resembled a sigmoidal curve with a clear

switch between non-apoptotic and apoptotic states.

Evolution of the model for the parameters in Table D.1 and D.2 is plotted in Fig. D.6

for triangular vein cross sections and Fig. D.8 for circular vein cross sections. The

corresponding virus and TRAIL densities for each simulation is plotted in Fig. D.7 and

Fig. D.9. In the following section, all simulations are presented as the average of five

model simulations. For the same parameter set, the model simulations didn’t show

significant stochasticity in the tumour cell population.
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Table D.1: Parameters based from literature values for the PhysiCell simulations in this chapter

Li
te

ra
tu

re

Parameter Units Description Value Source
DV µm2/min−1 virus diffusion coefficient 243 Yakimovich et al. (2012)
DT µm2/min−1 TRAIL diffusion coefficient 2682 Kihara et al. (2013)
λV min−1 virus decay rate 0.0022 Ethier et al. (2004)
λT min−1 TRAIL decay rate 0.0011 Lim et al. (2011)
r min−1 replication rate 0.0001482 Fit to data from Oh et al. (2018) (Fig. D.5)
sv min−1 secretion rate of virus from vein cell 0.4752 Fit to data from Kim et al. (2011a) (Table 6.7 and Fig. 6.9)
V0 virus initial amount of virus in injection 5× 109 (Oh et al., 2018)
cI min−1 rate at which cell uptakes virus 0.072 Dinh et al. (2005)
cR min−1 intracellular replication rate 0.033 Dinh et al. (2005)
α virus size when lysis rate is the maximum 3500 Chen et al. (2001)

Table D.2: Estimated parameter values for the PhysiCell simulations in this chapter

Es
ti

m
at

ed

Parameter Units Description Value
p∗V virus virus saturation density (density at which the cells stop secreting) 10

p∗T TRAIL TRAIL saturation density (density at which the cells stop secreting) 10

nI∗ virus minimum virus replication threshold 10

b - integer exponent for hill function 3

M µm2/min−1 density when apoptosis rate is maximum 10

Tmin µm2/min−1 minimum TRAIL density required for apoptosis 10−2
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(a) (b)

(c)

Figure D.6: Simulation for virus infection in a layer of tissue with triangle veins at (a)
60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were
fixed to the values in Table D.1 and D.2 with sT = 0.1 and sτ = 100. Red
cells represent vein cells, these cells secrete virus that infects tissue cells,
which are pink cells. Once a cell becomes infected it is coloured purple,
with the darker the shade corresponding to the more virus in the cell. The
infected cells die turning a pale yellow and eventually disappearing.



D.1 model implementation 294

virus at t = 60.00 min

-500 0 500

x (micron)

-800

-600

-400

-200

0

200

400

600

800

y
 (

m
ic

ro
n

)

0

0.005

0.01

0.015

0.02

0.025

(a)

TRAIL at t = 60.00 min

-500 0 500

x (micron)

-800

-600

-400

-200

0

200

400

600

800

y
 (

m
ic

ro
n

)

0

1

2

3

4

5

10-4

(b)
virus at t = 1440.00 min

-500 0 500

x (micron)

-800

-600

-400

-200

0

200

400

600

800

y
 (

m
ic

ro
n

)

0

0.005

0.01

0.015

0.02

0.025

(c)

TRAIL at t = 1440.00 min

-500 0 500

x (micron)

-800

-600

-400

-200

0

200

400

600

800
y
 (

m
ic

ro
n

)

0

1

2

3

4

10-4

(d)
virus at t = 2880.00 min
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TRAIL at t = 2880.00 min
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Figure D.7: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d)
and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots
correspond to the simulations in Fig. D.6.
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(a) (b)

(c)

Figure D.8: Simulation for virus infection in a layer of tissue with circular veins at (a)
60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were
fixed to the values in Table D.1 and D.2 with sT = 0.1 and sτ = 100. Red
cells represent vein cells, these cells secrete virus that infects tissue cells,
which are pink cells. Once a cell becomes infected it is coloured purple,
with the darker the shade corresponding to the more virus in the cell. The
infected cells die turning a pale yellow and eventually disappearing.
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virus at t = 1440.00 min
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virus at t = 2880.00 min
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TRAIL at t = 2880.00 min
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Figure D.9: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d)
and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots
correspond to the simulations in Fig. D.8.
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