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ABSTRACT 

Chronic inflammatory joint disease represents an emerging public health issue, occupying a sizeable 

proportion of the adult population in the industrialized world. Currently, the therapeutic approaches 

for treatment of arthritis are limited due to systemic toxicity from non-specific drug accumulation and 

restricted efficacy of analgesic treatment. Efficient improvements in both analgesic and anti-

inflammatory treatment without accompanying undesirable side effects are required to fulfil the 

unmet therapeutic needs of these desperate patients. Recently, there has been a resurgence of 

interest in marijuana and its natural and synthetic derivatives, cannabinoid receptor agonists and 

antagonists, as well as chemically related compounds, for their therapeutic potential as both an anti-

inflammatory and analgesic. Whilst the benefits of endocannabinoid-based treatments appear 

promising, very few studies have investigated the use of the self-assembled nanoparticles (NPs) for 

targeted drug delivery. In this study, the nanostructure mesophase behaviour of a series of mixed 

monoethanolamide lipids of oleoylethanolamide (OEA) and linoylethanolamide (LEA) into higher 

order NP structures for the encapsulation and delivery of drugs was investigated. In addition to drug 

encapsulation, active targeting through the conjugation of a synovium-targeting peptide, HAP-1, to 

the surface of these NP’s was used to facilitate selective accumulation of therapeutic agents the 

inflamed joint. The ability to deliver endocannabinoid based NPs to specific sites of the body mediating 

pharmacological endocannabinoid-like effects to influence key physiological pathways, provides a 

novel drug delivery system and medicinal potential to treat many diseases in many fields of medicine 

in which inflammation is a key feature of the disease.   

 

Chapter 1 reviews the literature addressing the endocannabinoid system and its therapeutic 

implications in the treatment of rheumatoid arthritis, both in clinical and basic research setting. A 

more extensive review of the literature has been published in manuscripts entitled; “The 

Endocannabinoid system in pain and inflammation: its relevance to rheumatic disease” published in 

the European Journal of Rheumatology 2017, 4(3): 210-218, and “Endocannabinoids in Arthritis: 

Current views and perspective.” published in International Journal of Rheumatic Diseases 2017, 20(7): 

789-797.  

Chapter 2 sets the foundation for the fundamental methodologies used to generate targeted NP 

within the thesis. The synthesis and physiochemical characterisation of monoethanolamide 

endocannabinoid lipids, LEA and OEA, and their ability to self-assemble into highly ordered NP was 

demonstrated. By adjusting the ratio of lipid building blocks, the degree of unsaturation could be 

tailored to achieve lypotropic liquid crystalline mesophases and stable NP in an aqueous solution at 
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physiological temperatures. Differential scanning calorimetry (DSC) results demonstrated a systematic 

shift in the melting point of the amphiphilic mixtures was achieved by increasing the percentage of 

OEA. In addition to thermal stability, lypotropic phase behaviour of the monoethanolamide mixes was 

investigated using water penetration scans by polarising optical microscopy (POM) and small angle x-

ray scattering (SAXS). The phase behaviour observed was dictated by the degree of unsaturation and 

displayed polymorphic changes in the crystal structure at various temperatures and various ratios of 

the LEA to OEA. These studies demonstrated 40% OEA and 60% LEA as the optimum ratio of the mixed 

amphiphiles to form stable liquid crystalline mesophases at physiologically relevant temperatures. 

When PEGylated lipids were incorporated to stabilise the NP and allow peptide conjugation, the 

folding of the lipid amphiphiles in the aqueous solution was flattened, promoting the formation of 

more lamellar NP. The synthesised non-targeted (NPnon-targeted), peptide-targeted (NPHAP) and scramble-

peptide targeted (NPsHAP) preparations were used in subsequent chapters to investigate in-vitro 

binding, in-vivo localisation and therapeutic efficacy. 

 

Chapter 3 investigated the targeting capabilities of conjugated NP, assessing cell binding and uptake 

in-vitro and localisation and bio distribution in a normal and adjuvant induced rodent model of arthritis 

in-vivo. Conjugation of synovium-targeting peptide, HAP-1, to the NP surface resulted in specific 

binding and greater uptake of NPHAP in both HIG-82 and human FLS cells, when compared to NPnon-

targeted  in-vitro. In the presence of TNF-α stimulation, cell uptake of NP was comparable to that 

observed in non-stimulated cells, and therefore stable in inflammatory conditions. In-vivo localisation 

of fluorescently labelled NP’s was tracked using NIR imager, and demonstrated the ability to actively 

target therapeutics to the inflamed synovium in-vivo. The results demonstrated selective 

accumulation of NPHAP to the joints in both normal and arthritic treated rats. No specific accumulation 

was observed in NPnon-targeted and NPsHAP treated normal rats, with only slight localised deposits 

observed in inflamed joints in arthritic rats. In bio-distribution studies, conjugation of HAP-1 homing 

peptide reduced NP off-targeted effects, limiting systemic exposure.  NPHAP treated rats demonstrated 

high concentrations of OEA and LEA in the paw, with minimal deposits in the liver after 6 h. In NPnon-

targeted treated rats, non-significant accumulation to the inflamed paw coincided with pronounced 

accumulation at the liver after 6 h.  
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Chapter 4 ability of the NP to mediate anti-inflammatory effects in RA-FLS in-vitro was examined using 

next generation sequencing (RNA-seq) and RT-PCR. Assessment of the top differential expressed 

genes in NP treated cells showed the acquisition of genes associated with homeostasis and 

inflammation resolution and led to a significant reduction in genes involved in inflammation 

perpetuation. NP incubation was also demonstrated to down regulate highly expressed inflammatory 

candidate mRNA genes prominent in RA, suggesting inflammatory resolution by dampening cytokine 

production.  NP-mediated suppression of signalling genes TLR and JAK-STAT and an increase in PPAR 

signalling genes were observed, suggests anti-inflammatory effects mediated by inhibition of these 

pathways. The ability of the NP’s to downregulate inflammatory cytokines, as well signalling genes 

involved in inflammatory processes highlights its promising application as an anti-inflammatory agent. 

Furthermore NP were demonstrated to influence AEA synthesising enzymes and catabolic and 

oxygenation enzymes in-vitro, which may assist in anti-inflammatory effects by regulating 

endocannabinoid metabolites concentrations at the targeted site.  

 

Chapter 5 extended previous in-vitro findings and investigated the NP anti-inflammatory and analgesic  

effects in-vivo. Plasma protein levels of IL-6, IL-17A, IFN-ɣ and TNF-α were reduced following NP 

treatment in arthritic rats. While the effects of NPHAP and NPnon-targeted were similar, suppression of IFN-

ɣ and IL-6 was more pronounced in NPHAP treated rats. In addition to anti-inflammatory effects, the 

targeted NPHAP were shown to modulate pain signalling in-vivo, which were void of centrally mediated 

effects. In analgesic studies, administration of NPnon-targeted and NPHAP to normal rats elicited dose-

dependent anti-nociceptive responses against mechanical pain, which were significant at high dose 

concentrations. In arthritic rats, improvements in animal sensitivity to pain were only observed in 

NPHAP treated rats, demonstrating increased efficacy through peptide-conjugation. Finally, the NP 

were demonstrated to influence endogenous articular NAE levels of OEA, LEA and PEA in-vivo. 

Restoration of joint endocannabinoid levels that subsequently influence anti-inflammatory actions 

may be an alternative approach to dampening inflammatory processes which typify the arthritic joint. 

 

Chapter 6 integrates the results noted in prior chapters and makes suggestions for further research 

arising from this research.  
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CHAPTER 1: INTRODUCTION 

Whether smoked, ingested, inhaled or injected, the anxiety relieving and mood altering effects of the 

plant Cannabis Sativa, colloquially known as marijuana, have been known for over 5,000 years (Kalant, 

2001; Zogopoulos et al., 2013). The main active ingredients in cannabis have the ability to alter sensory 

perception, enhance appetite stimulation, induce sedation, evoke elation and euphoria, as well as 

impair central nervous system (CNS) function related to memory and motor control. In the nineteenth 

and early twentieth century, marijuana and its derivatives were recommended as muscle relaxants, 

analgesics and anticonvulsants. However, in the 1940’s with increasing global concerns about narcotic 

addiction, popularity of cannabis and its related drugs as therapeutic agents declined resulting in the 

prohibition and further prejudice of these drugs for medical use (Robson, 2005). Recently, there has 

been a resurgence of interest in marijuana and its natural and synthetic derivatives, cannabinoid 

receptor agonists and antagonists, as well as chemically related compounds, for their therapeutic 

potential. Very few cannabinoids are now approved for therapeutic application despite the political 

debate that rages. 

 

1.1 ENDOCANNABINOID SYSTEM 

The term endocannabinoid, appeared in the literature during the mid-1990's following the discovery 

of the endogenous receptor for the psychoactive constituent, delta 9-tetrahydrocannabinol (Δ9-THC), 

a main constituent of marijuana (Matsuda et al., 1990). The identification of Δ9-THC opened the way 

to the cloning of the G-protein-coupled receptors, the cannabinoid receptor 1 (CB1) and cannabinoid 

receptor 2 (CB2), and to the discovery of the important endogenous lipid signalling pathways 

collectively known as the “endocannabinoid system”. Endocannabinoid ligands, their receptors, and 

the enzymes involved in ligand biosynthesis and degradation constitute the three fundamental 

components of the endocannabinoid system (Battista et al., 2012). The ubiquitous endocannabinoid 

lipid signalling system has been noted to be relevant in many physiological functions in the body 

including the central, peripheral and autonomic nervous system, endocrine networks, and the 

immune system.  The investigation and application of endocannabinoids may therefore provide 

therapeutic potential for a wide range of human pathological conditions including obesity and 

associated metabolic abnormalities, CNS (Scotter et al., 2010), and movement disorders; as well as 

both neuropathic and chronic pain  (Anand et al., 2009) as may be found in rheumatoid arthritis ((RA), 

and osteoarthritis ((OA), Kalant, 2001; Mouslech & Valla, 2009; Burston et al., 2013; Pacher & Kunos, 

2013; Alexander, 2016; McDougall et al., 2017). 
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1.2 ENDOCANNABINOID LIGANDS 

The endocannabinoid system is regulated by a series of lipid signalling molecules known as 

“endocannabinoids”, belonging to the N-acylethanolamines (NAEs). Of these, the most widely 

investigated is anandamide (arachidonoyl ethanolamine [AEA]) which was initially isolated from 

porcine brain (Devane et al., 1992), and later 2-arachidonoylglycerol (2-AG), initially found in canine 

intestines (Mechoulam et al., 1995).  AEA is responsible for maintaining basal endocannabinoid 

signalling, acting as a partial to full stimulator of CB1, and a partial antagonist to CB2 where it binds 

with low affinity leading to partial antagonistic effect (Gonsiorek et al., 2000). At elevated 

concentrations, AEA functions as a full agonist for the ion channel receptor transient receptor potential 

vanilloid 1 (TRPV1) (Smart et al., 2000), an ionotropic receptor responsible for the integration of 

noxious stimuli causing pain (Kelly et al., 2015). By contrast to AEA, 2-AG functions as a full agonist for 

both CB1 and CB2 (Starowicz & Przewlocka, 2012). A series of other biochemically similar 

endocannabinoids such as 2-AG ether (Parkkari et al., 2006), virodhamine (Porter et al., 2002) and N-

arachidonoyl dopamine (Grabiec & Dehghani, 2017) have also been discovered, however knowledge 

of their function and regulatory role remain in its infancy.  In addition to these compounds, bio-active 

NAEs such as palmithoylethanolamide (PEA), oleoylethanolamide (OEA) and linoylethanolamide (LEA) 

have gained much attention in recent years due to their anti-inflammatory and potentially analgesic 

effects. Although possessing a similar biosynthetic pathway to AEA, they have no affinity for CB1 

receptor, but instead contribute to an anti-inflammatory regulation through “entourage” effects, such 

as regulating the synthesis of other ligands who then mediate effects through non-CB receptors 

(Okamoto et al., 2004; Alhouayek & Muccioli, 2014).  The anti-inflammatory potential of OEA and LEA 

are explored in later Chapters 4 and 5.  The chemical structures of the main biologically active 

endocannabinoids and of the endocannabinoid-like compounds is shown in Figure 1.1 

 

1.2.1 Endocannabinoid Synthesis and Degradation 

While the predominant endocannabinoids, AEA and 2-AG, are both lipid molecules generated from 

the breakdown of arachidonic acid, they share very few similarities in their biosynthetic pathways, as 

shown in Figure 1.2 (Di Marzo, 2008). Endocannabinoid synthesis is a result of enzymatic cleavage of 

phospholipids within the cell membrane. AEA production is stimulated by a calcium dependent 

hydrolysis of membrane phospholipid precursors. N-arachidonoyl-phosphatidyl-ethanolamine (NAPE) 

of lipids is hydrolyzed by the specific phospholipase D (PLD) enzyme to yield AEA (Sugiura et al., 2002). 

Synthesis of NAE’s (PEA, OEA, LEA) follow a similar pathway starting first with N-acylation of 

phosphatidylethanolamine (PE).   In contrast to biosynthesis of AEA, the production of the second 

major endocannabinoid, 2-AG, involves the sequential hydrolysis of phosphatidylinositol (PI) by 
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phospholipase C (PLC) for the generation of diacylglycerol (DAG). DAG is then directly cleaved by 

diacylglycerol lipase (DAGL) α or β to form 2-AG (Ueda et al., 2011). Once released, the 

endocannabinoid ligands diffuse, acting locally as retrograde messengers to regulate the release of 

multiple presynaptic messengers.  Following cellular uptake, the endocannabinoid ligands are quickly 

transported from the synaptic space and inactivated through subsequent catabolism via specific 

enzymes within the intracellular environment (Chiurchiu et al., 2015). The enzymatic reaction 

catalysed by intracellular enzymes unique to each endocannabinoid and include fatty acid amide 

hydrolase (FAAH), the principal enzyme for hydrolysis of anandamide, and monoacyl glycerol lipase 

(MAGL) for 2-AG. Enzymatic degradation of these endocannabinoids yields arachidonic acid and 

ethanolamine from anandamide, and glycerol from 2-AG, respectively (Di Marzo, 2008).   

 

 
 

Figure 1.1. Chemical structures of biologically active endocannabinoids and of the endocannabinoid-

like compounds. Figure adapted from (Battista et al., 2012). 
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Figure 1.2. Major pathways for the synthesis and degradation of 2-AG and AEA. From membrane 

phospholipids, 2-AG is produced via DAGL while AEA, PEA, and OEA synthesis is enabled either 

directly via N-acylethanolamine-phosphatidyl ethanol amine (NAPE-PLD). The 2-AG is degraded via 

MAGL, whereas AEA, PEA, and OEA are hydrolyzed by FAAH.  

 

1.3 ENDOCANNABINOID RECEPTORS 

To date, two types of predominant endocannabinoid receptors have been identified; CB1 and CB2. 

Collectively, they are G protein coupled seven trans-membrane domain receptors, with a unique 

tissue density distribution suggesting that they may contribute to widely variant physiological roles 

(Howlett et al., 1990; Kinsey et al., 2011a).  Both the CB1 and CB2 receptors are negatively coupled 

with adenylate cyclase via G proteins, and positively coupled to mitogen-activated protein kinase 

(MAPK). Accordingly, the cannabinoid receptors maintain the capacity to regulate suppression of 

adenylate cyclase as well as the activities of the calcium and potassium channels (Pertwee, 2006). 
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1.3.1 CB1 

CB1 is the principle receptor of the CNS, primarily located on presynaptic as well as postsynaptic 

neurons (Zou & Kumar, 2018). CB1 receptors are densely expressed in several areas of the brain and 

supra-spinal regions involved with nociceptive transmission (Hohmann, 2002). The presence of CB1 

on presynaptic neurons allows for the regulation and inhibition of neurotransmitter release. This 

allows for a negative feedback mechanism to develop between the anterograde and retrograde 

signalling pathway mediated by the endocannabinoid system.  CB1 mediated suppression of 

neurotransmitter release in nerve terminals has been associated with the characteristic effects of 

cannabis including analgesia, feeling of wellbeing, catalepsy, and depression of motor activity. At the 

level of the spinal cord, CB1 is densely expressed at the presynaptic terminals of primary afferents and 

excitatory neurons and regulate the transmission of noxious stimuli to the brain by inhibiting 

neurotransmitter release (Pernia-Andrade et al., 2009). As well as these central effects, CB1 receptors 

localise on sensory terminals in the periphery, gating the propagation of pain signals, contributing to 

peripheral analgesia (Agarwal et al., 2007).  

1.3.2 CB2 

CB2 is the cannabinoid receptor immune system counterparts and unlike CB1, is almost exclusively 

expressed outside the CNS, being predominately found in peripheral immune and haematopoietic 

cells (Cabral & Griffin-Thomas, 2009). CB2 receptors mediate cannabinoid induced 

immunosuppression and anti-inflammatory effects by modulating cytokine release and immune cell 

migration (Pertwee, 2006). Furthermore, CB2 receptors extensive expression on immune cells 

represents a target for influencing inflammatory pain processing. CB2 receptor agonists contributed 

to antinociception in models of both inflammatory and nociceptive pain by suppressing the local 

secretion of pro-inflammatory factors by non-neural cells, which sensitise neighbouring nociceptive 

neuron terminals (Anand et al., 2009). Stimulation of peripheral CB2 receptors therefore mediates an 

antinociceptive response in settings of neuropathic pain or inflammatory hyperalgesia by acting locally 

on immune cells in the periphery and microglia in the CNS (Ibrahim et al., 2003; Fu & Taylor, 2015). 

1.3.3 TRPV1 and the G protein-coupled receptor 55 (GPR55) 

Transient receptor potential (TRP) channels are ionotropic cannabinoid receptors responsible for the 

detection and integration of noxious stimuli (Premkumar & Sikand, 2008). Whilst primarily expressed 

on sensory Aδ and C-fibres, TRPs are also located on peripheral cells and sensory neurones abundantly 

expressed in arthritic synovial tissue (Kelly et al., 2015). Stimulation of the TRPV1 results in cation 

influx and the production of an action potential that consequently results in the sensation of pain. As 
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such, the TRPV1 channels represent a prime focus for the development of novel analgesics. The 

importance of these receptors in arthritis is highlighted in TRPV1-/- knockout animals that 

demonstrate elevations in pain threshold and an associated reduction in joint inflammation (Szabo et 

al., 2005; Fernandes et al., 2011). The TRPs are thought to be involved in “cross talk” (Di Marzo, 2010) 

between the endocannabinoid system and endovanilloid system by existence of endogenous 

cannabinoids AEA, virodhamine and lysophosphatidylinositol (Ross, 2003) responsible for the 

activation of both endovanilloid receptors and CB1/ CB2 receptors under several pathological and 

physiological conditions (Wang et al., 2014). Similar to cytokines, endocannabinoid’s AEA, OEA and 

PEA activate TRPV1 (Ambrosino et al., 2013; Redmond et al., 2014).  AEA is believed to modulate 

synaptic plasticity, a key component in arthritic pain, through actions at both the pre and postsynaptic 

TRPV1 channels. On exposure, the TRPV1 channels are rapidly desensitized, resulting in reduced 

calcium influx and increased pain thresholds (Starowicz & Przewlocka, 2012). AEA’s dual action and 

TRPV1 receptor co-localization with CB1 receptors in brain tissues are reviewed by (Di Marzo, 2012)  

Emerging evidence has identified the GPR55 receptors as an orphan G protein coupled receptor which 

express an affinity and subsequent activation through endogenous cannabinoid, anandamide, 2-AG, 

virodhamine and noladin ether (Ryberg et al., 2007).  Inhibition of GPR55 through knock-outs or 

pharmacological agent’s correlate well with the propagation of joint inflammation and hyperalgesia, 

providing evidence that GPR55 is a negative regulator of inflammation (Staton et al., 2008; Bjursell et 

al., 2016).  

1.4 THERAPEUTIC POTENTIAL OF ENDOCANNABINOIDS IN ARTHRITIS 

Chronic inflammatory disease represents an emerging public health issue, occupying a sizeable 

proportion of the adult population in the industrialized world. Efficient improvements in both 

analgesic and anti-inflammatory treatment without accompanying undesirable side effects are 

required to fulfil the unmet therapeutic needs of these desperate patients. The primary components 

of the endocannabinoid signalling system, including CB1, CB2 and catabolic enzyme, FAAH, are 

characteristically expressed in the synovium of both OA and RA patients, with compelling evidence to 

demonstrate an active participation in the pathophysiology of joint pain (Richardson et al., 2008; 

Burston et al., 2013). A size-able number of clinical and pre-clinical studies have confirmed the 

potential of the endocannabinoid system in providing a number of promising therapeutic benefits for 

patients with chronic inflammatory diseases (Krustev et al., 2014; Salaga et al., 2014).  
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1.4.1 Joint Inflammation 

Evidence for the endocannabinoid’s anti-inflammatory effects from preclinical studies have shown 

that all classes of cannabinoids including phytocannabinoids (tetrahydrocannabinol, cannabidiol) and 

synthetic analogues such as Ajulemic acid (‘Nabilone’), and elmiric acid possess anti-inflammatory 

effects (Burstein & Zurier, 2009).  These anti-inflammatory effects may be mediated by changing the 

local milieu of saturated fatty acids such as ethanolamine’s, that subsequently influence anti-

inflammatory actions, or by directly acting on immune cells. Immune cells are able to generate and 

secrete endocannabinoids that lead to changes in cell migration, leucocytes generation, T-cells and 

macrophages cell death, reduction of pro-inflammatory cytokines, and production of other 

inflammatory factors that subsequently influence tissue inflammation (Maccarrone et al., 2015; 

Katchan et al., 2016). Therefore, by virtue of their immunomodulatory properties, cannabinoids have 

the potential to serve as therapeutic agents for ablation of untoward immune responses. 

It has been well documented that levels of AEA and 2-AG are stimulated under inflammatory 

conditions (Turcotte et al., 2015). In a more recent study, Lowin et al (2012) showed that cannabinoid 

receptor CB1 and CB2 and endocannabinoids AEA and 2-AG produced by FLS are present in higher 

concentrations in the synovium of patients with RA and OA disease compared to normal volunteers. 

The regulation of the endocannabinoid system in diseased state suggesting a functional role of the 

endocannabinoid receptor system in the pathological effects noted in arthritic patients (Richardson et 

al., 2008; Lowin et al., 2012; Burston et al., 2013). With both cannabinoid receptors and endogenous 

ligands present in inflamed human joints, targeting this system may hold therapeutic promise for both 

inflammatory, as well as degenerative arthritis (Richardson et al., 2008).  

In arthritis, persistent inflammation results in infiltration of immune cells and the subsequent 

development of hypersensitivity to noxious stimuli. Synovial fluid samples from patients with RA 

consistently express elevated cytokine levels such as tumour necrosis factor alpha (TNF-α), interleukin 

(IL)-6 and IL-1β, which act directly to sensitize joint nociceptors and stimulate the release of 

prostaglandins (Krustev et al., 2014). In a study by Sancho et al, it was shown that AEA can inhibit TNF-

α induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation by direct 

inhibition of the IκB kinase (Sancho et al., 2003).  Similarly, synthetic cannabinoid, HU-320, 

ameliorating disease progression in a collagen-induced arthritis (CIA) mouse model through a 

comparable anti-inflammatory suppression of reactive oxygen intermediates, interferon gamma (IFN-

ɣ) and TNF-α (Sumariwalla et al., 2004). Pre-clinical in-vivo studies examining cannabinoid anti-

inflammatory effects are summarised in Table 1.1. Using a murine model of CIA, three different groups 

have achieved clinical improvement in CIA mice following treatment with various cannabinoids  

(Sumariwalla et al., 2004; Gui et al., 2015). Overall, exposure to cannabidiol (CBD) or the CB2 agonists 
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JWH-133 or HU-308 reduced arthritis severity, inflammatory cell infiltration, bone destruction, 

production of anti-collagen type II IgG1, IFN-ɣ  production and TNF-α release (Malfait et al., 2000). The 

anti-arthritic potency of these cannabinoid agonists may be attributed to the combination of 

immunosuppressive responses and anti-inflammation effects through the reduction of inflammatory 

cytokines in the synovium, a combination that has proven successful in the past when anti-IL-12 and 

anti-TNF were combined to treat CIA (Butler et al., 1999). 

Zurier et al (1998), demonstrated that a synthetic cannabinoid Ajulamic Acid (AjA), a potent anti-

inflammatory in animal models of joint tissue injury (Zurier et al., 1998) suppressed cyclooxygenase-2 

(COX-2), and 5 lipoxygenase activity in-vitro (Zurier, 2003). Oral administration of low dose of AjA 

suppressed joint inflammation and tissue injury in adjuvant induced arthritis (AIA) (Zurier, 2003). 

Similarly, AjA suppressed the release of cytokine IL-1β from peripheral blood and synovial fluid 

monocytes and prevented bone degradation of AIA rats by inhibition of osteoclastogenesis, osteoclast 

formation (in mononuclear precursor cells) and apoptosis in mature osteoclast-like cells (George et 

al., 2008). This activity is presumed to be initiated through peripheral CB1 receptor activation (Klein, 

2005). Since AjA has weak CB1/2 receptor agonist activity, the anti-inflammatory effects may be due 

to the activation of other receptors that could belong to the TRPV family.   

The protective effects of endocannabinoids have been noted in other inflammatory conditions such 

as multiple sclerosis (Patti et al., 2016; Annunziata et al., 2017) and periodontitis (Ozdemir et al., 

2014). Overall, the preclinical and clinical data support the potentially effective anti-inflammatory 

properties of endocannabinoids/cannabinoid agonists targeting CB2 receptors.  The absence of 

psychotropic effects and low toxicity, favour the development of cannabinoids as novel anti-

inflammatory agents for the treatment of RA and OA. 

1.4.2 Joint Pain 

Localisation studies using receptor binding, immuno-histochemistry and in-situ hybridisation have 

mapped the distribution of the cannabinoid receptors along all levels of the pain nexus, providing a 

neuroanatomical framework befitting to the function of the cannabinoid system in sensory processing 

(Walker & Huang, 2002; Zou & Kumar, 2018). Anti-nociception is the process of blocking the detection 

of a painful or injurious stimuli by sensory neurons, resulting in the suppression of noxious 

neurotransmission. The anti-nociceptive potency of cannabinoid agonists is strongly correlated with 

their ability to displace binding ligands from the cannabinoid receptor, obstructing their signalling. The 

widespread expression of the cannabinoid receptors along the principal pain processing sites offers 

boundless opportunities for the development of analgesics for various pain conditions (Rani Sagar et 

al., 2012; O'Hearn et al., 2017). 
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In pre-clinical studies, anti-nociception is a prominent feature of systemically administered 

cannabinoids noted in studies applying various noxious agents such as chemical, mechanical and 

thermal stimuli (Lomazzo et al., 2015; Cajanus et al., 2016; Sun et al., 2017). Electrophysiological 

studies in model’s arthritis have demonstrated that the facilitated nociceptive responses of peripheral 

nerves are attenuated in the presence of cannabinoid receptor agonists, demonstrating the capacity 

of endocannabinoids to act as an analgesic agent in arthritis (Schuelert & McDougall, 2008). It is 

suggested that both CB1 and CB2 receptors exhibit synergistic action in cannabinoid mediated anti-

nociception in RA rat knee joint (Schuelert & McDougall, 2008). Pre-clinical in-vivo studies examining 

cannabinoid effects on pain are summarised in Table 1.2. Exogenously administered AEA and CB1 

agonist arachidonyl-2-chloroethylamide (ACEA) have been shown to significantly reduce the firing rate 

of afferent nerve fibres.  This effect is attenuated by the administration of CB1 antagonist AM251.  

Similarly, selective CB2 agonist, JWH-133, inhibited acute nociceptive responses in neuropathic rats, 

while systemic administration of another CB2 receptor agonist, A-796260, reversed decreases in grip 

strength, a surrogate measure of pain, in MIA models of RA pain (Yao et al., 2008). The peripheral 

localisation of CB1 on joint primary afferents and CB2 in the synovium have the potential as a 

promising target for arthritic pain by reducing joints nociceptors propensity to fire.  

Arthritic pain is both nociceptive, primarily derived from localised inflammation; and neuropathic, 

resulting from a malfunction in the somatosensory nervous system (McDougall, 2006). The presence 

of elevated AEA, 2-AG and their synthetic precursor concentrations in synovial fluid of RA and OA 

patients indicates the potential for endocannabinoids to act locally in response to nociceptive stimuli 

to suppress nociceptive inflammatory responses (Richardson et al., 2008). The endocannabinoids anti-

inflammatory effects including, suppression of cytokine and damaging proteinases secretion; and 

regulation of cell adhesion and migration, which collectively help slow perpetuation of disease and 

alleviate associated nociceptive arthritic pain primarily derived from localised inflammation (Ware et 

al., 2005). Similarly, systemic administration of the CB2 agonist, JWH133, suppressed pain and 

corrected deviation in circulating pro- and anti-inflammatory cytokines in the rat MIA model (Burston 

et al., 2013). While the anti-inflammatory and analgesic effects of the endocannabinoids are 

promising, restricted efficacy due to the rapid cellular uptake and metabolism by FAAH limits their 

effects (Jayamanne et al., 2006). In-vivo studies by Krustev et al reported that FAAH inhibition via 

URB597 can elevate tissue concentration of anandamide by inhibiting local endocannabinoid 

degradation and dampen inflammatory pain in rodent models of OA (Krustev et al., 2014). Similarly, 

URB597 suppressed inflammatory hyperaemia, as well as microvascular leukocyte rolling and 

adherence in a mouse model of acute arthritis highlighting the anti-inflammatory and analgesic 

capacity of endocannabinoids, and the modulation of the efficacy through metabolism inhibition 
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(Jayamanne et al., 2006; McDougall et al., 2017).  In the periphery, FAAH inhibition mediates anti-

inflammatory effects by down regulating cytokine production and the desensitisation of TRPV1, 

resulting in analgesia (Starowicz & Przewlocka, 2012).  Inhibition of AEA catabolism is said to have 

promising effects in the management of OA pain mediated by both anti-inflammatory and anti-

hyperalgesia actions (Kinsey et al., 2011a; McDougall et al., 2017).  

1.4.3 Endocannabinoid Synergism with Current Therapies 

In clinical use, both endocannabinoids and synthetic cannabinoids have been shown to exert 

synergistic anti-nociceptive effects when combined with two common nonsteroidal anti-inflammatory 

drugs (NSAIDs), indomethacin and flurbiprofen, in the pharmacotherapy of pain (Dani et al., 2007; 

Anand et al., 2009). Anti-nociceptive effects of intrathecally applied flurbiprofen were shown to be 

effectively inhibited by CB1 antagonism in the rat formalin test of pain (Ates et al., 2003).  Similarly, 

reduced analgesic efficacy of indomethacin was exhibited in CB1 knockout mice suggesting 

involvement of the endocannabinoid system in mediating the analgesic effects of these NSAID 

(Guhring et al., 2002). Recent reports into NSAIDs mechanism of action demonstrates its ability to 

inhibit both catabolic enzymes; FAAH and COX-2, increasing concentrations of AEA and allowing 

indirect enhancement of cannabinoid receptor activity (Kozak et al., 2003). Reports of an interaction 

between cannabinoids and inhibitors of prostaglandin biosynthesis, like NSAIDs, may be partly 

attributed to similar chemical structure shared by the endogenous cannabinoid ligands and 

prostaglandins (arachidonic acid derivatives), and to the convergence of prostaglandin and 

endocannabinoid transduction signals (Fimiani et al., 1999). Together, therapeutic intervention in 

peripherally restricted CB1 antagonist and FAAH inhibition are promising strategies to ameliorate 

chronic inflammation and pain in RA. 
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Table 1.1 Pre-clinical studies examining cannabinoid anti-inflammatory effects on arthritis. 

Pre-clinical 

model 
Agent ID+ ECS action Outcome 

AIA model of 

RA (rat) 

AjA 

 
2340729 

Synthetic 

analog of 

THC-11-oic 

acid. 

CB2 agonist 

Decreased joint inflammation, prostaglandin 

production and decreased granulocyte influx 

Prevented joint cartilage and bone damage 
 

(Zurier et al., 1998); (Zurier, 2003) 

 CIA model of 

RA (rat) 
CBD 24547 

Phytocannab

inoid 

Decreased production of cell mediated 

immunity. Inhibited disease progression 
 

(Malfait et al., 2000) 

CIA model of 

RA (mice) 

HU-320 

 
9398378 

Synthetic 

cannabinoid 

acid 

(CB2 agonist) 

Decreased production of TNF-α and cell 

mediated immunity. Inhibited disease 

progression 
 

(Sumariwalla et al., 2004) 

MIA* model 

of RA (rat) 
JWH133 5293702 

Selective CB2 

agonist 

Suppressed pain and corrected deviation in 

circulating pro- and anti-inflammatory 

cytokines 
 

(Burston et al., 2013) 

Acute model 

of arthritis 

(mice) 

URB597 1156960 

Selective 

FAAH 

inhibitor 

Suppressed inflammatory hyperemia 
 

(Krustev et al., 2014) 

CII-IA** 

model of RA 

(mice) 

JWH133 5293702 CB2 agonist 

Reduced the arthritis score, inflammatory cell 

infiltration, bone destruction, and anti-CII IgG1 

production  
 

(Fukuda et al., 2014) 

CIA model of 

RA (mice) 
HU-308 8020425 CB2 agonist 

Decreased joint swelling, synovial 

inflammation, and joint destruction, as well as 

serum levels of anti-collagen II antibodies 
 

 (Gui et al., 2015)  

 

* Monosodium iodoacetate (MIA) 

** Collagen type II (CII)-induced arthritis (CII-IA) 

+ChemSpider I.D Number (Chemistry, 2015) 

Endocannabinoid system (ECS) 
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Table 1.2 Summary of pre-clinical use of cannabinoids for the alleviation of joint pain 

Type of Study Agent ID+ ECS action Outcome 

MIA model of 

OA (rat) 
ACEA 4470547 

Selective CB1 

agonist 

Attenuated firing of joint afferent fibres 
 

(Schuelert & McDougall, 2008) 

MIA model of 

OA (rat) 
A-796260 9759290 

Selective CB2 

agonist 

Improved paw grip strength 
 

 (Yao et al., 2008) 

MIA model of 

OA (rat) 
GW405833 2374++ 

Selective CB2 

agonist 

Attenuated weight-bearing deficits 

Sensitized joint afferent fibres  
 

(Schuelert et al., 2010) 

MIA model of 

OA (rat) 
URB597 1156960 

Selective 

FAAH inhibitor 

Reduced weight-bearing deficits  

Attenuated firing of joint afferent fibres 

(Schuelert et al., 2011) 

LPS* model of 

inflammatory 

pain (mice) 

O-3223 - 
Selective CB2 

agonist 

Reduced nociceptive behaviour in 

neuropathic and inflammatory mouse 

models of pain 
 

(Kinsey et al., 2011a) 

Synthesis described (Sun et al., 2004) 

MIA model of 

OA (rat) 
PF-04457845 

2639083
9 

Selective 

FAAH inhibitor 

Reduced joint mechanical allodynia  
 

(Ahn et al., 2011) 

MIA model of 

OA (rat) 
OMDM-198 

 
- 

 
 

FAAH-TRPV1 

inhibitor 

Significant reversal of joint 

hypersensitivity 
 

(Malek et al., 2015) 

Synthesis described (Miller et al., 2014) 

MIA model of 

OA (rat) 
CBD 24547 

Phytocannabi

noid 

Attenuated firing of joint afferent fibres  

Reduced secondary mechanical allodynia 

and weight bearing deficits 

Reduced joint inflammation 

Prophylactic treatment prevented nerve 

damage 
 

(Philpott et al., 2017) 

MIA model of 

OA (mice) 
URB597 1156960 

Selective 

FAAH inhibitor 

Acute treatment reduced joint 

inflammation  

Prophylactic treatment prevented 

mechanical allodynia and nerve damage  

can elevate tissue concentrations of AEA 
 

(McDougall et al., 2017) 
 

*Lipopolysaccharide (LPS) 

+ChemSpider I.D Number (Chemistry, 2015) 

++Catalogue number from Tocris Bioscience (Missouri, USA; Bristol, UK) 
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1.5 CURRENT CLINICAL TRIALS  

While current cannabinoid therapy has offered particular promise in the treatment of certain 

inflammatory and neurodegenerative conditions, there remains limited research in the use of 

cannabinoids in RA., Barriers to research including insufficient legally registered marijuana 

manufacturers and limited clinical trials have restricted its progress into the therapeutic field. Authors 

of three recent systematic reviews concluded that current evidence is insufficient to allow for 

recommendation for any cannabinoid preparation for rheumatology patients (Ware & Tawfik, 2005; 

Fitzcharles et al., 2016b; Walitt et al., 2016). Clinical studies examining cannabinoid effects on pain 

and inflammation in RA are summarised in Table 1.3. 

In a study by Blake et al, the effect of nabiximols (phytocannabinoids extracted from cannabis and 

supplied as an oromucosal spray), compared to placebo in a double-blind randomized trial of 58 

patients with RA on pain was examined (Blake et al., 2006). Over a 5-week period, improvements in 

pain, sleep quality, and Disease Activity Score in 28 joints were observed. However, while adverse 

events in active treatment groups were not serious, they were common with dizziness in 26%, dry 

mouth in 13%, light headedness in 11%, and nausea and falls in 6%, and less frequent reports of 

constipation, arthritis pain, and headache. The study also had a high risk of bias for 3 of the 5 key 

domains assessing risk for bias (Blake et al., 2006). Similarly, in another study examining 

endocannabinoid-based drug, nabilone, on pain in fibromyalgia, while reaching statistical significance 

in two studies, the clinically meaningful effects may be outweighed when efficacy and side effects are 

taken into consideration (Walitt et al., 2016) FAAH inhibitor, PF-04457845, showed both analgesic and 

anti-inflammatory effects in animal studies comparable to naproxen (Huggins et al., 2012). However, 

when compared to naproxen, PF-04457845 was ineffective for OA pain when compared to placebo-

control in a randomised phase II clinical trial (Huggins et al., 2012). As endocannabinoids do not solely 

mediate their effects via the CB1/CB2 receptors, it is thought activity mediated via the TRPV channels 

hampered analgesic potential (Kirkedal et al., 2017).   

Recent studies with OMDM-198, a dual-acting compound which simultaneously increases FAAH 

substrate concentrations while inactivates TRPV1 receptors, is being investigated. OMDM-198 exhibits 

a meaningful reversal of hypersensitivity in MIA-model of OA joint pain, representing a promising 

avenue in endocannabinoid pain management. The ‘Cannabinoid Profile Investigation of Vapourized 

Cannabis in Patients With Osteoarthritis of the Knee’ (CAPRI) study is investigating vapourized 

cannabis with varying levels of THC and CBD for its ability to alleviate OA pain (NCT02324777 — NIH 

Clinical trials database; URL: Clinicaltrials.gov). Another ongoing clinical trial is testing combinations of 

cannabinoids, opioids and benzodiazepines for their pain-relieving effects in a small number of OA 

patients (NCT03098563 — NIH Clinical trials database; URL: Clinicaltrials.gov). 
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Despite the studies reviewed above, the scientific evaluation of medicinal cannabis in humans is in its 

infancy. Further investigation on the function of the endocannabinoid system and its role in RA is 

required to provide a solid foundation and allow the evolution and refinement of cannabis-based 

medicine. Comprehensive evaluations through well-controlled randomised trials are also required to 

clarify the true clinical efficacy and long-term risks associated with cannabinoid therapy. 

Advancements in our understanding of the endocannabinoid system and cannabinoid pharmacology, 

has raised the hope of exciting new pharmacological entities. Cannabis-based medications which 

enhance endocannabinoid function may represent a novel therapeutic solution to disorders 

associated with chronic pain and remains a promising avenue of contemporary importance. 

 

 

Table 1.3 Clinical studies examining cannabinoid effects on pain and inflammation 

Type of 

Study 

Pharmacological 

agent 
ID* 

ECS 

action 

Outcome 

RA patients  

 

Sativex1 (THC:CBD 

1:1) 

 

3498328

4 

Phytocan

nabinoid 

Reduced pain at rest and during 

movement (Short- 

Form McGill Pain Questionnaire), 

improved quality of sleep  
 

(Blake et al., 2006) 

OA patients 
PF-04457845 

 

 

2639083

9 

FAAH 

inhibitor 

Well tolerated safety profile 

No significant changes compared 

to placebo in Western Ontario and 

McMaster Universities 

Osteoarthritis Index (WOMAC) 

pain score 
 

(Huggins et al., 2012) 

Model of 

experiment

al 

inflammati

on in 

humans 

Ultra pure 

AjA 

(JBT-101) 

 

2340729 

CB2 

agonist 

70% reduction in inflammation 

based on a decrease in 

neutrophil infiltration and 

decreased blood flow around 

the site of inflammation. 

(Burstein, 2018) 

 

+ChemSpider I.D Number (Chemistry, 2015) 
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CHAPTER 2: NANOPARTICLE SYNTHESIS AND CHARACTERISATION  

2.1 INTRODUCTION 

In the last few decades, a significant amount of research into the function of the endocannabinoid 

system have highlighted its role in the regulation of immune responses (Pacher & Kunos, 2013; 

Alexander, 2016).  The endocannabinoid system is regulated by endocannabinoid lipid signalling 

molecules belonging to the NAE’s, containing long saturated and unsaturated fatty acids formed from 

the breakdown of phospholipids (Coulon et al., 2012).  Whilst the benefits of endocannabinoid-based 

treatments appear promising, very few studies have investigated the use of the self-assembled NPs as 

novel targeted drug delivery system. NAEs amphiphilic molecules possess excellent self-assembly 

properties, which can form various lyotropic nanostructured mesophases and NPs at excess aqueous 

solution (Sagnella et al., 2009a; Sagnella et al., 2010a; Sagnella et al., 2010b).  The self-assembly of the 

lipid amphiphile is a robust and attractive process for the spontaneous formation of diverse 

nanostructured NPs.  The nanostructures formed are governed by various local constraints, which can 

be used as a reasonable measure for predicting their mesophases (Israelachvili et al., 1976). The 

mesophase behaviour is an important feature in determining amphiphiles use as a drug delivery and 

can be predicted using the Critical Packing Parameter (CPP). The CPP is defined as ν/(ʃca0), where ν is 

the average volume occupied by the amphiphilic chain, ʃc is the effective length of the amphiphilic 

chain and a0 is the optimal head group area. Figure 2.1 shows the predicted phase behaviour as 

rationalised by the CPP. Molecules with a CPP<1 will preferentially form normal phases, while those 

with a packing parameter greater than 1 are likely to be wedge shaped molecules and form inverse 

phases (Israelachvili et al., 1976). 

 

 

Figure 2.1: Phase behavior formed by amphiphiles rationalized by the CCP 
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Examples of typical lipid nanostructures formed under the CPP rule are summarised in Figure 2.2.  In 

neat or low hydration and/or temperatures, lipids tend to form crystalline lamellar phase (Lc) due to 

restricted molecular motion. Increases in water content or temperatures will caused these structures 

to modify into various polymorphs, such as lamellar gel (Lα), fluid lamellar (Lβ) or inverse micelles (L2) 

(Luzzati, 1974; Cheng, 1996).  The lamellear phase are a one-dimentional (1-D) nanoparticle 

nomenclature structure, formed by the stacking of lipid bilayers separating adjacent hydrophilic 

(water) layers. The common two-dimensional (2-D) structures include inverse hexagonal phase (H2) 

and bicelles. The H2 phase have water channels enclosed in a cylindrical lipid arrangement (Seddon, 

1990), while the bicelles are small bilayer which are disk shaped, mediating the morphology of vesicles 

(Sanders, 1998). The bicontinuous cubic phases, sponge phase and micellar cubic phases form 3-D 

nanostructures. Bicontinuous cubic phases are comprised of two continuous, nonintersecting water 

channels separated by a curved bicontinuous lipid bilayer. The internal cubic phases formed have 

crystallographic groups such as Im3m, Pn3m and Ia3d (Seddon, 1993). Similarly, the sponge phase (L3) 

is also bicontinuous in nature however is less well structured (Cates, 1991). Micellar cubic phases (such 

as Fd3m) consisting of two different sized micelles ordered on a cubic lattice (Seddon, 1996). Bicelles, 

bicontinuous cubic and sponge phases are very useful for biotechnological applications, for instance, 

for reconstitution and crystallization of membrane proteins. 

 

 
 

Figure 2.2. Types and schematic diagrams of thermodynamically stable self-assembled lipid 

nanostructures. Figure adapted from (Kulkarni, 2016). Other phases—either intermediate or 

metastable and not commonly found are discussed in Mulet (2010). 
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Research into NP drug delivery suggests that lamellar or higher order inverse liquid crystalline 

dispersions such as cubic and hexagonal phases formed by the amphiphilic systems have high 

potential for encapsulating both hydrophilic and hydrophobic drugs (Larsson, 1989; Spicer, 2005). The 

inverse matrices offer high internal surface area to volume ratio, and are stable against dilution 

making them attractive candidates for therapeutic drug delivery (Larsson, 1999; Boyd et al., 2006). 

The NAEs small headgroups and large volume hydrophobic tail allows for the formation of wedge 

shape inverse mesophases of higher ordered nanostructures such as cubic, hexagonal or reverse 

micellar L2 phases making them ideal candidates for NP drug delivery. 

In previous studies conducted at CSIRO, nanomedicine group, it was shown that that PEA and OEA 

formed crystalline NP (solid lipid NP) at room and physiological temperature, whereas the unsaturated 

linoleoyl (LEA) and linolenoyl (ɣ-LEA) formed molten mesophases at similar temperatures (Sagnella et 

al., 2010b, and 2011). The presence of an additional double bond in ɣ-LEA increases the folding 

capacity, as well also the thermal stability of lipid, when compared to LEA. As the phase behaviour 

depends on the molecular geometry of molecules, mixtures of two or more lipids, each of which 

separately form different phases, can be used to adjust phase behaviour. A mixed membrane of NAEs, 

with varying ratio of OEA and LEA was therefore hypothesised to form self-assembled lyotropic liquid 

crystalline mesophases and stable NP in aqueous solution at room and physiological temperatures. 

The amphiphilic structure of the OEA and LEA are shown in Figure 2.3.  The self-assembly properties 

of these endogenous lipids, combined with their potential therapeutic benefits makes them attractive 

candidates for further study. In this chapter, previous findings were extended and the nanostructured 

mesophase behaviour of a series of mixed monoethanolamide lipids of OEA and LEA were 

investigated.  

To date, liposomes have been successful as the gold standard nano-scale carriers of drugs, resulting 

in several NP delivery systems for cancer therapeutics (Xu et al., 2016; Ashfaq et al., 2017) and anti-

fungal drugs (Weissig et al., 2014). In previous experiments, it has been shown that targeted liposomes 

with HAP-1 peptide carrying a therapeutic load was effective for the treatment of arthritis in animal 

models (Ali et al., 2011; Vanniasinghe et al., 2014). The HAP-1 peptide is a synovium targeting peptide, 

originally isolated from rabbit FLS cells (Mi et al., 2003). 
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Figure 2.3. Molecular structures of linoleoylethanolamide (LEA), oleoylethanolamide (OEA) and ɣ-

linolenoyl ethanolamide (ɣ-LEA) amphiphiles. 3D space-filling structures made by Chemdraw 

Professional (Version 15.1). Oxygen (red), nitrogen (blue), hydrogen (orange) and carbon (grey). 

 

2.2 METHODS 

2.2.1 Materials 

Organic solvents were purchased from Merck (Victoria, Australia) and were either analytical or 

spectroscopic grade and used as received.  Ethanolamine and other reagents were purchased from 

Sigma-Aldrich (Sydney, Australia).  Oleic acid, linoleic acid and -linolenic acid were purchased from 

Nu Check Prep (Minnesota, United States of America). Polyethylene glycol-2000 (PEG2000) was 

obtained from Badische Anilin- & Sodafabrik ([BASF], Victoria, Australia).  Targeting peptides HAP-1 

(sequence: SFHQFARATLAS), and sHAP-1 (sequence: ALSRAFSHFQTA) were custom synthesised by 

Auspep (Victoria, Australia). Fluorescent lipid DiD (1, 1, dioctadecyl-3,3,3′,3′-

tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) was purchased from Molecular Probe 

(Invitrogen, Melbourne, Australia). A Milli-Q Plus ultrapure water system (Millipore, Australia) was 

used to filter deionized tap water to obtain high purity water.  
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2.2.2 Synthesis  

2.2.2.1 Monoethanolamide lipid synthesis 

Monoethanolamide lipids, OEA, LEA  and-LEA were synthesised and purified as previously reported 

to greater than 99% purity (Sagnella et al., 2009b). Briefly, the desired fatty acids (oleic acid: 20 mmol, 

5.65 g) were dissolved in dichloromethane (DCM) in a round-bottom flask and stirred vigorously on 

ice. Oxalyl chloride (40 mmol, 5 g) was then added to the resulting solution and the reaction stirred 

for a further 10 min on ice. The flask was then sealed and the reaction mixture was stirred for 2 h at 

room temperature (RT).  The solvent and oxalyl chloride were removed under vacuum using a rotary 

evaporator (Rotavapor R-210; Buchi Instruments, Germany). The resulting fatty acyl chloride was 

dissolved in DCM and slowly added drop wise into an ethanolamine solution (40 mmol, 2.44 g) in DCM. 

The reaction was maintained in an ice bath with rapid stirring. After 10 min, the reaction was returned 

to RT and stirred for 2 h. The resulting product was filtered using Whatman 542 filter paper. The 

filtered solution was then sequentially rinsed with 4% citric acid, 4% sodium bicarbonate solution, and 

Milli-Q water. DCM was then evaporated under vacuum, leaving a white powder for OEA. Similar 

procedure was used for the synthesis of LEA and -LEA to yield an waxy residue. All NAEs synthesis 

had similar yields of greater than 95%.  

2.2.2.2 Peptide synthesis 

2.2.2.2.1 Synthesis of Ole-PEG2000-OH 

Oleoyl chloride was synthesised from oleic acid and oxalyl chloride as previously mentioned.  The 

excess solvent and oxalyl chloride were removed under vacuum using a rotary evaporator. 1-2 mL of 

DCM was added to the residue and removed via rotary evaporator. This process was repeated three 

times to eliminate any excess oxalyl chloride. The oleoyl chloride (2.1 mmol, 0.65 g) was solubilised in 

DCM and added to a PEG2000 (1.4 mmol, 2.7g) solution dissolved in 20 mL anhydrous DCM. The pH 

of the reaction was adjusted between 8-9 pH using triethylamine (TEA).  The mixture was then stirred 

for 2 h at RT and the solvent evaporated off. The residue were stored at 4˚C prior to purification by 

reverse phase preparative high performance liquid chromatography (RPP-HPLC). Ole-PEG2000-OH 

had a total yield of 78.5%. 

2.2.2.2.2 Ole-PEG2000-Succinate (Ole-PEG2000-Succ)  

For succinylation of Ole-PEG2000-OH, succinic anhydride (344 mmol, 0.344 g) dissolved in 5 mL 

acetonitrile was added to a PEG2000-oleate (86 mmol, 1.72g) solution in 20 mL acetonitrile.  TEA was 

added to adjust to pH 9 and the reaction stirred at RT overnight. The solvent was evaporated under 

reduced pressure and purified on the RPP-HPLC. Ole-PEG2000-Succ had a total yield of 76%. 
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2.2.2.2.3 Ole-PEG2000-Succ linkage to HAP-1 and sHAP-1 

Commercially purchased HAP-1 peptide and its respective scrambled sequence, sHAP-1, were 

conjugated to the distal end of the PEG group. For conjugation, Ole-PEG2000-Succ (0.07465 mmols, 

176.96 mg) was dissolved in 10 mL acetonitrile. 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium 

tetrafluoroborate (TBTU), (0.1497 mmols, 48.1 mg)) dissolved in acetonitrile was added to a Ole-

PEG2000-Succ solution and stirred for 30 min at RT. For activation, one mole equivalent of N, N-

Diisopropylethylamine (DIEA), (0.07485 mmol, 48.1 mg) was added to the Ole-PEG2000-Succ solution 

and the reaction mixture was stirred for 2 h at RT. High performance liquid chromatography (HPLC) 

was then followed to monitor the reaction process.  Following the activation reaction, 100 mg of 

protected peptide dissolved in DCM was added in a 1:1 molar ratio to the solution and stirred for 2 h 

at RT, while maintaining the pH  >8 by addition of TEA. All the solvents were removed under vacuum 

using a rotary evaporator.   

A 

 

B 

 

C 

 

Figure 2.4. Molecular structures of (A) PEG2000; (B) Ole-PEG2000-Succ; (C) Ole-PEG2000-HAP-1. 

Molecular structures drawn in Chemdraw Professional (Version 15.1).  

 

2.2.2.2.4 Deprotection of conjugated HAP-1 and sHAP-1 

The protecting groups of the conjugated peptide were then cleaved off using a mixture of 

trifluoroacetic acid (TFA), water and triisopropylsilane in the ratio of 95:2.5:2.5, respectively. The 

solution was stirred for 2 h at RT, followed by removal of the solvents via a rotary evaporator.  Ether 

was added and re-evaporated three times to remove any remaining TFA. The conjugated HAP-1 and 

sHAP-1 peptide-PEG oleates were then purified respectively using the RevelerisTM flash 

chromatography and a C18 wide pore column (4g), applying a linear gradient solvent system: solvent 

A: 90% v/v water-10% v/v ethanol, and solvent B: 100% v/v ethanol. The pure fractions were pooled, 

evaporated to dryness and lyophilized by dissolving the residue in tertiary butyl alcohol and freeze 
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drying overnight. Final sample yields were 32.5% for Ole-PEG2000-HAP-1 and 41.1% for Ole-PEG2000-

sHAP-1. Molecular structures of the synthesised peptides are shown in Figure 2.4. 

2.2.2.3 Peptide purification 

2.2.2.3.1 High performance liquid chromatography (HPLC)  

Analytic HPLC was performed on Waters HPLC equipment (Waters Corporation, Milford, MA, USA), 

comprising a 600 solvent delivery system with a 600 automated gradient controller using a 

Phenomenex Gemini C18 column (5 uM, 4.6 x 150 mm) and an Grace 3300 evaporative light scattering 

detector (ELSD). The mobile phases consisted of solvent A: 50% (v/v) acetonitrile contained 50% (v/v) 

H2O and solvent B: 60% (v/v) tetrahydrofuran containing 40% (v/v) acetonitrile with 0.5% (v/v) TFA 

with flow rate 1 mL/min. Flow rate was set at 1 mL/min to elute the samples. The ELSD detector 

nebulizer temperature and nitrogen gas flow were set at 103°C and 2.9 L/min, respectively.  

Preparative HPLC was performed on a Reveleris® Prep purification system using a semi-preparative 

Reveleris® C18 columns (4-40 g Reveleris®, Grace, Victoria, Australia) and using mobile phases 

consisted of solvent A: 90% (v/v) H2O containing 10% (v/v) ethanol and solvent B: 100% ethanol. 

2.2.2.4 Peptide purity assessment 

Peptide purity was assessed by analytical HPLC using a Vydac C18 reverse-phase column on an Agilent 

1100 series HPLC system as described above.  LC/MS were used to assess molecular weight of final 

synthesised and conjugated peptides.  Nuclear magnetic resonance spectroscopy (NMR) scans were 

then used to assess the final molecular structure of the synthesised peptides. 

2.2.2.4.1 Mass spectroscopy analysis  

Samples were dissolved in pure LC-MS grade methanol and analysed using a Thermo Scientific 

Quadrupole Orbitrap (Q-exactive plus) kindly provided on loan by Thermo Scientific Australia (Sydney, 

Australia).  Samples were run on positive ion scan with MS range 200-6000 m/z. 

2.2.2.4.2 Nuclear magnetic resonance spectroscopy (NMR) 

Samples were dissolved in chloroform-d (CDCl3) to a final concentration of 15 mg/mL and measured 

on a 400 MHz Bruker Advance 400 spectrometer (Bruker, Victoria, Australia) at 25 °C and referenced 

internally to the solvent. Analysis of monoethanolamide lipids for signal assignment were carried out 

using mNova software (MestreLab, Version 12.0.2). 
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2.2.3 Amphiphile Phase Behaviour  

2.2.3.1 Differential scanning calorimetry (DSC) 

DSC was performed using a Mettler Toledo DSC 822 system equipped with a Mettler TSO 801RO 

sample robot (Mettler Toledo; Melbourne, Australia). The STARe software package (Mettler Toledo; 

Melbourne, Australia) was used to record and analyse the thermograms. 5-10 mg of sample were 

placed in aluminium crucibles and cooled to -130 °C before heating at a rate of 2.5 °C min-1 up to 120 

°C.  Thermal calibration of the ceramic sensor was performed by integration of a standard indium 

sample. DSC thermograms of the monoethanolamide mixes were recorded using the STARe software 

package (Mettler Toledo; Melbourne, Australia). 

2.2.3.2 Water penetration scans 

Direct observation of the mesophase birefringence via cross-polarizing optical microscopy (POM) 

provide a simple and rapid assessment of the lyotropic phase behaviour of the mixed amphiphilic 

system. Samples of monoethanolamide amphiphile mixtures of increasing OEA to LEA ratio/content 

were combined in an ethanol solution, vortexed harshly and evaporated to dryness, using a rotary 

evaporator.  Dried samples were then freeze-dried overnight. A small amount of mixed 

monoethanolamide amphiphile was placed onto a microscope slide and heated to melt on a hot stage 

to achieve an even lipid surface. A coverslip was placed on top of the melted amphiphile and then 

cooled to RT prior to addition of water. Water placed at the edges of the coverslip was drawn between 

the two glass surfaces to surround the solidified material by capillary action. This method constructs 

a gradient of hydration within the examined sample, ranging from fully hydrated amphiphile at the 

flooded margin to the neat amphiphile at the centre, exhibiting diversified mesophases formed 

between containing varying water content. The interaction of water and the monoethanolamide 

amphiphile at 25°C and 37°C was observed with an OlympusGX51 inverted optical microscope 

(Olympus Australia Pty. Ltd., Melbourne, Australia) in the presence and absence of polarizing lenses. 

The Linkam hot stage and sample temperature was controlled by a Linkam control processor PE94 

(Linkam PE 94, Linkam Scientific Instruments ltd, Surrey, UK). Images were captured with an Olympus 

c-5060 digital camera (Olympus Australia Pty. Ltd.; Melbourne, Australia). 
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2.2.4 Generation of NPs 

For monoethanolamide-based NP dispersions, OEA and LEA were combined in the right proportion, 

for example at 4:6 ratio, and dissolved in ethanol. A thin lipid film was formed by evaporating the 

monoethanolamide ethanol solution to dryness using rotary evaporator at 40°C. For the incorporation 

of the PEG stabilisers, the lipid film was then hydrated with a 15% (w/v) Ole-PEG2000-OH in PBS 

solution (10 mg/mL). The dispersion was then sonicated at 35°C for 1 h with intermittent probe-

sonication homogenisation (Benchmark D1000 Homogeniser, PathTech, Victoria, Australia) to allow 

hydration of the sample and formation of NP dispersions. For HAP-1 targeted-NP (NPHAP) and sHAP-1 

targeted-NP (NPsHAP), 7% (w/v) Ole-PEG2000-HAP or Ole-PEG2000-sHAP respectively, were dissolved 

in ethanol and incorporated to the phospholipid membrane via rotary evaporation prior to the 

hydration and sonication of lipid layers as previously described above.   

 

 
 

Figure 2.5. Schematic diagram illustrating the synthesis of; (A) NPnon-targeted; (B) NPHAP and (C) NPsHAP 

 



CHAPTER 2: Nanoparticle Synthesis and Characterisation 

24 

 

 

2.2.5 NP Characterisation 

2.2.5.1 Dynamic light scattering (DLS) 

The physical characterisation of the of NP’s was carried out using a Zetasizer nano ZS (Malvern 

Instruments, Worcestershire, UK) equipped with a photon correlation spectrometer. Measurements 

were performed at 25°C and the scattered light was detected at a scattering angle of 90°. Particle size 

was determined by an intensity-weighted mode and averaged over three measurements, with each 

measurement averaged over 14 scans.  

2.2.5.2 Cryogenic transmission electron microscopy (cryo-TEM)  

Cryo-TEM was employed to visualize the nanostructure of the dispersed mesophases. Samples were 

sonicated for 10 min prior and vortexed for 10 sec immediately before plunging. Droplets (4 μL) of NP 

suspensions were placed onto a 300 mesh copper grid coated with lacy formvar-carbon film (Pro-

SciTech, Queensland, Australia) and gently blotted with filter paper to obtain a thin liquid film (20-400 

nm). Following adhesion of NPs, the grid was plunged into ethane cooled by liquid nitrogen. Frozen 

grids were stored in liquid nitrogen until required. The samples were examined using a Gatan 626 

cryoholder (Gatan, Pleasanton, CA, USA) and Tecnai 12 Transmission Electron Microscope (FEI, 

Eindhoven, Netherlands) at an operating voltage of 120 Kv, equipped with a FEI Eagle 4k × 4k CCD (FEI 

Co., Eindhoven, Netherlands). Samples were viewed at 100 000–150 000 times magnification. 

2.2.5.3 Small angle x-ray scattering (SAXS) 

Small angle X-ray diffraction measurements were used for definitive phase assignment and to obtain 

lattice parameters sampling regions of interest determined from the partial binary phase diagram. 

Samples were made up to 70% excess water content by adding a known volume of HPLC-grade water 

to the preweighed dry lipid. To ensure homogeneity, samples were allowed to equilibrate for a period 

of no less than 24 h. SAXS analysis of bulk and lyotropic mesophases at excess water (70 wt%) were 

performed using a NanoSTAR laboratory SAXS instrument (Bruker, Karlsruhe, Germany). The collected 

diffraction patterns were transmission-corrected and background-subtracted. 2-D scattering images 

were radially averaged to conventional scattering plots using the Bruker software. Scattering 

intensities I(q) were plotted as a function of the scattering vector q, where q = (4π/λ)sin(θ/2), in which 

λ is the wavelength and θ is the scattering angle. Liquid crystalline mesophases gave rise to distinct 

diffraction patterns that were used as an unambiguous identification of each phase. 
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2.3 RESULTS  

2.3.1 Peptide and N-Acyl Ethanolamine Analysis 

HPLC, LC/MS and 1HNMR analyses were used to assess the purity, molecular mass and molecular 

structures of the monoethanolamide lipids, and all PEG conjugates. NMR traces of the synthesised 

peptides are shown in Appendix 1. The purity of the monoethanolamide proved to be >98%. The 

expected molecular weight of synthesised lipids, commercially purchased peptides and synthesised 

conjugated peptides are summarised in Table 2.1. 

 
Table 2.1. Summary of expected molecular weight of synthesised lipids, commercially purchased 

peptides and synthesised conjugated peptides 

 

Compound Molecular Weight 

OEA 325.54 

LEA 323.52 

ɣ-LEA 321.52 

HAP-1, sHAP-1 (protected) 2259 

HAP-1, sHAP-1 (deprotected) 1336 

PEG2000 ~2000 

Ole-PEG2000 2264 

Ole-PEG2000-Succ 2364 

Ole-PEG2000-Peptide (protected) 4605 

Ole-PEG2000-Peptide (deprotected) 3682 

 

 

2.3.1.1 Assessment of Ole-PEG2000-Succ 

To assist with NP stability, Ole-PEG2000-OH was synthesised and later incorporated into the NP lipid 

membrane. For succinylation, succinic anhydride was conjugated to Ole-PEG2000-OH to obtain Ole-

PEG2000-Succ. Homing peptides was later conjugated to Ole-PEG2000-Succ and incorporated into 

targeted NP.  Reaction mixtures of both Ole-PEG2000-OH and Ole-PEG2000-Succ were examined by 

HPLC and purified by RPP-HPLC for a total yield of 78.5% and 76% respectively. Assessment of the 

PEGylated samples by MS showed populations of correct mass to charge ratios (Figure 2.6).  
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Figure 2.6. MS analysis of (A) PEG2000; (B) Ole-PEG2000-OH and; (C) Ole-PEG2000-Succ confirmed 

the correct mass of synthesized PEGylated lipids.  
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2.3.1.2 Assessment of Ole-PEG2000-HAP-1 and Ole-PEG2000-sHAP-1 

Commercially purchased HAP-1 peptide and its respective scrambled sequence, sHAP-1, both used 

with temporary protected groups, were conjugated to the N-terminal of the Ole-PEG2000-Succ PEG 

group. This technique allowed for the formation of an amide bond between the functionalised COOH 

group of the PEG and free amino group on the n-terminal of the peptide. HPLC was used to monitor 

the reaction progress. MS confirmed the correct weight of the PEGylated lipids conjugated to their 

protected peptides counterparts; as shown in Figure 2.7. 

 

Figure 2.7. MS analysis of (A) Ole-PEG2000-HAP-1 and; (B) Ole-PEG2000-sHAP-1 confirmed the 

correct weight of conjugated protected peptides to Ole-PEG2000-Succ. 
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Following conjugation, the bound peptide was cleaved off its protecting side-chain groups. HPLC and 

MS confirmation of a completely deprotected HAP-1 and sHAP-1 peptide are supplied in Appendix 2. 

The reaction progress was monitored by HPLC and LC/MS for presence of pegylated peptide with 

protecting groups. Reaction mixtures of both Ole-PEG2000-HAP-1 and Ole-PEG2000-sHAP-1 were 

purified by RPP-HPLC, with final sample yields of 32.5% and 41.1% respectively. LC/MS and confirmed 

the correct weight of the deprotected peptides conjugated to PEGylated lipid counterparts (Figure 

2.8).  

 
Figure 2.8. MS analysis of (A) Ole-PEG2000-HAP-1 and; (B) Ole-PEG2000-sHAP-1 confirmed the 

correct weight of conjugated deprotected peptides to Ole-PEG2000-Succ. 
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2.3.2 Synthesis of Monoethanolamide Lipids; OEA, LEA and ɣ-LEA 

Synthesis of lipids were examined by HPLC and purified by RPP-HPLC. Both NAEs synthesis had similar 

yields of greater than 95%. Assessment of the monoethanolamides lipids by MS showed populations 

of correct mass ratios (Figure 2.9). 

A 

 

B 

 

Figure 2.9. MS analysis of (A) LEA and; (B) OEA confirmed the correct weight of the synthesised lipids. 
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2.3.3 Amphiphile Phase Behaviour 

2.3.3.1 Thermal phase behaviour of the neat endocannabinoids  

To examine the thermal behaviour of the neat amphiphiles LEA, ɣ-LEA and OEA, and the influence of 

chain morphology in the melting behaviour of the amphiphile mix, bulk mixtures of increasing LEA to 

OEA ratios were prepared and DSC scans performed at 2.5 °C/min. Figure 2.10 shows the melting 

behaviour of amphiphile mixtures composed of LEA and OEA, representing one single melting point 

of each mixture. The onset of one melting point for various mixture indicates that the two amphiphiles 

were mixed homogenously without any phase separation. A small endothermic peak at lower 

temperatures was observed in most of the amphiphiles mixtures, likely due to a polymorphic 

transition of the unsaturated chains previously reported (Sagnella et al., 2010b). 

Table 2.2 shows the transition temperatures obtained from the peak maxima of the DSC scans.  LEA 

showed an endothermic peak with melting point at 40.4°C and OEA had a large endothermic melting 

point at 63.5°C. The melting behaviour of the amphiphiles was shown to be dependent on intrinsic 

differences in chain morphology and showed a systematic monotonic shift, which were dependent on 

the degree of unsaturation in the mixed hydrocarbon chains.  DSC scans of OEA mixtures with ɣ-LEA, 

show a comparable shift in transition temperature to that seen with LEA/OEA mixtures. Table 2.3 

shows the transition temperatures obtained from the peak maxima of the DSC scans. As shown, 

mixtures containing ɣ-LEA exhibited melting peaks at lower temperatures (Table 2.3), demonstrating 

the influence between the hydrogen bonding and unsaturation in dictating the melting behaviour. 

 

Figure 2.10. DSC of monoethanolamide lipids with increasing OEA to LEA ratio showing a shift to higher 

transition temperatures as OEA content increased. Scan rate 2.5°C/min.  
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Table 2.2. Neat monoethanolamide lipid, LEA and OEA, phase transition data determined from DSC 

scanned at 2.5°C/min. 

Surfactant Transitional 

temperatures (°C) 

Transition 

enthalpy (kJ/mol) 

Melting point 

(°C) 

     100% OEA 62.10 -115.17 63.55 

90% OEA 10% LEA 60.50 -113.99 61.69 

80% OEA 20% LEA 57.45 -108.15 59.40 

70% OEA 30% LEA 55.53 -99.59 57.00 

60% OEA 40% LEA 52.39 -89.93 54.01 

50% OEA 50% LEA 46.46 -88.98 49.67 

40% OEA 60% LEA 45.73 -82.98 48.38 

30% OEA 70% LEA 39.53 -79.24 43.00 

20% OEA 80% LEA 39.95 -93.73 41.15 

10% OEA 90% LEA 39.57 -103.75 40.18 

      100% LEA 38.79 -100.39 40.00 

 

 

Table 2.3: Neat monoethanolamide lipid’s, OEA and ɣ-LEA, phase transition data determined from DSC 

scanned at 2.5°C/min. 

Surfactant Transitional 

temperatures (°C) 

Transition 

enthalpy (kJ/mol) 

Melting point 

(°C) 

90% OEA 10% ɣ-LEA 53.96 -69.91 56.75 

80% OEA 20%  ɣ-LEA 51.22 -63.14 54.91 

70% OEA 30%  ɣ-LEA 52.25 -53.16 53.59 

60% OEA 40%  ɣ-LEA 44.55 -35.01 51.39 

50% OEA 50%  ɣ-LEA 46.88 -36.07 49.81 

40% OEA 60%  ɣ-LEA 36.21 -16.77 41.06 

30% OEA 70%  ɣ-LEA 30.82 -13.49 41.14 
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2.3.3.2 Lypotropic phase behaviour of monoethanolamide amphiphiles 

Initially, lypotropic phase behaviour of neat amphiphilic mixes were assessed using water penetration 

scans under POM.  Under cross polarisers, inverse structures such as cubic and micellar phases appear 

as dark isotropic bands while anisotropic phases such as lamellar and hexagonal phases are 

birefringent with well characterised textures (Rosevear, 1954). Representative POM images of the 

amphiphilic mixtures are shown in Figure 2.11. Inspection of the monoethanolamide lipids by POM 

demonstrated the ability of both OEA and LEA to self-assemble in the presence of a polar solution.  

At 25°C, non-hydrated samples of both pure OEA and LEA, as well as all mixed ratios showed a 

crystalline structure with a distinct birefringence as indicated by the top row in Figure 2.11A. In excess 

water, 100% LEA amphiphile showed the formation of an isotropic molten mesophase at the flooded 

boundaries, perhaps an L2 mesophase at both 25°C and 37°C. At lower water content, isotropic 

mesophases likely to be cubic was observed between the excess amphiphile and the neat amphiphile 

for 100% LEA. As the amount of OEA increased, the mesophases at the excess water boundary 

transformed to isotropic mesophases displaying two to three distinct bands at the water–amphiphile 

interface. These bands are likely to be attributed to cubic mesophases of various symmetries such as 

Im3m, Pn3m, and Ia3d. The full three cubic mesophases were further obvious at 37°C by three distinct 

isotropic bands at the water boundary.  As the percentage of OEA increased to more than 80%, there 

was less hydration of the mixed amphiphile and the formation of either hydrated or crystalline 

lamellar structures became apparent.  The melting point of the mixed amphiphile membrane were 

significantly above physiological temperature, leading to crystalline membrane at 25°C and 37°C.  

These results corresponded well with results obtained by DSC. 

The lypotropic phase behaviour of mixtures containing triple bonded ɣ-LEA are shown in Figure 2.11B. 

Similarly to polymorphic changes observed in LEA and OEA mix, Figure 2.11B shows a shift in the 

mesophase behaviour from cubic to lamellar as OEA content is increased (Figure 2.11A). The primary 

defining factor which separates the two mixtures is the temperature at which the isotropic mixtures 

melt. In the case of LEA, the mixtures containing 60% OEA were required at achieve stable 

conformation at temperatures of 37°C. For ɣ-LEA, the isotropic phases formed from mixtures 

containing 60% OEA at 25°C were stable up to 30°C. At elevations above 35°C, the mixtures became 

isotropic melts. ɣ-LEA’s triple bond required a greater percentage of OEA to achieve mesophases 

stable at physiological temperature, and so only mixtures of LEA and OEA (and not ɣ-LEA and OEA) 

were used for further studies.  
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A 
      100% LEA         20% OEA        40% OEA         60% OEA            80% LEA            100% OEA 

 
 
B 
      100% LEA          20% OEA          40% OEA           60% OEA            80% LEA            100% OEA 

 

Figure 2.11.  Optical microscopy of neat monoethanolamide lipids (A) LEA and OEA; (B) ɣ-LEA and 

OEA amphiphile mixtures at varying LEA to OEA ratios. Images acquired at 25°C and 37°C before and 

after hydration from a fixed position (magnification X100). Different mesophases are observed from 

pure water (bottom) to neat amphiphile at the top. In the 20% to 40% LEA distinct isotropic 

mesophases are observed. Polymorphic changes in the mesophases from cubic to a more lamellar 

phases were observed as the OEA to LEA ratio increased. 
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2.3.3.3 SAXS analysis of bulk phase  

To assess the phase behaviour of the amphiphiles, SAXS analysis on the bulk and lyotropic mesophases 

of various LEA/OEA mixed amphiphiles was conducted to obtain a better understanding of the liquid 

crystalline structures of the mixed amphiphiles. Approximate partial binary phase diagrams were 

constructed by examining amphiphile/water mixtures over a range of temperatures. SAXS analysis 

also provided information into whether the two amphiphiles have been mixed well into one lyotropic 

mesophase.   

 
A       B 

 
C       D

 
 

Figure 2.12.  SAXS analysis of (A) bulk and; (B-D) lyotropic mesophases of mixed LEA/OEA in excess 

water (70 wt%). The lyotropic mesophases were equilibrated for 48 h and analysed using a laboratory 

SAXS instrument equipped with a Peltier temperature control chamber at; (B) 25°C and; (C) 37°C. 

Lyotropic mesophases of 60% LEA at various temperatures, showing cubic mesophase of a Pn3m 

space group are shown in (D).    
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1D SAXS scattering pattern of the neat amphiphile are shown in Figure 2.12A.  All the amphiphilic 

mixes examined showed a relatively sharp peak in addition to a broad peak. The presence of only one 

scattering peak suggests that the amphiphiles were well mixed, consistent with our DSC results. For 

100% LEA, a sharp peak at ~0.132 Å-1 was observed and is indicative of an ordered lamellar mesophase 

with a lattice parameter of 47.78 Å.  The lattice parameter of the lamellar phase at 100% OEA was 

49.70 Å. A broader peak at 0.205 Å-1 was also observed, which is indicative of an accompanied weakly 

ordered mesophase. As the OEA content was increased in the mixed amphiphile, the peak 

progressively transformed to lower q values, indicative of a slightly larger lattice parameter.  

Representative lyotropic mesophase of the hydrated mixed samples at 70wt% water (excess water) 

was also investigated and shown in Figure 2.12B.  The SAXS of bulk mixed NAEs confirmed our 

observation by POM. The scattering pattern of various amphiphiles mixes ranging between 100% LEA 

to 50% LEA showed the formation of varying ordered nanostructures at 25°C. At 100% LEA, the 

lyotropic mesophase showed a broad scattering peak with maximum at 0.147 Å-1, which is different 

from the broad peak observed in its neat amphiphiles (Figure 2.12A). In addition, the sharp peak of 

the neat 100% LEA amphiphile observed in Figure 2.12A, was not observed in the hydrated 100% LEA 

mesophase, shown in Figure 2.12B. 

The shift to a lower q value from those observed in the neat amphiphile is indicative of a swollen L2 

mesophase with a weakly ordered nanostructure. As OEA ratio is increased, the molten mesophase 

changed slightly and a sharp peak appeared at 0.147 Å-1.   At 70% LEA a mixed cubic mesophase, along 

with a crystalline lamellar peak at q=0.143 was observed.  At 60% LEA, the cubic mesophase became 

more dominant. At 50% LEA the observed cubic mesophase was transformed to a mixed cubic and 

lamellar mesophase. 

The lypotropic mesophases of the hydrated mixes was also assessed at 37°C (Figure 2.12C). Raising 

the temperature of the above hydrated samples to a physiological temperature resulted in more 

molten L2 mesophase for 90-70% LEA amphiphile mixes. At 60% LEA, a mono cubic mesophase with 

the Pn3m symmetry was developed. At 50% LEA, there was a shift from sole cubic mesophases (as 

seen in 60% LEA), to both cubic mesophase mixed with a lamellar liquid crystalline mesophase. From 

the various ratios investigated here, 60% LEA mixed amphiphile showed a sole cubic mesophase of 

Pn3m symmetry, which was stable up to physiological temperatures. Figure 2.12D shows the shift in 

lattice parameter of 60% LEA / 40% OEA mix. The lattice parameter of this mesophase decreased as 

the temperature increased by shifting the scattering peaks towards higher q values. The results are 

consistent with the POM observations and shows stable NP formations obtained at 60% LEA. 60% 

(w/w) LEA and 40% (w/w) OEA NP composition was selected to be used in all future experiments.  
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2.3.4 NP Characterisation 

2.3.4.1 Lipid NP dispersions size 

The average hydrodynamic radii of the dispersed NP using 15% PEG2000-lipid measured by DLS was 

170 d.nm with a polydispersity index of 0.124 as shown in Figure 2.13.   

 

 
 

Figure 2.13. Size distribution of NP composed of 40% (w/w) OEA and %60 (w/w) LEA as distributed 

by intensity. 

 

2.3.4.2 NP morphology 

Cryo-TEM was used to acquire high-resolution direct images of the NP size and structure Figure 2.14 

Colloidal dispersions of 40% (w/w) OEA and %60 (w/w) LEA NP’s showed the production sponge-like 

NP’s (spongosomes), co-existing with liposomal NP’s. The size and uniformity of the NP, sized at 180 

d.nm, in agreement with the physiochemical characterisation obtained by the Zetasizer and the 

number average. The size by intensity was larger to an average of 180 due to some larger NPs shown 

in Figure B. Observation of NP’s at higher magnification highlighted the difference in structure 

between the synthesised spongosomes and liposomes (Figure 12.14B). Observation of the 

spongisomes at higher magnification showed the presence of internal water channels (shown by white 

arrows), appearing as small vesical inside the darkened NP. Whilst similar to cubosomes, these internal 

water channels were less ordered and so take on a sponge phase instead of the highly ordered inverse 

cubic phase. By contrast, the liposomes single dark circular boarder is the result of water encapsulated 

vesicle with no internal water channels. 
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A 

 
 

B 

 
 

Figure 2.14. Cryo-TEM images of NP dispersions made from 40% (w/w) OEA, 60% (w/w) LEA 

stabilised with 15% PEG2000-OH showing the production of sponge-like NP. (B) NP’s at higher 

magnification showing the formation of spongosomes.  

spongosome
e liposome 
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1D SAXS scattering pattern of the NP dispersions with and without HAP-1 targeting is shown in Figure 

2.15. Assessment of the NP structure by SAXS supports the formation of sponge-like NP at 40% (w/w) 

OEA, 60% (w/w) LEA stabilised with 15% PEG2000-OH. Both dispersions showed colloidal particles 

with less ordered internal nanostructures, in contrast with the bulk lyotropic phase behaviour 

described above. The lack of highly ordered internal nanostructure is likely due to the addition of PEG 

lipids at 15wt %. Less PEG-lipid led to NPs with less stability over time. 

 

 

Figure 2.15. SAXS analysis of targeted and non-targeted 40% (w/w) OEA, 60% (w/w) LEA 

composed NP’s stabilized with 15% PEG2000-OH.  
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2.4 DISCUSSION 

The aqueous phase behaviour of amphiphilic molecules has important applications in a variety of fields 

such as biotechnology and drug delivery. In this study, the synthesis and physiochemical 

characterisation of monoethanolamide endocannabinoid lipids, LEA and OEA, and their ability to self-

assemble into highly ordered NP has been demonstrated. The nanostructures formed by amphiphiles 

is dictated by local constraints imposed by the molecular structure, as well as external factors such as 

temperature, pH, ionic strength of the solution, excipient compositions and stabilising agents. For 

these two endocannabinoid molecules, the unsaturated hydrophobic chains were important in 

dictating their self-assembly behaviour. The presence of two cis-links in LEA as well as the introduction 

of an additional double unsaturated bond effectively shortens the amphiphiles hydrophobic chain 

length, leading to more splay in the membrane to accommodate its chain volume.  In contrast, OEA 

with a single unsaturated long hydrophobic chain occupied minimal volume. By adjusting the ratio of 

lipid building blocks, the degree of unsaturation could be tailored to achieve lyotopic liquid crystalline 

mesophases and stable NP in an aqueous solution at physiological temperatures.  

DSC results demonstrated a systematic shift in transition peak of the mixed amphiphilic was achieved 

by the increasing incorporation of OEA. By contrast, increasing LEA content decreased the melting 

temperature of the OEA/LEA mixes, which was more pronounced in mixtures containing Y-LEA. The 

primary difference between the two LEA’s is due to the structure of the amphiphile molecule.  LEA 

contains two unsaturated double bonds, while ɣ-LEA contains three. The additional double bond in ɣ-

LEA further disrupts the lateral packing of the molecule, lowering the temperature at which the 

hydrophobic chain melts.  

In addition to thermal stability, lipotropic phase behaviour of the monoethanolamide mixes was 

investigated using water penetration scans by POM and SAXS. Differences in refractive index of 

isotropic phases viewed under phase contrast allows for determination of the number of isotropic 

bands. The sequence of phases formed from the water–amphiphile interface along with their evident 

viscosity and texture formation provides indicative evidence for phase identification. Similar to results 

obtained by DSC, the phase behaviour observed was dictated by the degree of unsaturation and 

displayed polymorphic changes in the crystal structure at various temperatures and various ratios of 

the LEA to OEA. Assessment of phase behaviour of mixtures by POM and SAXS demonstrated the 

ability of a mixed ratio of 40% OEA and 60% LEA to self-assemble into highly ordered 3D cubic 

mesophase and form stable NPs in an aqueous solution. These structures were stable at both RT and 

physiological temperature, whereas LEA and OEA alone formed molten phase NPs and solid lipid NPs 

respectively. All other mixed samples formed either mixed mesophases that transformed to other 

mesophases at physiological temperature or formed mixed lamellar crystalline mesophase.  
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Assessment of the NP structure of by cryo-TEM showed the production sponge-like NP’s 

(spongosomes), co-existing with liposomal NP’s. While the formation of sponge-like NP is inconsistent 

with cubic phase liquid crystalline mesophases of the bulk amphiphiles observed in excess water under 

POM, it can be accounted for by the addition of 15% PEG2000-OH. Inclusion of the hydrophilic polymer 

chains, such as PEG, has been shown to increase both the solubility (Pasut, 2012) and molecular weight 

of the NP extending its half-life in circulation and improving its pharmacokinetics (Abuchowski et al., 

1977). However, incorporation of PEGylated lipids have also been shown to impact the folding of the 

lipid amphiphiles in the aqueous solution. Consistent with this, comparison of the PEGylated system 

using cyro-TEM to the bulk phases observed in excess water highlights the influence of PEG2000 on 

the formation of liquid crystalline phase and the formation of sponge like NPs. When mixed with 

monoethanolamide mix, PEG’s long chain promoted the formation of structures with less curvature, 

flattening the self-assembly and previously obtained lyotropic cubic mesophases.   

Together, I have demonstrated that 40% OEA and 60% LEA is the optimum ratio of the mixed 

amphiphiles to form stable liquid crystalline mesophases at physiologically relevant temperatures. The 

ability of the monoethanolamide lipids to self-assemble into 3D NP offers a greater loading cargo, with 

potentially greater analgesic and anti-inflammatory effect. This mixed ratio was used in the 

investigation of biological activities in-vitro and in-vivo experiments. 

 

2.4.1 Summary  

This study clearly demonstrates and defines the conditions for a mix of endocannabinoid fatty acid 

monoethanolamides at the ratio of 40% OEA and 60% LEA to self-assemble into highly ordered 3D 

cubic mesophase and form stable NP at dilution in an aqueous solution. These structures are stable at 

both RT and physiological temperature, whereas LEA and OEA alone forms molten phase NP and solid 

lipid NP respectively. The ability of the monoethanolamide lipids to self-assemble into 3D cubosomes 

offers a greater loading cargo, with greater potential analgesic and anti-inflammatory effects.  
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CHAPTER 3: NANOPARTICLE LOCALISATION 

3.1 INTRODUCTION 

RA is a common auto-immune disorder characterised by chronic persistent inflammation of the 

synovial tissue that forms a pannus and ultimately leads to the destruction of articular cartilage and 

joints (Aletaha & Bluml, 2016).  Although the exact aetiology remains unknown, it is generally accepted 

that RA is a multifactorial disease in which the immune cells and the FLS of the synovium play an 

important role (Bartok & Firestein, 2010). The identification of key players of inflammation and 

pathologic immune response in RA has resulted in the development of novel therapeutic strategies 

revolutionising the treatment of the disease. Newer agents that target FLS to the synovium could 

potentially improve current therapies and may provide opportunities to extend beyond the mere 

suppression of inflammation and to interfere with key disease processes in RA. 

Traditionally, therapies for RA included a variety of drugs such as nonsteroidal anti-inflammatory 

drugs (NSAIDs) and disease modifying anti-rheumatic drugs (DMARDs) (Feely & O'Dell, 2010; Hoes et 

al., 2010). Whilst DMARDs have been shown to limit progressive joint damage and improve function, 

they are often associated with unfavourable side-effects limiting their application (Grove et al., 2001; 

Choy et al., 2008; Leon et al., 2018). More recently, the introduction of ‘biologicals’, which target pro-

inflammatory and immunomodulatory cytokines through neutralising antibodies have demonstrated 

favourable disease outcomes when used in combination with DMARDs (Curtis & Singh, 2011; Inui & 

Koike, 2016). While the effects of cytokine-targeting/antibody therapies are encouraging, restricted 

efficacy due the induction of anti-drug antibody responses in chronic conditions such as RA and 

increased infection susceptibility at injection times remain an important limiting factor in the 

application of biologics (Bathon et al., 2000; Lipsky et al., 2000; Kourbeti et al., 2014). Collectively, 

there remains a growing unmet clinical need for the development of effective strategies that target 

and deliver therapeutic agents to the synovium for RA. 

One such novel, strategic approach is through the use of NPs which have the potential to revolutionise 

the diagnosis and treatment of a variety of diseases, notably in the treatment of cancer (Davis et al., 

2008; Zhang et al., 2008).  Having defined the ability of a mix of OEA and LEA to form lipid NP 

dispersions (Chapter 2), the next few chapters investigates the NP’s potential therapeutic benefits. 

Drug encapsulation into NPs offers numerous advantages during delivery including improved 

solubility, enhanced half-life and a favourable therapeutic index (Park et al., 2009; Wang et al., 2009). 

As the internal payload is masked, NP-encapsulated drugs are protected from early activation and 

degradation in circulation, thereby reducing systemic toxicity and the toxicity-benefit ratio (Zhang & 

Granick, 2006).  



CHAPTER 3: Nanoparticle Localisation 

42 

 

Whilst research into NP therapeutics has shown success, very few biodegradable and safe polymeric 

particles have been explored making the endogenous nature of these NAE-based NP’s unique. NP drug 

encapsulation can overcome limitations such as low bioavailability and unfavourable 

pharmacokinetics which frequently restrict drug candidates (Petros & DeSimone, 2010).  Such can be 

seen in the higher order lipid NP, which allows the encapsulation of both hydrophilic drugs within the 

internal water channels and hydrophobic drugs within the lipid bilayer (Zhang et al., 2008; Irby et al., 

2017). Further to the NP’s material choice, modification of NP in-vivo kinetic properties through 

surface functionalisation will help overcome biological barriers during circulation and achieve tissue 

targeting (Souhami et al., 1981; Alexis et al., 2008; Decuzzi et al., 2010).  Incorporation of PEG2000’s 

hydrophilic polymer chains increases both the solubility (Pasut, 2012) and molecular weight of the NP, 

extending its half-life in circulation (Abuchowski et al., 1977).  The higher molecular weight of the 

pegylated NP may also benefit from enhanced permeability and retention (EPR) effect resulting in 

passive targeting to the inflamed joints. Finally, conjugation of a synovium targeting peptide, HAP-1, 

to the surface of our NP’s will facilitate the delivery of therapeutic agents to the inflamed joint. It has 

previously been shown that conjugation of HAP-peptide facilitated the internalisation of large marker 

protein complexes into synovial cells in culture and in-vivo in a synovial cell-type-specific manner (Mi 

et al., 2003). In a separate study, direct linkage of HAP-1 to immunosuppressive peptide (Core peptide, 

CP) enhanced drug localisation and bioavailability to the inflamed joints than CP alone (Ali et al., 2011).  

In this chapter, the targeting capabilities of both the NPnon-targeted and NPHAP were examined. In-vitro 

uptake of NPnon-targeted and NPHAP by human FLS and rabbit FLS cells was investigated using flow 

cytometry and imaged by confocal microscopy. Investigation of homing peptide, HAP-1, binding was 

also examined in h-FLS, RA-FLS and OA-FLS cells. In-vivo, localisation of fluorescently labelled NPnon-

targeted, NPHAP and NPsHAP in both normal and arthritic rats was tracked using NIR. Finally, the 

pharmacokinetic profile and in-vivo bio-distribution of NPnon-targeted and NPHAP in arthritic rats were 

examined to assess their targeting capabilities and potential application as a novel drug delivery 

system for arthritis. 
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3.2 METHODS 

3.2.1 Materials 

Targeting and biotinylated peptides were custom made by Auspep (Melbourne, Australia). Supplied 

peptides were shown to be of high purity (>80%) by RP-HPLC. Human FLS cells, h-FLS, RA-FLS and OA-

FLS, and synoviocyte growth medium were purchased from Cell Applications Inc (California, USA). HIG-

82 cells were purchased from ATCC (Virginia, USA). Ham’s F12 cell growth medium (Gibco, OK, USA), 

L-glutamine, penicillin, streptomycin, ethylenediaminetetraacetic acid (EDTA), 1,1'-Dioctadecyl-

3,3,3',3'-Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate salt (DiD) streptavidin-FITC and 

DAPI were purchased from Thermo Fischer Scientific (North Ryde, Australia). TRITC-phalloidin and 

other cell culture materials including fetal bovine serum (FBS), bovine serum albumin (BSA), 6-well 

plates, and glass coverslips were purchased from Sigma Aldrich (Sydney, Australia).  

3.2.2 Generation of NPs 

The NP used in this chapter were prepared as previously described in Section 2.2.2. 

2.2.2.1 Fluorescent labelling of NPs 

For fluorescent NPs, lipophilic fluorochrome tracer, DiD, was incorporated into the lipid membrane of 

the NP and used for in-vitro uptake and localisation studies. Briefly, the lipids 40% (w/w) OEA and 60% 

(w/w) LEA, and 1% (w/v) DiD were dissolved in ethanol and a thin lipid layer formed under rotary 

evaporator at RT as previously described in Section 2.2.2. Hydration and sonication were performed 

for the formation of fluorescent NP dispersions.  

3.2.3 Cell Culture 

Human FLS cells; healthy-FLS (h-FLS), RA FLS cells (RA-FLS), and OA FLS cells (OA-FLS) were cultured 

and maintained in synoviocyte growth medium at 37°C and 5% CO2. Similarly, HIG-82 cells were 

cultured in Ham’s F12 medium supplemented with 2 mM L-glutamine, 50 units/mL penicillin, 50 µg/mL 

streptomycin and 10% heat-inactivated FBS at 37°C and 5% CO2. The cells used were from early 

passages (passage 3-7).  

3.2.4 Immunofluorescence of HAP-1 binding 

For confocal studies, FLS and HIG-82 cells were seeded at a 3 x 104 cells onto glass coverslips and 

incubated overnight at 37°C. HAP-1-biotin and sHAP-1-biotin were incubated with streptavidin-FITC. 

The biotinylated-streptavidin conjugates were then incubated with cells at 37°C for 3 h. Following 

incubation, the slides were washed with washing buffer (PBS, 1% FBS) to remove non-specific staining 
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and fixed with 2% paraformaldehyde for 20 min on ice.  Slides were again washed and the actin 

cytoskeleton stained using TRITC-phalloidin (1:2000 dilution). After washing, DAPI (1:5000 dilution) 

was used to stain the cell nuclei. Following incubation, slides were then washed with PBS and 

embedded in mounting medium Fluorsave Reagent (Calbiochem, San Diego, USA). Images of cells 

were captured using an Olympus FV confocal laser scanning microscope (Olympus, Victoria, Australia) 

3.2.5 Confocal Imaging of NPHAP and NPnon-targeted in FLS Cells  

The cellular binding of DiD-labelled NPnon-targeted and NPHAP with h-FLS was evaluated using confocal 

microscopy. h-FLS cells were seeded at 5 x 106 cells onto glass coverslips and incubated overnight at 

37°C. Adherent cells were then washed with PBS and incubated for 3 h with either DiD labelled NPnon-

targeted or NPHAP (30 μg/mL) at 37°C. Following incubation, cells were washed three times with PBS (4°C) 

and fixed with 2% paraformaldehyde.  After washing with PBS, slides were embedded in mounting 

medium Fluorsave Reagent and NP cell-uptake captured using an Olympus FV confocal laser scanning 

microscope. 

3.2.6 Fluorescence Assisted Cell Sorting (FACs) 

Flow cytometry was used to assess the NP in-vitro cellular binding in culture models.  h-FLS and HIG-

82 cells were seeded at a density 5 x 105 into 6 well plates and grown to confluence. After 48 h, 

medium was replenished and replaced with medium containing 30 μg/mL fluorescently labelled NPnon-

targeted or NPHAP. Cells were then incubated for 1 h, 3 h and 18 h at 37°C.  To assess if NP uptake was 

affected in inflammatory conditions, confluent cells were stimulated with TNF- (10 ng/mL) for 24 h 

at 37C prior to the addition of NPs.  For assessment of NP dye leakage, NP were incubated with h-FLS 

cells for 3 h at 4°C. Untreated cells and free DiD dissolved in DMSO were used as controls.  Following 

incubation, medium was removed and the cells washed three times with FACs buffer (PBS 

supplemented with 1% BSA) to remove surface-associated NPs. Cells were then detached using 

trypsin/EDTA (0.5 mM) and fixed in 1 mL of 4% paraformaldehyde in PBS solution for 1 h. The stained 

and fixed cells were stored in the dark at 4°C and the NP uptake measured as fluorescence intensity 

was analysed on a flow cytometer.  

3.2.6.1 Quantification of NP-cell complexes by flow cytometry  

The method used for flow cytometry in this chapter was modified from that published by Snipstad et 

al (2017). Fluorescence from cells was measured using BD FACS Cantroll analytic flow cytometer (BD 

Bioscience, San Jose, CA) and acquired with FACSDiVa v.6 software. DiD-NP were excited at 644 nm, 

and fluorescence emission detected at 665 nm using a 20-nm band-pass filter. A minimum of 500,000 
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cells were counted per sample. Selective exclusion of cellular fragments and debris from analysis was 

achieved by the subjective collection gating from distribution in the side-scatter (SSC) versus forward 

scatter (FSC) dot plot. To determine the extent of DiD uptake by the cells, a histogram was drawn with 

the x-axis set for cell fluorescence (detection of DiD) and the y-axis set to cell count. Settings for the 

flow cytometry machine were kept constant between the incubation times for both cell lines to ensure 

that mean intensity acquired by the gated peaks were constant.   Collected data was analysed using 

FlowJo Software (Version 10.2).  

3.2.7 Animals 

Female Wistar rats (240 – 250 g, 8 to 9 weeks old) were purchased from Animal Resources Centre 

(Perth, WA, Australia). Rats were housed three per cage and provided with standard lab chow and 

water ad libitum. Rats were left to acclimatise for 2 weeks prior to  any experiment. For in-vivo 

localisation experiments, rats were housed in Kolling Institute’s Kearn’s Animal Facility located within 

Royal North Shore Hospital (RNSH), Sydney. Animal experiments were performed at RNSH because 

the near infrared (NIR) machine was located in the facility. Experiments performed at the Kolling 

Institute were in accordance with Sydney Northern Area Health Animal Ethics guidelines (Ethics 

Approval Number: RESP 15/15).   All other in-vivo work was conducted at the Westmead Animal 

Housing facility, located within Westmead Hospital, Sydney. Experiments performed at Westmead 

were in accordance with Western Sydney Local Health District Animal Ethics guidelines (Ethics 

Approval Number: 5105.08.12).   

 
3.2.7.1 Adjuvant induced arthritis (AIA) 

To induce arthritis, a single subcutaneous injection of lyophilised Mycobacterium tuberculosis (MTB) 

suspended in 100 μL of squalene was administered at the base of the tail as previously described 

(Manolios N, 1997). On average, arthritis developed 11-14 days post MTB injection. During this time, 

rats were monitored for any changes in wellbeing and pain and 0.05 mg/kg Temgesic (buprenorphine, 

324 μg/mL) administered subcutaneously every 8-12 h when signs of pain or distress were shown. 

Rats were deemed to be arthritic when redness and swelling was present in the same joint(s) over two 

consecutive days.  
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3.2.8 In-vivo Localisation of NPs 

To assess NP localisation in-vivo, fluorescently labelled NPnon-targeted, NPHAP and NPsHAP were 

intravenously injected (i.v.i) into the tail vein of both normal and arthritic rats and localisation tracked 

using a NIR imager. Rats were divided into three groups of five rats and administered either NPnon-

targeted, NPHAP or NPsHAP, i.v.i. Rats were anaesthetised under isoflurane/oxygen (2% v/v isoflurane in 1 

litre/min O2) and NP (24 mg/kg) administered once, i.v.i. The animals remained anaesthetised and 

placed prone on a gamma camera (Siemens Medical Systems, IL, USA) equipped with a low energy 

high resolution collimator.  NP in-vivo localisation was captured 24 h for 10 min using Fourier 

Transform Near Infrared Spectroscopy (FT-NIR) spectrometer (Bruker, Victoria, Australia). The images 

were acquired using matrix: 256 x 256 and zoom: 2.29. For optimum DiD intensity, emission was taken 

at 700 nm with a corresponding excitation of 650 nm.  Program ‘Image J’ (Version 1.51) was used on 

the region of interest (ROI) on the chosen arthritic joint of each rat for each time point. X-rays were 

used to confirm the anatomical position of the region for a single case (Figure 3.1). The values reported 

were obtained by first averaging the signal value determined in the joints then by subtracting its 

background value from the signal obtained at each time-point for each joint.  

 

A      B         C 

 

Figure 3.1. NIR localisation screening of (A) NIR capture of whole body; (B) X-ray capture of the same 

rat and; (C) A and B overlay.  
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3.2.9 In-vivo Pharmacokinetics and Bio-distribution   

For assessment of NP pharmacokinetics and in-vivo biodistribution, arthritis was induced as stated in 

Section 3.2.7.1. Arthritic rats were then divided into four groups of five rats and treated as follows; 

untreated control (ART-CON); vehicle control (PEG/PBS, ART-PBS); NPnon-targeted (ART-NPnon-targeted) and; 

NPHAP (ART-NPHAP).  NP treated rats received an exact dose of 24 mg/kg administered i.v.i. The control 

groups received 500 µL injections of either normal saline or PEG/PBS.  Following injection, blood 

samples were collected at various time intervals (0, 45 min, 1.5 h, 3 h, 6 h) via a temporary cannula in 

the lateral tail vein. Collected blood was centrifuged and the rat plasma separated, snap frozen in 

liquid nitrogen and stored -80oC for analysis. After 6 h the animals were sacrificed and the kidneys, 

liver, spleen and paw were harvested, snap frozen in liquid nitrogen and stored -80oC for analysis.  

For tissues, lipid extractions were adapted from the methods by Stuart et al (2013).  Samples were 

weighed and HPLC grade methanol (MeOH) was added to each tube to make a 100 mg/mL solution. 

For plasma, 3 mL of cold acetonitrile was added to precipitate proteins. Internal standard, deuterium 

labelled anandamide (d4-AEA), was added to tissue samples (100 µL of 1 µM) and plasma samples (10 

µM of 1 µM) and incubated on ice for 2 h (plasma) to 12 h (tissues). Tissues were homogenised on ice 

for approximately 2 min using a tissue tearer, except for the paw joints which were bead beaten (glass 

beads 2.5 mm) for 2 min at 35,000 oscillations per min. The samples were then centrifuged at 19,000 

x g for 20 min at 24°C. Tissues were extracted in duplicates of 500 µL (spleen, liver) or 1 mL (kidney, 

paw) of each supernatant. HPLC-grade water was then added to make the final supernatant (tissue 

and plasma) solution 25% organic.  Samples were extracted through The Extrahera (Biotage, Uppsala, 

Sweden), an automated extraction robot through 500 mg C18 solid phase extraction columns. The 

columns were conditioned with 5 mL of HPLC MeOH (170 sec of 0.5 bar) and 3 mL of HPLC grade water 

(80 sec of 0.5 bar). 25% of organic supernatant solution was then loaded into its corresponding 

column. Wash steps of 1.5 mL of HPLC water, 40% MeOH 65% MeOH, and 85% MeOH (90 sec each at 

0.5 bar) were then added in succession. 1.5 mL of 100% HPLC grade MeOH (105 sec at 0.1 bar, with 

plate dry) was then added to elute the ethanolamides which was collected in amber autosampler vials. 

Vials were then put straight into the autosampler (24⁰C).   
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3.2.9.1 Quantification of endocannabinoids by HPLC/LC/MS  

20 µL injections of each sample were rapidly separated using a C8 Zorbax guard column in conjunction 

with a C18 Zorbax reverse-phased analytical column by a gradient of 20% ultrapure HPLC MeOH, 80% 

filtered HPLC water with 1 mM ammonium acetate (mobile phase A) and 100% ultrapure HPLC grade 

MeOH and 1 mM ammonium acetate (mobile phase B). Two Shimadzu LC-30AD pumps (Rydalmere, 

NSW, Australia) were then used to create a pressurized gradient elution (200 µL/min). A Shimadzu 

8030 triple quadrupole MS was used to ionize the sample using positive electrospray ionization 

through a multiple reaction monitoring method. Synthetic standards of PEA, OEA, LEA and d4-AEA 

(Cayman Chemical, Ann Arbor, MI, USA) were used to generate calibration curves for quantification 

by LabSolutions software (Shimadzu, Rydalmere, NSW, Australia). The concentration of each analyte 

was then converted to moles per gram tissue (using the weights obtained). Statistical analysis was 

performed using GraphPad Prism (Version 7). 

 

 
3.3 RESULTS 

3.3.1 In-vitro NP Cell Interactions 

3.3.1.1 In-vitro assessment of HAP-1-binding peptide 

Immunofluorescence was used to validate the binding of the homing-peptide, HAP-1, to human FLS 

cells.   Since the HAP-1 sequence was originally isolated using HIG-82 cells, HAP-1-binding to HIG-82 

cells (Figure 3.2A) were used as a positive control and run in parallel when testing the binding of HAP-

1-biotin to h-FLS groups (Figure 3.2B). Representative confocal images of HAP-1-binding to HIG-82 and 

h-FLS cells are shown in Figure 3.2. Cells treated with HAP-1-biotin showed positive binding indicated 

by the green fluorescence, with internalisation into the cytoplasm. A similar staining pattern was 

noted with normal h-FLS RA-FLS and OA-FLS cell types (Figure 3.2B), with positive binding present in 

HAP-1-biotin treated groups.  The binding pattern of HAP-1 was consistent across the h-FLS cell types 

with positive staining present on both the surface (yellow); and cytoplasmic internalisation (green). 

Cells incubated with either media or sHAP-1-biotin showed no green FITC-stain demonstrating the 

binding specificity of the HAP-1 sequence. 
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A

 
B 

 
Figure 3.2. Confocal fluorescent microscopy images of positive HAP-1-binding to (A) HIG-82 cells and; 

(B) h-FLS, RA-FLS, and OA-FLS cells.  Fluorescence labelling shown in; (A) using HIG-82 as a positive 

binding sample. Actin was labelled with TRITC-phalloidin (red (i)); HAP-biotin binding labelled with 

streptavidin-FITC (green (ii)); nuclei labelled with DAPI (blue, (iii)), overlay of (i-iii) shown in (iv). Scale 

bars represent 20 µm. HAP-1 binding was observed in all FLS cell types (B) incubated with HAP-1-biotin-

avidin-FITC, indicated by the green fluorescence.  
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3.3.1.2 In-vitro NP cell binding confocal  

Figure 3.3A, shows the fluorescent image of DiD-labelled NPnon-targeted (yellow) following incubation 

with h-FLS cells. The corresponding differential interference contrast (DIC) image of the same section 

is shown in Figure 3.3B. Similarly, confocal microscopic image of NPHAP uptake by h-FLS is shown in 

Figure 3.3C with corresponding DIC image in Figure 3.3D. Both images show NP uptake around the 

nucleus, with intracellular localisation predominately within the cytoplasm in the h-FLS cells.  

 
 

Figure 3.3. Confocal microscopy images of h-FLS cell uptake of DiD-labelled NPnon-targeted and NPHAP 

following 6 h incubation.  Cell nucleus is stained with DAPI (blue). Yellow staining (yellow arrow) 

corresponds to fluorescently labelled NP uptake. Images B and D are the phase contrast view of the 

same cells.   (A) Fluorescent microscopic image of NPnon-targeted binding to h-FLS cells; (B) Transmitted 

light image of the same section as in A; (C) Fluorescent microscopic image of targeted NPHAP binding 

to cells; (D) Transmitted light image of same section as C. 
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3.3.1.3 In-vitro NP quantitative uptake 

To evaluate the cellular uptake of the NPnon-targeted and NPHAP, fluorescently labelled NPs were incubated 

with h-FLS cells at 37˚C. NP uptake was measured as the intensity of the fluorescence signal using flow 

cytometry.  Figure 3.4 shows the flow cytometry analysis of (A) h-FLS cells and; (B) HIG-82 cells 

following incubation with either NPnon-targeted or NPHAP for 1, 3 NPHAP 18 h at 37C. As shown in Figure 

3.4A no detectable dye was recorded for NPnon-targeted and NPHAP following a 1 h incubation in h-FLS 

cells, indicating minimal NP uptake by the cells.  Following 3 h incubation, there was uptake of both 

NP’s indicated by a shift in the cell fluorescence peak along the x-axis to the right. NPHAP were 

internalised more efficiently than NPnon-targeted with the percentage of cells that took up detectable dye 

recorded as 69.1% for NPHAP and 33.2% for NPnon-targeted (Figure 3.4A 3h). Increasing NP incubation to 

18 h slightly improved uptake of both NPnon-targeted and NPHAP to 44.8% and 74.5%, respectively, when 

compared to 3 h incubation time.  

Similarly, uptake of NPnon-targeted and NPHAP following a 1 h incubation in HIG-82 cells was minimal 

(Figure 3.4B), with NPnon-targeted uptake recorded as 10.6% and NPHAP uptake slightly more efficient at 

16.5%. Higher levels of detectable dye were recorded for NPHAP (78.5%) when compared to NPnon-targeted 

(32.7%) following 3 h incubation. Cell fluorescence following 18 h incubation with both the NPHAP and 

NPnon-targeted was only slightly higher than 3 h exposure, recording 82.3% and 34.4% respectively. NP 

uptake by the h-FLS and HIG-82 cells was comparable between the two cell lines at the respective time 

points.  
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A       B 

 
Figure 3.4. Flow cytometry histograms illustrating uptake of NPnon-targeted and NPHAP in (A) h-FLS or; (B) HIG-

82 cells as indicated by a shift in cell fluorescence. Cells were incubated for 1 h, 3 h and 18 h at 37°C. 

Autofluorescence (red), incubation with NPnon-targeted (blue), NPHAP (green) and free DiD dye (orange). The 

experiment was repeated three times. The shown histograms are a representative example of results. 
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3.3.1.4 In-vitro NP uptake following TNF-α stimulation 

To investigate whether NP uptake is influenced by inflammatory conditions, h-FLS and HIG-82 cells 

were stimulated with (10 ng/mL) TNF-α for 24 h prior to NP treatment.  Flow cytometry histograms of 

uptake in stimulated and non-stimulated cells is shown in Figure 3.5.  In h-FLS cells, uptake of NPnon-

targeted was neither hindered nor improved following TNF-α stimulation (Figure 3.5A). Similarly, cell 

fluorescence remained unaffected for NPHAP in inflammatory conditions when compared to non-

stimulated cells, suggesting uptake of NPHAP was unaffected despite TNF-α stimulation (Figure 3.5B). 

Taken together, the data suggest that’s NP uptake is not influenced by TNF-α stimulation.  

A       B 

 
 

Figure 3.5. Flow cytometry histograms illustrating uptake of (A) NPnon-targeted and; (B) NPHAP in h-FLS 

cells before (dark blue) and after TNF- stimulation (light blue). NP uptake by the cells is indicated 

by a shift in cell fluorescence intensity. Autofluorescence (red) and incubation with free DiD dye 

(orange). Uptake of both NPnon-targeted and NPHAP remained the same in both non-stimulated and TNF-

 stimulated cells. The experiments were repeated three times. The shown histogram is a 

representative example of results. 
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3.3.2 NP Dye Retention  

To evaluate the ability of NP to retain encapsulated dye, DiD labelled NP were incubated with h-FLS 

cells at 37˚C and 4˚C. NP uptake was measured as fluorescence intensity using flow cytometry. At 4˚C, 

endocytosis is largely eliminated allowing ‘free dye’ to diffuse across the cell membrane. With the 

assumption that encapsulated dye will not be endocytosed by the cell at 4˚C, this methodology allows 

for the assessment of the NP dye retention. Non-DiD labelled NP and untreated cells were also 

evaluated to account for any inherent auto fluorescence. Figure 3.6 shows cell fluorescence following 

incubation with (A) NPnon-targeted or (B) NPHAP at 4˚C and 37˚C for 3 h. At 4˚C minimal fluorescence was 

noted from cells incubated with either DiD labelled NPnon-targeted or DiD labelled NPHAP. Since there was 

no change in cell fluorescence is noted, it is implied that the encapsulated DiD dye was retained within 

the NP and suitable to use in in-vitro uptake studies. By contrast, encapsulated DiD NPs showed higher 

fluorescence at 37˚C than 4˚C, indicating endocytosis and/or surface binding of the NPs. While NP 

uptake was observed 37˚C, cells incubated with NP’s at 4˚C showed no uptake and no change in 

fluorescence. With the assumption that free dyes enter the cell via an energy-independent process 

holds, the absence of fluorescence detection at 4˚C indicates successful retention of dye within the 

NP and therefore its suitable application in quantitative cellular uptake studies. 

A       B 

Figure 3.6. Flow cytometry histograms illustrating h-FLS cell uptake of (A) NPnon-targeted and; (B) NPHAP 

at 4°C (green) and 37°C (blue). NP cell uptake is indicated by the shift from the autofluorescence 

peak (red) to the right (x-axis), indicating higher fluorescence intensity. As no change in fluorescence 

intensity  (when compared to the autofluorescence), was noted following NP incubation at 4°C, the 

dye was successfully retained within the NP. Experiments were repeated three times, the shown 

histogram is a representative of results. 
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3.3.3 In-vivo Localisation of NP’s in Normal and Arthritic Rats 

To assess in-vivo localisation, DiD-labelled NPs were injected into the tail vein of normal and arthritic 

rats. NP accumulation was measured as fluorescence intensity and captured at 1 h, 3 h, 24 h and 48 h 

for 10 min using FT-NIR imager. After 24 h, NIR fluorescence signals stopped increasing in intensity 

and remained constant. Figure 3.7A shows the NIR in-vivo localisation profile of normal and arthritic 

rats 24 h post NP injection.  

In normal rats, no specific accumulation of fluorescent NP’s was observed in either NPnon-targeted or 

NPsHAP rats, with the only minimal fluorescence noted at injection site Figure 3.7A. In arthritic rats, 

localisation of both the NPnon-targeted and the NPsHAP to the affected joints was increased to 62.1% (32.1 

± 8.24 signal units) and 71.2% (36.06 ± 5.57 signal units) respectively when compared to normal rats. 

Signal units for unaffected joints of the arthritic rats were comparable to the joints in normal rats. The 

restricted accumulation of NPnon-targeted and the NPsHAP to only the affected arthritic joints indicated 

passive targeting attributed to the leaky vasculature of the inflamed area. In contrast to the NPnon-

targeted and NPsHAP treated groups, normal rats injected with the targeted NPHAP localised to joints (34.37 

± 2.08 signal units). Signal at these joints was 73.6% higher than that observed in NPnon-targeted (19.79 ± 

6.04 signal units) for NPs normal rats. In arthritic rats, localisation of NPsHAP to the inflamed joints 

increased by 58.2% (54.37 ± 13.95 signal units) compared to NPHAP treated normal rats, and was 69.3% 

higher when compared to NPnon-targeted injected arthritic rats.    

Following whole-animal imaging at 24 h, the rats were sacrificed and the major internal organs spleen, 

liver, kidneys and lungs harvested for NIR imaging. As show in Figure 3.7B, minimal fluorescence was 

observed in the lungs for both NPnon-targeted and NPHAP treated rats. In contrast, stronger fluorescence 

signals were noted in both the spleen and liver of the NP treated rats suggesting retention of the NP 

at these sites. While the organ fluorescence were comparable between the two NP groups, 

fluorescence of the liver taken from the NPnon-targeted group was significantly higher when compared to 

the liver of the NPHAP injected group. The difference in fluorescence intensity highlights variances in 

NP in-vivo localisation between the NPnon-targeted and NPHAP, and higher liver clearance of NPnon-targeted. 
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Figure 3.7. (A) In-vivo NIR imaging of NPnon-targeted, NPHAP and NPsHAP in normal and arthritic rat 24 h 

post-injection; (B) Ex-vivo imaging of liver, spleen and kidney NPnon-targeted, NPHAP rats taken 24 h after 

injection. As NIR imaging has a restricted capture distance, internal accumulation to organs cannot 

be imaged in-situ and therefore not represented in the whole-animal images; (C) Photographic 

examples of normal and arthritic rat hind paws. NPHAP localised to joints in both normal and arthritic 

joints. 
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3.2.4 In-vivo Biodistribution of NPnon-targeted and NPHAP 

3.2.4.1 Plasma  

Endogenous endocannabinoid levels and their entourage compounds were measured in blood plasma 

of normal and arthritic rats, Figure 3.8. No detectable differences were observed between OEA or LEA 

in normal (NORM) or untreated arthritic rats (ART CON). To assess the NP pharmacological half-life, 

NP were administered via the tail vein in arthritic rats and blood collected at 45 mins, 1.5, 3 and 6 h. 

Figure 3.8 shows the plasma concentrations of OEA and LEA over 6 h and the pharmacokinetic (PK)  

parameters of the injected NPnon-targeted and NPHAP are shown in Figure 3.8C and Figure 3.8D 

respectively. The PK profile of total NP in the plasma between 0 – 6h were fit using a one-phase decay 

non-linear regression curve. The initial concentration of total LEA in plasma was 214 ± 84.3 µmol/g 

and OEA 143.5 ± 47.2 µmol/g following injection as extrapolated from the exponential decay and 

decreased bi-exponentially after the 6 h sample. The terminal half-life for NPnon-targeted was 0.16 h (LEA), 

0.20 h (OEA) and 0.31 h (LEA), 0.48 h (OEA) for NPHAP. 

At 45 min, plasma concentrations of OEA and LEA were at their peak for both NPnon-targeted and NPHAP 

treated groups, with LEA being the dominant endocannabinoid. Since the NP are composed of 60% 

LEA and 40% OEA, the data is in agreement and reflects the composition of injected NPs components. 

At 45 min, concentrations of both OEA and LEA were higher in NPHAP treated rats, when compared to 

NPnon-targeted treated groups. Higher plasma concentration of OEA and LEA in NPHAP treated rats at the 

same times point suggests a longer circulating time for NPHAP which may be attributed to the presence 

of the homing peptide. At 1.5 h, circulating OEA and LEA plasma levels begin to steadily decline for 

both NP groups. At 3 h, plasma concentrations of both OEA and LEA were comparable, with no 

significant difference noted between the NPnon-targeted and NPHAP treated groups.  Between 3 to 6 h, OEA 

and LEA plasma concentrations steadily declined towards baseline suggesting removal of NP from the 

blood due to clearance of joint deposits. At 6 h, OEA and LEA levels for both NP treated groups were 

minimal suggesting limited concentration of NP still in circulation.  However when compared to 

baseline, OEA and LEA concentrations in NP treated groups were elevated suggesting the presence of 

NP still in circulation 6 h after initial injection.  

 

 

 

 

 

 

 

 



CHAPTER 3: Nanoparticle Localisation 

58 

 

 

 

 

 

A               B 

 
 
C                   D 

 
 

Figure 3.8. Plasma concentrations of (A) OEA and; (B) LEA in normal rats (NORM), arthritic control 

rats (ART CON), arthritic rats treated with NPnon-targeted and NPHAP. Plasma concentrations were 

calculated from blood samples collected at 0 h (baseline), 45 min, 1.5 h, 3 h and 6 h after initial 

treatment. Data was analysed by MS and concentration expressed as log nmol/mL (mean ± S.D, n = 

5). PK for; (C) NPnon-targeted and; (D) NPHAP content vs time (up to 6 h) fitted with a one-phase 

exponential decay curve.  
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3.2.4.2 Organs  

The distribution of NP into solid organs was determined at 6 h (Figure 3.9). The NP’s endocannabinoid 

components, OEA and LEA, were measured against baseline levels of control and normal rats. For 

NPnon-targeted treated rats, the liver contained the highest relative concentration of OEA (1.72 ± 0.87 

pmol/g) and LEA (9.38 ± 5.2 pmol/g) when compared to endogenous ART-CON levels.  Bio-distribution 

of NPnon-targeted to the kidneys was minimal, with comparable concentrations of OEA (2.69 ± 1.19 

pmol/g) and LEA (0.98 ± 0.29 pmol/g) to baseline control. Similarly, distribution to the spleen was also 

minimal, with comparable concentrations of OEA (2.56 ± 1.02 pmol/g) and LEA (0.86 ± 0.29 pmol/g) 

to baseline arthritis control.  

While concentrations of NPnon-targeted were high in the liver, only small amounts of OEA (0.86 ± 0.09 

pmol/g) and LEA (0.59 ± 0.10 pmol/g) were recorded in the liver for NPHAP treated groups. Distribution 

to the kidneys was shown to be OEA (2.97 ± 1.30 pmol/g) and LEA (1.29 ± 0.57 pmol/g) for NPHAP 

groups.  In the spleen, minimal concentrations of OEA (2.79 ± 1.58 pmol/g) and LEA (0.79 ± 0.219 

pmol/g) were noted in NPHAP groups and comparable to that seen in NPnon-targeted.  

3.2.4.3 Joints 

The relationship between NP concentration in the plasma and tissues at 6 h is illustrated in Figure 

3.10. At 6 h, ratios of OEA and LEA were relatively low for all organs, reflecting a high concentration 

of NP still circulating in the plasma for both NPnon-targeted and NPHAP. In the paw, accumulation of NPHAP 

to the inflamed joints was pronounced and was indicated by higher paw:plasma ratios for OEA (0.49) 

and LEA (0.55). By contrast, slightly higher plasma concentrations of OEA and LEA in the NPnon-targeted 

group coincided with reduced concentrations of OEA and LEA recorded in the inflamed joints and low 

OEA (0.32) and LEA (0.24) paw:plasma ratios. While both the NPnon-targeted and NPHAP appeared to 

localise to the joints, only NPHAP was significant, demonstrating a superior localisation of the targeted 

NPHAP to the inflamed site mediated by the addition of the synovium targeting peptide, HAP-1. 
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Figure 3.9. Concentrations of (A) OEA and; (B) LEA in un-treated, NPnon-targeted and NPHAP treated 

arthritic rats.  Organs were harvested 6 h after treatment and NP distribution assessed in the arthritic 

paw, liver, kidney, spleen and plasma. Data analysed by MS and concentration expressed as pmol/g 

(mean ± SEM, n = 5).  *p < 0.05, ****p < 0.0001 vs ART-CON, uncorrected Fisher’s LSD, one-way 

ANOVA. Significant accumulation to the paw was observed in NPHAP treated rats.  
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Figure 3.10. Tissue:plasma ratio of OEA and LEA in (A) NPnon-targeted and; (B) NPHAP  treated arthritic 

rats showing accumulation of NP to the inflamed paw at 6 h  (mean, n = 5). 
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3.4 DISCUSSION 

FLS's are one of the dominant cell types in the rheumatoid synovium and play an important role in the 

pathogenesis of RA (Noss & Brenner, 2008; Bartok & Firestein, 2010). Currently, there are few 

treatment strategies aimed at targeting the FLS, with the majority of treatment options aimed at 

targeting the inhibition of angiogenesis, cellular contact inhibition, and cytokines, and/or immune cells 

that intensify the immune response (Koning et al., 2006; Yang et al., 2011). This is the first report of 

endocannabinoid-based NP drug delivery system which targets FLS in-vitro and sites of joint 

inflammation in-vivo.  

In agreement with what was originally reported by Mi et al, (2003) for rabbit HIG-82 cells, HAP-1-

binding experiments using HAP-1-biotin-streptavidin-FITC showed its intracellular localisation in all 

human FLS types through the use of z-stack imaging (not shown). While HAP-1 binding was noted in 

all human FLS types, comparison of HAP-1 binding between normal, RA and OA FLS cell types was 

limited to visual observation by confocal microscopy. Further quantitative binding studies using flow-

cytometry are required to quantitate the binding affinity of HAP-1-binding between the cell types. 

Assessment of NP uptake using flow-cytometry showed that conjugation of synovium-targeting 

peptide, HAP-1, to the NP surface resulted in specific binding and uptake of NPHAP in both HIG-82 and 

human FLS cells in-vitro. From these experiments it was evident that the targeting capability of the 

HAP-1 is retained following conjugation to the NP surface. In addition, NP uptake was not influenced 

by inflammatory condition.  

In agreement with the in-vitro uptake data, in-vivo localisation of fluorescent NP using NIR 

demonstrated the selective accumulation of the NPHAP to joints in both normal and arthritic rats. By 

contrast, no specific accumulation was observed for NPnon-targeted and NPsHAP treated normal rats, with 

only slight improvements in localisation observed in arthritic rats for these two groups.  The greater 

localisation of NPHAP to the synovium may be attributed to ligand-mediated targeting facilitated by 

HAP-1. In agreement with this, no specific accumulation was noted for NPsHAP, suggesting that 

localisation of NPHAP is reliant on a functioning binding sequence of the homing peptide and 

independent of higher molecular weight from conjugated surface peptides. 

In arthritic rats, enhanced localisation to the inflamed joints was observed with all three NP’s and 

attributed to “leaky” vasculature of the inflamed joint. During arthritis, endothelial cells within the 

joint lose the cellular integrity due to the activation of pro-inflammatory cytokines. As a result, gaps 

between the endothelial cells are widened, increasing permeability and creating a leaky vasculature 

around the inflamed site (Joris et al., 1990). Consequently, particles ranging from 10 to 500 nm in size 
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can extravasate from the vascular system to the diseased site through the abnormal endothelial gaps  

(Ganter et al., 2008). In agreement with this, the rats that did not develop arthritis in all paws, 

inflammation showed disproportionate distribution of NPnon-targeted and NPsHAP to only the inflamed 

sites. The uptake of NPHAP was also increased in the arthritic joints and attributed partly to the greater 

vascular permeability as well as the specificity of HAP-1 itself. The enhanced binding of NPHAP was 

much greater in the arthritic rats compared to NPnon-targeted and NPSHAP from baseline.  

In-vivo, NP accumulation was shown to be highest in the paws in both the NPnon-targeted and NPHAP 

treated rats demonstrating preferential localisation to the joints. Assessment of paw and organ in bio-

distribution studies, saw pronounced accumulation of NPHAP to the paw, with minimal residual NPHAP 

circulating in the plasma after 6 h. By contrast, slightly higher plasma concentrations of OEA and LEA 

in the NPnon-targeted group coincided with reduced concentrations of OEA and LEA recorded in the 

inflamed joints after 6 h. While both NPnon-targeted and NPHAP treated rats showed preferential 

localisation of NP to the joints 6 h after injection, only NPHAP reached significance demonstrating 

improved localisation through ligand mediating targeting.  This data is in agreement with preliminary 

localisation results obtained by NIR, which indicated a significant uptake of NPHAP by the arthritic joints 

in comparison to NPnon-targeted.  

While both NPnon-targeted and NPHAP treated rat’s demonstrated preferential NP accumulation to the 

joints, paw concentrations of OEA and LEA were relatively low.  The overall lower concentrations of 

NP in the paw are likely due to the complexity of the paw joint (muscle, bone, ligaments, and synovial 

fluid) which created difficulties reaching full homogenisation during processing.  In addition, plasma 

levels of of OEA and LEA in NP injected rats were elevated when compared to baseline un-treated rats 

at the 6 h mark, suggesting that the NP’s were still in circulation when the tissues were collected for 

the bio-distribution study. Collection of tissue at a later time point would allow the remaining 

circulating NPs to deposit out of the plasma into the tissue, providing a more accurate reflection of 

final NP in-vivo bio-distribution. 

Assessment of NP bio-distribution into solid organs at 6 h accounts may also account for the 

differences in NP concentrations observed in the paw for NPnon-targeted and NPHAP treated rats. While 

concentrations of NPnon-targeted were high in the liver, they were minimal in NPHAP treated rats, 

demonstrating the ability to limit off target effects through peptide conjugation. In the current study, 

it was found that the liver contained the highest organ concentration of NPnon-targeted after 6 h as shown 

by HPLC/MS/MS. In contrast, concentrations of NPHAP were minimal to none in the liver, and are in 

agreement with the higher fluorescence noted in the liver from NPnon-targeted treated rats imaged by 

NIR. Total NP localisation to the spleen and kidneys was relatively low for both NPnon-targeted and NPHAP 
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indicating little distribution to this area. Taken together, the low plasma concentration of NPHAP may 

be attributed to greater accumulation to the joints and not the liver, resulting in lower plasma 

concentrations of NPHAP at 6 h. For NPnon-targeted, lower concentrations of NPnon-targeted at the initial time 

points suggests that circulating NPnon-targeted are more efficiently removed via clearance by the liver than 

NPHAP, contributing to NPnon-targeted shorter half-life. Assessment of the NP’s organ concentration at 

these earlier time points would be required to confirm the rapid clearance of NPnon-targeted from the 

plasma to other organs. Successful accumulation of NPHAP to the inflamed joints highlights its 

promising therapeutic potential in the treatment of arthritis by facilitating localised delivery of 

therapeutic agents to inflamed synovium.  

 

 
3.4.1 Summary 

In this chapter, the ability of peptide conjugated NP to target both FLS in-vitro, and the synovium in-

vivo is reported. The findings demonstrate that conjugation of synovium-targeting peptide, HAP-1, to 

NP surface results in specific binding and greater uptake of NPHAP in both HIG-82 and human FLS cells, 

when compared to NPnon-targeted in-vitro.  Using NIR tracer and bio-distribution studies, the ability to 

actively target NP’s to the inflamed synovium in-vivo was demonstrated. The ability to localise 

targeted NP’s to the inflamed synovium using endocannabinoid lipids has important therapeutic 

implications for the treatment of arthritis.  
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CHAPTER 4: BIOLOGICAL EFFECTS OF NANOPARTICLES IN-VITRO  

4.1 INTRODUCTION  

Inflammation plays an important role in the development and resolution of rheumatic diseases. In this 

Chapter, the response of human FLS cells to inflammatory stimuli and interplay of NP in-vitro is 

examined.  In RA, pro-inflammatory cytokines play a crucial role in the generation of inflammation, 

which results in the sensitization of peripheral nerve terminals, infiltration of immune cells and 

subsequent development of pain and inflammation (Alunno et al., 2017). Among the pro-

inflammatory cytokines, TNF-α is a principal cytokine which regulates the activation of other 

inflammatory mediators, as well as mediating the destruction of bone and cartilage via the activation 

of chondrocytes and osteoclasts to produce matrix-metalloproteases (MMPs) in the synovial tissue 

(El-Kady & El-Masry, 2008). Other pro-inflammatory cytokines such as IL-6, IL-1 and IL-17A, are 

involved in the pathogenesis of RA by mediating formation of chemokines, inducible nitric oxide 

synthase, osteoclasts differentiation and the expression of cell adhesion molecules.  

A sizeable number of clinical and pre-clinical studies have confirmed the potential of the cannabinoid 

system in providing a number of promising therapeutic benefits for patients with chronic 

inflammatory disease (Farrell et al., 2014; Fitzcharles et al., 2016b; Barrie et al., 2017). While the anti-

inflammatory effects of AEA are well established, lesser-known NAEs such as LEA, OEA and PEA have 

recently gained much attention due to their anti-inflammatory and analgesic properties (Ishida et al., 

2013; Lowin et al., 2015; Zhou et al., 2017b; Zhao et al., 2018).  These compounds do not bind CB1, 

but instead contribute to an anti-inflammatory regulation through “entourage” effects (Okamoto et 

al., 2004; Alhouayek & Muccioli, 2014). These anti-inflammatory effects may be due to direct effect 

on immune cells, or by changing the local milieu of saturated fatty acids that subsequently influence 

anti-inflammatory actions. 

OEA is structurally similar to AEA and exerts its effects through the PPAR-α receptors (Zhao et al., 

2018) or GPR119 (Overton et al., 2006). PPAR activators have been shown to inhibit the activation of 

inflammatory response genes by inhibiting the NF-κB, STAT and AP-1 signalling pathways thereby 

playing a role in the regulation of inflammatory responses  (Chinetti et al., 2001).  In healthy tissue, 

PEA and OEA are present at relatively high concentrations, which are thought to be of sufficient 

concentration to activate local PPAR-α receptors. Marked decreases in OEA and PEA tissue content 

are observed at sites of inflammation and are correlated to inflammatory symptoms (Bonezzi et al., 

2016). In-vitro, OEA has been shown to exert potent anti-inflammatory effects by reducing the levels 

of pro-inflammatory cytokines and enhancing PPAR-α expression (Yang et al., 2016). Similarly, OEA 

pre-treatment significantly suppresses the expression of TNF-α, IL-1B and IL-6 in the lung, liver, brain 
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and spleen in-vivo of LPS-treated mice by enhancing PPAR signalling, inhibition of Toll like receptor 4 

(TLR4)-mediated NF-κB signalling pathway, and interfering with the extracellular signal-regulated 

kinase-1/2 (ERK1/2)-dependent signalling cascade (TLR4/ERK1/2/ activator protein 1 [AP-1]/ signal 

transducers, and activators of transcription [STAT3]) (Yang et al., 2016).   

Similar to OEA, LEA has been shown to exert anti-inflammatory effects. In-vitro, LEA inhibits activation 

of TLR4 signalling and NF-κB p65 and suppresses LPS-induced inflammation in macrophages (Ishida et 

al., 2013). NF-κB is a pivotal transcription factor in the regulation of pro-inflammatory genes, and 

therefore plays important role in mediating cellular functions via the inflammatory response  (Liu et 

al., 2017). In an in-vivo model of contact dermatitis, application of LEA to affected skin ameliorated 

2,4-dinitrofluorobenzene-induced contact dermatitis and pro-inflammatory cytokine expression at 

inflamed sites (Ishida et al., 2013).  Taken together, the ability of the endocannabinoids OEA and LEA 

to regulate NF-κB signalling pathway may be a promising candidate target to inhibit the inflammatory 

pathway. 

As yet, the effects of N-acylethanolamines, LEA and OEA on the production of inflammatory mediators 

in primary synoviocytes have not been described. In this chapter, the effects of endocannabinoid NP 

on RA-FLS cells in-vitro was examined using next generation sequencing (RNA-seq) and RT-PCR.  RNA-

seq measures expression across the transcriptome to obtain highly accurate gene expression data, 

useful for exploring changes in diseased states or responses to therapeutics.  Genome-wide 

association studies, pathway explorers and protein interaction databases also help provide insight into 

the mechanisms of action and contribute to the discovery of novel molecular targets that can be 

explored in experimental studies. Comparison of NP treated and non-treated RA-FLS stimulated with 

TNF-α in this study has identified transcriptome changes, novel genes, and the exploration of novel 

transcription factors involved in acute inflammatory regulation. As these cells were sourced from a 

patient with RA, they are in an aggressive phenotype state and represent inflammatory regulation 

present in a chronic state. Using pathway analysis, overlaps in regulatory pathways in which NP 

treatment may have therapeutic application was examined.  
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4.2 METHODS 

4.2.1 Materials 

Hanks buffered salt solution (HBSS), 6-well and 96-well culture plates (Corning Inc, NY, USA), WST-1 

solution assay (Roche Australia, Sydney, Australia), Trypan blue and RNAse-free DNAse I were 

purchased from Sigma-Aldrich (Sigma-Aldrich Pty, Sydney, Australia). RNA and PCR kits including 

Isolate II RNA Mini Kit, SensiFast cDNA synthesis kit and SensiFast SYBR Green No-ROX kit were 

purchased from Bioline (Bioline, Sydney, Australia).  

4.2.2 Generation of NP’s 

The NP’s used in this chapter were prepared as previously described in Section 2.2.2. 

4.2.3 Cell Culture 

Cells used in this culture were maintained as previously described in Section 3.2.3.  

4.2.4 Cytotoxicity Studies 

4.2.4.1 Trypan blue  

To assess effect of NP on the viability of FLS cell lines, a trypan blue dye exclusion test was performed. 

Briefly, FLS cells were seeded at a density 1 x 105 into 6-well plates and cultured over night at 37°C. 

After seeding, the medium was replaced and the cells treated with varying concentration of NP (5, 10, 

30, 50, 80, 110 and 140 µg/mL) and maintained at 37°C for 24 h. Cells were then detached using 

trypsin/EDTA (0.5 mM), pelleted and resuspended in fresh medium. An aliquot (50 μL) of the cell 

suspension was then diluted 1:1 (v/v) with 0.4% trypan blue in HBSS solution and incubated for 5 min 

at RT. With a coverslip in place, and a small volume of trypan-blue cell suspension was loaded into the 

haemocytometer chambers and the viable cells counted. Cell viability (%) = total viable cells 

(unstained) ÷ total cells (stained and unstained) × 100. 

4.2.4.2 WST-1 assay 

NP cytotoxicity was also assessed using WST-1 assay, performed according to manufacturer’s 

instructions. RA-FLS cells were seeded at 1 x 104 into 96-well plates and cultured overnight (80% 

confluence) prior to treatment. After seeding, the medium was replaced and various concentrations 

of NP (5, 10, 30, 50, 80, 110 and 140 µg/mL) were added to the wells and incubated at 37°C for 24 h. 

Following incubation, 10 µL of WST-1 was then added and incubated at 37°C for 4 h and the 

absorbance measured using an ELISA plate reader (Victor3 model 1420-040, Perkin Elmer, Sydney, 

Australia). The percentage of viable cells was determined by the absorbance at 450 nm with a 
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reference wavelength at 630 nm.  Control values (wells without NP stimuli or PBS vehicle control) were 

set to 100% viable.  The relative cell viability (%) related to control wells was calculated by 

[A]test/[A]control × 100. Where [A]test is the absorbance of the test sample and [A]control is the 

absorbance of control sample. To make the background correction, a background control (blank) was 

provided for every treatment group in order to preclude the potential interference of the NP and 

medium with the spectrophotometric measurement. Samples were run in triplicates and repeated n 

= 3. Respective lethal concentration 50 (LC50, concentration inducing 50% cell mortality) was 

calculated by regression analysis using GraphPad Prism software (Version 7). 

4.2.5 Stimulation of Human RA-FLS and OA-FLS Cells and RNA Isolation 

To study the effects of NP on inflammatory cytokine production, RA-FLS cells were stimulated with 

TNF-α alone (10 ng/mL, RA-TNF), or in the presence of endocannabinoid-NP (30 μg/mL, RA-TNF/NP) 

for 48 h at 37°C.  Untreated RA-FLS cells (RA-UT) and RA-FLS cells incubated with NP alone (30 μg/mL, 

RA-NP) were used as controls. Following incubation, cells were washed with PBS and RNA isolated. 

Treated groups were run using three biological replicates. Total RNA was isolated from cultured RA-

FLS cells using Isolate II RNA Mini Kit according to the manufacturer’s instructions. To remove any 

genomic DNA contamination, RNA was treated with RNAse-free DNAse I RNA purity and concentration 

was assessed using a Agilent 2100 Bioanalyser® (Agilent Technologies, California, USA). The mean RNA 

concentration of 52.92 (± 3.12) ng/µL. 

4.2.5.1 RNA-seq   

Illumina RNA sequencing was used to profile human RA FLS transcriptomes to gain insights into the 

roles of synovial fibroblasts in RA and assess the potential anti-inflammatory effects of NP. Next-

Generation Sequencing was performed by the Australian Genome Research Facility (AGRF). Stranded 

RNA libraries were prepared and quality control from mRNA were performed using Illuminia Library 

Prep. HiSeq illuminia sequencing (50/100) 50 base pair (bp) single reads. 

4.2.5.1.1 RNA-seq library construction and sequencing 

Stranded RNA libraries were prepared from 350 ng RNA using the Illumina® TruSeq Stranded mRNA 

sample prep kit. The libraries were sequenced by the Australian Genome Research Facility on an 

Illumina HiSeq 2500 to generate 50 base-pair (bp) single-end reads. Raw sequencing reads were 

assessed for quality using FastQC (version 0.11.3; Babraham Bioinformatics), ensuring that Phred 

scores were over 30. Per base quantity scores were confirmed to be high using FastQC, and therefore 

no adaptor trimmings were performed. STAR (version 2.5.2a) was used to align the reads to Release 

19 of the human reference genome (GRCh37/hg19), with the GENCODE (Release 28) annotation 
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(http://www.gencodegenes.org/) provided, using default parameters (Dobin et al., 2013). Resulting 

SAM files were sorted by position using SAMtools (version 1.6) (Li et al., 2009).  Quality assessment, 

mapping and raw read counts were conducted on the high-performance computing cluster (Artemis), 

provided by the Sydney Informatics Hub, University of Sydney. 

4.2.5.1.2 Differential gene expression analysis   

Raw gene-level read counts were obtained using HTSeq (version 0.9.1) in “union” mode to exclude 

multi-mapping or ambiguously aligned reads (Anders & Huber, 2010). Raw counts were analysed using 

the DESeq2 (release 3.6) statistical package in R Studio (version 1.1.383). Data were transformed using 

the rlogTransformation function in DESeq2 to obtain principal component analysis (PCA) plots and 

sample-sample distance heatmaps. These plots were used to confirm that samples clustered within 

their respective treatment groups as expected. DESeq2 performed differential expression analysis on 

raw count data using a negative binomial distribution model. The model included implementation of 

normalization to correct for library size and independent filtering to exclude genes with low read 

counts. Differentially expressed (DE) genes were defined if had a log fold change (FC) > 2, applying a 

5% false discovery rate (FDR<0.05).  Gene ontologies, pathways and regulatory networks that were 

enriched/overrepresented in significantly differentially expressed genes were identified using the 

Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity) software 

(Version: 44691306). 

4.2.5.2 Reverse transcription-polymerase chain reactions (RT-PCR) 

RT-PCR was used to evaluate anti-inflammatory gene regulation in NP treated RA-FLS cells and confirm 

RNA-seq data. Treatment groups and RNA isolation were repeated as stated in Section 4.2.5. RNA 

purity and concentration was assessed using NanoDropTM 2000/2000c spectrophotometer (Thermo 

Fisher Scientific, North Ryde, Australia).  Total RNA from each sample was reversed transcribed into 

complementary DNA (cDNA) using SensiFast cDNA synthesis kit according to the manufacturer’s 

instructions. Briefly, a 20 µL reaction containing up to 1 µg mRNA, 5x TransAmp Buffer (4 µL) and 

Reverse transcriptase (1 µL) were prepared for each sample. RNA was reversed transcribed into cDNA 

using Thermocycler (Hybaid Omn-E, Hybaid Ltd, UK) following, primer annealing at 25˚C for 10 min, 

reverse transcription at 42 ˚C for 15 min, inactivation at 85˚C for 5 min and finally held at 4 ˚C. No 

reverse transcriptase controls were prepared with water in place of reverse transcriptase, and no 

template controls were prepared with water in place of RNA to indicate potential genomic DNA 

contamination. 

http://www.gencodegenes.org/)
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Following reverse transcription, cDNA was subject to quantitative-polymerase chain reaction (q-PCR) 

carried out on CFX96 RT-PCR detection system (Bio-Rad, Sydney, Australia). PCR amplification were 

performed using specific primers (Table 4.1). Primer sets were design using the Primer3web software 

and supplied by Integrated DNA-Technologies (IDT, Baulkham Hills, Australia). PCR amplification was 

performed with SensiFast SYBR Green No-ROX kit according to established protocols.  Briefly, 10 µL of 

2x SensiFAST SYBR No-ROX mix, 0.8 µL 5′ sense primer and 0.8 µL 3′ antisense primer (10 µM, final 

concentration 400 nM), RNAse free water and cDNA template were prepared in a 20 µL reaction. 

Samples were heated at 95°C for 3 min and cycled for a maximum of 39 times. Each cycle included 

denaturation at 94°C for 30 sec, annealing at 60-65°C for 10 sec, and extension at 72°C for 2 min. The 

PCR process was optimised at various cycle numbers with cDNA. The constitutively expressed 

housekeeping gene encoding GAPDH was used as an internal control to normalise the amounts of 

mRNA in each sample. Quantification of mRNA levels were performed using the ΔΔCt method. The 

value of each control sample were set at one and used to calculate the fold change of target genes. 

 

 

Table 4.1 Summary of primer set sequences, base pairs and annealing temperatures used in RT-PCR. 

Primer Sequence Base pair 
Annealing 
Temp (°C) 

GAPDH 
       *F: GAAGGTCGGAGTCAACGG 
       #R: GGAAGATGGTGATGGGAT 

18 
18 

60 

β-actin 
      F: CTACGCCGAATATGCCATCTC 
      R: GTACGGGATTGCCCCTCTG 

21 
19 

61 

IL-8 
      F: ACTGAGAGTGATTGAGAGTGGAC 
      R: AACCCTCTGCACCCAGTTTTC 

23 
21 

62 

IL-6 
      F: GTGGG CGCCCCAGGCACCA 
      R: CTCCTTAATGTCACGCACCATTTC 

22 
25 

61 

NF-κB 
      F: GGTGCGGCTCATGTTTACAG 
      R: GATGGCGTCTGATACCACGG 

20 
20 

62 

MMP-1 
      F: GGGGCTTTGATGTACCCTAGC 
      R: TGTCACACGCTTTTGGGGTTT 

21 
21 

62 

MMP-3 
      F: TATGGACCTCCCCCTGACTCC 
      R: AGGTTCAAGCTTCCTGAGG 

21 
19 

60 

MMP-13 
      F: GCTGCCTTCCTCTTCTTGA 
      R: TGCTGCATTCTCCTTCAGGA 

19 
20 

61 

 

*F = Forward sequence 

#R = Reverse sequence 
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4.3 RESULTS  

4.3.1 NP cytotoxicity 

NP in-vitro cytotoxicity was assessed using Trypan blue exclusion method and WST-1 colorimetric 

assay. The LC50 was 40 µg/mL after a 24 h incubation period (Figure 4.1). 

A             B 

 
 

Figure 4.1: NP in-vitro cytotoxicity in RA-FLS cells as assessed by (A) Trypan blue exclusion 

method and; (B) WST-1 colourmetric assay. FLS cells were incubated for 24 h with increasing 

concentrations of NP and compared to untreated cells. The data represents the mean of three 

independent experiments (n=3 ± SD). NP LC50 = 40 µg/mL 

 

4.3.2 RNA-seq  

Illumina RNA-seq was performed to investigate the effect of NP on gene expression using human RA 

and OA-FLS cells. Treatment groups were performed in three biological replicates and included; 

untreated cells (RA-UT), NP treated cells (RA-NP), TNF-α stimulated cells (RA-TNF) and TNF-α 

stimulated cells with NP treatment (RA-TNF/NP). Effects on OA-FLS cells were also investigated, OA-

UT, OA-NP, OA-TNF and OA-TNF/NP groups treated as above, respectively. Differences in gene 

expression between TNF and TNF/NP treated groups for both cell types were compared to assess NP 

regulation of inflammatory genes in an acute inflammatory state. In addition, differences in gene 

expression between UT and NP were compared to assess NP regulation of inflammatory genes present 

in a chronic state.  Summarises of the raw read count and gene expression statistics for significant and 

non-significant gene counts are supplied in Appendix 3. 
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4.3.2.1 Sequence and alignment quality assessment of RNA-seq data 

Raw read and quality metrics of RNA-seq data that was aligned to the GRCh37/hg19 reference genome 

using STAR are summarised in Table 4.2. DE analysis of raw counts by DESeq2 implemented 

normalisation to correct for library size and independent filtering to exclude genes with low read 

counts.  Between 0% - 0.12% of the reads were excluded due to low quality before mapping to the 

reference genome began. Total map reads were 98.29 – 99.06%, where 80.12 – 86.65% were uniquely 

mapped. A total of 28,288 and 27438 genes with non-zero total read counts were identified for RA-

FLS and OA-FLS groups respectively (log2 FC ≥1; FDR ≤0.05). MA plot is a scatter plot whose y-axis and 

x-axis respectively display M=log2(Ri/Gi) and A=log2(Ri*Gi) where Ri and Gi represent the intensity of 

the ith gene in R and G samples. MA scatter-plots of microarray spot statistics for each gene across 

the treatment groups showed a normal, un-biased distribution with low biological variability. Low 

biological variability was to be expected as the primary cell lines were harvested from a single source. 

Plot symmetry about the x-axis (mean) indicated normalisation was fine with equal number of 

upregulated and downregulated genes (shown in Appendix 3).  

PCA plots and sample-sample heat distance heat maps provided by DESeq2 were used to assess quality 

of the RNA-seq replicates.  As shown in Figure 4.2, replicates within each of the four treatment groups 

could be clearly distinguished for RA-FLS cells.  The number of clusters, along with the percentage 

variance between the clusters confirmed that the samples clustered within their respective treatment 

groups, as expected (Figure 4.2A, Figure 4.2C). By contrast, two of the three OA-NP replicates grouped 

together in one quadrant, while the third replicate clustered away (Figure 4.2B). The poor clustering 

of the OA-NP replicates highlights in-consistency within the OA-NP sample replicates. Furthermore, 

the shared genetic similarity between the clustered OA-NP and OA-UT suggests that these two OA-

FLS groups were either not exposed to NP, or had poor NP uptake during treatment. The poor 

clustering of OA-NP was confirmed in sample distance heat map (Figure 4.2D) and hence OA-NP group 

were excluded from further analysis. 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4: Biological Effects if Nanoparticles In-vitro 

73 

 

Table 4.2. Raw read and quality metrics of RNA-seq data that was aligned to the GRCh37/hg19 

reference genome using STAR 

 Replicate 
Number of 

reads 

Total 

mapped 

reads (%) 

Uniquely 

mapped 

reads (%) 

Multi-

mapped 

reads (%) 

Per base 

sequence 

quality with 

score > 30 

RA-UT 1 10888740 98.55% 84.00% 14.55% 50 

 2 11576222 98.70% 84.98% 13.72% 50 

 3 11190454 98.63% 84.34% 14.29% 50 

RA-TNF 1 11449253 98.29% 86.13% 12.16% 50 

 2 10455644 98.75% 86.65% 12.10% 50 

 3 11921803 98.85% 86.58% 12.27% 50 

RA-NP 1 11064780 98.80% 84.67% 14.13% 50 

 2 11199571 98.95% 84.72% 14.23% 50 

 3 11110842 98.88% 84.80% 14.08% 50 

RA-TNF/NP 1 11602864 98.68% 83.98% 14.70% 50 

 2 11649019 99.04% 84.41% 14.63% 50 

 3 11903358 99.05% 84.15% 14.90% 50 

OA-UT 1 10226420 98.63% 83.00% 15.63% 50 

 2 10652763 98.85% 82.98% 15.87% 50 

 3 10666266 98.79% 82.34% 16.45% 50 

OA-TNF 1 13828969 99.06% 85.51% 13.55% 50 

 2 10787373 99.01% 85.39% 13.62% 50 

 3 10768148 98.88% 84.65% 14.23% 50 

OA-NP 1 10606142 98.91% 85.75% 13.16% 50 

 2 11162818 98.63% 82.92% 15.71% 50 

 3 10950970 98.70% 80.12% 18.58% 50 

OA-TNF/NP 1 10308568 98.31% 84.07% 14.24% 50 

 2 10922988 98.86% 84.47% 14.39% 50 

 3 10396049 98.95% 84.52% 14.43% 50 
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A       B 

 

C       D 

 
Figure 4.2. PCA plots of (A) RA-FLS and; (B) OA-FLS groups. Sample-sample heat distance heat maps 

of RNA-seq data from (C) RA-FLS cells and; (D) OA-FLS cells. Sample clustering met quality assurance 

quality for RA-FLS treated groups.   
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4.3.2.2 Top DE genes  

In the present study, Illumina RNA sequencing was used to profile human RA FLS cells transcriptomes 

to gain insights into the regulatory role of NP on FLS cells in RA. Statistical analysis of DE genes was 

carried out using IPA software. DE genes were identified if their log fold change was greater than a 

magnitude of two fold and if FDR < 0.05. A heat map of the top DE expressed genes in RA-FLS treated 

groups are shown in Figure 4.3. Table of the top DE expressed in the discussed RA-FLS treatment 

groups are supplied in Appendix 4. 

 
4.3.2.2.1 Top DE genes following TNF-α stimulation, (RA-TNF vs RA-UT) 

TNF-α was used to stimulate RA-FLS cells. It was found that 7968/17912 of genes which were 

upregulated (>2 fold) by TNF-α reached statistical significance when compared to untreated controls 

(FDR <0.05).  Table of the top DE expressed in the RA-TNF vs RA-UT treatment groups are supplied in 

Appendix 4. 

Assessment of the top DE genes in RA-TNF cells showed the acquisition of genes associated with 

inflammation and joint erosion. As shown, the upregulated chemokines CXCL5,8,10; CCL20, CXCR4,  

were elevated and are important in the recruitment of inflammatory mediators and angiogenesis 

(Kokkonen et al., 2010). In addition to the chemokines, a pronounced recruitment of genes involved 

in inflammatory signalling TRPA1, IL23A, NOS2, nociceptive signalling TRPA1, MRGPRX3 and bone 

remodelling IBSP were also observed. These include genes involved in osteoclastogenesis CXCL8, 

CCL20, IL-23, and breakdown of extracellular matrix proteins MMP-3, all which collectively contribute 

to inflammation and degenerative joint function associated with RA. 

 
4.3.2.2.2 Top DE genes following NP treatment, (RA-TNF/NP vs RA-TNF) 

By comparing TNF-α treated cells to TNF-α and NP treated cells, the influence of NP in acute 

inflammation was examined. Analysis showed 7874/18430 of genes which were DE (>2 fold) in RA-

TNF/NP reached statistical significance when compared to RA-TNF (FDR <0.05). Table of the top DE 

expressed in the RA-TNF/NP vs RA-NP treatment groups are supplied in Appendix 4. 

As shown in Figure 4.3, assessment of the top DE genes in TNF/NP showed a significant reduction in 

inflammatory and bone remodelling genes, previously upregulated in RA-TNF. In addition to reduction 

of these genes, NP treatment promoted the acquisition of SERPINB2, Hsp70; HSPA6, HSPA7, TFPI2, 

IL1RN genes, which are associated with homeostasis and inflammation resolution. Increase in SHISA2 

would also decrease wingless/integrated (WNT) signalling, and increase in anti-nociceptive signalling 

NTSR1. By contrast, CXCLorf48, MMP-3 and CXCL3,6 genes appeared to be largely unaffected by NP 

treatment, whilst CXCL5,8 was slightly upregulated. Overall, assessment of top DE genes in each group 
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highlight an immunological shift from highly pro-inflammatory acute inflammatory environment to a 

less inflammatory environment mediated by NP treatment. 

4.3.2.2.3 Top DE genes following NP treatment in untreated cells (RA-NP) vs (RA-UT) 

Differences in gene expression between untreated RA-FLS (RA-UT) and NP treated RA-FLS (RA-NP) 

were compared to assess the effect of NP on RA-FLS cells. It was found that 5941/15839 of genes 

which were DE (>2 fold) in RA-NP reached statistical significance when compared to RA-UT (FDR 

<0.05). Table of the top DE expressed in the RA-NP vs RA-UT treatment groups are supplied in 

Appendix 4. 

As shown in Figure 4.3, an upregulation of interstitial collagenase MMP-1 in RA-NP was observed, 

which degrade type II collagen in cartilage and are crucial in the progression of RA and OA (Vincenti & 

Brinckerhoff, 2002). However, increase in tissue factor pathway inhibitor 2 (TFPI-2), helpful in reducing 

extracellular matrix degradation by inhibiting a variety of serine proteases including MMPs was 

increased in RA-NP.  Increases in Interleukin 1 receptor antagonist (IL1N) in RA-NP, may also assist in 

mediating anti-inflammatory effects by Inhibiting IL-1 by binding activation (Dinarello, 2011). Similarly, 

increased expression of long intergenic non-protein coding RNA, P53 induced transcript (LINC-PINT) 

and neurotensin receptor type 1 (NTSR1) have been linked to anti-inflammatory and angiogenic 

effects were positively DE expressed in RA-NP (Mirsafian et al., 2016; Li et al., 2014). Other DE genes 

included those involved in ATP binding, RNA binding and hydrolysis (DDX3Y), ribosome formation 

(RPS4Y1) and pseudogene (TXLNGY). Collectively, the upregulation of DE with potentially anti-

inflammatory regulatory properties (IL1N, LINC-PINT, NLGN4Y, TFP1-2) suggests NP may be beneficial 

in mediating inflammatory responses through the expression of these genes. 
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Figure 4.3. Heat map of the top DE genes based on comparison of RNA-seq data between TNF-α and 

NP treated cells (RA-TNF/NP), and TNF-α treated (RA-TNF) RA-FLS cells. The normalized RNA-Seq 

data is in log2 scale, where red is highly expressed genes and blue is low expression. To be included 

in the heat map, genes were required to have at least 1000 counts (reads), totalled over all samples, 

where the standard deviation of log2 expression differences had to exceed two. The heatmap 

highlights an immunological shift from highly pro-inflammatory environment to a non-inflammatory 

environment, mediated by NP. Abbreviations: Tissue factor pathway inhibitor 2 (TFPI2); Matrix 

metalloproteinases-1 (MMP-1); Interleukin 1 receptor antagonist (IL1RN); Chemokine C-X-C motif 

ligand 1 (CXCL, 8,5); Chromosome 15 open reading frame 48 (C15orf48); C-X-C chemokine receptor 

type 4 (CXCR-4); Chemokine (C-C motif) ligand 20 (CCL20); Integrin binding sialoprotein (IBSP); Nitric 

oxide synthase 2 (NOS2); Crumbs 2, cell polarity complex component (CRB2); Mas-related G-protein 

coupled receptor member X3 (MRGPRX3); Toll like receptor 2 (TLR2); Interleukin-23A (IL-23A); Long 

Intergenic non-protein coding RNA 1539 (LINC01539); Anoctamin 9 (ANO9); Shisa family member 2 

(SHISA2); Heat shock protein family A member 6/7 (HSPA6, HSPA7); Interleukin 36 receptor 

antagonist (IL36RN); Plasminogen activator inhibitor-2 (SEPINB2); Long intergenic non-protein 
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coding RNA, P53 induced transcript (LINC-PINT); Neurotensin receptor type 1 (NTSR1); Polypeptide 

N-Acetylgalactosaminyltransferase 9 (GALNT9); Forkhead Box I1 (FOXI1); DEAD-Box Helicase 3 Y –

Linked (DDX3Y); Neuroligin 4 Y-linked (NLGN4Y); Ribosomal protein S4 Y-linked 1 (RPS4Y1); Taxilin 

gamma pseudogene (TXLNGY). 

 
4.3.2.3 NP regulation of candidate inflammatory markers 

To examine the influence of NP in regulating published key mediators of inflammation expressed in 

RA, logfold changes of prominent RA genes were compared between RA-TNF/NP and RA-TNF, as well 

as, RA-UT and RA-NP treated groups, respectively.  The expression of key mediators in arthritis are 

represented as a heat maps in Figure 4.4.  This panel of candidate mRNA were specifically selected 

and screened for their importance in inflammatory and disease progression in RA.  

TNF-α is a potent pro-inflammatory cytokine that regulates immune and inflammatory responses 

(Jacque et al., 2005). To confirm the pro-inflammatory effects of TNF-α on gene regulation, untreated 

RA-cells (RA-UT) and TNF-α stimulated cells (RA-TNF) were first compared.  As expected, clustering 

based on the expression pattern of the chosen genes resulted in a clear separation between RA-UT 

and RA-TNF as indicated by opposite colour scoring in z-score. Highly expressed pro-inflammatory 

genes IL-6, IL-8, IL-1B, IL-1A, represented by red in the RA-TNF were oppositely expressed in the RA-

UT group (blue). Similarly, IL-12A – IL-2 genes highly expressed in RA-UT were down regulated in RA-

TNF and confirmed an effective alternative inflammatory model as induced by TNF-α stimulation. 

Comparison of RA-TNF/NP and RA-TNF groups were then examined to assess NP regulation of key 

inflammatory genes in a TNF-α induced acute inflammatory response in-vitro. As shown in Figure 4.4, 

highly expressed pro-inflammatory cytokines IL-1B, IL-1A, IL-6, IL-8 and IFN-ɣ in RA-TNF cells, were 

shown to be down regulated in RA-TNF/NP groups. Similarly, TNF-α induced up regulation of MMP-1 

and MMP-3 were also shown to be suppressed following NP incubation in RA-TNF/NP groups. NF-κB 

dimers, RELA appeared largely unaffected by NP incubation, while RELB was suppressed in RA-TNF/NP.  

In contrast, CCL2/MCP-1 genes were shown to be more highly expression in RA-TNF/NP when 

compared to RA-TNF alone. These genes are involved in the innate immune system and are 

upregulated in the synovium of RA patients (Koch, 1992; Choy, 2001). The up-regulation of these 

particular genes in RA-TNF/NP group was dependent on the presence of TNF-α and not shared by the 

RA-NP group. This suggests an alternative NP effect on the regulation of acute inflammatory 

responses. While there is clear evidence that NP can influence inflammatory markers, the data is still 

limited, and the pathway of activation for CCL2 and MMP-13 requires further investigation. Similarly, 

to RA-TNF/NP, highly expressed inflammatory in RA-UT were downregulated following NP treatment 

in RA-NP, in particular IL-4, IL-12B, IL-13, IL-2, IFN-ɣ and CCL2. In contrast, expression of collagenases 



CHAPTER 4: Biological Effects if Nanoparticles In-vitro 

79 

 

MMP-1 and MMP-3, while downregulated in RA-TNF/NP, where upregulated in RA-NP when 

compared to RA-UT.  

 

 

 

 

 

 
 

Figure 4.4: Heat map of DE candidate genes prominent in arthritis progression in RA-FLS cells. Groups 

include; untreated RA-FLS cells (RA-UT), TNF-α stimulated cells (RA-TNF), NP and TNF-α stimulated 

cells (RA-TNF/NP) and NP treated cells (RA-NP). The normalised RNA-seq data is in log2 scale, where 

red is highly expressed genes and blue is low expression. To be included in the heat map, genes were 

required to have at least 1000 counts (reads), totalled over all samples, where the standard deviation 

of log2 expression differences had to exceed two. The heatmaps highlights anti-inflammatory effects 

of NP in TNF-α induced pro-inflammatory cytokine expression. Abbreviations: NF-κB subunits (RELB, 

RELA); Interferon (IL-[12A, 12, 12B, 4, 23A, 18, 1B, 1A, 6, 8]); Matrix metalloproteinases (MMP-[13, 

3, 1]); Chemokine ligand 2 (CCL2); colony-stimulating factor 2 (CSF2). 
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4.3.2.4 NP pathway signalling regulation of candidate signalling genes  

To explore the potential pathways involved in the NP mediated suppression of inflammatory markers, 

connector molecules produced by pathway analysis were employed by integrating RNA-seq DE genes 

to show signalling in RA-FLS cells.  The activation status of the genes and the pathway flow was 

predicated by a corrected log expression, comparing RA-TNF/NP to RA-TNF. The predicated influence 

of NP on FLS gene induction is shown in Appendix 5. To assess the mechanisms mediating the NP’s 

anti-inflammatory effects, candidate mRNA signalling genes were compared between NP treated and 

non-treated cells. This panel of candidate mRNA were specifically selected and screened because of 

their importance in inflammation and disease progression in RA. Logfold changes and FDR values for 

Figure 4.5 are supplied in Appendix 4. 

Figure 4.5 illustrates the regulation of candidate mRNA genes involved in inflammatory signalling, 

abbreviations are supplied in legend. As expected, clustering based on the expression pattern of the 

chosen signalling genes resulted in a clear separation between RA-TNF and RA-UT as indicated by 

opposite colour scoring in z-score. In RA-TNF, high expression of JAK, STAT, PPAR and TLR2, and to a 

lesser degree AKT1 were found to be upregulated when compared to RA-UT. The increase in signalling 

genes following TNF-α are consistent with the pro-inflammatory stimulatory effects of the cytokine.  

By contrast, TLR3 remained largely unaffected, while TLR4 were downregulated. For NP treated cells, 

there was a significant shift in gene regulation, with highly expressed genes in RA-TNF oppositely 

expressed in RA-TNF/NP. In particular TLR, STAT, RXR and PPAR-ɣ genes were significantly 

downregulated, while PPAR-δ, SOCS4, AKT1 and LXR genes were significantly upregulated and 

suggests anti-inflammatory effects are mediated by regulation of these genes. Comparison of RA-NP 

to RA-UT showed a shift in gene regulation consistent to that seen in RA-TNF/NP when compared to 

RA-TNF, however to a lesser degree and suggests effects mediated by a similar pathway. In particular, 

TLR and RXR genes which were highly regulated in RA-UT, were downregulated in RA-NP. Note the 

marked inhibitory effect of JAK/kinases in TNF/NP stimulated cells.  
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Figure 4.5. Heat map of DE candidate signaling genes. Groups include; untreated RA-FLS cells (RA-

UT), TNF-α stimulated cells (RA-TNF), NP and TNF-α stimulated cells (RA-TNF/NP) and NP treated 

cells (RA-NP). The normalised RNA-seq data is in log2 scale, where red is highly expressed genes and 

blue is low expression. To be included in the heat map, genes were required to have at least 1000 

counts (reads), totalled over all samples, where the standard deviation of log2 expression differences 

had to exceed two. The heatmaps highlights shift in gene expression following NP treatment. 

Abbreviations: Serine/threonine-protein kinase (AKT1); Suppressor of cytokine signalling 4 (SOCS4); 

Janus kinase (JAK-[2,3]); Signal transducers and activators of transcription (STAT-[1,3]); Toll like 

receptor (TLR-[2,3,4]); Liver X receptor (LXR-[α]); Retinoid X receptor (RXR); Peroxisome proliferator-

activated receptors (PPAR [A,G,D]-[α, ɣ, δ]).  
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4.3.2.5 Effect of NP on the biochemistry of endocannabinoid synthesis  

Since LEA is a FAAH inhibitor, the effect of NP regulation of genes involved in the synthesis and 

metabolism of endogenous endocannabinoids was examined. Figure 4.6 illustrates the regulation of 

candidate mRNA genes involved in the synthesis, degradation and oxidation of AEA. Logfold changes 

and FDR values for Figure 4.6 are supplied in Appendix 4.  Following TNF-α stimulation there is  an 

overall decrease in both synthesising enzymes, in particular ABHD4/GDE1 and NAT1/NAPE-PLD, and 

catabolic enzymes LOX and FAAH in RA-TNF when compared to RA-UT. In contrast, COX-2 was 

upregulated in RA-TNF. 

In NP treated cells, synthesising enzymes were increased in RA-TNF/NP when compared to RA-TNF, 

suggesting a shift in genes to a more active synthesising state following NP treatment.  In particular, 

FAM213B, PTPN22, PLG1, PTGSG2 were upregulated, while ABHD4 and GDE1 were 

downregulated/not affected. For catabolic enzymes, LOX and FAAH were downregulated, while CP450 

and COX-2 were upregulated in RA-TNF/NP. Similarly, comparison of RA-NP to RA-UT showed increase 

a similar expression pattern consistent to that seen in RA-TNF/NP. In RA-UT, highly expressed PTGSG2 

and GDE1 were downregulated following in RA-NP. 
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Figure 4.6. Heat map of DE candidate mRNA genes involved in endocannabinoid synthesis and 

degradation. Groups include; untreated RA-FLS cells (RA-UT), TNF-α stimulated cells (RA-TNF), NP 

and TNF-α stimulated cells (RA-TNF/NP) and NP treated cells (RA-NP). The normalised RNA-seq data 

is in log2 scale, where red is highly expressed genes and blue is low expression. To be included in the 

heat map, genes were required to have at least 1000 counts (reads), totaled over all samples, where 

the standard deviation of log2 expression differences had to exceed two. An increase in synthesizing 

enzymes was observed in NP treated cells. Abbreviations: N-acyltransferase 1 (NAT1); α/β-hydrolase 

domain 4 (ABHD4); N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD); 

Glycerophosphodiesterase-1 (GDE1); Family with sequence similarity 213 Member B (FAM213B); 

Non-receptor protein tyrosine phosphatase 22 (PTPN22); Phospholipase C gamma 1 (PLCG1); 

Prostaglandin E synthase 2 (PTGES2); Cyclooxygenase-2 (COX-2); Cytochrome P450 monooxygenases 

(P450s); Lipoxygenase (LOX); Fatty acid amide hydrolase (FAAH). 
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4.3.2.6 Network and pathway analyses of DE genes 

Pathways analysis of DE genes was performed using IPA. The percentage overlap represents the 

number of genes in the canonical pathway that were influenced by the following treatment. The top 

canonical pathways induced in the TNF-α stimulated RA-FLS cells are summarised in Table 4.3A.  In 

TNF-α inflammatory model, DE genes significantly expressed following stimulation with TNF-α led to 

enrichment of cytokine-rich ontologies and were consistent to top biological functions involving 

inflammation.  The top canonical pathways activated following NP treatment in TNF-α stimulated and 

non-stimulated RA-FLS cells are summarised in Table 4.3B and C respectively.  For RA-TNF/NP, the 

pathway activated were heavily involved in immune cell trafficking as well as lipid metabolism. 

Similarly, for RA-NP immune cell trafficking was a common biological feature of the activated 

pathways, with particular regulation in osteoarthritic conditions. 

Table 4.3. Top Canonical Pathways based on comparison of RNA-seq data between (A) RA-TNF and 

RA-UT; (B) RA-TNF/NP and RA-TNF; (C) RA-NP and RA-UT.  

 

A 
Top canonical pathway p-value overlap 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 6.85E-11* 21.9% (40/183) 

Granulocyte Adhesion and Diapedesis 7.65E-10 21.7% (36/166) 

Dendritic Cell Maturation 1.34E-09 20.5% (38/185) 

Agranulocyte Adhesion and Diapedesis 4.08E-09 20.5% (36/176) 

Neuroinflammation Signalling pathway 2.25E-08 16.3% (49/301) 
 

B 
 

Top canonical pathway p-value overlap 

Granulocyte Adhesion and Diapedesis 3.32E-11 21.1% (35/166) 

Hepatic Fibrosis / Hepatic Stellate Cell Activation  3.36E-11 20.2% (37/183) 

Agranulocyte Adhesion and Diapedesis 2.93E-09 18.8% (27/121) 

Role of Macrophages, Fibroblasts & Endothelial Cells in RA 8.23E-08 14.2% (33/176) 

LXR/RXR Activation 1.56E-09 22.3% (43/303) 
 

C 

 

Top canonical pathway p-value overlap 

Granulocyte Adhesion and Diapedesis 3.59E-08 10.2% (17/166) 

Agranulocyte Adhesion and Diapedesis 8.52E-08 9.7% (17/176) 

Role of Osteoblast, Osteoclasts and Chondrocytes in RA 1.57E-07 8.3% (19/228) 

LPS/IL-1 mediated Inhibition of RXR function 2.04E-07 8.6% (18/209) 

Osteoarthritis Pathway 8.12E-07 8.3% (17/206) 

*E- equals E to the power of the next numeral. 
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4.3.3 RNA-seq Gene Expression in OA-FLS Cells  

4.3.3.1 Top DE genes following TNF-α stimulation (OA-TNF vs OA-UT) 

TNF-α was used to stimulate OA-FLS cells. It was found that 13766/15779 of genes which were 

upregulated (>2 fold) by TNF-α reached statistical significance when compared to untreated controls 

(FDR <0.05). Assessment of the top DE genes in OA-TNF cells showed the acquisition of genes 

associated with inflammation and joint erosion, Table 4.4. As shown, the upregulated chemokines 

CXCL5,8,10 and CCL5,20 were elevated and are important in the recruitment of inflammatory 

mediators (CCL5, CCL20) and angiogenesis (CXCL8; Scanzello, 2017). In addition to the chemokines, a 

pronounced recruitment of genes involved in nociceptive signalling (TRPA1) and bone remodelling 

(IBSP, MEOX1) were also observed. These include genes involved in osteoclastogenesis such as CXCL8 

and CCL20, all of which collectively contribute to inflammation and degenerative joint function 

associated with OA). The top canonical pathways induced in the TNF-α stimulated OA-FLS cells are 

summarised in Table 4.5.  In TNF-α inflammatory model, DE genes significantly expressed following 

stimulation with TNF-α led to enrichment of cytokine-rich ontologies and were consistent to top 

biological functions involving inflammation. 

 
4.3.3.2 Top DE genes following NP incubation (OA-TNF/NP vs OA-TNF) 

By comparing TNF-α treated cells to TNF-α and NP treated cells the influence of NP in inflammation 

was assessed. Analysis showed 12846/16781 genes which were DE (>2 fold) in OA-TNF/NP cells 

reached statistical significance when compared to OA-TNF cells (FDR <0.05).  As shown in Table 4.6, 

assessment of the top DE genes in OA-TNF/NP cells shows the downregulation of genes involved with 

mitotic processes, MKI67, KIF20A, DEPDC1, KIF18B, NEK2, DLGAP5, MYBL2, PCLAF, retrograde 

vesicular trafficking from the golgi apparatus, KIF20a, KIF18B, and protein binding, TROAP. In 

agreement with this data, assessment of OA-TNF/NP’s top canonical pathways highlight pathways 

involved in both mitotic regulation and immune cell trafficking (Table 4.7).  
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Table 4.4. Top 10 DE genes based on comparison of RNA-seq data between TNF-α treated (OA-TNF) 

and non-treated (OA-UT) OA-FLS cells. 

Gene Name Log2FC FDR 

CXCL8 C-X-C motif chemokine ligand 8 9.237 9.81E-64 

TRPA1 Transient receptor potential cation 

channel subfamily A member 1 
9.183 7.53E-17 

CXCL10 C-X-C motif chemokine ligand 10 9.050 7.74E-12 

CCL5 C-C motif chemokind ligand 5 9.048 3.22E-24 

C15orf48 Chromosome 15 open reading frame 48 8.777 4.27E-11 

IBSP Integrin binding sialoprotein 8.385 6.86E-10 

MEOX1 Mesenchyme homeobox 1 7.819 6.51E-12 

CCL20 C-C motif chemokind ligand 20 7.748 7.87E-24 

ELOVL7 ELOVL fatty acid elongase 7 7.450 2.42E-08 

CXCL5 C-X-C motif chemokine ligand 5 7.194 2.36E-107 

 

Table 4.5. Top canonical pathways based on comparison of RNA-seq data between TNF-α treated (OA-

TNF) and non-treated (OA-UT) OA-FLS cells. 

Top canonical pathway FDR overlap 

Granulocyte Adhesion and Diapedesis 1.079E-15 15.0% (25/167) 

Agranulocyte Adhesion and Diapedesis 3.39E-13 13.0% (23/177) 

Role of IL-17F in Allergic Inflammatory Airway Diseases 1.12E-11 28.6% (12/42) 

Atherosclerosis Signalling 1.83E-10 13.7% (17/124) 

Role of Macrophages, Fibroblasts and Endothelial Cells in RA 1.18E-09 8.1% (25/310) 
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Table 4.6. Top 10 DE genes based on comparison of RNA-seq data between NP treated (OA-TNF/NP) 

and non-treated (OA-TNF) TNF-α stimulated OA-FLS cells. 

Gene Name Log2FC FDR 

MKI67 Marker of proliferation Ki-67 -10.769 6.32E-11 

KIF20A Kinesin family member 20A -10.684 2.11E-10 

DEPDC1 DEP domain containing 1 -9.3266 7.54E-11 

PCLAF PCNA clamp associated factor -8.9747 2.22E-10 

PBK PDZ binding kinase -8.8419 3.01E-10 

TROAP Trophinin associated protein -8.7708 1.74E-05 

KIF18B Kinesin family member 18B -8.7094 2.50E-08 

NEK2 NIMA-related kinase 2 -8.3465 7.55E-09 

DLGAP5 Disks Large-Associated Protein 5 -8.0457 2.34E-09 

MYBL2 MYB Proto-Oncogene Like 2 -7.8215 2.66E-07 

 

Table 4.7. Top Canonical Pathways based on comparison of RNA-seq data between NP treated (OA-

TNF/NP) and non-treated (OA-TNF) TNF-α stimulated OA-FLS cells. 

Top canonical pathway FDR overlap 

Mitotic Roles of Polo-Like Kinase  1.149E-07 22.2% (14/63) 

Cell Cycle Control of Chromosomal Replication 1.39E-06 21.4% (12/56) 

Hepatic Fibrosis / Hepatic Stellate Cell Activation  3.11E-05 12.0% (22/183) 

Granulocyte Adhesion and Diapedesis 3.15E-05 11.4% (19/167) 

Agranulocyte Adhesion and Diapedesis 7.01E-05 10.7% (19/177) 
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4.3.4 RT-PCR Effect of NP on RA-FLS Cells  

To replicate and confirm findings obtained by RNA-seq, RT-PCR was used to confirm NP effects in the 

regulation of anti-inflammatory genes. RNA purity and an evaluation of suitable housekeeping genes 

were assessed prior to testing primers of interests. 

4.3.4.1 RNA purity and concentration 

RNA purity and concentration was assessed using a Nanodrop spectrophotometer and summarised in 

Table 4.8.  The ratio of the readings at 260 nm and 280 nm (A260/A280) provided an estimate of the 

purity of RNA. Pure RNA had an A260/A280 ratio of 1.9-2.1. RNA isolated from all groups had a pure 

RNA ratio between 1.9-2.1 

 
Table 4.8. RNA purity and concentration of RA-FLS cells as assessed by Nanodrop spectrophotometer. 

 

Cell Line 
Treated 
Groups  

A260/A280 A260/A230 [RNA] ng/µL 

RA-FLS 

RA-UT 1.925 1.920 138 

RA-TNF 1.983 1.844 152 

RA-TNF/NP 1.945 2.025 160 

RA-NP 1.977 1.852 104 

 

 

4.3.4.2 Assessment of house-keeping genes 

House-keeping genes GAPDH and β-actin, were used to normalise gene expression data and correct 

sample-to-sample variation.  The ideal control gene is consistently expressed regardless of treatment. 

Stable expression was defined as cycle threshold (Ct) = 0-0.05 between treatment groups. Two house-

keeping genes, GAPDH and β-actin, were assessed for stability before testing primers of interest. 

Figure 4.7 compares the relative mRNA expression of GAPDH and β-actin, as well as their respective 

melting peaks. It was found that GAPDH was consistently expressed at a comparable level between 

groups and was therefore selected as the house-keeping gene for normalisation in all subsequent PCR 

experiments.  
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A       

 
B 

 
Figure 4.7. Comparison of house-keeping genes (A) GAPDH and; (B) β-actin mRNA between RA-FLS 

treatment groups. Melting curves of the house-keeping genes are represented alongside and show 

one single melt peak. GAPDH was shown to be consistently expressed and used to normalise 

subsequent mRNA runs.   
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4.3.4.4 NP effects on TNF-α induced IL-6, IL-8, and NF-κB mRNA 

RT-PCR was carried out to investigate whether NP treatment could regulate TNF-α stimulated changes 

in the gene transcription levels of three target genes; NF-κB, IL-6 and IL-8. Changes in gene regulation 

are expressed as a fold change to control groups and normalised against GAPDH.  Consistent with 

previously documented pro-inflammatory actions of TNF-α, incubation of cultured RA-FLS with 

recombinant TNF-α (10 ng/mL) induced marked increases in the gene transcription for all 3 genes 

tested. As shown in Figure 4.8, RA-TNF cells exhibited a fold change increased NF-κB by 2.832 (p < 

0.0001, n=3), IL-6 by 47 (p < 0.0001, n=3) and IL-8 by 53 (p < 0.0001, n=3).  In contrast, all three pro-

inflammatory genes were significantly supressed in TNF-α stimulated cells which were NP treated. RA-

TNF/NP cells significantly decreased expression of NF-κB by 0.64 (P < 0.0001, n=3), IL-6 by 0.5-fold (P 

< 0.0001, n=3) and IL-8 by 0.8-fold (P < 0.0001, n=3) when compared to RA-TNF. These results are 

consistent with the data observed in RNA-seq analysis.  

 
4.3.4.4 NP effects on TNF-α induced MMP-1, MMP-13, and MMP-3 mRNA 

Similarly, to investigate whether NP treatment could regulate TNF-α stimulated changes in 

collagenases, the gene transcription levels of MMP-1, MMP-3 and MMP-13 were compared using RT-

PCR. Changes in gene regulation are expressed as a fold change to control groups and normalised 

against GAPDH. As shown in Figure 4.9, TNF-α induced marked increases in the gene transcription for 

all MMP genes tested. RA-TNF cells exhibited increased MMP-1 by 10.17-fold (p < 0.0001, n=3), MMP-

3 by 2.086-fold (p < 0.01, n=3) and MMP-13 by 1.884-fold (p < 0.001, n=3) mRNA levels, respectively. 

Similar to data obtained by RNA-seq, NP treated cells showed a marked decrease in all three genes 

following TNF-α stimulation. As shown in Figure 4.11, RA-TNF/NP cells demonstrated significantly 

decreased expression of MMP-1 from 10.2 to 1.1 (p < 0.0001, n=3), MMP-3 from 2.1 to 1.2 (p < 0.0001, 

n=3) and MMP-13 from 1.9 to 0.8 (p < 0.0001, n=3) when compared to RA-TNF. These results are 

consistent with the data observed in RNA-seq analysis. Interestingly, NP incubation in untreated cells 

(RA-NP) increased the expression of MMP-3. This expression was four fold greater than 

unstimulated/untreated RA-FLS cells.  
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A       B 

 
C 

 

Figure 4.8. NP suppressed pro-inflammatory upregulation of NF-κB, IL-6 and IL-8 mRNA in RA-FLS 

cells. Cultured RA-FLS stimulated with either alone TNF-α (10 ng/mL) or in the presence of NP (30 

µg/mL) for 24 h. Expression levels of mRNA were assayed by quantitative real-time RT-PCR. The 

mRNA levels of each gene were standardised against GAPDH levels. Data are expressed as the mean 

± S.D, n = 3. *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001 vs TNF- alone, analysis using one-

way ANOVA, followed by Turkey’s multiple comparison test. 
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A       B 

 
C 

 
 

Figure 4.9. NP suppresses pro-inflammatory upregulation of collagenases MMP-1, MMP-3 and MMP-

13 mRNA in RA-FLS cells. Cultured RA-FLS stimulated with either alone TNF- (10 ng/mL) or in the 

presence of NP (30 µg/mL) for 24 h. Expression levels of mRNA assayed by quantitative real-time RT-

PCR. The mRNA levels of each gene were standardised against GAPDH levels. Data are expressed as 

the mean ± S.D, n = 3. *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001 vs TNF- alone, analysis 

using one-way ANOVA, followed by Turkey’s multiple comparison test. 
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4.4 DISCUSSION 

With the rapidly growing interest in NP research, the toxicity of NP is becoming an increasingly 

important issue to resolve. To ensure consistency in screening, the cytotoxicity of the 

endocannabinoid-based NP’s were evaluated using two means, the Trypan blue exclusion method and 

the WST-1 colorimetric assay. To minimise inaccurate toxicity measurements due to variables such as 

temperature, size and cell lines which can affect NP toxicity (Warheit, 2010), NP’s were sized prior to 

cytotoxicity testing to ensure size consistency and stability at temperatures upwards of 37˚C. The 

effective concentration needed to reduce cell viability by 50% (LC50) in tested FLS cells was 40 µg/mL 

and consistent between the two assays. NP concentrations of 30 µg/mL showed 75% viability, NP were 

used at 30 µg/mL for all future in-vitro experiments. 

 

The effects of LEA and OEA on FLS cells under various conditions has not been previously described. 

Consistent with previously described effects of TNF-α, assessment of the top DE genes in RA-TNF 

showed upregulation and acquisition of genes associated with inflammation and joint erosion (Bek et 

al., 2017). For NP treated cells, assessment of the top DE genes in RA-TNF/NP indicated that NP 

promoted the acquisition of genes associated with homeostasis and inflammation resolution and led 

to a significant reduction of pro-inflammatory genes. Highly expressed pro-inflammatory cytokines IL-

1B, IL-1A, IL-6, IL-8 and IFN-ɣ in RA-TNF cells were down regulated in RA-TNF/NP groups indicating 

inflammatory resolution by decreasing cytokine production. Similarly, low expression of MMP’s in the 

TNF/NP group suggests a protective role of NP in preventing cartilage destruction by limiting the 

production of collagenases. The up-regulation other genes involved with the innate immunity that can 

stimulate NK cells suggests an alternative NP effect on the regulation of inflammatory responses.  

 

Activation and release of factors from macrophages, FLS and endothelial cells involved in RA 

pathogenesis are principally initiated by four main signal transduction pathways, ERK/MAPK pathway, 

NF-κB pathway, WNT pathway and JAK-STAT pathway. Activation of these pathways are regulated by 

upstream receptors such as TLR, PPAR-α, TNF-R as well as DAG/PKC signalling. Previous experiments 

have demonstrated OEA and LEA ability to interrupt pro-inflammatory signalling. OEA exerts anti-

inflammatory effects by enhancing PPAR-α signalling, inhibiting the TLR4-mediated NF-κB signalling 

pathway, and interfering with the ERK1/2-dependent signalling cascade (TLR4/ERK1/2/AP-1/STAT3; 

(Yang et al., 2016). Similarly, LEA has been shown to suppress LPS induced expression of TNF-α, IL-1B, 

IL-6, COX-2, and PE2, by inhibition of NF-κB signalling in macrophages in-vitro (Ishida et al., 2013). 

Consistent with published literature, analysis of candidate mRNA signalling genes showed suppression 

of TLR (2,3,4) in NP treated cells, when compared to non-treated cells (Yang et al.,  2016). TLRs are 
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highly expressed in patients with RA, and have been shown to contribute to the pathogenesis of the 

disease (Huang & Pope, 2009; Duffy & O'Reilly, 2016). Activation of NF-κB and MAPK signalling 

pathways through TLR results in expression of pro-inflammatory cytokines and activation of cells of 

the innate immune system. Inhibition of the TLR pathways may be mediated by changes in PPAR 

signalling.  PPAR and LXR are both members of the nuclear receptor family which regulate metabolic 

and inflammatory signalling. These receptors heterodimerize with RXR to regulate gene transcription. 

Activation of RXR has been linked to increased production of chemokines, resulting in increase in 

leucocyte recruitment and an inflammatory response (Nunez et al., 2010). By contrast, LXR-dependent 

repression of inflammatory genes induced by LPS/TLR4 signalling has been noted in macrophages 

(Ogawa et al., 2005). NP induced increases in PPAR-ɣ, LXR genes and decrease in RXR (α, ɣ, δ) genes 

could therefore help mediate the anti-inflammatory effects by enhanced PPAR signalling, and 

interrupted TLR signalling.  

In addition to the known effects of OEA on TLR and PPAR signalling, expression of JAK-STAT signalling 

mRNA was also shown to be suppressed in NP treated cells. In recent years, numerous studies have 

established that the JAK/STAT signalling pathway is important in the synovium of RA patients and in 

animal models of arthritis (Ahmad et al., 2015).  In addition to JAK-STAT suppression, expression of 

STAT inhibitor SOCS4 was increased in NP treated cells. Given that many JAKs are associated with 

cytokine receptors, the JAK-STAT signalling pathway is an emerging target for RA therapy. Novel oral 

JAK inhibitor, tofacitinib, has been suggested as a new first line monotherapy, having superior efficacy 

over methotrexate (MTX) in the treatment of RA (Lee et al., 2014a; Onuora, 2014). In tofacitinib-

treated patients, clear reductions in synovial STAT1 and STAT3 phosphorylation levels were observed 

and strongly correlated with 4-month clinical responses (Boyle et al., 2015). Dampening of JAK-STAT 

signalling by NP’s may suppress cytokine signalling and may offer as an alternative JAK inhibitor in the 

treatment of RA.   

NP effects in OA-FLS cells were also evaluated. Quality of RNA-seq treatment samples using PCA plots 

and sample-sample heat distance maps demonstrated poor clustering of the OA-NP replicates. The 

shared genetic similarity between the clustered OA-NP and OA-UT suggests that these two OA-FLS 

groups were either not exposed to NP, or had poor NP uptake during treatment. Due to this, OA-NP 

group was excluded from analysis and therefore only general remarks on the NP influence in OA can 

be inferred. Similar to TNF-α induced effects observed in RA-FLS treated cells, assessment of the top 

DE genes in OA-TNF showed the acquisition of genes associated with inflammation and joint erosion, 

with particular upregulation of chemokines (CXCL5,8,10; CCL5,20). Following NP treatment, 

assessment of the top DE genes in RA-TNF/NP cells showed the downregulation of genes involved in 

mitotic processes, retrograde vesicular trafficking from the golgi apparatus and protein binding. In 
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agreement with this, evaluation of the top canonical pathways influenced in OA-TNF/NP shows the 

downregulation of mitotic roles of polo-like kinase 1 (Plk1). Further analysis of the NP effects on OA-

FLS cells should be further evaluated in the presence of OA-NP group.  

NP influence on endogenous endocannabinoid synthesis and degradation was also examined. Unlike 

OEA, the anti-inflammatory effects of LEA may be mediated by the CB receptors. In previous 

experiments, LEA has been demonstrated to be an endogenous ligand for the CB receptors, although 

affinity is relatively low (Lin et al., 1998). LEA has also been shown to inhibit FAAH (Maccarrone et al., 

1998), increasing the life-time of AEA, which then mediates its anti-inflammatory effects by the CB 

receptors. Analysis of candidate mRNA genes involved in AEA synthesis and degradation, 

demonstrated an increase in AEA synthesising enzymes following NP treatment in both non-

stimulated (RA-NP), and TNF-α stimulated (RA-TNF/NP) cells. The higher bioavailability of synthesising 

enzymes may increase endogenous AEA levels mediated by the ABHD4/GDE1 and NAT/NAPE-PLD 

pathway. In addition to enhancing synthesising enzymes, a shift in catabolic enzymes following NP 

treatment was observed. Metabolism of AEA into AA and ethanolamine depends on multiple enzymes, 

including oxygenation by COX-2, LOXs and several cytochrome P450 monooxygenases. In NP treated 

cells, oxygenation enzymes LOX was downregulated, while CP450 was upregulated. Down regulation 

of LOX would decrease metabolite production of hydroxyl-AEA (HETE-EAs), while an upregulation in 

CP450 would increase EETs-EA (epoxyeicostrienoyl-ethanolamides). EETs-EA are shown to be potent 

CB2 (Snider et al., 2009) and PPAR-ɣ agonist (Liu, 2005), exerting anti-inflammatory effects (Node et 

al., 1999; Thomson et al., 2012). In agreement with this data, increased expression of PPAR-ɣ mRNA 

noted in NP treated cells may correlate with elevated expression of EETs-EAs from increased 

metabolism of AEA by CP450s. By contrast, down regulation of LOX would decrease metabolite 

production of hydroxyl-AEA (HETE-EAs). Metabolic products of LOXs, such as 12- and 15-HPETEs and 

5- and 15-HETEs, are capable of activating TRPV1 (Hwang et al., 2000) and PPAR-α (Kozak et al., 2002). 

Stimulation of TRPV is associated with increases in both neurotransmitter release (Kelly et al., 2015) 

and inflammatory mediators contributing to joint inflammation.  A reduction in LOX metabolites may 

help facilitate both anti-inflammatory and analgesic potential of the NP by decreased TRPV agonists 

(Premkumar & Sikand, 2008; Hu & Ma, 2018). Consistent with the reported effects of LEA, NP 

treatment decreased expression of FAAH. Expression of FAAH is strongly correlated with AEA 

concentrations (Haller et al., 2013), and the ability of AEA to elicit anti-inflammatory effects. Several 

studies have demonstrated robust anti-inflammatory and anti-hyperalgesia phenotypes after genetic 

or pharmacological disruption of FAAH, and so NP anti-inflammatory effects may be in part mediated 

by local increases in endocannabinoid ligands (Sasso et al., 2012; Cajanus et al., 2016). 
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 4.4.1 Summary 

This is the first report examining the effects of endocannabinoid-based NP’s on the production of 

inflammatory mediators in human FLS cells. The ability of the NP to mediate anti-inflammatory effects 

in-vitro  was demonstrated.  The ability of the NP’s to downregulate inflammatory cytokines, as well 

signalling genes involved in inflammatory processes highlights its promising application as an anti-

inflammatory agent. Furthermore, NP regulation of AEA synthesising enzymes and catabolic and 

oxygenation enzymes may have flow on therapeutic effects by regulating endogenous 

endocannabinoid and metabolites concentrations at the targeted site.  
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CHAPTER 5: NANOPARTICLE BIOLOGICAL EFFECTS IN-VIVO 

5.1 INTRODUCTION 

In previous in-vitro experiments (Chapter 4), NP incubation significantly suppressed pro-inflammatory 

markers in TNF-α stimulated RA-FLS cells. The anti-inflammatory effects included suppression of pro-

inflammatory cytokines, chemokines and metalloproteinase genes. In addition to anti-inflammatory 

effects, NAE’s have been implicated as having potentially analgesic effects, influencing pain and 

inflammation in the peripheral nervous system (Piomelli & Sasso, 2014; Skaper et al., 2015). 

Localisation studies using receptor binding, immuno-histochemistry and in-situ hybridisation have 

mapped the distribution of the cannabinoid receptors along all levels of the pain nexus, providing a 

neuroanatomical framework befitting the function of the cannabinoid system in sensory processing 

(Walker & Huang, 2002; Starowicz & Przewlocka, 2012; Corcoran et al., 2015). The widespread 

expression of the cannabinoid receptors along the principal pain processing sites offers boundless 

opportunities for the development of analgesics for the treatment of various pain conditions.  Anti-

nociception is the process of blocking the detection of a painful or injurious stimuli by sensory neurons, 

resulting in the suppression of noxious neurotransmission. Anti-nociception is a prominent feature of 

systemically administered cannabinoids noted in preclinical studies applying various noxious agents 

such as chemical, mechanical and thermal stimuli to induce pain (Lotsch et al., 2018).  In addition to 

centrally mediated effects, endocannabinoid lipids produced and released at sites of acute tissue 

injury, inflammation and neuropathy regulate the flow of nociceptive signals to the CNS (Piomelli & 

Sasso, 2014). NAE’s, OEA and PEA, have been shown to exhibit anti-hyperanalgesic effects by 

supporting both anti-inflammatory and neurogenic effects through PPAR-α-dependent mechanisms 

(Suardiaz et al., 2007; Seol et al., 2017). These PPAR-α-dependent mechanisms may include opening 

of calcium-activated potassium (BKCa) channels and (IKca) potassium channels and regulation of the 

NF-κB transcription complex. In PPAR-α–deficient mice, the anti-hyperalgesic effects of PEA are 

attenuated, and responses to several pro-inflammatory and proalgesic stimuli are enhanced 

(Devchand et al., 1996; Ruiz-Medina et al., 2012). Increased activation of peripheral entourage 

receptors such as PPAR-α, TLR, TRPV by local NAE’s, help regulate anti-inflammatory and anti-

nociceptive responses, and can be achieved by increases in NAE or peripheral FAAH inhibition. 

LEA has been shown to inhibit FAAH (Maurelli et al., 1995; Maccarrone et al., 1998). In Chapter 4, NP 

incubation suppressed FAAH mRNA expression in-vitro, which can be attributed to the NP’s LEA 

component.  Selective FAAH inhibition has been linked to both anti-inflammatory and anti-nociceptive 

responses in several models of pain–behaviour (Huggins et al., 2012; Fichna et al., 2014; Salaga et al., 

2014). In a rodent model of visceral and inflammatory pain, systemic administration of the 
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peripherally restricted FAAH inhibitor, URB937, selectively interrupted AEA degradation outside the 

brain and spinal cord (Clapper et al., 2010) causing striking anti-hyperalgesic effects (Sasso et al., 

2012).  The increased lifetime of AEA and other articular endocannabinoids induced by LEA could have 

a considerable prolonged effect on cellular signalling, and be a novel anti-inflammatory and analgesic 

agent (Clapper et al., 2010).  

Similarly, current NSAIDs, including ibuprofen and indomethacin, prescribed for the treatment of 

inflammatory pain in OA and RA patients have been shown to inhibit cyclooxygenase (COX) and FAAH 

(Karlsson & Fowler, 2014). Since both COX2 and FAAH are involved in the degradation of 

endocannabinoid lipids, another mode of action maybe the accumulation of endocannabinoids and 

entourage compounds. Interactions between NSAIDs and the endocannabinoid ligands may be of 

great clinical importance in terms of multiple-target drug development having synergistic actions 

(Guindon et al., 2006). Together, these findings suggest that the endocannabinoid system plays an 

important role in pathogenesis of RA, and manipulation of this system by increasing endogenous 

endocannabinoid lipids, especially by combination of COX-2 and FAAH inhibitors, may be a promising 

strategy to reduce erosions, pain and inflammation in arthritis. 

In this chapter, the previously noted in-vitro effects of the NP’s were extended to examine if the same 

results would translate into an in-vivo system. For this, NP were administered i.v.i into arthritic rats, 

and the circulating plasma cytokines measured using an immune-bead based assay.  The influence of 

NP on endogenous articular endocannabinoids was also assessed by HPLC/MS measuring levels of 2-

AG, AEA, OEA, LEA and PEA in the paws of non-treated and NP injected rats. In addition, the potentially 

analgesic effect of NP in normal and arthritic rats was evaluated using the Randall-Selitto method. The 

Randall-Selitto or paw pressure test is a tool to assess response thresholds to mechanical pressure 

stimulation and is often considered a measure of mechanical hyperalgesia (Randall and Selitto, 1957). 

The test involves application of an increasing mechanical force to the surface of the paw or tail until 

withdrawal or vocalisation occurs. Finally, the rota-rod apparatus was used to assess any centrally 

mediated effects of injected NPs in normal rats. The rota-rod test is sensitive to injury of the basal 

ganglia and cerebellum and to drugs that affect motor function by assessing the animal’s sensorimotor 

coordination. Treated rats must maintain their balance on a rotating rod. Animals experiencing 

impaired motor coordination are unable to cope with the rotating rod and will drop off when the 

rotation speed exceeds their motor coordination capacity. The test measures the time (latency) it 

takes for the rat to fall off a rod rotating at different speeds or under continuous acceleration. 

Together this chapter aims to assess the anti-inflammatory and analgesic potential of the 

endocannabinoid-based NP in-vivo and investigate NP influence of endogenous endocannabinoids 

present at the joint.  



CHAPTER 5: Nanoparticle Biological Effects In-vivo 
 

99 

 

 

5.2 METHODS 

5.2.1 Generation of NP’s 

The NP’s used in this chapter were prepared as previously described in Section 2.2.2. 

5.2.2 Animals 

Female Wistar rats (240 – 250 g, 8 to 9 weeks old) were purchased from Animal Resources Centre 

(Perth, WA, Australia). Experiments were performed at Westmead Housing Facility in accordance with 

the Western Sydney Local Health District Animal Ethics guidelines (Ethics Approval Number: 

5105.08.12), as previously described in Section 3.2.8. 

5.2.2.1 AIA model 

Arthritis was induced by single subcutaneous injection of lyophilised MTB suspended in 100 µL of 

squalene at the base of the tail as previously described in Section 3.2.8.1.  

5.2.3 NP Treatment of AIA Rats 

To investigate NP effects on circulating inflammatory cytokines in arthritic rats, NPnon-targeted and NPHAP 

were i.v.i administered and the plasma concentration of circulating cytokines evaluated using an 

LEGENDplex Rat Th Cytokine Panel (13-plex), immune-bead based assay (Biolegend, Australian 

Biosearch, WA, Australia). Arthritic rats were divided into three groups of five each and treated as 

follows; (a) untreated control (ART-CON); (b) NPnon-targeted (ART-NPnon-targeted) and; (c) NPHAP (ART-NPHAP). 

NP’s (24 mg/kg) were administered i.v.i once a day, for two days, for a total of two injections. The 

control group received 500 µL injections of normal saline. Blood was collected by the lateral tail vein 

24 h after each injection. Collected blood was centrifuge for 10 mins at 1,000 x g and the plasma 

separated, snap frozen in liquid nitrogen and stored -80°C prior to analysis. The protocol for cytokine 

measurement is summarised in Figure 5.1. 
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Figure 5.1. Summary of immune-bead based assay procedure for the detection of rat cytokines, using 

a V-bottom plate. Abbreviations; Antibodies (Ab); Streptavidin, R-Phycoerythrin Conjugate (SA-PE) 
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5.2.3.1 Quantification of circulating cytokines 

Plasma cytokines were quantified using a LEGENDplex Rat Th Cytokine Panel, immune-bead based 

assay, detecting IL-10, IFN-ɣ, CXCL1/KC, CCL2/MCP, TNF-α, GM-CSF, IL-18, IL-12p70, IL-1β, IL-17A, IL-

33, and IL-1α. Analysis was performed using BD FACS Cantroll analytic flow cytometer (BD Bioscience, 

San Jose, California, USA) according to the manufacturer’s instructions for analysis in plasma samples. 

Flow cytometry voltages and gating set-ups are summarised in Figure 5.2. Reporter channel, 

phycoerythryn (PE), had emission 575-585 nm. Classification channel, allophycocyanin, had emission 

660 nm. Standards and each sample were analysed in duplicate and the final concentration obtained 

from an average of values observed in 3 to 6 samples for each time point and condition.  Data analysis 

was performed using LEGENDplex software, version 7.1 and presented as concentrations (pg/mL). 

 

A       B 

 

Figure 5.2. Flow cytometry setting for voltages and gating. Beads A (red) and beads B (green) were 

distinguished with using adjusted; (A) FSC (forward scatter) and SSC (side-scatter) reading of >50 

(x1000); (B) PE signals were adjusted so the majority of the bead collections were between 1x101 

and 1x102 on PE-A scale. Allophycocyanin signals were adjusted so the majority of the beads were 

between 1x102 and 5 x104 on APC-A scale. 

 
 

 

 

 



CHAPTER 5: Nanoparticle Biological Effects In-vivo 
 

102 

 

5.2.4 Quantification of endogenous endocannabinoids 

To assess the NP influence on endogenous endocannabinoids in injected rats, rats were treated as 

previously described in Section 3.2.10. Endogenous endocannabinoids; OEA, LEA, PEA, AEA and 2-AG 

were quantified by HPLC/MS/MS as previously described in Section 3.2.10.1. 

 
5.2.5 Evaluation of pain 

To evaluate the analgesic effect of NP in-vivo, normal and arthritic rats were treated with NP and the 

nociceptive pressure threshold assessed using analgesy-meter (Model 37215, Ugo-Basile, VA, Italy). 

Rats were divided into four groups of five each and treated as follows; (a) untreated control (control); 

(b) Positive control, 0.05 mg/kg Temsgesic (buprenorphine, 324 µg/mL); (c) NPnon-targeted  treated; (d) 

NPHAP treated. Treated rats received exact doses of 6 mg/kg, 12 mg/kg, 24 mg/kg and 36 mg/kg of NP, 

administered i.v.i once daily. Untreated control rats, received 500 µL of PBS solution. For evaluation 

of analgesia in arthritic rats, arthritis was induced as previously stated in Section 3.2.8.1. Arthritic rats 

were then divided into four groups of five rats each and treated as above. NP treated groups received 

an exact dose of the highest injected dose (36 mg/kg) administered i.v.i once a day, for two 

consecutive days, for a total of two injections. Untreated control rats, received 500 µL of PBS solution. 

Known analgesic Temsgesic (0.05 mg/kg) was administered as a positive control. Measurement of the 

nociceptive threshold in both normal and arthritic rat groups were carried out 1 h, 2 h and 4 h post 

NP treatment using an analgesy-meter.  

 
5.2.5.1 Analgesy-meter (Randall–Selitto test) 

Quantification of the nociceptive pressure thresholds in rat hindpaws were performed using an 

analgesy-meter (Model 37215, Ugo-Basile, VA, Italy). The test consisted of applying a linearly-

increasing mechanical force (constant rate of 12.5 mmHg/s) to the middle portion of the rat’s hindpaw 

(Chipkin et al., 1983) with a dome-tipped plinth, 0.7 mm in radius and curvature of 36°. Schematic 

diagram illustrating analgesy-meter set up is shown in Figure 5.3. The site at which the force was 

applied was marked prior to testing to ensure all recordings were taken from the same site. The 

nociceptive response was taken to be the final force upon which the hindpaw is withdrawn from the 

instrument. During a single testing session, the force was applied three times at intervals of 1 min 

between measurements. For every session, the data for each animal were calculated as a mean of all 

three measurements and as a value of the last measurement only. Training consisted of one session 

per day for the assigned number of days (Anseloni et al., 2003).  
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A 

 

B      C 

 

Figure 5.3. Schematic diagram illustrating analgesy-meter set up. (A) Ugo-Basile analgesy-meter; 

(B) dome-tipped plinth; (C) schematic representation of rat hind paw placed between plinth. 

 

Percentage increase in nociceptive threshold relative to the control group was estimated for each 

treatment group. Comparison of the nociceptive pressure thresholds throughout training were 

conducted with a repeated measures one-way ANOVA followed by uncorrected Fisher’s LSD test. 

Evaluation of the effects of different treatments were performed with Dunnett’s multiple comparisons 

test conducted after two-way ANOVA. Percentage increases in nociceptive threshold responses for 

both inflamed and intact paws were calculated relative to their respective control readings. 
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5.2.5.2 Basal nociceptive thresholds during training 

Baseline nociceptive pressure readings were analysed during training sessions prior the 

commencement of any treatment. Figure 5.4 shows the effect of training on baseline nociceptive 

pressure threshold of the right rat hindpaw. It was found that threshold values taken on the second 

day of treatment were 13% higher than that of the first day. This increase was apparent, independent 

of whether the analysis was based on the average of all three measurements made during each daily 

training, or using the value of the last measurement in the day’s session.  Following the initial increase, 

threshold values plateaued and remained stable for the remaining 2 days of training.  

 

A                 B 

 

 

Figure 5.4. Effect of training on baseline nociceptive pressure threshold of the right rat hindpaw (A) 

Data represents averages of three measurements within a daily session; (B) data represents the last 

measurement of each session. Each point represents mean ± S.E.M, n=5. No significant differences 

were detected between the values obtained between second and fourth days of training.  
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5.2.5.3 Assessment of positive analgesia (testing experimental set-up) 

Positive and negative nociceptive pressure threshold readings were analysed prior to testing agents 

to validate experimental design/ as an indication of positive results. 0.05 mg/kg of known analgesic 

drug, Temsgesic was administered for positive control, and PBS was administered for negative control. 

Figure 5.5 shows the effect of Temsgesic and PBS on baseline nociceptive pressure threshold of the 

right rat hindpaw 1 h after injection. Rats injected with the Temsgesic showed strong analgesic 

responses with significant improvement in nociceptive pressure readings (21.60 ± 6.37, p < 0.05, p = 

0.0028) when compared to baseline (11.28 ± 1.53). By contrast, rats injected with PBS showed no 

improvement in nociceptive pressure readings (10.65 ± 3.62), being consistent to baseline levels (11.5 

± 2.79). The improvement in nociceptive pressure readings demonstrates the ability of the 

force/pressure units to reflect analgesic potential in the administered testing agents.  

 

 
 

Figure 5.5. Effect of Temsgesic and PBS on baseline nociceptive pressure threshold of the right rat 

hindpaw 30 min after injection. Data expressed as the mean ±S.D, n=5. **p < 0.01, Student–

Newman–Keuls test conducted after repeated measures ANOVA. No significant differences were 

detected between baseline and PBS. 
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5.2.6 Evaluation of NP Centrally Mediated Effects (Rota-rod) 

To assess for any central CNS effects of the injected NP, motor coordination tasks were examined 

using an accelerating rota-rod apparatus (47600 Rota-rod, Ugo Basile, Italy). Normal rats were 

weighed and divided into three groups of five and treated with (a) 500 µL PBS (control); (b) NPnon-

targeted; (c) NPHAP once daily, one hour prior to each rota-rod testing. NP treated groups received exact 

doses of 6 mg/kg, 12 mg/kg and 24 mg/kg, administered i.v.i once daily. 

Rat motor coordination tasks were evaluated using the rota-rod which accelerates from 4 to 40 rpm 

in 300 sec. Rat motor coordination was tested for 3 trials per session on three consecutive days. Prior 

to testing, animals were subject to two consecutive days of rota-rod training to discriminate motor 

endurance activity from motor skill learning. Prior to testing, rats were brought into the experimental 

room 20 min before testing to ensure acclimatisation. Training phase consisted of rats placed on the 

rota-rod at a constant speed of 4 for 300 sec. During testing phase, rats were to maintain their balance 

at 4 rpm constant speed for 10 sec. After 10 sec, the rods acceleration was started and the speed at 

which the rat falls off recorded.  

 

Figure 5.6. Schematic diagram illustrating rota-rod set up (Turner, 2009).  
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5.2.6.1 Rota-rod performance training  

Prior to the injection of testing agents, rats were subject to two consecutive days of training on rota-

rod equipment. Figure 5.7 shows the effect of training on the animals latency to fall. Significant 

improvement in sensorimotor coordination was observed after the first two trials.  Following the initial 

increase, threshold values plateaued and remained stable for the remaining 3 days of training.  

 

 

 

 

Figure 5.7. The influence of training on rota-rod performance in rats. Training consisted of three training 

sessions in two consecutive days.  
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5.3 RESULTS 

5.3.1 Serum Plasma Pro-Inflammatory Cytokines in NP Treated Arthritic Rats 

Measurement of plasma pro-inflammatory cytokines in treated and non-treated arthritic rats are 

shown in Figure 5.8 and Figure 5.9. Blood was collected 24 h after each NP injection and the cytokines 

quantified by flow cytometry. Plasma concentration of inflammatory/immune mediators: IL-10, IFN-

ɣ, CXCL1/KC, CCL2/MCP, TNF-α, GM-CSF, IL-18, IL-12p70, IL-1β, IL-17A, IL-33, IL-6 and IL-1α are shown 

for; day 1 (Figure 5.8) and; day 2 (Figure 5.9). Sample concentrations for each cytokine analyte were 

calculated using a standard curve shown in Appendix 6. 

 

 

 
Figure 5.8. Plasma cytokine concentrations in untreated (ART-CON), NPnon-targeted (ART-NPnon-targeted) 

and NPHAP (ART-NPHAP) treated arthritic rats. NP treated groups suppressed IL-17A, IL-6 on day 1. Data 

expressed as the mean ±S.D, n=5. Analysis was performed using multiple t-tests, using the 

Bonferroni-Dunn method with alpha = 0.05, without assuming a consistent SD. *p < 0.05, **p < 0.01 

vs ART-CON. Abbreviations:  Interleukin (IL-[10, 18, 12p70, 1B, 17A, 33, 1a, 6]); Interferon gamma 

(IFN-ɣ); Chemokine (C-X-C motif) ligand 1 (CXCL1/KC);  Monocyte chemoattractant protein-1 

(CCL2/MCP); Tumor necrosis factor alpha (TNF-α); Granulocyte-macrophage colony-stimulating 

factor (GM-CSF). 
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As shown in Figure 5.8, high serum concentrations of pro-inflammatory cytokines were observed in 

ART-CON and are a likely consequence of general inflammation. Cytokine concentrations remained 

relatively consistent over the two day collection period, with no significant changes noted between 

the ART-CON’s day 1 and day 2 cytokine profile. On day 1, NP treated rats suppressed circulating 

cytokine levels of both IL-6 and IL-17A.  IL-6 levels were significantly reduced for both NPnon-targeted 

(414.86 ± 168.68 pg/ml, p = 0.03) and NPHAP (357.28 ± 217.42 pg/ml, p = 0.03) groups by 68.4% and 

72.8%, when compared to ART-CON (1314.20 ± 868.849 pg/mL), respectively. Levels of cytokine IL-

17A were also significantly reduced in both NPnon-targeted (17.05 ± 10.63 pg/mL, p = 0.003) and NPHAP 

(14.98 ± 11.83 pg/mL, p = 0.005) groups by 73.4% and 77.5% when compared to ART-CON (66.56 ± 

29.73 pg/mL), respectively. In both instances, no notable difference was observed between the NPnon-

targeted and NPHAP groups, suggesting similar effects despite the presence of a homing peptide. No 

significant changes were observed for all other cytokines tested, with comparable levels measured for 

both the NP treated groups and the ART-CON.  

A more pronounced and broad spread suppression of circulating inflammatory cytokines were 

observed on day 2. As shown in Figure 5.9, NP treated rats had lower circulating pro-inflammatory 

cytokines when compared to ART-CON. NPnon-targeted treatment suppressed pro-inflammatory cytokines 

IL-6 by 73.3% (389.86 ± 416.84 pg/mL vs ART-CON 1457.95 ± 918.86 pg/mL, p = 0.03), TNF-α by 42% 

(17.95 ± 3.74 pg/mL vs ART-CON 30.95 ± 6.32 pg/mL, p = 0.002), IL-17A by 70.6% (20.01 ± 12.07 pg/mL 

vs ART-CON 68.09 ± 26.44 pg/mL, p = 0.05), and IFN-ɣ by 61.3% (49.52 ±5 34.99 pg/mL vs ART-CON 

127.91 ± 67.29 pg/mL, p = 0.03).  

Similar cytokine levels were observed for NPHAP treated rats. In ART-NPHAP, IL-6 was suppressed by 

83.9% (234.45 ± 58.95 pg/mL vs ART-CON 1457.95 ± 918.86 pg/mL, p = 0.01), TNF-α by 47.4% (16.28 

± 6.57 pg/mL vs ART-CON 30.95 ± 6.32 pg/mL, p = 0.003), IL-17A by 53.8% (31.49 ± 16.89 pg/mL vs 

ART-CON 68.09 ± 26.44 pg/mL, p = 0.02) and IFN-ɣ by 85.3% (18.86 ± 6.74 pg/mL vs ART-CON 127.91 

± 67.29, p = 0.003) pg/mL. The suppression of IFN-ɣ was significantly more pronounced in ART-NPHAP, 

when compared to ART-NPnon-targeted and may be attributed to greater localised effect through ligand-

mediated targeting facilitated by the HAP-1 receptor.  In contrast, NPHAP treated rats increased 

circulating concentrations of MCP/CCL2 (403.26 ± 42.52 pg/mL vs ART-CON 184.69 ± 66.67 pg/mL, p 

= 0.006), which was not statistically significant in ART-NPnon-targeted treated rats (244.82 ± 48.87 pg/mL). 

These results are consistent with increased expression of CCL2/MCP in RA-TNF/NP when compare to 

RA-TNF in-vitro. As previously shown, exposure of NP also increased expression of PTGES2 in RA-

TNF/NP when compared to RA-TNF in-vitro. In a study by Nakayama et al. (2006), it was shown that 

PGE2 dose-dependently induced MCP-1 in mast cells, identifying the PGE2/MCP-1 as a pathway 

underlying inflammation-associated angiogenesis. The relationship between NP and MCP-1 
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stimulation may be due to NP increase of PTGES2, however the mechanism of MCP-1 activation 

requires further investigation. 

 

 
 

Figure 5.9. Plasma cytokine concentrations in untreated (ART-CON), NPnon-targeted (ART-NPnon-targeted) 

and NPHAP (ART-NPHAP) treated arthritic rats. NP treated groups suppressed IL-17A, IL-6, IFN-ɣ and 

TNF-α on day 2. NPHAP was more effective in reducing IL-6 and IFN-ɣ when compared to NPnon-targeted, 

but also increased CCL2/MCP expression on day 2. Data is expressed as the mean ±S.D, n = 5. Analysis 

was performed using multiple t-tests, using the Bonferroni-Dunn method with alpha = 0.05, without 

assuming a consistent SD. *p < 0.05, **p < 0.01 vs ART-CON.  

 
5.3.2 Influence of NP on Endogenous Endocannabinoid Levels  

Arthritic joints from non-treated, NPnon-targeted and NPHAP treated arthritic rats were removed and the 

articular endocannabinoid levels and their entourage compounds measured. AEA, 2-AG, OEA, and PEA 

were detected and quantified in all samples analysed. Figure 5.10 compares the concentration of OEA, 

LEA, PEA, 2-AG and AEA in NPnon-targeted, NPHAP and non-treated arthritic control rats. As shown, arthritic 

rats injected with NPHAP significantly increased joint concentrations of both OEA (8.26 ± 3.79 pmol/g, 

P = 0.03) and LEA (3.51 ± 1.62 pmol/g, p = 0.02), when compared to ART CON. Similarly, increased 

concentrations of OEA (6.06 ± 2.27 pmol/g, p = 0.09) and LEA (2.25 ± 0.90 pmol/g, p = 0.13) were 
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observed in NPnon-targeted, however failed to reach statistical significance. Assessment of endogenous 

PEA levels were shown to be elevated for both NPHAP (12.26 ± 10.27 pmol/g, p = 0.04) and NPnon-targeted 

(9.13 ± 6.85 pmol/g, p = 0.04), when compared to ART CON (1.09 ± 0.12 pmol/g). Levels of AEA were 

slightly increased in both NPHAP (0.78 ± 0.65 pmol/g, p = 0.18) and NPnon-targeted (0.64 ± 0.48 pmol/g, p = 

0.07) treated rats when compared to ART CON (0.07 ± 0.01 pmol/g), however these levels were not 

significant. In contrast to PEA, endogenous levels of 2-AG remained relatively unaffected in both NPHAP 

(38.84 ± 10.86 pmol/g) and NPnon-targeted (41.92 ± 18.91 pmol/g) treated rats when compared to ART 

CON (41.68 ± 10.32 pmol/g).  

Collectively, the data suggests that the NP’s endocannabinoid components LEA and OEA, influence 

endogenous endocannabinoid levels. Significant concentrations of OEA and LEA in NPHAP treated group 

were correlated with significant increases in PEA. While similar trends were observed for NPnon-targeted 

treated rats, non-significant increases in OEA and LEA translated to non-significant elevations in 

endogenous PEA levels. The variation in regulation may be due to the presence of homing-peptide 

HAP-1, which facilitated greater accumulation of NP and therefore higher concentrations of OEA and 

LEA to the joint through ligand mediated targeting.  

 

 

 
Figure 5.10. Concentration of OEA, LEA, PEA, 2-AG and AEA in the paws of untreated (ART CON), 

NPnon-targeted (ART NPnon-targeted) and NPHAP (ART NPHAP) treated arthritic rats, harvested 6 h post i.v.i of 

NP. Data expressed as the mean ± S.D, n=5, in picomoles per gram. *p < 0.05 vs ART CON, analysis 

using one-way ANOVA, followed by uncorrected Fisher’s LSD test. Significant concentrations of OEA, 

LEA and PEA were observed in NPHAP treated arthritic rats.  
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5.3.3 Assessment of NP Analgesia  

5.3.3.1 NP analgesia in normal rats  

Normal rats were pre-treated with NP and the anti-nociceptive potential assessed using analgesy-

meter. NP treated groups received exact doses of 6 mg/kg, 12 mg/kg, 24 mg/kg and 36 mg/kg, i.v.i 

daily, respectively. Untreated control rats received 500 µL injections of PBS/PEG solution. Figure 5.11 

shows the nociceptive pressure readings of the right hind paw for each rat taken at 1 h, 2 h and 4 h 

after treatment.  As shown, treatment of NPnon-targeted at the starting does of 6 mg/kg (blue line) showed 

no significant improvement in the nociceptive readings compared to baseline values. Similarly, 

increasing doses to 12 mg/kg in the same rats did not improve analgesic responses. At higher doses 

an increase in nociceptive threshold responses was observed at both 24 mg/kg and 36 mg/kg of 

injected NPnon-targeted (Figure 5.11B). Both doses followed a similar threshold pattern, peaking at 1 h 

with a sharp fall at 2 h before plateauing. While both 24 mg/kg and 36 mg/kg doses improved analgesic 

responses, only 36 mg/kg was significant when compare to untreated normal rats.  

 

 

A       B 

 

Figure 5.11. Effect of NPnon-targeted on nociceptive pressure thresholds in normal rats. NPnon-targeted 

were administered at; (A) 6 mg/kg, 12 mg/kg and; (B) 24 mg/kg and 36 mg/kg and measured 1 h, 2 

h and 4 h after injection. Data expressed as the mean ± S.D., n=5. Increases in nociceptive thresholds 

at 1 h were observed in high dose NPnon-targeted treated normal rats. 
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Similar to NPnon-targeted, no improvements in nociceptive readings were observed with NPHAP treated 

rats at 6 mg/kg, as shown in Figure 5.12A. Increasing the injected dose to 12 mg/kg slightly improved 

pressure threshold readings after 1 h, however, it was not significant. At higher doses (Figure 5.12B), 

a significant increase in nociceptive pressure readings were observed after 2 h at both 24 mg/kg and 

36 mg/kg injected NPHAP concentrations. In NPHAP treated groups, threshold readings peaked later at 2 

h, with a slow returned to baseline around 4 h.  

 

 

A        B 

 
 

Figure 5.12. Effect of NPHAP on nociceptive pressure thresholds in normal rats. NPHAP were 

administered at (A) 6 mg/kg, 12 mg/kg and; (B) 24 mg/kg and 36 mg/kg and measured 1 h, 2 h and 

4 h after injection. Data expressed as the mean ± S.D, n=5. Increases in nociceptive thresholds at 2 h 

were observed in high dose NPHAP treated normal rats. 

 

Comparison of the thresholds of responses in non-treated, NPnon-targeted and NPHAP treated normal 

rats is shown in Figure 5.13. At low doses, threshold responses were comparable between all 

groups with no significant difference observed between treatment and control. At 24 mg/kg, only 

NPHAP produced an analgesic response which was significant at 2 h time point (16.63 ± 4.92). At 36 

mg/kg, both the NPnon-targeted and the NPHAP treated normal rats had a significant improvement in 

nociceptive threshold responses, at 1 h for the NPnon-targeted (18.88 ± 6.36) and 2 h for the NPHAP 

(17.25 ± 1.67) These data are consistent with the nociceptive threshold trend patterns observed 

above and correlate with the reduced half-life of NPnon-targeted when compared to NPHAP. As positive 

nociceptive threshold responses were observed at 36 mg/kg for both NP groups, this concentration 

was used in future analgesic experiments in arthritic rats. 



CHAPTER 5: Nanoparticle Biological Effects In-vivo 
 

114 

 

 
A      B 

 
C      D  

 
 

Figure 5.13. Effect of NPnon-targeted and NPHAP on baseline nociceptive pressure thresholds in normal 

rats. NP’s were administered once daily at a concentration of (A) 6 mg/kg; (B) 12 mg/kg; (C) 24 mg/kg 

and; (D) 36 mg/kg and measured 1 h, 2 h and 4 after injection. Data expressed as the mean ± SEM, 

n=5. *p < 0.05 vs Control, analysis by two-way ANOVA, followed by Dunnett’s multiple comparisons 

test. Statistically significant increase in nociceptive pressure thresholds were observed at 36 mg/kg 

for both NPnon-targeted and NPHAP.  
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5.3.3.2 NP analgesia in arthritic rats 

To evaluate for any anti-nociceptive effects in arthritic rats, arthritic rats were treated with NPnon-targeted 

and NPHAP (36 mg/kg) i.v.i once daily, for two consecutive days and the nociceptive pressure thresholds 

recorded 1 h, 2 h and 4 h after treatment. Nociceptive effects were calculated as the percentage 

change from control baseline values. Figure 5.14 shows the percentage changes in nociceptive 

threshold responses relative to baseline after day 1 (A) and; day 2 (B). As shown in Figure 5.14A, NPnon-

targeted and NPHAP treated arthritic rats showed slight improvement in nociceptive responses after 1 h, 

increasing thresholds responses by 27.41% and 43.71% respectively from baseline values. At 2 h, these 

anti-nociceptive effects were lessened, with only a 12.4% and 29.1% improvement from baseline in 

NPnon-targeted and NPHAP treated groups respectively. At 4 h, no improvement in nociceptive pressure 

threshold were observed with readings comparable to baseline untreated controls, with a close to 0 

percentage change for both NPnon-targeted (1.18%) and NPHAP (-3.7%).  

 
A        B 

 

Figure 5.14. Effect of NPnon-targeted and NPHAP on nociceptive pressure thresholds in arthritic rats. Day 

1 shown in; (A) and; day 2 (B). Pressure readings were recorded 1 h, 2 h and 4 h after treatment. 

Data is represented as the percentage change in nociceptive pressure thresholds from baseline 

values, as measured in force (g). Data expressed as the mean ± SEM, n=5. *p < 0.05 vs control, two-

way ANOVA, followed by Dunnett’s multiple comparisons test. Analgesic effects were observed in 

NPHAP treated rats after 1 h on day 2.  
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On the second day (Figure 5.14B) the percentage change in nociceptive thresholds were higher than 

that observed in day 1 (Figure 5.14A). After 1 h, rats treated with NPnon-targeted showed a 34.6% 

improvement in nociceptive pressure thresholds, when compared to baseline values. By contrast, rats 

treated with NPHAP showed a 111.6% improvement in nociceptive threshold response, which was 

significant compared to baseline values. At 2 h improvements in nociceptive effects were lessened, 

with drops in the percentage change to 10.1% in NPnon-targeted and 47.9% in NPHAP treated groups. At 4 

h, only slight increases in nociceptive thresholds by 9.9% in NPnon-targeted and 25.3 % in NPHAP treated 

groups, suggesting lower analgesic effects at this time point and a return to baseline values.  

Comparison of positive NP responses to known analgesic, Temsgesic, was also compared. Figure 5.15A 

shows the effect of Temsgesic and PBS on baseline nociceptive pressure threshold of the right rat 

hindpaw 1 h after injection. Figure 5.15B shows the percentage change in nociceptive pressure 

thresholds in NP, PBS and Temsgesic treated rats. 

 

A       B 

 
 

Figure 5.15. (A) Effect of Temsgesic and PBS on baseline nociceptive pressure threshold of the right 

rat hindpaw 1 h after injection; (B) Percentage change in nociceptive pressure threshold responses 

in NPnon-targeted, NPHAP, Temsgesic and PBS treated arthrtitic rats. 1 h after injection, represented as a 

percentage change in force.  Data expressed as the mean ± SEM, n=5. *p < 0.05, **p < 0.01 vs 

baseline, two-way ANOVA, followed by Dunnett’s multiple comparisons test.  
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Arthritic rats injected with Temsgesic demonstrated strong analgesic responses with significant 

improvement in nociceptive pressure readings (20.75 ± 4.92, **p < 0.01, p = 0.0028) when compared 

to baseline (9.48 ± 3.41). By contrast, rats injected with PBS showed no improvement in nociceptive 

pressure readings (10.25 ± 1.78, p = 0.9949), which were comparable to baseline levels (10.5 ± 4.53).  

Comparison of percentage changes in nociceptive responses in Temsgesic and day 2 NPHAP show 

similar analgesic effects after 1 h (Figure 5.15B)  

 
5.3.4 Rota-Rod Testing for Any Centrally Mediated NP Effects  

To assess the potential of centrally mediated effects of injected NPs in normal rats, NP were 

administered i.v.i to rats and their sensorimotor coordination evaluated using the rota-rod, shown in 

Figure 5.16.  It was found NPnon-targeted injected rats did not impair the animal’s sensorimotor 

coordination at the doses given compared to respective controls. Similarly, no significant change in 

sensorimotor coordination was observed in NPHAP injected rats, when compared to non-treated 

control rats. Although there was a drop in mean latency noted 1 h post injection, these values failed 

to reach statistical significance.  
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A       B

C 

 
 

Figure 5.16. The influence of NPnon-targeted, NPHAP treatment on rota-rod performance in rats, 

measured 1 h, 2 h and 4 h after administration. NP were administered i.v.i at (A) 6 mg/kg; (B) 12 

mg/kg and; (C) 24 mg/kg. The sum of latencies of five trials in one day is presented. Data is presented 

as mean ± S.D, n=5. Analysis by two-way ANOVA, followed by Dunnett’s multiple comparisons test. 
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5.4 DISCUSSION 

Chronic inflammatory arthritis represents an emerging public health issue, occupying a sizeable 

proportion of the adult population in the industrialized world (Stockings et al., 2018). Efficient 

improvements in both analgesic and anti-inflammatory treatment without accompanying undesirable 

side effects are required to fulfil the unmet therapeutic needs of these desperate patients. The search 

for new naturally occurring analgesic and anti-inflammatory compounds is intensifying because of the 

need to find more effective compounds with less serious side effects. Increasing evidence from both 

pre-clinical and clinical studies support the therapeutic application of cannabinoids in the treatment 

of chronic pain. While structurally similar to AEA, OEA and LEA do not bind CB1, but instead contribute 

to an anti-inflammatory regulation through “entourage” effects (Okamoto et al., 2004; Alhouayek & 

Muccioli, 2014), and therefore lack negative psychotropic actions typified by cannabis-based 

medicines. In this chapter, we evaluated the anti-inflammatory and analgesic effects of our 

endocannabinoid-based NP and their influence of naturally occurring endocannabinoids in the 

arthritic joint. 

 NP incubation was shown to suppress TNF-α induced inflammatory cytokines in-vitro, mediated 

primarly via inhibition of the NF-κB signalling pathway (Chapter 4). Similarly, NP given to arthritic rats 

decreased plasma concentrations of IL-6, IL-17A, TNF-α and IFN-ɣ in-vivo. NPHAP was more effective in 

suppressing IL-6 and IFN-ɣ when compared to NPnon-targeted, and may be attributed to greater localised 

effects mediated by the ligand-targeting. These results are in agreement with data obtained via RNA-

seq (Chapter 4), and support the idea of endocannabinoid-NP’s mediating anti-inflammatory effects.  

In RA, cytokines IL-6, IFN-ɣ, TNF- α and IL-17A are all important drivers of inflammation and are also 

implicated in the induction of cartilage and bone degradation in synovial and bone explants (Kokkonen 

et al., 2010). Inhibition of these key mediators may help alleviate arthritic progression by interrupting 

the induction of other cytokines, slowing inflammatory responses.   

Electrophysiological studies in model’s of arthritis have demonstrated that the facilitated nociceptive 

responses of peripheral nerves are attenuated in the presence of cannabinoid receptor agonists, 

demonstrating the capacity of endocannabinoids to act as analgesic agents in arthritis (Schuelert & 

McDougall, 2008).  In this study, the ability of the NPnon-targeted and NPHAP to modulate nociceptive 

signalling in normal and arthritic rats was demonstrated using an analgesy-meter. Administration of 

NP to normal rats elicited dose-dependent anti-nociceptive responses against mechanical pain, which 

were significant at high dose concentrations. While the effects collectively showed slight anti-

nociceptive effects against mechanical pain, the results obtained were only significant at 1-2 h 

suggesting short acting effects.  These results are consistent with the previous PK studies (Chapter 3) 

which demonstrated a relatively short half-life for both NP’s.  As well as the analgesic effects, the 
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injected NP’s did not significantly impair the animal’s sensorimotor coordination.  The peripheral lipid-

mediated mechanisms offer the opportunity to develop medications that manage pain without 

producing negative central psychotropic effects.  

While the preliminary results appear promising, several limitations of the study should be 

acknowledged. Evaluation of anti-nociceptive effects were measured using only the analgesy-meter, 

which assesses pain caused by mechanical pressure. Assessment of the analgesic potential employing 

other methods such as strain guages, Von-Frey filaments and inclined-plane test, would be required 

to validate the currently obtained results. Further to varying screening methods, experiments applying 

different modalities of pain such as thermal, electrical and chemical stimuli are required to further 

evaluate the analgesic potential of the NP’s. Laboratory models for screening analgesics are reviewed 

by Milind & Monu (2012). In addition, the threshold nociceptive response was taken to be the final 

force upon which the hindpaw is withdrawn from the instrument. As the withdrawal response is 

detected visually by the researcher, the measurement of the threshold is subjective. Finally, over the 

course of the experiment, several rats appeared to anticipate pain, and react pre-maturely to the 

stimuli. The exhibited learned behaviour was not uniformly expressed within all treatment groups, 

and therefore would impact on threshold nociceptive readings obtained. Further evaluation of the 

efficacy of i.p administered NP on AIA-induced inflammatory pain, employing different modals of pain, 

is required before a conclusive statement regarding the potential analgesic effects of OEA and LEA are 

made. Similarly, the centrally mediated effects of the NP’s were only evaluated using the rota-rod 

apparatus and using a single rod diameter over a specified time period. Additional methods such as 

water maze performance (Cain et al., 1997), static rods or beams, used to measure motor coordination 

(Deacon, 2013) are required to validate obtained results and gain a full profile of the NPs centrally 

mediated effects. Evaluation of the NPs central effects at higher doses, in particular 36 mg/kg, are 

required. 

In the synovial fluid of healthy patients, PEA and OEA exist in high concentration, and have been shown 

to exert marked anti-nociceptive and anti-inflammatory effects in several animal models (Bonezzi et 

al., 2016).  Substantial decrements in the tissue content of PEA and OEA have been noted in patients 

suffering from RA (Richardson et al., 2008). Changes in local joint production of PEA and OEA therefore 

may contribute to the control of chronic inflammation, by regulating joint endocannabinoid signalling 

system. In this study, the ability of the NP’s NAE components LEA and OEA, to influence endogenous 

endocannabinoid levels of PEA, 2-AG and AEA in the joint was demonstrated. Increased 

concentrations of PEA correlated with significant increases in both OEA and LEA in NPHAP treated rats, 

and may be partly mediated by LEA’S influence on FAAH. In Chapter 4, NP incubation suppressed FAAH 

gene expression in treated RA-FLS cells as demonstrated by RNA-seq. Given that PEA is susceptible to 
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metabolism by FAAH, increases in PEA in NPHAP treated rats may be partly mediated LEA/NP inhibition 

of eicosanoid biosynthetic enzyme FAAH. Similar to PEA, levels of AEA were also shown to be elevated 

in NP treated groups, but failed to reach statistical significance. The overall low concentrations of AEA 

in the paws of animals was likely due of relatively low pre-existing endogenous levels of AEA, and 

difficulties homogenising the complex bone structures of the paw. 

 
5.4.1 Summary 

This is the first report showing the ability of NP’s to decrease circulating cytokines in-vivo. In particular 

plasma levels of IL-6, IL-17A, IFN-ɣ and TNF-α were reduced. While the anti-inflammatory effects of 

NPHAP and NPnon-targeted on plasma cytokine levels were similar, suppression of IFN-ɣ and IL-6 was more 

pronounced in NPHAP treated rats. In addition to cytokine inhibition, targeted NPHAP had the ability to 

modulate nociceptive thresholds in-vivo as demonstrated by the analgesy-meter measurements. 

Assessment of NP on CNS showed no impairment on the animal’s sensorimotor coordination for NPnon-

targeted and NPHAP injected rats, suggesting the analgesic effects were not centrally mediated. 

Quantification of endogenous endocannabinoid concentrations of the paws in NP treated and non-

treated arthritic rats, demonstrated the ability of NPHAP to influence endogenous articular 

endocannabinoids levels. Given the anti-inflammatory and analgesic effects, NP’s biological effects 

may be due to either direct effect on immune cells, or an entourage effect by changing the local milieu 

of saturated fatty acids that subsequently influence anti-inflammatory and analgesic actions, or both.   
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CHAPTER 6: FINAL DISCUSSION 
 
6.1 ACHIEVEMENTS AND LIMITATIONS 

The understanding and application of endocannabinoids in medical practise is ever increasing, 

adapting their use in many conditions and fields, ranging from pain management in cancer and chronic 

inflammatory disease, to intractable epilepsy in children, schizophrenia and mental disease in 

psychiatry.  Although historically used for analgesia and pain relief, the cannabis extract based 

medications, rapidly fell out of favour because of the psychotropic effects and at times lack of efficacy 

due to many mixture combinations. In the musculoskeletal literature, the effectiveness and safety of 

medical marijuana to treat lupus, fibromyalgia, OA and RA came into question (Farrell et al., 2014). 

The predominant alert raised was the significant adverse effect of alteration in perception, motor and 

cognitive function, which largely outweighed any benefits which at times were viewed as minimal 

(Farrell et al., 2014). Most trials, which are not many, combined CBD with THC, prescribed low and 

likely ineffective dose, and only used a short test period of observation. Hence, it is not surprising 

when meta-analysis studies were completed and conclusions reached that the use of cannabis as a 

therapeutic in rheumatic conditions was discouraged (Fitzcharles et al., 2016a; Stockings et al., 2018). 

Despite these negative findings a better understanding of endocannabinoids mode of action, receptor 

function, mode of delivery, identification of analogues without psychotropic effects, and public 

pressure has resulted in a resurgence of interest.  While benefits of cannabis-based medicines are 

promising, current drug delivery techniques are limited relying heavily on inhalation or ingestion of 

solutions/capsules.  Due to this, therapeutics are not directed to their target areas of pain or disease, 

resulting in unpredictable potency and inconsistent release times. This study highlights the promising 

application of endocannabinoid-based NP targeted to the synovium for the treatment of arthritis.  This 

musculoskeletal model of arthritis is not restrictive and the NPs can be targeted and applied to many 

other medical conditions such as epilepsy (brain), malignancies (melanoma, lymphoma), skin 

(psoriasis) and lung (interstitial fibrosis) to name a few. By regulating the homing-peptide, we are able 

to actively target and deliver cannabinoid therapeutics in the form of NP, facilitating application in a 

variety of illness in which cannabinoid therapy has proven successful. 

The NPs generated in this study are unique and extend previous findings reported in the literature 

(Sagnella et al., 2010b). The mesosphere behaviour of a series monoethanolamide lipids is extended 

and a mixed monoethanolamide ratio of OEA and LEA with the ability to self-assemble into highly 

ordered 3D cubic nanostructured mesophase was defined. What was evident in this thesis was that 

the nanostructures formed by the amphiphiles were dictated by local constraints imposed by the 

molecular structure, as well as external factors, such as temperature, pH, ionic strength of the 

solution, excipient compositions and stabilising agents.  At the ratio of 40% OEA: 60% LEA these 
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dispersions self-assembled into highly ordered 3D cubic structures and form stable NP within an 

aqueous solution which were stable at both RT and physiological temperature. However, when 

PEGylated lipids were incorporated to stabilise the NP and allow peptide conjugation, the folding of 

the lipid amphiphiles in the aqueous solution resulted in the formation of liposomal NP. The 

conjugation and successful incorporation of a synovium targeting peptide, HAP-1, into the NP 

formulation was accomplished. The development of stable endocannabinoid based NPs with an 

efficient targeting molecules attached is a major advancement in endocannabinoid drug delivery with 

many clinical applications.  

This is the first report of the application of endocannabinoid-based NP targeting FLS in-vitro and sites 

of joint inflammation in-vivo. Despite the plethora of research suggesting the importance of FLS in RA 

(Bartok & Firestein, 2010; Bustamante et al., 2017), treatment strategies aimed at targeting FLS are 

rare. Conjugation of synovium-targeting peptide, HAP-1, to the NP surface resulted in specific binding 

and greater uptake of targeted NPHAP in human FLS cells in-vitro, and corroborates results 

(Vanniasinghe et al., 2014). In-vivo, targeted NPHAP increased localisation to the joint in both normal 

and arthritic rats, demonstrating the future potential to actively target therapeutics to the inflamed 

synovium.  The implications of specifically targeting FLS are huge with the possibility of localised drug 

delivery, reduced toxicity and reduced side-effects. The high number of patients with RA who do not 

respond to available therapies suggests that, in some cases, therapeutic dosage might not have been 

reached owing to safety concerns (Bello et al., 2017). In this context, tissue-specific drug delivery might 

increase drug concentration in the site of interest, limit systemic exposure, increase therapeutic 

potency and decrease off-site effects, improvements all achieved with a single therapy. In addition to 

active targeting, the NPs exerted an anti-inflammatory effect at sites of localisation, by virtue of the 

lipid capsule constituents. This was demonstrated in-vitro, suppressing pro-inflammatory cytokines 

and MMPs in NP treated RA-FLS cells, and in-vivo, suppressing circulating cytokine levels in NP treated 

arthritic.  

A unifying model of action of NP integrating in-vitro and in-vivo data is shown in Figure 6.1. Reflection 

of the RNA-seq data suggests that the anti-inflammatory effects are mediated by inhibition of a 

number of pathways including pro-inflammatory NF-κB cytokine pathways, TLR and PPAR signalling. 

In addition to known TLR and PPAR dependent-effects of the NAE’s (Yang et al., 2016), the ability of 

NAE NPs to regulate JAK-STAT expression is demonstrated, and may be an alternative therapeutic to 

currently available JAK-inhibitors. These results confirm previous studies showing that OEA and LEA, 

have inherent anti-inflammatory and analgesic properties (Suardiaz et al., 2007; Ishida et al., 2013; 

Zhou et al., 2017a). NP incubation with RA-FLS cells induced the expression of endocannabinoid 

synthesising enzymes and enzymes involved with oxygenation of endocannabinoids. Metabolism of 
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AEA into AA and ethanolamine depends on multiple enzymes, including COX-2, LOXs and several 

cytochrome P450 monooxygenases, as shown in Figure 6.2.  NP down regulation of LOX would 

decrease metabolite production of known TRPV1 agonists, HETE-EAs (Hwang, 2000) and therefore 

reduce pain. By inhibiting LOX, the upstream metabolites are shunted to the P450 system that increase 

metabolite production of EET-EA, which is known to exert anti-inflammatory effects by CB2 and PPAR-

ɣ (Node et al., 1999; Snider et al., 2009; Liu, 2005). 

 

 

Figure 6.1 Schematic representation showing NP regulation of inflammatory signalling. 

 

NP incubation decreased expression of FAAH mRNA in-vitro. Studies in the literature have 

demonstrated robust anti-inflammatory and anti-hyperalgesic phenotypes after genetic or 

pharmacological disruption of FAAH (Adamson Barnes et al., 2016; Kloza et al., 2017). The regulation 

of oxygenation and catabolic enzymes may help mediate the NP’s anti-inflammatory and analgesic 

effects by regulating metabolite levels of EETs-EA and HETE-EAs, as well as FAAH substrate 

concentrations at the targeted site (Vandevoorde et al, 2007). The ability of the NP’s to regulate 

metabolite levels of EETs-EA and HETE-EA, as well as down-regulate inflammatory cytokines and 
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transcriptional factors involved in inflammatory processes demonstrates the NP’s promising 

application as anti-inflammatory agents.  

 

Figure 6.2: Metabolic pathways and enzymes involved with AEA synthesis, degradation and 

oxidation. Abbreviations: NAT, N-acyltransferase; NAPE-PLD, NAPE-specific phospholipase D; ABHD4, 

α/β-hydrolase domain 4; GDE, glycerophosphodiesterase; PLC, phospholipase C; PTPN22, non-

receptor protein tyrosine phosphatase 22; sPLA2, soluble phospholipase A2; COX-2, cyclooxygenase-

2; LOX, lipoxygenase; P450s, cytochrome P450 monooxygenases; PG-EA, prostaglandin-

ethanolamide; HETE-EA, hydroxyeicosatetraenoyl-ethanolamide (hydroxy-AEA); EET-EA, 

epoxyeicosatrienoyl-ethanolamide. Figure adapted from Maccarrone (2017). 
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As well as demonstrating anti-inflammatory effects, the therapeutic potential of NAE NP’s in pain was 

explored. Initially, research on cannabinoid-analgesics focused on CB1 mediated processes, which 

regulate nociceptive processing through inhibition of presynaptic gamma-aminobutyric acid (GABA) 

and glutamatergic transmission (Hohmann, 2002). While effects of CB1 mediated nociception were 

promising, the distribution of CB1 receptors along central processing sites associated CB1 mediated 

analgesics with negative psychoactive effects (Talwar & Potluri, 2011). While structurally similar to 

AEA, OEA and LEA do not bind CB1.  Instead, these NAE’s contribute to an anti-inflammatory regulation 

through “entourage” effects (Okamoto et al., 2004; Alhouayek & Muccioli, 2014), and therefore lack 

negative psychotropic actions typified by cannabis-based medicines. The existence of these peripheral 

lipid-mediated mechanisms offers the opportunity to develop medications that manage pain without 

producing negative central psychotropic effects. From the analgesic studies (Chapter 5), 

endocannabinoid-based NP treated normal rats elicited dose-dependent anti-nociceptive responses 

against mechanical pain, which was significant at high dose concentrations. These anti-nociceptive 

effects were devoid of central effects as observed. Besides centrally mediated effects, 

endocannabinoid lipids produced and released at sites of acute tissue injury, inflammation and 

neuropathy regulate the flow of nociceptive signals to the CNS. In this study, NPHAP treated rats 

increased local joint concentrations of LEA, OEA and PEA. Since PEA and OEA, have a well-described 

anti-inflammatory role (Bonezzi et al., 2016), Increased local concentration of NAEs through targeted 

NP delivery or peripheral FAAH inhibition may alleviate nociceptive signalling and dampen local pro-

inflammatory signals at the arthritic joint. The NP’s demonstrated anti-inflammatory and analgesic 

effects may therefore be due to either direct effect on immune cells regulating cytokines, or by 

changing the local milieu of saturated fatty acids (OEA, LEA and PEA) that subsequently influence anti-

inflammatory actions. Targeted NP delivery may be an alternative approach to increasing natural 

endocannabinoid ligands in the joint, offering a novel target for the treatment of arthritis.  

 

6.2 FUTURE DIRECTION 

6.2.1 Identification and Characterisation of HAP-1 Receptor 

The receptor for HAP-1 binding as yet is not known. Mi et al., (2003) demonstrated that HAP-1 

mediates internalization of a marker protein into rabbit synovial cells in a temperature dependant 

manner, implying receptor involvement. Understanding the HAP-1 receptor would be an important 

study to fully understand and utilise homing capabilities of the HAP-1 peptide. Isolation and 

characterisation of the HAP-1 bound complex would enhance our understanding of this ligand 

mediated targeting. 
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6.2.2 Other Targeting Peptides  

There have been a number of attempts at targeted delivery of anti-inflammatory agents in RA. The 

selection of a suitable homing molecule is crucial to allow the specific accumulation of therapeutic 

agents to disease sites so as to improve drug efficacy without compromise to healthy tissues. As the 

bio-distribution of the target antigen contributes to target efficiency, antigens uniquely expressed at 

the disease site are optimal candidates for drug delivery. Future work might focus on targeting 

antigens that are expressed specifically in the synovium, such as the cell surface glycoprotein CD44, 

spliced variant isoforms CD44v4 and v6 which are associated with enhanced fibroblast invasive 

capacity and are important for cell migration and lymphocyte activation (Naor & Nedvetzki, 2003). 

Hyaluronic acid (HA) is a polysaccharide that specifically binds to the CD44 receptor.  HA drug 

conjugates (Methotrexate-HA; Shin et al., 2014) and HA encapsulated polymeric nanoparticles (Heo 

et al., 2014; Lee et al., 2014b) were shown to preferentially accumulated in the inflamed joint and 

were significantly more potent that unconjugated drug in controlling clinical score, joint swelling and 

pro-inflammatory levels (Shin et al., 2014). Other antigens specifically expressed in the synovium such 

as folate receptor B (FR- β; van der Heijden et al., 2009) and integrin αVβ3 (Wilder, 2002) are also 

being explored for ligand-mediated nanoparticle targeting. Other homing sequences such as synthetic 

peptide (peptide 3.1, CKSTHDRLC) and isolated single-chain variable fragment (scFv) A7 

selected/isolate from phage display libraries, have shown specificity for the human arthritic synovium 

(Lee et al., 2002). scFv A7 targets the stromal compartment of human arthritic synovium without 

reacting with the vasculature or other cellular components of normal human tissue from other organs 

(Kamperidis et al., 2011). These results indicate that scFv A7 targets an arthritic synovium-specific 

antigen, or one that is overexpressed in diseased tissues, as no reactivity could be detected in non-

arthritic human synovium or in other inflammatory disease conditions could be used as an alternative 

to HAP-1. 

 

6.2.3 Effects of NP on Clinical RA and Inflammatory Pain  

While this study focused on the synthesis and characterisation of the endocannabinoid-lipids, as well 

as their inherit anti-inflammatory and analgesic effects, experiments focusing on the encapsulation of 

drugs was not explored. NP drug delivery proposes a platform to actively target and deliver 

therapeutic agents to the disease site, improving therapeutic index of currently available treatment. 

While NP drug delivery in arthritis is still in its infancy, promising results are being achieved with new 

patents filed world-wide (Summarised in Appendix 7). Vannasinghe et al (2014) convincingly 

demonstrated the benefits of prednisone loaded liposomes in the treatment of arthritis. Further In-

vivo assessment of NP effects on clinical parameters, weight, inflamed joint count, paw/ankle width, 
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used to score joint inflammation would be required to assess the therapeutics efficacy of NPs (loaded 

or unloaded) and application in RA conditions.  At the local joint level, immunostaining of inflamed 

joints would also be useful to assess the degree of active disease progression following NP treatment. 

Comparison of histopathological features of inflammation/disease progression and the expression 

levels of inflammatory markers in tissue samples from non-treated and NP treated arthritic rats, would 

further evaluate NP immunological potential and insight into treatment periods and effective doses.  

In addition to NP effects on clinical joint inflammation, further evaluation of the NP’s nociceptive 

potential should be assessed in formal and extensive pain studies. The current therapy of chronic pain 

relies heavily on opiates such as morphine and oxycodone, which primarily act on neural circuits of 

the brain and spinal cord. Cannabinoids have been shown act both synergistically with opioids and as 

opioid sparing agents, enabling reduced doses and fewer side effects from chronic opioid therapy 

(Ibrahim et al., 2005; Cox et al., 2007; Smith et al., 2007). Interaction of NP’s endocannabinoid lipid 

constituents facilitate the potential for joint pain relief via local manipulation of the endocannabinoid 

system present in the synovium of RA patients. While the preliminary results appear promising, 

several limitations of the study (previously discussed in Chapter 4) limit claims on analgesic effects. 

Further evaluation of the efficacy of administered NP on AIA-induced inflammatory pain employing 

other methods, and applying different modalities of pain would be required before a conclusive 

statement regarding the potential analgesic effects of OEA and LEA are made.  Studies focusing on the 

therapeutic efficacy of drug loaded NP’s and the potential synergistic effects with the 

endocannabinoid-lipids are required to evaluate the full potential of this novel delivery system.   

 
6.2.4 Application to Other Models of Disease  

Endocannabinoids have potential application in a range diseases, with promising effects 

demonstrated in chronic pain, epilepsy, multiple sclerosis, neurodegenerative disorders (Parkinson's 

disease, Huntington's disease, Alzheimer’s disease), glaucoma, cardiovascular disorders, cancer, 

obesity and other metabolic syndrome-related disorders (Kalant, 2001; Alexander, 2016).  The ability 

of the endocannabinoid-based NPs to suppress key cytokines IL-6, IFN-ɣ, TNF- and IL-17A, and 

regulators such as NF-κB of key canonical pathways such as granulocyte adhesion and diapedesis, 

macrophage activation, fibroblast and endothelial cell function, LXR/RXR activation, and neuro-

inflammation suggests the potential application of the NPs in other areas of disease. ‘Granulocytes 

(neutrophils, basophils and eosinophils) and agranulocyte (lymphocytes and monocytes) adhesion and 

diapedesis’ pathway, is the migration of leukocytes from the vascular system to sites of 

pathogenic/allergenic exposure and is a key event in the process of inflammation (Nourshargh & Alon, 

2014). NP regulation of key cell adhesion molecules involved in the tethering of leukocytes to the 

blood vessel wall (such as selectins, ICAM1, ICAM2, chemokines) would hinder leukocyte diapedesis 
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and migration. These NP therefore have therapeutic application in both allergic and pathogenic 

inflammation by regulating leukocyte migration. 

Regulation of the key ‘hepatic fibrosis’ canonical pathway suggests the potential therapeutic 

application of NP’s in liver fibrosis. Administration of OEA (5 mg/kg/day, i.p) significantly attenuated 

liver fibrosis progression in two experimental animal models by blocking the activation of hepatic 

stellate cells (Chen et al., 2015).  These effects were suggested to be mediated by PPAR-α activation, 

which are abundantly expressed in the liver. Similarly, LXR/RXR is involved in the regulation of lipid 

metabolism, inflammation, and cholesterol to bile acid catabolism. OEA has been shown to activate 

lipid metabolism by decreasing neutral lipid content in hepatocytes, as well as through a decrease in 

serum cholesterol and triglyceride levels (Fu et al., 2005). Administration of OEA (5 mg/kg, i.p, once 

daily) lowered body weight and hyperlipidaemia in obese rats (Fu et al., 2005), mediated by enhanced 

PPAR-α signalling. In a separate study, OEA suppressed appetite by stimulating satiety (food intake, 

not feeding behaviour) and that its profile of action might be predictive of safer effects in humans as 

a novel anti-obesity treatment, by enhancing lipid utilisation (Romano et al., 2014). Together, NP’s 

may have application in the treatment of liver fibrosis as a or as novel anti-obesity treatment through 

enhanced PPAR signalling mediated by OEA.  

The neuro-inflammatory canonical pathway shown to be upregulated by the TNF-α, was suppressed 

in RA-TNF/NP cells. In separate studies, peripheral administration of OEA (20mg/kg, i.p.) was shown 

to cross the blood-brain barrier (Gonzalez-Aparicio et al., 2014) and reduce LPS-induced NF-κB 

activation, iNOS and COX-2 expression and lipid peroxidation in frontal cortex (Sayd et al., 2014).   The 

observed anti-inflammatory effects of OEA in the brain may be a consequence of the modulation of 

peripheral inflammation, that is modulation of innate immune TLR4 receptors, by these 

acylethanolamides by the direct action in the CNS (Sayd et al., 2014). Given the importance of 

neuroinflammation in the physiopathology of neuropsychiatric diseases, the results suggest that OEA 

based NP may help delay the onset of neurodegenerative and neuropsychiatric diseases by reducing 

the insults to brain function, and helping those with neuroinflammatory or immune related 

neuropsychiatric conditions (Galan-Rodriguez et al., 2009; Melis et al., 2013).   The ability of the NP to 

regulate these key canonical pathways offers promise in the treatment of various diseases in which 

these pathways play a central role.  
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6.3 CONCLUSION 

The findings of this thesis have made an original contribution towards our knowledge and 

understanding of the endocannabinoid system, the potential anti-inflammatory and analgesic effects 

of OEA and LEA lipids, as well as defining their self-assembly behaviour for the construction and 

application as a NP drug delivery system.  In particular, these findings offer a novel delivery system for 

cannabinoid-administration and highlight promising application of cannabinoid-based medicines in 

the treatment of arthritis and other inflammatory mediated diseases.  
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APPENDIX 1: NMR traces 

NMR traces of synthesised peptides are shown below. 

Figure A1.1 NMR Ole-PEG2000-Succ, showing correct peptide structure with mass of 2364. 
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 Figure A1.2 NMR of Ole-PEG2000-HAP, shows populations of correct mass to charge ratios with mass 

of 3682. 
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Figure A1.3 NMR analysis of synthesised LEA shows populations of correct mass to charge ratios with 

mass 323.52. 
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Figure A1.4 NMR analysis of synthesised OEA shows populations of correct mass to charge ratios with 

mass of 325.54 
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Figure A1.5 NMR analysis of synthesised ɣ-LEA shows populations of correct mass to charge ratios 

with mass 321.52 
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APPENDIX 2: Mass specs and HPLC traces of fully deprotected peptides 
 

Figure A2.1 Fully deprotected homing peptide HAP-1 weighed at 1336, as shown by (A) MS and (B) 

HPLC 
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Figure A2.2 Fully deprotected homing peptide sHAP-1 weighed at 1336, as shown by (A) MS and (B) 

HPLC 
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APPENDIX 3: RNA-seq aw read counts and quality statistics  

Figure A3.1 Summary of raw read count and gene expression statistics for significant and non-

significant gene counts. 

Groups 

Total 

read 

count 

FDR <0.05 

TRUE 

FDR 

<0.05 

FALSE 

*LFC > 0 

(up) 

LFC < 0 

(down) 
Outliers 

Low 

counts 

RA-TNF vs 

RA-UT 
28288 9944 7968 

4116, 

15% 

3852, 

14% 

10, 

0.04% 

10366, 

37% 

RA-NP vs RA-

UT 
28288 9898 5941 

2998, 

10% 

3052, 

11% 

10, 

0.04% 

12439, 

44% 

RA-TNF/NP 

vs RA-UT 
28288 10110 8320 

4164, 

15% 

4156, 

15% 

10, 

0.04% 

9848, 

35% 

RA-TNF/NP 

vs RA-TNF 
28288 10556 7874 

3710, 

13% 

4164, 

15% 

10, 

0.04% 

9848, 

35% 

OA-TNF vs 

OA-UT 
27438 13766 2013 

1219, 

4.4% 

794, 

2.9% 

137, 

0.5% 

11522, 

42% 

OA-TNF/NP 

vs OA-UT 
27438 11499 5282 

2484, 

9.1% 

2798, 

10% 

137, 

0.5% 

10520, 

38% 

OA-TNF/NP 

vs OA-TNF 
27438 12846 3935 

1669, 

6.1% 

2266, 

8.3% 

137, 

0.5% 

10520, 

38% 

 

 * log fold change (LFC) 
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MA-scatter plots of RNA-seq data 

Figure A3.2 MA-scatter plots of microarray spot statistics implementing shrinkage estimators; (A) 

DESeq2 (B) Shrunken log2 fold change (LFC) (C) Ashr and (B) Apeglm.  

The x-axis represents the mean of normalised counts. Plot symmetry around the mean, indicates 

normalisation is fine with equal number of upregulated and downregulated genes. Shrunken LFC is 

based on DESeq2 original shrinkage estimator: an adaptive Normal distribution as a prior. Ashr is an 

adaptive shrinkage estimator from the Ashr package (Stephens 2016), DESeq2 can use ashr option to 

fit a mixture of normal distributions to form the prior. Apeglm is an adaptive t prior shrinkage 

estimator from Apeglm package.  
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Figure A3.3 MA-scatter plots of microarray spot statistics implementing shrinkage estimators; (A) 

DESeq2 (B) Shrunken log2 fold change (LFC) (C) Ashr and (B) Apeglm.  

The x-axis represents the mean of normalised counts. Plot symmetry around the mean, indicates 

normalisation is fine with equal number of upregulated and downregulated genes. Shrunken LFC is 

based on DESeq2 original shrinkage estimator: an adaptive Normal distribution as a prior.  
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APPENDIX 4:  Top 10 DE genes based on comparison of RNA-seq treatment groups 

Figure A4.1 Top 10 DE genes based on comparison of RNA-seq data between TNF-α treated (RA-TNF) 

and non-treated (RA-UT) RA-FLS cells. 

 

Gene Description Log2 FC FDR Role in RA 

Top 10 DE genes 

IBSP 
integrin binding 

sialoprotein 
13.357 1.88E-28 bone remodelling 

CXCR4 
C-X-C motif chemokine 

receptor 4 
12.839 1.2E-25 

CXCR4-CXCL12 interaction plays a 
crucial role in the accumulation of T 
cells in the RA synovium (Tsutsumi 

et al., 2007; Zhang et al., 2011) 

CXCL5 
C-X-C motif chemokine 

ligand 5 
11.767 5.19E-170 Promotes angiogenesis 

CCL20 
C-C motif chemokine 

ligand 20 
11.706 3.92E-57 

Enhance osteoblast-mediated 
osteoclast genesis 

IL1RN 
interleukin 1 receptor 

antagonist 
11.65 7.9E-22 Inhibits IL-1 signalling 

CXCL8 
C-X-C motif chemokine 

ligand 8 
11.523 0 

enhance osteoblast-mediated 
osteoclast genesis 

MMP3 matrix metallopeptidase 3 11.189 1.81E-39 breakdown of ECM 

IL23A 
interleukin 23 subunit 

alpha 
10.157 1.12E-16 

Differentiation of Th17 cells, 
osteoclastogenesis through RANKL 

expression 

CXCL10 
C-X-C motif chemokine 

ligand 10 
10.155 1.25E-16 recruit Th1 cells into RA ST 

C15orf48 
chromosome 15 open 

reading frame 48 
9.887 5.55E-21 protein coding 
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Figure A4.2: Top 10 DE genes based on comparison of RNA-seq data between TNF-α and NP treated 

cells (RA-TNF/NP), and TNF-α treated (RA-TNF) RA-FLS cells. 

 

Gene Description Log2 FC FDR Type(s) 

Top 10 top-regulated genes 

SERPINB2 serpin family B member 2 10.458 5.3E-118 other 

MRGPRX3 
MAS related GPR family member 

X3 
-9.952 1.03E-15 

G-protein coupled 
receptor 

TLR2 toll like receptor 2 -9.64 1.1E-14 
transmembrane 

receptor 

HSPA6 
heat shock protein family A 

(Hsp70) member 6 
9.603 1.32E-19 enzyme 

IL36B interleukin 36 beta 9.366 3.25E-14 cytokine 

HSPA7 
heat shock protein family A 

(Hsp70) member 7 
9.241 1.78E-13 other 

CX3CL1 C-X3-C motif chemokine ligand 1 -9.204 2.14E-292 cytokine 

FOXI1 forkhead box I1 -9.128 4.9E-13 
transcription 

regulator 

NOS2 nitric oxide synthase 2 -8.597 1.78E-11 enzyme 

ANO9 anoctamin 9 -8.584 1.35E-15 ion channel 
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Figure A4.3: Top 10 DE genes based on comparison of RNA-seq data between NP treated (RA-NP), and 

untreated (RA-UT) RA-FLS cells. 

Gene Description Log2 FC FDR Type(s) 

Top 10 top-regulated genes 

MMP3 metalloproteinase 3 8.826 2.02E-24 peptidase 

RPS4Y1 ribosomal protein S4, Y-linked 1 8.195 6.05E-14 other 

NLGN4Y neuroligin 4, Y-linked 7.446 1.27E-08 enzyme 

ZFP zinc finger protein, Y-linked 7.150 2.85E-07 other 

MMP1 metalloproteinase 1 7.148 2.81E-271 peptidase 

TXLNGY 
taxilin gamma pseudogene, Y-

linked 
7.002 1.78E-13 other 

IL1RN Interleukin 1 receptor antagonist 6.783 4.89E-08 cytokine 

LINC-PINT 
long intergenic non-protein 

coding RNA, p53 induced 
transcript 

6.532 1.94E-09 other 

TFPI2 tissue factor pathway inhibitor 2 6.521 1.14E-49 other 

DDX3Y DEAD-box helicase 3, Y-linked -8.597 2.25E-12 enzyme 
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Figure A4.4: Log2FC and FDR values for candidate signalling genes in RA-FLS treated groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 RA-TNF vs RA-UT RA-TNF/NP vs RA-TNF RA-NP vs RA-UT 

Gene Name Log2FC FDR Log2FC FDR Log2FC FDR 

AKT1 Serine/threonine-protein kinase 0.6319 8.01E-15 0.1771 0.0481 0.3764 1.11E-05 

SOCS4 Suppressor of cytokine signaling 4 0.2855 0.0292 0.2726 0.0337 0.0372 0.8433 

STAT3 
Signal transducer and activator of 

transcription 3 
0.5900 4.93E-15 -1.7089 5.65E-112 -0.5846 7.23E-14 

STAT1 
Signal transducer and activator of 

transcription 1 
0.5610 0.0002 -1.3746 4.92E-22 -0.7473 5.69E-07 

JAK2 Janus kinase 2 1.4219 2.29E-26 -2.3457 2.58E-63 -0.2986 0.0744 

JAK3 Janus kinase 3 3.3021 1.31E-59 -4.8323 3.74E-70 -0.6367 0.0381 

TLR2 Toll like receptor 2 7.6736 1.94E-12 -9.6404 1.10E-14 -1.9213 0.3674 

TLR3 Toll like receptor 3 0.1570 0.3186 -3.1333 1.18E-69 -1.0438 3.05E-14 

TLR4 Toll like receptor 4 -1.2391 5.14E-18 -1.3763 2.87E-17 -1.0557 1.21E-13 

RXRB Retinoid X receptor B -0.3404 0.1780 0.1401 0.6397 -0.0915 0.7657 

RXRA Retinoid X receptor A -0.0426 0.7933 -0.2269 0.0781 -0.2444 0.0582 

RXRG Retinoid X receptor G -0.1062 0.9694 -2.2083 0.4417 -3.2309 0.1239 

LXR-a Liver X receptor -0.5896 0.0223 0.1842 0.5692 -1.5676 1.20E-09 

LXR Liver X receptor 0.5326 0.0002 0.0677 0.7248 0.1425 0.4385 

PPARA Peroxisome proliferator-activated α 1.1205 1.06E-29 -0.4717 2.03E-06 0.0993 0.4822 

PPARG Peroxisome proliferator-activated ɣ 1.0725 4.14E-06 -1.7309 8.44E-13 0.4007 0.1532 

PPARD Peroxisome proliferator-activated δ 0.5348 4.74E-05 1.4956 8.29E-37 0.5789 1.08E-05 
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Figure A4.5: Log2FC and FDR values for candidate endocannabinoid synthesis and degradation genes in RA-FLS treated groups. 

 

 
 RA-TNF vs RA-UT RA-TNF/NP vs RA-TNF RA-NP vs RA-UT 

Gene Name Log2FC FDR Log2FC FDR Log2FC FDR 

NAT N-acyltransferase 1 -0.5824 0.0807 0.1707 0.6881 0.0604 0.8923 

ABHD4 α/β-hydrolase domain 4 -0.7182 3.56E-16 -0.2895 0.0034 -0.1495 0.1451 

NAPEPLD 
N-acyl phosphatidylethanolamine-specific 

phospholipase D 
-0.6701 1.25E-06 0.3250 0.0341 -0.2711 0.0656 

GDE1 Glycerophosphodiesteras -0.6449 1.88E-19 0.1571 0.0597 -0.6327 4.07E-19 

FAM213B 
Family with sequence similarity 213 

Member B 
-0.2202 0.2478 1.4201 4.71E-23 0.6736 5.48E-06 

PTPN22 
Non-receptor protein tyrosine phosphatase 

22 
-0.1481 0.5042 2.3253 5.09E-56 1.1179 1.28E-13 

PLCG1 Phospholipase C gamma 0.1122 0.3653 0.4418 6.73E-06 0.2110 0.0584 

PTGES2 Prostaglandin E synthase 2 0.5400 0.0003 0.5593 3.33E-05 0.4348 0.0046 

COX2 Cyclooxygenase-2 6.8501 0 -0.1832 0.0550 3.5068 1.38E-164 

CP450 Cytochrome P450 monooxygenases -0.3344 0.8340 2.3979 0.0194 2.8107 0.0013 

LOX Lipoxygenase -2.2046 2.84E-179 -1.9594 7.30E-128 -0.4505 2.52E-08 

FAAH Fatty acid amide hydrolase -0.6481 0.3064 0.0153 0.9847 -0.6813 0.2776 
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APPENDIX 5: NP regulation of main signalling pathways regulated in RA in FLS cells 

Red - upregulated genes, green - down regulated genes; blue - pathway is predicted to be downregulated, orange – pathway predicted to be upregulated.  
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APPENDIX 6: Analyte curve information 

Figure A6.1 LEGENDplex™ Rat Th Cytokine Panel (13-plex), Analyte curve information.  

Analyte CV R2 Slope Intercept MinDC MaxDC Fit State Fit Formula 

A4.IL-10 0.71% 0.99 0.49 3.62 4.07 85576 Good 
4-P.log(6.10, 9.01, 
0.67, 8.06) 

A5.IFN-Ƴ 0.15% 1 1.28 0 1.18 314433 Good 
4-P.log(6.20, 
11.27, 1.01, 7.24) 

A6.CXCL1/KC 0.2% 1 1.62 0 1.92 165502 Good 
4-P.log(6.18, 
11.92, 1.13, 6.45) 

A7.CCL2/MCP 0.29% 1 1.62 0 1.79 182389 Good 
4-P.log(6.18, 
11.72, 1.17, 6.57) 

A8.TNF-α 0.83% 1 1.59 0 2.61 68229 Good 
4-P.log(6.18, 
11.85, 1.12, 5.80) 

A10.GM-CSF 0.27% 1 1.19 0.81 2.53 236495 Good 
4-P.log(6.30, 
11.71, 0.88, 6.87) 

B2.IL-18 0.42% 1 1.14 1.87 1.72 173683 Good 
4-P.log(6.36, 
12.23, 0.78, 6.49) 

B3.IL-12p70 0.39% 1 1.43 0 1.94 157889 Good 
4-P.log(6.19, 
12.55, 0.90, 7.01) 

B4.IL-1B 1.28% 0.99 1.52 0 2.92 47875 Good 
4-P.log(6.23, 
11.16, 1.23, 5.89) 

B5.IL-17A 0.64% 1 1.57 0 2.17 126716 Good 
4-P.log(6.25, 
12.66, 0.98, 7.25) 

B6.IL-33 0.36% 1 1.06 1.03 1.89 153237 Good 
4-P.log(6.55, 
12.16, 0.75, 7.85) 

B7.IL-1a 0.61% 1 1.63 0 2.36 107813 Good 
4-P.log(6.51, 
12.35, 1.12, 7.49) 

B9.IL-6 0.47% 1 1.01 0.4 1.91 155264 Good 
4-P.log(6.59, 
12.05, 0.74, 8.87) 
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APPENDIX 7:  Clinical application of nanotherapeutic agents in arthritic diseases 
 

Figure A7.1 Current nanocarrier system in the treatment of rheumatoid arthritis. Table taken from (Chuang et al., 2018) 

 

Therapeutic 

Classification 
Drugs/Agents Nanocarrier System 

Mean 

Size (nm) 
Delivery/Target Model Reference 

NSAIDs 

Indomethacin Polymeric micelles 240 EPR AIA (Bernardi et al., 2009) 

Aceclofenac Lysine-liposomes - EPR AIA (Sharma et al., 2017) 

Indomethacin 
Folate-PEG-PAMAM 

dendrimer 
<100 

Folate receptor 

(macrophages) 
Patients (Chandrasekar et al., 2007) 

Indomethacin Lipid microspheres 150 EPR AIA (Suk et al., 2016) 

Glucocorticoids 

Dexamethasone Liposomes 96 EPR AIA (Quan et al., 2014) 

Methylprednisolone Cyclodextrin polymer  27 EPR CIA (Hwang et al., 2008) 

Dexamethasone RGD-PEG liposomes 100 Endothelials AIA (Koning et al., 2006) 

DMARDs 

Methotrexate  
Stealth-type polymeric 

NP 
51–116 EPR AIA      (Ishihara et al., 2009) 

Methotrexate  PEGylated liposomes 210–260 EPR AIA (Williams et al., 2000) 

Clodronate  Liposomes  120–160 Macrophages AIA  (Barrera et al., 2000) 

Biological agents 

Etanercept TMN complex 250 EPR CIA (Jung et al., 2013) 

Anakinra 
Folate-chitosan DNA 

nanoparticles 
110 Macrophages AIA (Fernandes et al., 2008) 

Tocilizumab Hyaluronate-gold NP 64 IL-6R+ cells CIA (Lee et al., 2014b) 
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Therapeutic 

Classification 
Drugs/Agents Nanocarrier System 

Mean 

Size (nm) 
Delivery/Target Model Reference 

Others inhibitor 

γ-secretase 

inhibitor 
Hyaluronan NP 255 Macrophages CIA (Heo et al., 2014) 

Fumagillin 
Perfluorocarbon 

nanoparticle 
250 

αVβ3 integrin 

activated cells 

K/BxN 

mouse 

model 

 (Zhou et al., 2009) 

 

 

AIA: adjuvant-induced arthritis; CIA: collagen-induced arthritis; EPR: enhanced permeability and retention; PEG-PAMAM: poly(ethylene glycol) conjugates of 

anionic dendrimer; RGD-PEG: RGD peptide-polyethylene glycol; TMN: temperature-modulated noncovalent interaction. 
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Figure A7.2 Clinical application of nanotherapeutic agents in arthritic diseases. Table taken from (Chuang et al., 2018) 

  

Patent Lipid Nanocarrier Advantage Function 

US 20150174069 

A1 

Dexamethasone sodium phosphate 

liposome 
There is about a 10% reduction in one or more symptoms of arthritis 

WO 2003000190 

A2 
Glycosaminoglycans liposome It provides good efficacy in treatment of osteoarthritis 

CN 104688721 A Paclitaxel liposome The gel achieves a treatment effect and pain of a patient suffering from RA  

US 20090232731 

A1 
Cationic liposome 

It provides reduction of the infiltration of mononuclear cells into the synovial 

tissue, pannus development and cartilage erosion 

US 20160000714 Curcumin solid lipid particles It provides suppression of cyclooxygenase 2 (COX-2) expression 

WO 2017025588 

A1 
Cyclosporine solid lipid particles 

It prevents transcription of interleukin 2, thereby decreasing activation and 

proliferation of T lymphocytes. 

US 8715736 B2 Nanostructured Lipid Carriers It provides efficient skin permeation at the inflammatory site in RA 

CN 102225205 B 
Tripterine nanostructured lipid 

carrier 
It provides inhibition of rheumatoid arthritis inflammation 

 

 

 


