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abstract
Satellite images are important information sources of land cover analysis or land cover change monitor-
ing. We used the sensors of four different spacecraft: TM, ETM+, OLI and ALI. We classified the study area 
using the Maximum Likelihood algorithm and used segmentation techniques for training area selection. 
We validated the results of all sensors to reveal which one produced the most accurate data. According to 
our study Landsat 8’s OLI performed the best (96.9%) followed by TM on Landsat 5 (96.2%) and ALI on 
EO-1 (94.8%) while Landsat 7’s ETM+ had the worst accuracy (86.3%).
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1. introduction

Remote sensing is one of the best ways to 
collect data simultaneously from large areas 
of the Earth’s surface (Burai et al. 2015; 
Kohán et al. 2014; Szabó et al. 2013). Satellite 
images are taken with several multispectral 
bands based on the visual and infrared 
electromagnetic spectrum. The sensors are 
recording the radiance of the Earth’s surface 
(Schowengerdt 2007).

There are several different methods to 
interpret the remotely sensed data, like 
generalization, which is well known from 
the Large Area Crop Inventory Experiment 
(LACIE). At the LACIE project the classifiers 
were trained with one segment of a wheat-
growing region, and based on these classifiers 
they tried to determine wheat acreage, so they 
tested the spectral extendibility (Woodcock 
et al. 2001). We can also use segmentation 
combined with classifiers (Burai et al. 2015), 

e.g. Maximum Likelihood, Minimum Distance, 
Support Vector Machines or Spectral Angular 
Mapper (Otukei 2010; Wacker – Landgrebe 
1972; Yuhas et al. 1992). Based on these 
classifiers we can produce thematic land 
cover maps.

The knowledge of the land cover provides 
important information for several disciplines 
and practitioners (van Dessel et al. 2011; 
Kerényi – Szabó 2007; Móricz et al. 2005; 
Nagyváradi et al. 2011; Ortmann-Ajkai et al. 
2014; Srivastava et al. 2015, Zlinszky et al. 
2015). The comparison of the previous and 
current states can provide information about 
the changing trends (Balázs – Lóki 2014) but 
we can determine the area, spatial extent, 
or even the spread of only one land cover 
category (e.g. forests). The most common 
way to use these data is to determine the 
state of forests focusing on change-detection 
(Henits et al. 2016), monitoring of regrowth 
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in a defined timespan (Hansen et al. 2013; 
van Leuwen et al. 2012).

Depending on our requirements there are 
many sensors to choose from. One of the best 
known earth observing satellite family is the 
Landsat series (Wulder et al. 2007). During 
the Landsat Data Continuity Mission (LDCM), 
in 2013 the Landsat 8, as the newest member, 
was launched with two sensors on board. 
One is the Operational Land Imager (OLI) 
which collects data for nine multispectral 
bands (Table 1.), and the other sensor is 
the Thermal Infrared Sensor (TIRS) which 
has two thermal bands (Irons et al. 2012). 
In addition to the OLI, we studied two more 
Landsat sensors. The Landsat 5 – Thematic 
Mapper (TM) with 7 multispectral bands 
(Table 1.) (Gupta 2003), and the Landsat 7 
– Enhanced Thematic Mapper Plus (ETM+) 
with 8 multispectral bands (Table 1.; Y. Lin – 

G. Zhao 2014).
Besides, there are other satellites 

providing free images for landscape analysis. 
One is the Advanced Land Imager (ALI) on 
the Earth Observing-1 (EO-1) satellite, which 
was launched in 2000 as an experiment 
for its hyperspectral sensor (Hyperion) on 
board. The ALI was also constructed for an 
experimental purpose, it helped the scientists 
selecting the optimal bands for the OLI. It has 
10 multispectral bands (Table 1.) which are, 
in conclusion, very similar to the OLI’s bands. 
From 1999 EO-1 has continuously acquired 
quality data  and follows Landsat 7 exactly 
one minute late it can be used to validate or 
compare to the data of other sensors, e.g. any 
member of the Landsat family as well (Zhang 
– Tian 2015). An other satellite providing free 
data is the new Sentinel 2A and the planned 
2B (Drusch et al. 2012).
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Band 1 0.48-
0.69 10

Band 2 0.433-
0.453 30 Band 1 0.433-

0.453 30

Band 3 0.45-
0.515 30 Band 1 0.45-

0.52 30 Band 1 0.450-
0.515 30 Band 2 0.450-

0.515 30

Band 4 0.525-
0.605 30 Band 2 0.52-

0.60 30 Band 2 0.525-
0.605 30 Band 3 0.525-

0.600 30

Band 5 0.63-
0.69 30 Band 3 0.63-

0.69 30 Band 3 0.630-
0.690 30 Band 4 0.630-

0.680 30

Band 6 0.775-
0.805 30 Band 4 0.76-

0.90 30 Band 4 0.775-
0.900 30 Band 5 0.845-

0.885 30

Band 7 0.845-
0.89 30 Band 5 1.55-

1.75 30 Band 5 1.550-
1.750 30 Band 6 1.560-

1.660 30

Band 8 1.2-1.3 30 Band 6 10.40-
12 120*(30) Band 6 10.40-

12.50 60*(30) Band 7 2.100-
2.300 30

Band 9 1.55-
1.75 30 Band 7 2.08-

2.35 30 Band 7 2.090-
2.350 30 Band 8 0.500-

0.680 15

Band 10 2.08-
2.35 30 Band 8 0.520-

0.900 15 Band 9 1.360-
1.390 30

Table 1. Spectral bands of the sensors (Gupta, 2003; Chang, 2007; Lin – Zhao, 2014)
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Classified land cover data always have 
uncertainty, which is caused by the geometric 
inaccuracy and the thematic (spectral) 
noise. The latter depends on the input data 
of the map, which can be greyscale, true or 
false color aerial photos or satellite images 
(Berke et al. 2013; Burai et al. 2015). Using 
supervised classification there may occur 
misclassification due to inaccurately selected 
training areas, atmospheric or sensor 
noise (Congalton 1991). For supervised 
classifications we can use almost exclusively 
multi-band images (since most algorithms 
require the total number of bands + 1 training 
pixels which cannot be achieved using a 
single band image), but in our case the sensor 
characteristics, such as spectral resolution, 

the number of bands and the signal-to-noise 
ratio are also important (Deák et al. 2013; 
Tobak et al. 2013).

In this study we studied the datasets of 
four different spacecraft sensor to reveal their 
performance in supervised classification 
and evaluated the results from the aspect of 
thematic accuracy.

2. material and method

Possible study areas were limited by the 
availability of the EO-1 ALI images and within 
those areas it was selected considering the 
land cover diversity. The additional sensors 
were selected from the Landsat series. The 

Table 2. Satellite images and recording dates

Spacecraft Sensor Date

EO-1 Advanced Land Imager (ALI) 2005. 09. 08.

Landsat 5 Thematic Mapper (TM) 2005. 08. 10.

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 2002. 09. 04.

Landsat 8 Operational Land Imager (OLI) 2013. 08. 16.

Figure 1. The location of the Tisza-tó area, Hungary on the OLI’s true color composite
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Landsat 5 – Thematic Mapper (TM), the 
Landsat 7 – Enhanced Thematic Mapper Plus 
(ETM+), and the Landsat 8 – Operational 
Land Imager (OLI) (Table 2.).

The Tisza-tó (Tisza Lake) area (Figure 1.) 
was a good candidate to be the study area 
which has open water surface (lakes and 
the river Tisza), reedy and sedgy vegetation 
and dryland forests as well. The dominating 
species in the water are Phragmites australis, 
Typhetum angustifoliae while the forests 
are mainly consisting of Amorpha fructiosa, 
Populus alba and Salix purpurea (Aradi 2007; 
Oláh – Tóth 2008). The area also contains 
meadows, pastures, grasslands, and various 
arable lands for agricultural cultivation.

For selecting the training areas for the 
maximum likelihood classification we used 
the segmentation technique (Dragut et al. 
2010; Varga – Túri 2014) in the Idrisi Selva 
software. We performed the segmentation 
of the green, red and near-infrared (TM234) 
composites of each image. This method 
has the advantage that classifies the pixels 
based on their spatial homogeneity, thus, the 
adjacent pixel groups are clearly separated 
and they can be easily and efficiently used as 
training data in the classification process. We 
defined five land cover classes: arable lands, 
grasslands, forests, water surfaces and reedy-
sedgy vegetations.

Accuracy assessment was conducted using 
a test database, i.e. we collected 60-100 
pixels per categories to control the thematic 
accuracy. We checked the Overall Accuracy 
(OA), the User’s Accuracy (UA) and the 

Producer’s Accuracy (PA; Congalton 1991).

3. results

The thematic map derived from the 
ALI image (Figure 2.) had relatively good 
performance. According to the accuracy 
assessment (Table 3.), classification of water 
surfaces, reedy-sedgy vegetation and forests 
were successful. Classification conducted 
on the TM image (Figure 3.) showed that 
meadows contained several thematic error 
due to their interspersion with arable lands 
(Table 4.). The PA of the meadows was low 
and the arable lands produced lower accuracy 
regarding the UA. The map from the ETM+ 
images (Figure 4.) had the worst accuracy 
of all maps. Only the water surfaces were 
classified well (Table 5.). All other classes 
had lower accuracy regarding the UA or the 
PA. On the map from the OLI sensor’s images 
(Figure 5.) the water surfaces, reedy-sedgy 
vegetation and the forests had almost perfect 
classification (Table 6.). Some interspersion 
can be observed between the meadows 
and arable lands caused by their spectral 
similarity.

The confusion matrices showed that the 
most accurate map was the OLI sensor’s 
map (96.9%), and the least accurate map 
was derived from the ETM+ sensor’s images 
(86.3%). Maps derived from the ALI and TM 
sensors’ images based on the accuracies had 
average outcomes. The problem was mainly 
the misclassification of arable lands and 
grasslands.

2002.09.04. ETM+ Water R-S veg. Forests Meadows Arable Total UA

Water 45 0 0 0 0 45 100.00

R-S veg. 1 47 0 0 0 48 97.92

Forests 0 22 71 0 1 94 75.53

Meadows 0 6 0 58 12 76 76.32

Arable 0 0 0 2 56 58 96.55

Total 46 75 71 60 69 321  

PA 97.83 62.67 100.00 96.67 81.16  86.29

Table 3. Accuracy Assessment of the ALI sensor’s map
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Table 4. Accuracy Assessment of the TM sensor’s map

2005.08.10. TM Water R-S veg. Forests Meadows Arable Total UA

Water 60 4 0 0 0 64 93.75

R-S veg. 0 95 0 0 0 95 100.00

Forests 0 0 71 0 0 71 100.00

Meadows 0 0 0 53 2 55 96.36

Arable 0 1 0 7 72 80 90.00

Total 60 100 71 60 74 365  

PA 100.00 95.00 100.00 88.33 97.30  96.16

Table 5. Accuracy Assessment of the ETM+ sensor’s map

2005.09.08. ALI Water R-S veg. Forests Meadows Arable Total UA

Water 66 0 0 0 0 66 100.00

R-S veg. 0 95 0 0 0 95 100.00

Forests 0 0 70 0 0 70 100.00

Meadows 0 0 0 65 17 82 79.27

Arable 0 3 0 0 70 73 95.89

Total 66 98 70 65 87 386  

PA 100.00 96.94 100.00 100.00 80.46  94.82

Table 6. Accuracy Assessment of the OLI sensor’s map

2013.08.16. OLI Water R-S veg. Forests Meadows Arable Total UA

Water 65 0 0 0 0 65 100.00

R-S veg. 0 91 0 0 2 93 97.85

Forests 0 0 84 0 0 84 100.00

Meadows 0 0 0 62 5 67 92.54

Arable 0 0 0 6 103 109 94.50

Total 65 91 84 68 110 418  

PA 100.00 100.00 100.00 91.18 93.64  96.89
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Fig. 2. Thematic land cover map from ALI sensor’s images

Fig. 3. Thematic map from TM sensor’s images
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Fig. 4. Thematic map from ETM+ sensor’s images

Fig. 5. Thematic map from OLI sensor’s images
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4. discussion

Based on the sensors’ similar spectral 
bands and spatial resolution they can be 
suitable for the same tasks, however, there are 
differences between each sensor considering 
the gained accuracy.

The ALI images are appropriate to classify 
the open water surfaces and the forests. 
Besides, for reedy-sedgy vegetation also 
we got acceptable results, but in case of 
grasslands or arable lands the accuracy 
was too low. There are spectral similarities 
between the grasslands and arable lands, 
thus, classifying these categories separately 
from the others can result good performance. 
Interspersion between these land cover 
units was found by Prishchepov et al. (2012), 
too. The TM sensor’s images are perfect 
for classify forests, and also provided good 
results at classifying water surfaces and 
reedy-sedgy vegetation. The classification of 
grasslands and arable lands had low accuracy 
similarly to land cover maps derived from 
ALI’s sensor. Price et al. (2002) also found that 
the raw bands are not performed relevantly 
well even with involving all the possible 
bands in case of TM bands. They enhanced 
the relevance of NIR band and the possible 
usage of Greenness Vegetation Index. The 
ETM+ image had some cloudy area that 
probably influenced our pixel values, thus, its 
accuracy was the worst of all. Only the water 
surfaces had accuracy with above 95%; 
other categories had misclassification or bad 
results based on the UA or the PA. The OLI 
sensor produced the best OA. Water surfaces 
and forests were perfectly classified and the 
reedy-sedgy vegetation also had the best 
results; thus, OLI is a good choice to classify 
these categories. Grasslands and arable lands 
have interspersion, caused by the spectral 
similarity as well.

Cunningham (2006) found that land cover 
databases classified from remotely sensed 
data were lower than it was reported in 
their documentation in case of grasslands, 
wetlands and woodlands. Similarity of 
spectral features cannot be avoided, 

classification accuracy of grasslands and 
arable lands can be improved by preliminary 
field survey. Precisely structured training 
areas are important too, which we performed 
by the segmentation.

5. Conclusions

In conclusion, if we aim to examine current 
problems of remote sensing methods and if 
our goal is not the classification of the arable 
lands, then the results of the OLI sensor 
on Landsat 8 is the best, because in almost 
all cases this sensor’s images performed 
the best. For dates before 2013, Landsat 
5’s TM provides satisfying results as well. 
For additional images we recommend the 
application of EO-1’s ALI data. The ETM+ is 
also can be a good solution, in our case the 
full extent image was cloudy, so probably 
that caused the low accuracy. The Landsat 
Data Continuity Mission provides the future 
application of these quality data. Since the 
Landsat 8 there are freely available high 
quality satellite images of the Earth. In 
addition there is a plan of Landsat 9 and 
Sentinel 2B, which could improve the quality 
and accuracy of this segment of remote 
sensing technology.
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