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Abstract. The focus of this paper is the equality problem of quasi-arithmetic
expressions. This class is a far generalization of the well-known class of
quasi-arithmetic means. One of the main tools in the proof is an extension
theorem of real homomorphisms from a subset with a very weak structure
(dyadically closed set).
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1. Introduction

A two place function M is called a quasi-arithmetic mean (see e.g. [1]) if it
can be written in the form

M(x, y) = ϕ−1

(
ϕ(x) + ϕ(y)

2

)
, x, y ∈ I, (1)

where I is a non-empty, open interval, ϕ : I → R is a continuous, strictly
monotonic function. This class is a close relative of quasi-sums (see e.g. [19])
and it is in the center of research of several authors (see e.g. [8] and the
references therein). It contains classical well-known means like the arithmetic
mean, geometric mean, harmonic mean and so on. Currently the operator
version is also defined and investigated (see e.g. [10]).
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If we consider only the expression (1) itself, then invertibility of ϕ with
Jensen convex image seems to be more natural assumption than continuity
with strict monotonicity.

The following questions arise: What will be the resulted new class? Is it
larger than the class of quasi-arithmetic means? The members of this new class
will be means again or not? What are the necessary and sufficient conditions
of equality of two members of this class?

The main goal of this paper to answer these questions, especially the last
one (equality problem in this class).

The remaining part is organized as follows. In Sect. 2 an extension the-
orem is proved which is one of the main tools in the proof of the solution of
the equality problem. Extension theorems has a quite rich literature because
conditional problems concerning functional equations have an important role
in this area (see e.g. [3,7,12,24,25]).

In Sect. 3 properties of quasi-arithmetic expressions are investigated. It is
proved that this class is much larger than the class of quasi-arithmetic means.
Examples make the connection between these classes more plausible.

In Sect. 4 the solution of the equality problem is solved in the class of
quasi-arithmetic expressions. Such type of questions are vividly examined by
several authors (see e.g. [4–6,13–18,20–23]).

At last, in Sect. 5 two open problems are shown concerning the charac-
terization problem of quasi-arithmetic expressions.

2. An Extension Theorem for Conditionally Additive Functions

Let D ⊂ R be a subset, and

DΔ := {(x, y) ∈ R
2 | x, y, x + y ∈ D }.

A function g : D → R is called conditionally additive on D (see [7]) if

g(x) + g(y) = g(x + y), (x, y) ∈ DΔ.

A set D ⊂ R is dyadically closed if x+y
2 ∈ D for all x, y ∈ D.

The dyadic hull of D is

diadD :=

{
x ∈ R | x =

n∑
i=1

δidi, for some n ∈ N and di ∈ D

}
,

where δi = mi

2ki
, mi, ki ∈ Z.

Theorem 1. Assume that a real valued function is defined on a nonempty,
dyadically closed subset of the reals, which contains zero. If it is conditionally
additive on this set, then it is (not necessarily uniquely) extendible onto the
whole real line.

Lemma 1. If D ⊂ R is nonempty, dyadically closed set, and it contains zero,
then diad(D ∩ [0, r]) = diadD for all positive r ∈ D.
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Proof. Let d ∈ diadD, then x =
∑n

i=1 δidi and for and arbitrary di ∈ D there
exists ji ∈ N, such that sign(di) 1

2ji
di < r. So

x =
n∑

i=1

δidi =
n∑

i=1

mi

2ki
di =

n∑
i=1

sign(di)2jimi

2ki
sign(di) 1

2ji
di︸ ︷︷ ︸

∈diad(D∩[0,r])

.

So, diadD ⊂ diad(D ∩ [0, r]). The other direction of the inclusion is trivial.
�

Proof of Theorem 1. If D has a single element, the statement is trivial.
We can assume without losses that D has at least two elements, and at

least one is positive, say 0 < r ∈ D. Because of the previous lemma, it is
enough to prove the statement for Dr := D ∩ [0, r].

For an arbitrary x ∈ diadDr there is a unique integer nx ∈ Z such that

nx
r

2
≤ x < (nx + 1)

r

2
.

Let x′ := x − nx
r
2 . Because of its definition x′ ∈ Dr. Assume that g : Dr → R

is conditionally additive, and let’s define

a : diadDr → R, a(x) := nxg
(r

2

)
+ g(x′).

Firstly, we prove that a is an extension of g. For this we distinguish two
cases:

(i) If x ∈ diadD ∩ [0, r
2 [. Then x = 0 · r

2 + x, so

a(x) = 0 · g
(

r
2

)
+ g(x) = g(x).

(ii) If x ∈ diadD ∩ [ r
2 [. Then x = 1 · r

2 + x′, so

a(x) = 1 · g
(

r
2

)
+ g(x′) = g

(
r
2 + x′) = g(x).

This entails a is really an extension of g.
Secondly, we prove that a is additive on diadDr = diadD. Let x, y ∈

diadDr be arbitrary elements, and

x = nx
r
2 + x′, y = ny

r
2 + y′.

We distinguish two cases again:
(i) If x′ + y′ ∈ D r

2
, then

a(x + y) = (nx + my)g
(r

2

)
+ g(x′ + y′) = a(x) + a(y).

(ii) If x′ + y′ ∈ [ r
2 , r[∩D, then z′ + r

2 = x′ + y′

a(x + y) = (nx + my + 1)g
(r

2

)
+ g(z′)

= nxg
(r

2

)
+ myg

(r

2

)
+ g(x′) + g(y′) = a(x) + a(y).
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That is to say, a is additive on the required set.
Thirdly, we extend a onto the whole real line. It is clear that diadD with

the usual addition is a subsemigroup of the additive group of real numbers. We
can apply the theorem of Dhombres and Ger (see [9] or [11, Theorem 18.1.1.]).
Which exactly says that there is a (not necessarily unique) homomorphism
A : R → R such that A|diadD = a. �

3. Properties of Quasi-Arithmetic Expressions

Let I ⊂ R be a proper interval, ϕ : I → R be an invertible function such
that its inverse has a dyadically closed domain. Then the following two place
function

Aϕ(x, y) := ϕ−1

(
ϕ(x) + ϕ(y)

2

)
, x, y ∈ I,

is called a quasi-arithmetic expression generated by ϕ.
Besides of the required conditions, Aϕ is well-defined.
If ϕ continuous and strictly monotone, then it fulfils the requirements

above. The resulted set is the class of quasi-arithmetic means.
If ϕ is an invertible additive function, then the corresponding quasi-

arithmetic expression is the arithmetic mean. If ϕ = a ◦ log, where a is an
invertible additive function again, we get the geometric mean. These phenom-
enon are called absorbing irregularity. In other words, a very regular expression
can be generated by a very irregular one.

The following two observations shows that irregularity of the generating
function is not always absorbed. As a consequence we have that the class of
quasi-arithmetic expressions is really larger than the class of quasi-arithmetic
means.

Observation 1. The class of quasi-arithmetic means are strictly contained by
the class of quasi arithmetic expressions.

Proof. Let I = R and a : R → R be an arbitrary non-continuous, additive,
self-bijection of the reals, and ϕ = exp ◦a, then the quasi arithmetic expression
generated by ϕ is the following

Aexp ◦a(x, y) = a−1 ◦ log
(

exp(a(x)) + exp(a(y))
2

)
, x, y ∈ I.

We prove that Aϕ is non-continuous, so it cannot be a quasi-arithmetic mean.
Assume that Aϕ is continuous, then the image of every connected set by

Aϕ is connected.

Aexp ◦a(R, 0) = a−1 ◦ log
(

exp(a(R)) + 1
2

)
= a([− log 2,∞[)

If the right hand side is connected, then it is an interval. Because a is non-
continuous it is unbounded (from below and from above) on every non-empty
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interval (see e.g. [11]). So a([− log 2,∞[) is an unbounded interval. The function
a is bijective, so it is surjective too, we have a([− log 2,∞[) 	= R. This entails
the existence of b ∈ R such that

a([− log 2,∞[) = [b,∞[, or ]b,∞[, or ] − ∞, b], or ] − ∞, b[.

In all cases we get the boundedness of a either from below or from above. It
follows that a is continuous, which is a contradiction. �

The quasi-arithmetic means have the intern property, that is, their values
are always between the minimum and the maximum of the variables. Intern
property of the construction in the previous proof is an open problem, however,
it is possible to construct a quasi-arithmetic expression which is non-continuous
and it is not a mean.

Observation 2. There is a non-continuous quasi-arithmetic expression which
is not a mean.

Proof. 1 Let ϕ : R → R be the following function

ϕ(x) =

{
x, if x ∈ Q

−x, if x ∈ R \ Q.

Then ϕ = ϕ−1, and Aϕ(1,
√

2) =
√

2−1
2 < 1 <

√
2. So, Aϕ is not a mean.

If xn → √
2, and xn ∈ Q, we have

Aϕ(xn, 1) =
xn + 1

2
→

√
2 + 1
2

	=
√

2 − 1
2

= Aϕ(
√

2, 1)

So, Aϕ is not continuous. �

4. Equality Problem of Quasi-Arithmetic Expressions

Here we solve the following problem. Let ϕ, ψ : I → R be invertible functions
with inverses having dyadically closed domains. What is the sufficient and nec-
essary condition of the equality of the generated quasi-arithmetic expressions?
That is to say, solve the following functional equation!

ϕ−1

(
ϕ(x) + ϕ(y)

2

)
= ψ−1

(
ψ(x) + ψ(y)

2

)
, x, y ∈ I. (2)

Theorem 2. Two quasi-arithmetic expressions generated by ϕ and ψ are equal
on the interval I if and only if there exists an invertible additive function
a : R → R (not necessarily unique), and a real constant b such that

ϕ(x) = a ◦ ψ(x) + b, x ∈ I.

1Gyula Maksa’s example, Oral communication.
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Proof. From the assumption Aϕ = Aψ we have

ψ ◦ ϕ−1

(
ϕ(x) + ϕ(y)

2

)
=

ψ(x) + ψ(y)
2

, x, y ∈ I.

Using the substitutions ψ ◦ ϕ−1 =: f : domϕ−1 → R, ϕ(x) =: u, ϕ(y) =: v,
from the previous equation we get the following.

f

(
u + v

2

)
=

f(u) + f(v)
2

, u, v ∈ D =: domϕ−1. (3)

We can assume without losses that 0 ∈ D. Substituting v = 0 and b := f(0)
into the equation above we have

f
(u

2

)
=

f(u) + b

2
, u ∈ D. (4)

Using (3) and (4) we get

f(u) + f(v)
2

= f

(
u + v

2

)
=

f(u + v) + b

2
, (u, v) ∈ DΔ.

Let g : D → R, g(u) := f(u) − b, then the previous equation entails the
conditional additivity of g, that is to say,

g(u + v) = g(u) + g(v), (u, v) ∈ DΔ.

Applying the extension theorem (Theorem 1.) for g, we have that there is and
additive function a : R → R such that a|D = g. Using this and the definitions
of the functions f and g, we have

a(u) = f(u) − b = ψ ◦ ϕ−1(u) − b, u ∈ D.

This exactly means that

a ◦ ϕ(x) + b = ψ(x), x ∈ I.

So, the proof is ready. �

5. Open Problems

Characterization of quasi-arithmetic means is well-known. The characteriza-
tion of quasi-arithmetic expressions is open at this moment. For the formu-
lation of the characterization theorem of quasi-arithmetic means we need the
following conditions of a two place function M : I × I → R:

(i) Strict monotonicity: if x < x′ then M(x, y) < M(x′, y) and the same for
the second variable;

(ii) Continuity;
(iii) Bisymmetry: M((x, y),M(u, v)) = M(M(x, u),M(y, v));
(iv) Reflexivity: M(x, x) = x;
(v) Symmetry: M(x, y) = M(y, x);

The next theorem due to Aczél can be found in [2].



An Extension Theorem for Conditionally Additive Functions Page 7 of 9   139 

Theorem 3 (Aczél, 1948). Conditions (i)–(v) are necessary and sufficient for
the existence of a strictly increasing and continuous function ϕ : I → R by
which M has the form

M(x, y) = ϕ−1

(
ϕ(x) + ϕ(y)

2

)
, x, y ∈ I.

Conditions (iii)–(v) are fulfilled by quasi-arithmetic expressions too. The
conditions (i) and (iv) implies intern property, that is, the value of the function
is between the minimum and the maximum of the variables.

These ideas are motivate the following open problems:

Open problem 1. Is it possible to construct a non-continuous quasi-arithmetic
expression which is a mean?

Open problem 2. Is it true that (iii)–(v) (maybe with additional conditions
different from (i) and (ii)) characterize quasi-arithmetic expressions and (i)
with (iii)–(v) characterize quasi-arithmetic expressions with intern property?

If the answer is affirmative for the first, so is for the second.
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[4] Burai, P., Dascăl, J.: The equality problem in the class of conjugate means.
Aequationes Math. 84(1–2), 77–90 (2012)

[5] Daróczy, Z.: On the equality and comparison problem of a class of mean values.
Aequationes Math. 81(3), 201–208 (2011)

[6] Daróczy, Z., Dascăl, J.: On the equality problem of conjugate means. Results
Math. 58(1–2), 69–79 (2010)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  139 Page 8 of 9 P. Burai Results Math
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