

Carpathian Journal of Electronic and Computer Engineering 12/1 (2019) 42-45

DOI: 10.2478/cjece-2019-0008

ISSN 1844 – 9689 42 https://www.degruyter.com/view/j/cjece

SoC as IoT sensor network hub

Alexandru Alexan
Department of Electric, Electronic

and Computer Engineering,
Technical University of Cluj-

Napoca, North University Center
Baia Mare, Romania

alexanalexandru@gmail.com

Anca Alexan
Department of Electric, Electronic

and Computer Engineering
Technical University of Cluj-

Napoca, North University Center
Baia Mare, Romania

Oniga Ștefan
Department of Electric, Electronic

and Computer Engineering
Technical University of Cluj-

Napoca, North University Center
Baia Mare, Romania

Alin Tisan
Royal Holloway, University of

London, United Kingdom

Abstract—Nowadays SoC’s miniaturization provide smaller
yet more powerful devices that are perfect to be used as local
hubs for small to medium sensor networks. Although sensors
can now be easily connected directly to the cloud, a hub can
simplify the process of bringing sensor to the IoT cloud. One of
the most popular SoC board, Raspberry PI, is perfect for the
hub role due to its small form factor, price, processing power
and connectivity. Our proposed system consists in a SoC based
low cost raspberry pi hub that connects two Bluetooth sensortag
CC2650 modules to a mongoDB cloud database.

Keywords— SoC, IoT, sensor network hub, sensor gateway,
cloud, sensor network, sensortag CC2650, raspberry pi, python,
mongoDB

I. INTRODUCTION
 In today’s digital era one of the most important thing is
data, so it’s no surprise that gathering and uploading data from
every possible source is a common occurrence. This enables
us to improve the quality of life and creates a digital
environment that is always online and connected [1][2], the
IoT environment.

 The IoT environment captures data from everyday
devices, data that is then collected, analyzed and stored [3].
Some areas like healthcare security and home automation are
driving the expansion of IoT enabled devices in our lives but
almost all-important areas like environment protection,
industry and agriculture benefit from the immerging IoT
coverage [4].

 More and more everyday devices become IoT nodes,
generating a device mesh that creates the digital environment
in which we are living today.

 There are multiple options for connecting the IoT node to
the internet, two of them being via a hub or directly. Each
option has advantages and disadvantages and choosing the
right architecture is crucial for the data acquisition system’s
extensibility and performance.

 Since the number of IoT devices is rapidly increasing, the
need to store large amounts of data is also increasing. One of
the most viable solution is to use the one storage platform that
can almost provide virtually unlimited storage capacity and a
great speed, a distributed cloud database [5]. This kind of
database can be easily expanded and can accommodate from
small to large sensor networks [6].

 Our objective is to implement and test the usage of a sensor
hub that has the role of a gateway, relaying and processing
data from the sensors and sending it to the cloud. For keeping
the cost down, we choose the hardware platform of the data
hub to be system on a chip based.

II. RELATED WORK

A. Sensors
There are three main types of sensor categories for
activity detection [7]:

• Wearable sensors

• Ambiance sensors

• Vision based sensors

 For wearable sensors an important aspect is the size and
battery life. Due to these two constrains it’s important that the
sensor should be as small as possible and provide the most
functionality the end user. Usually these the sensor used are
movement ones, accelerometers, gyroscopes and
magnetometers [8]. Another important aspect that must be
taken into consideration is the sensors connectivity that must
be also low-power due to the battery size restrictions. In this
case since the sensor module is wired by the end user, the
connectivity is restricted to a wireless one.

 Ambiance sensors are mostly based on pressure sensors,
PIR or ultrasonic and provide a simple solution that is very
easy and quick to install [9]. These kind of sensors do not have
the size and battery life restrictions, and can be connected
wired or wireless. Also the sensor nodes can have more
powerful wireless transceivers than the wearable ones.

 Vision based sensors provide a way of monitoring any
kind of object in range as it uses video cameras and other
combined sensors[12].

B. Sensor network hub and cloud
 One of the most used network hub gateway is represented
by a mobile device, like phone or table, which connects to the
sensor modules and process or relays the data to a server [13].

 Dedicated hubs can provide more flexibility and
extensibility but they come with the cost of requiring a custom
device as opposed to using an already omnipresent device, like

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/232908514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Carpathian Journal of Electronic and Computer Engineering 12/1 (2019) 42-45

ISSN 1844 – 9689 43 https://www.degruyter.com/view/j/cjece

a smartphone. They support a wide range of operating system
like Linux or windows based operating systems [14].

III. PROPOSED SYSTEM

The proposed system (Fig.1) consists of at least two

sensors that form a sensor network that connect to a local hub
that collects data and sends it for storage to the cloud.

Our implemented system consists of two Texas

Instruments CC2650 sensor modules that connect via
Bluetooth to a Raspberry PI hub that collects, pre-process and
send the data to a mongoDB cloud database. All the hardware
components of the system are chosen for their low power
design and low cost. This creates a cloud enabled data
acquisition system that can be cheaply and easily replicated
and expanded if needed.

A. Sensors
The chosen sensors are Texas Instruments CC2650

SimpleLink SensorTag sensor modules showed in figure 2.
These modules were chosen due to the low power design and
multiple build-in sensors. The small form factor also proves to
be a big advantage since they can be incorporated and used in
multiple areas for data acquisition. They communicate over a
Bluetooth low energy interface, perfect for small to medium
sensor networks. Due to the low energy design the battery life
ensures a decent run time between battery changes.

The main sensors on this module are the movement
sensors:

• Accelerometer
• Gyroscope
• Magnetometer

The rest of the environmental sensors like light, humidity,
temperature and infrared light make this sensor module a
suitable candidate for data acquisition and further data
correlation.

Our implementation approach uses two identical CC2650
sensor modules for data acquisition that form a small sensor
network. The sensors run on a custom firmware in order to
increase performance, mainly to increase the number of
readings per second. This firmware update was done using the
Code Composer Studio IDE and the number of samples per
second was increased from 20 to 50 samples per second.

The sensors are identified by the Bluetooth MAC address
and based on this address the hub assigns a friendlier name
identifier that is further used by the entire data acquisition
system. This makes development and debugging a lot easier
since each sensor has a meaningful name.

Currently only accelerometer and gyroscope data is sent
to the cloud, via the hub, but all sensors data can be used if
needed.

B. The sensor network hub
 The chosen hardware platform for the hub, mainly for its
small cost and footprint, is the raspberry pi SoC. This provides
a cheap and versatile development platform that can run
multiple operation systems:

• Raspbian

• Windows 10 IOT Core

• Ubuntu (mate, core, server)

• OSMC

• LibreELEC

• PiNet

• Risc OS

The heart of this SoC is the Broadcom BCM2837 chip
with a quad-core ARM Cortex A53 architecture, with each
core running at 1.2GHz. The powerful “Broadcom VideoCore
IV” GPU enables this SoC to provide great display

Fig.3. CC2650 SimpleLink SensorTag sensors[11]

 Fig. 1. Sensor network hub

Fig. 2. CC2650 SimpleLink SensorTag[10]

Carpathian Journal of Electronic and Computer Engineering 12/1 (2019) 42-45

ISSN 1844 – 9689 44 https://www.degruyter.com/view/j/cjece

capabilities. The RAM memory is also decent, featuring 1GB
of LPDDR2 memory running at 900 MHz.

The module’s connectivity also contributes to be a great
choice for the sensor network hub since it features Bluetooth
4.1 classic and Bluetooth low energy sensor module. The built
10/100 Ethernet and 2.4GHz 802.11n wireless capabilities
enables this board to connect to a multitude of sensors. The
USB available ports allow for 3rd party USB sensor interfaces
and the existing GPIO ports make possible the connection of
additional modules for supporting virtual any sensor type,
wired or wireless.

 Our proposed hub used the Raspbian OS and the software
application for the hub is written in Python, one of the best
suited programming languages that can be used on this OS.

 For connecting to the two SensorTag modules via a low
energy Bluetooth connection, the bluepy library is used. This
library represents a Python interface to Bluetooth LE allowing
access to Bluetooth Low Energy devices from Python.

The bluepy library needs at least Python version 2.7 to run and
it will work with any version higher than this. This library
supports multiple sensor platforms out of the box including
the SensorTag platform.

 The datetime python module is used for date and time
management, providing classed for dates and times
manipulation.

 For accessing the cloud database, the pymongo packages
is used, a Python distribution that contains tools for working
with MongoDB. This library is thread safe, which means that
we can acquire data from the sensors using multiple threads,
thus increasing performance.

 The main program is written in python and uses the MAC
addresses of the two SensorTag modules for connection,
waiting for each SensorTag module to be available. Currently
the MAC address of the SensorTag modules used is hardcoded
in the application, as a white list, making sure that other
SensorTag modules cannot connect if available. Also, this
provides a secure Bluetooth LE network since all the allowed

devices are whitelisted. This can be easily changed to allow
any SensorTag device to connect regardless of it’s the MAC
address.

 For each connected SensorTag, the sensors that will be
read are enabled and, in this case, the following movement
sensors will be enabled: accelerometer and gyroscope. We
chose only these sensors since this data can enable activity
detection and provide the most dynamic sensor readings that
are very good for debugging.

 After the sensor modules are enabled, they are available

for data read. The read process takes places continuously and
without any added delay to obtain as much data as possible.
This is great for debugging purposes and can be easily
adjusted to restring the number of samples per second if
needed.

 Once the desired sensors are enabled, the program starts
reading data continuously, preprocessing and uploading the
data directly to the cloud. Each record receives a timestamp
when it reaches the sensor network hub since the current used
sensor modules do not have time capabilities. Even though the
cloud database can also attach a timestamp for each record,
the timestamp added by the hub is currently used since it’s
more accurate due to the relative high-speed of local sensor
network compared to the intricate route to the cloud database
servers.

Fig. 4. The implemented sensor network

Fig. 5. Software flowchart

Carpathian Journal of Electronic and Computer Engineering 12/1 (2019) 42-45

ISSN 1844 – 9689 45 https://www.degruyter.com/view/j/cjece

C. Cloud database
 The chosen cloud database is MongoDB since it’s an
open-source document-oriented database. It’s one of the most
used and known NoSQL database and it uses a JSON like
format named BSON (Binary JSON) to work with data. This
database system is capable of high performance and
availability, yet it can be easily scaled so it’s perfect for sensor
network that can start small and grow beyond the initial
estimation. It runs on all the major operating systems like
Linux, Windows, macOS, Solaris and FreeBSD.

 In our implementation we’ve created a collection for
storing sensor data, with entries collected at the same time.

This collection is composed of multiple documents, each
document having the following fields:

• Object id: Unique generated identifier

• Sensor name : the sensor name identifying in our
case one of the two used sensor modules

• Time stamp : the time stamp added by the hub upon
data read

• Acceleration data for the x-axis

• Acceleration data for the y-axis

• Acceleration data for the z-axis

• Gyroscope data for the x axis

• Gyroscope data for the y axis

• Gyroscope data for the z axis

The Fig.6 shows one example of a document record
containing the unique id, sensor name, timestamp and the
movement data.

Another option for the storing data schema would be to
have a collection for each sensor type, option that is best suited
if many sensors are read for each sensor module.

IV. CONCLUSINONS

This paper presents the usage of a SoC as a sensor network
hub with the role of relaying and preprocessing information
from the sensors and sending it to the cloud.

Choosing a dedicated device, the SoC, for the sensor
network hub proved to be a good option since all the device’s
resources can be used for data gathering and relaying thus
decreasing cost and improving performance.

We chose the SoC hub, a raspberry pi board, mainly due
to its availability, price and performance. For testing we used
the smallest sensor network composed of two sensors
modules, Texas Instruments CC2650 SimpleLink SensorTag

 In the current implementation, movement data is retrieved
and sent to the cloud by the local hub.

The used cloud database is a NoSQL database perfect for
projects that need to be rescaled in the future. Storing data into
the cloud allows other systems to access and analyze it, further
allowing the system to expand.

Thus using a SoC as a sensor network hub proved to be a
great solution that simplified the data acquisition process and
provided an extensible and cheap sensor network architecture.

REFERENCES
[1] Z. Arkady, Ch. Perera, and D. Georgakopoulos. "Sensing as a service

and big data.", Proc. of the International Conf. on Advances in Cloud
Computing (ACC), Bangalore, India, July, 2012.

[2] F. Sheikh, and X. Li. "Wireless sensor network system design using
Raspberry Pi and Arduino for environmental monitoring applications.",
Procedia Computer Science 34, 2014, pp. 103-110.

[3] Singh K.J., Kapoor D.S. Create Your Own Internet of Things: A survey
of IoT platforms. IEEE Consum. Electron. Mag. 2017;pp. 6:57–68

[4] N.Q. Mehmood, R. Culmone, L. Mostarda, “Modeling temporal
aspects of sensor data for MongoDB NoSQL database”, J. Big Data,
2017, pp. 4:8

[5] L. Atzori, A. Iera, G. Morabito, "The Internet of Things: A Survey",
Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct., 2010. N.Q.
Mehmood, R. Culmone, L. Mostarda, “Modeling temporal aspects of
sensor data for MongoDB NoSQL database”, J. Big Data, 2017, pp. 4:8

[6] M. Roopaei, P. Rad and K. R. Choo, "Cloud of Things in Smart
Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging," in
IEEE Cloud Computing, vol. 4, no. 1, pp. 10-15, Jan.-Feb. 2017.

[7] K. Lih-Jen and C. Chih-Sheng, "A Smart Phone-Based Pocket Fall
Accident Detection,Positioning, and Rescue System," Biomedical and
Health Informatics, IEEE Journal of, vol. 19, pp. 43-60, 2015

[8] AP. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S.
Valenti, "A High ReliabilityWearable Device for Elderly Fall
Detection," Sensors Journal, IEEE, vol. 15, pp. 4545-4552, 2015.

[9] L. Yun, K. C. Ho, and M. Popescu, "Efficient Source Separation
Algorithms for Acoustic FallDetection Using a Microsoft Kinect,"
Biomedical Engineering, IEEE Transactions on, vol. 61, pp. 740-760,
2014

[10] Texas Instruments Incorporated, Multi-Standard CC2650 SensorTag
Design Guide, Texas Instruments Incorporated, pp. 2, March 2015.

[11] Texas Instruments Incorporated, CC2650 SensorTag Quick Start
Guide (Rev. A), Texas Instruments Incorporated, pp. 1, 2016.

[12] AE. E. Stone and M. Skubic, "Fall Detection in Homes of Older Adults
Using the Microsoft Kinect," Biomedical and Health Informatics, IEEE
Journal of, vol. 19, pp. 290-301, 2015.

[13] Vamos Daniel, Oniga, Stefan , Alexan Anca. (2018). Personal data
acquisition IOT gateway. Carpathian Journal of Electronic and
Computer Engineering. 11. 44-47. 10.2478/cjece-2018-0008.

[14] Yuejiao Cheng, Yuejiao & Chenglong Jiang, Chenglong & Shi, Jiong.
(2016). A Fall Detection System based on SensorTag and Windows 10
IoT Core. 10.2991/mse-15.2016.4

[15] J. Suto, S. Oniga, C. Lung, I. Orha, Comparison of offline and real-
time human activity recognition results using machine learning
techniques, Neural Computing and Applications, March 2018.
https://doi.org/10.1007/s00521-018-3437-x

Fig. 6. MongoDb one document, sensor data record

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

