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We present a general method for computing QCD jet cross sections
at next-to-next-to-leading order accuracy, called CoLoRFulNNLO. We also
discuss how to combine the predictions for the production of a Standard
Model Higgs boson and its decay into a b-quark pair, both computed at the
next-to-next-to-leading order accuracy, to predict precisely the kinematic
distributions of b-jets emerging in the process pp→ H +X → bb̄+X.
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1. Introduction

The discovery of a new boson [1, 2] seems to complete the experimental
verification of the validity of the Standard Model (SM). All measured prop-
erties of this particle are consistent with the SM predictions: it is a JP = 0+

particle which couples to other bosons and fermions in accordance with the
masses of those within the uncertainty of the measurements. Its measured
width is also in agreement with the prediction ΓH = (4.07± 0.16theo)MeV.
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Nevertheless, the precision of the current measurements still allows that this
particle is the first observed member of an extended Higgs sector that is
more natural from the theoretical point of view. For instance, supersym-
metric extensions offer solutions to open questions in the fundamental phys-
ical description of Nature, such as the hierarchy problem, or the elementary
constituents of cold dark matter.

Distinction of different Higgs sectors requires high precision measure-
ments and predictions. In this paper, we focus on the latter. As the width
of the Higgs boson is very narrow, the narrow width approximation (NWA)
is excellent, which means that in order to make a high-precision prediction
for the process pp → H + X → bb̄ + X, we need high precision prediction
for both production pp → H + X and decay H → bb̄, which can be fused
according to the formula

dσ

dObb̄
=

 ∞∑
n=0

dd2σ
(n)
pp→H+X

dp⊥,HdηH

×
∑∞

n=0 dΓ
(n)

H→bb̄

/
dObb̄∑∞

n=0 Γ
(n)

H→bb̄

× Br
(
H → bb̄

)
,

(1)
where Obb̄ denotes some kinematic variable of the emerging b-jets, such as ra-
pidity or transverse momentum. The branching ratio Br(H → bb̄) is known
with better than 1% accuracy [4]. The production cross section is known at
the next-to-next-to-leading order (NNLO) in QCD perturbation theory for
the inclusive cross section [5, 6], as well as for X being a vector boson [7, 8],
or a jet [9]. In this paper, we focus on the H → bb̄ process which is, by now,
also known to NNLO accuracy [10, 11].

2. Method

The CoLoRFulNNLO method (Completely Local subtRactions for Fully
differential predictions at NNLO) is a general subtraction scheme for com-
puting QCD jet cross sections at the NNLO accuracy. At present, it can
be applied for processes of massless partons and without coloured particles
in the initial state. In developing this scheme [12, 13], we set the following
requirements useful for efficient numerical implementations and automation:

— the subtractions should be defined and recorded explicitly for all de-
grees of freedom (momentum, spin, colour and flavour) and for arbi-
trary processes — we use the colour state formalism of Ref. [3];

— the method should be general, valid in any order of perturbation the-
ory;

— the subtractions should be fully local in the multidimensional phase
space, therefore, the correctness of the subtraction terms can be checked
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in arbitrarily chosen phase-space points, which is needed for mathe-
matical rigour and useful for numerical efficiency;

— the method should yield fully differential predictions in four space-time
dimensions (so arbitrary detector cuts can be employed and matching
to shower Monte Carlo programs is possible);

— the subtractions can be constrained over the phase space (as physi-
cal predictions cannot depend on such constraints, this provides an
important check of the predictions and a tool for optimization).

The cross section for m-jet production in the perturbation theory can be
written as σ = σLO + σNLO + σNNLO + . . . The cross section at LO is the
integral of the fully differential Born cross section of m final-state particles
times the jet function Jm({pi}) that depends on the final-state momenta and
defines the m-jet physical observable. The fully differential NLO correction
is a sum of two terms:

dσNLO = dσR
m+1Jm+1 + dσV

mJm , (2)

where the real correction dσR
m+1Jm+1({pi}) is the differential Born cross sec-

tion of m+ 1 particles, allowing one particle becoming unresolved (collinear
to another one or soft, meaning a particle with vanishing energy) making the
m-particle and (m+1)-particle final states kinematically degenerate, while
the virtual correction dσV

mJm({pi}) is the interference of the one-loop ampli-
tude of m partons with the corresponding Born one. Both of these terms are
separately singular even after ultraviolet renormalization due to integrations
over the unresolved momenta (either real, or virtual in the loop), which lead
to infrared singularities. According to the Kinoshita–Lee–Nauenberg theo-
rem, their sum is finite if J defines an infrared-safe physical observable.

The third term σNNLO in the perturbative expansion of the cross sec-
tion is a sum of three contributions: (i) the double real correction
dσRR

m+2Jm+2({pi}), which is essentially the fully differential Born cross sec-
tion of m + 2 particles, allowing one or two particles becoming unresolved,
making either the m-particle or the (m + 1)-particle final states kinemat-
ically degenerate with the (m + 2)-particle final state; (ii) the real-virtual
correction dσRV

m+1Jm+1({pi}), which is the interference of the Born amplitude
and one-loop amplitudes for (m+ 1)-particle final states, containing explicit
poles emerging in the loop integral and allowing one particle becoming un-
resolved; (iii) the double virtual correction dσVV

m Jm({pi}) that contains the
two-loop corrections to the amplitude form-particle final states. These three
contributions are singular even after ultraviolet renormalization due to inte-
grations over the unresolved real and loop momenta, but their sum is finite
if J defines an infrared-safe physical observable. Our goal is to construct a
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reorganization of the three contributions into three finite integrals without
changing the sum. For this purpose, we use the same key concepts that were
the basis of general methods for computing cross sections at NLO: (i) the
known infrared and collinear factorization of QCD matrix elements (in tree
amplitudes [14, 15] and in their one-loop versions [16, 17]) and (ii) map-
pings of the phase space which allow for integrating over the unresolved real
particles independently of the jet function [12, 13]. In addition, we also use
(iii) a process independent way of disentangling overlapping singularities of
the amplitudes both among various doubly-unresolved phase-space regions
as well as singly- and doubly-unresolved ones. A solution valid at NNLO was
presented in Ref. [18], and a general one, valid at any order in perturbation
theory in [19].

After these steps, the sum of the three divergent contributions can be
written as a sum of three finite ones, σNNLO = σm+2 + σm+1 + σm, where
each can be computed in four dimensions using Monte Carlo integrations.
Symbolically, the fully differential contributions can be written as

dσm+2 =
{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm −

[
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

]}
ε=0

,

(3)

dσm+1 =


dσRV

m+1 +

∫
1

dσRR,A1
m+2

 Jm+1

−

dσRV,A1
m+1 +

∫
1

dσRR,A1
m+2

A1
 Jm


ε=0

,

(4)

dσm =

dσVV
m +

∫
2

[
dσRR,A2

m+2 − dσRR,A12
m+2

]

+

∫
1

dσRV,A1
m+1 +

∫
1

dσRR,A1
m+2

A1


ε=0

Jm ,

(5)

where the A1 terms regularize the one-particle (single) unresolved singular-
ities, the A2 terms regularize the double unresolved singularities, while the
A12 terms have two purposes: to regularize the double unresolved singular-
ities in the RR,A1 subtraction and also the single unresolved ones in the
RR,A2 subtraction.



Fully Differential Decay Rate of a Standard Model Higgs Boson . . . 2101

The simultaneous factorization of the phase space and the matrix ele-
ments allows for integrating out the momenta and sum over the spin, colour
and flavour degrees of freedom of the unresolved particles. We denote all
these steps symbolically by

∫
1 and

∫
2 where the index shows the number of

unresolved particles. This procedure leads to integrated subtraction terms
that have to be added to cross sections with less particles in the final state
(Eqs. (3)–(5)), which leads to cancellation of the ε poles that emerge in the
loop integrals when the divergent integrals in d = 4 dimensions are regu-
lated by dimensional regularization in d = 4–2ε dimensions. The Laurent-
expansion of these integrals contains poles starting at 1/ε4. We have checked
the cancellation of the leading (1/ε4) and subleading (1/ε3) poles for an ar-
bitrary number m of jets, and the cancellation of all poles for m = 2 and 3
analytically.

3. Predictions

We have implemented the CoLoRFulNNLO method for computing the
fully differential decay rate of a Higgs boson into a bb̄-pair. In our imple-
mentation, we can constrain the phase space of the subtractions by choosing
the value of a dimensionless parameter α0 < 1, while α0 = 1 means no con-
straint. The three contributions σn (n = m, m + 1, m + 2) depend on α0.
However, physical predictions must not depend on α0, therefore, checking
that the full prediction is independent of α0 gives a strong check of correct-
ness. In Fig. 1, we compare the distribution of the pseudorapidity of the
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Fig. 1. Rapidity distribution of the hardest jet: dependence of the various contri-
butions on α0.
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leading jet (measured from an arbitrarily fixed axis in the rest frame of the
Higgs boson and clustered with the Durham algorithm [20] at ycut = 0.05)
with (α0 = 0.1) and without (α0 = 1) phase-space restriction. The predic-
tions are shown at a renormalization scale µR = µ0 = mH . Clearly, the
independent contributions depend on α0, but their sum does not.

The independence of the physical prediction of α0 can be used for re-
ducing the time needed for the full computation because with constrained
subtractions, one does not have to compute all of them for each phase-space
point. For the H → bb̄ process, the average number of subtraction calls
(〈Nsub〉) is reduced significantly if α0 = 0.1 (〈Nsub〉 = 14.5) compared to the
computation with α0 = 1 (〈Nsub〉 = 52), which is reflected in a reduction by
a factor of 2.5 of the CPU time needed to complete the computation leading
to similar numerical precision.

Turning to physical predictions for the b-jets, one finds that for massless
b-quarks standard jet algorithms, such as the k⊥ or anti-k⊥ algorithms are
not infrared safe beyond NLO accuracy [21]. The origin of IR unsafety is
the splitting of a gluon into a b-quark pair. In the double real emission such
a splitting leads to three b-jets in the final state (two from the Higgs boson
and one from the gluon) if the b-quarks are nearly collinear, when the ma-
trix element is singular and requires regularization by subtraction. However,
the subtraction term contains only two b-jets and a gluon jet, therefore its
contribution falls into a different bin from that of the double real emission
in the singular limit, leading to uncancelled singularities. To make infrared
safe predictions with tagged jets, we use the flavour-k⊥ algorithm of Ref. [21]
to model b-tagging of the jets. This algorithm amounts to assigning an ad-
ditive flavour number +1 to a b-quark and −1 to an anti-b-quark and 0 to all
other partons. Combining a bb̄-pair results in a flavourless pseudo-particle.
In this way, the collinear splitting of a gluon into a bb̄-pair in the double
real emission contribution gives a flavourless jet, just like the correspond-
ing subtraction term does, so the two contributions (double real and the
subtraction) fall into the same bin. We demonstrate that this algorithm
gives stable predictions at NNLO in Fig. 2 where the rapidity and the trans-
verse momentum distribution of the hardest b-jet in the rest frame of the
Higgs boson is shown together with the dependence of the predictions on
the renormalization scale varied around the default one (mH) in the range
of [µ0/2, 2µ0]. The bands at LO and NLO accuracy overlap marginally, but
the NNLO band lies inside the NLO one over the whole kinematic range.
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Fig. 2. Kinematic distributions of the hardest b-jet in the rest frame of the Higgs
boson: rapidity η and transverse momentum p⊥. The bands represent the varia-
tion of the scale at LO, NLO and NNLO around the default one in the range of
[µ0/2, 2µ0].

4. Conclusions

In this paper, we presented a subtraction scheme for computing fully
differential cross sections at the NNLO accuracy (presently only for processes
without coloured particles in the initial state). The subtractions are fully
local, exact and explicit in colour. We presented the first application of the
method for the process H → bb̄, for which we have shown the cancellation of
the ε poles analitically and also the independence of the physical predictions
of the unphysical constraint on the subtractions. We used the flavour-k⊥
algorithm to make predictions for distributions of tagged b-jets, for which
the original k⊥-algorithm is not infrared safe.
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