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On a class of linear functional equations without range condition
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Abstract. The main purpose of this work is to provide the general solutions of a class of linear
functional equations. Let n ≥ 2 be an arbitrarily fixed integer, let further X and Y be linear
spaces over the field K and let αi, βi ∈ K, i = 1, . . . , n be arbitrarily fixed constants. We
will describe all those functions f, fi,j : X × Y → K, i, j = 1, . . . , n that fulfill the functional
equation

f

(
n∑

i=1

αixi,
n∑

i=1

βiyi

)
=

n∑
i,j=1

fi,j(xi, yj)

(xi ∈ X, yi ∈ Y, i = 1, . . . , n) .

Additionally, necessary and sufficient conditions will also be given that guarantee the solu-
tions to be non-trivial.
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1. Introduction

As János Aczél wrote in his famous and pioneering monograph [1]: ‘Functional
equations have a long history and occur almost everywhere. Their influence
and applications can be felt in every field, and all fields benefit from their
contact, use, and technique.’ Almost the same can be said about the class of
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linear functional equations. This area is one of the most investigated topic in
this field, several authors have studied this class, see e.g. [2–10,14,18–20].

The main purpose of this paper is to describe the general solutions of a class
of linear functional equations. More precisely, we are interested in the following
problem. Let n ≥ 2 be an arbitrarily fixed integer, let further X and Y be
linear spaces over the field K and let αi, βi ∈ K, i = 1, . . . , n be arbitrarily fixed
constants. Assume further that for functions f, fi,j : X×Y → K, i, j = 1, . . . , n,
the functional equation

f

(
n∑

i=1

αixi,

n∑
i=1

βiyi

)
=

n∑
i,j=1

fi,j(xi, yj) (xi ∈ X, yi ∈ Y, i = 1, . . . , n)

(1)
is fulfilled.

This equation belongs to the class of linear functional equations, which was
thoroughly investigated by L. Székelyhidi in [15–17]. For the sake of complete-
ness, here we briefly recall the main results from Székelyhidi [15].

Definition 1. If G,S are groups and n is a positive integer, then a function
A : Gn → S is said to be n-additive if it is a homomorphism in each variable.
Let F : Gn → S be a function, then the function ϕ : G → S defined by

ϕ(x) = F (x, . . . , x) (x ∈ G)

is said to be the diagonal of F and it is denoted by diag(F ). Further, let

Ak(x, y) = A(x, . . . , x︸ ︷︷ ︸
k times

, y, . . . , y︸ ︷︷ ︸
n − k times

) (x, y ∈ G).

Remark. Let G,S be groups, n be a positive integer and A : Gn → S be an
n-additive function. Then for all k ∈ Z and arbitrary i ∈ {1, . . . , n} we have

A (x1, . . . , xi−1, kxi, xi+1, . . . , xn)
= kA (x1, . . . , xi−1, xi, xi+1, . . . , xn)

(x1, . . . , xn ∈ G).

For a function f , rng(f) denotes the range of f .

Definition 2. Let G,S be Abelian groups, let n be a non-negative integer. A
function f : G → S is said to be of degree n, if there exist functions fi : G → S
and homomorphisms ϕi, ψi : G → G such that

rng(ϕi) ⊂ rng(ψi) (i = 1, 2, . . . , n + 1) (R1)

and the functional equation

f(x) +
n+1∑
i=1

fi (ϕi(x) + ψi(y)) = 0 (x, y ∈ G) (2)

holds.
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Definition 3. Let G,S be Abelian groups, let n be a non-negative integer. A
function f : G → S is called a (generalized) polynomial of degree n, if for all
k = 0, 1, . . . , n there exists a k-additive mapping Ak : Gk → S such that

f =
n∑

k=0

diag(Ak),

where 0-additive functions are understood to be constant functions.

Theorem 1. (Theorem 3.6 of [15]) Let G,S be Abelian groups and suppose
that G is divisible. Let n be a non-negative integer. A function f : G → S is of
degree n if and only if it is a polynomial of degree n.

Theorem 2. (Theorem 3.9 of [15]) Let G,S be Abelian groups and suppose that
G is divisible and S is torsion free. Let n ∈ N be a non-negative integer and
let ϕi, ψi be homomorphisms of G onto itself such that

rng
(
ψj ◦ ψ−1

i − ϕj ◦ ϕ−1
i

)
= G (i �= j, i, j = 1, . . . , n + 1). (R2)

Functions fi : G → S (i = 0, 1, . . . , n + 1) satisfy the functional equation

f0(x) +
n+1∑
i=1

fi (ϕi(x) + ψi(y)) = 0 (x, y ∈ G)

if and only if for all k = 0, 1, . . . , n and i = 0, 1, . . . , n+1 there exist symmetric
k-additive functions A

(i)
k : Gk → S such that

fi =
n∑

k=0

diag
(
A

(i)
k

)
(i = 0, 1, . . . , n + 1)

and the equations

A
(0)
k,j(x, 0) +

n+1∑
i=1

A
(i)
k,j (ϕi(x), ψi(y)) = 0 (x, y ∈ G)

hold for all j = 0, 1, . . . , n and k = j, j + 1, . . . , n.

Observe that Eq. (1) can be reduced to the form (2). Indeed, suppose that
n = 2 (or substitute zero in place of the variables except a distinguished pair)
and consider the following family of homomorphisms

ϕα,β(x, y) =
(

α 0
0 β

)
·
(

x
y

)
(x ∈ X, y ∈ Y, α, β ∈ K) .

With these notations (1) can be re-written as

f (ϕα1,β1(u) + ϕα2,β2(v)) = f1,1(ϕ1,1(u)
+ϕ0,0(v)) + f1,2(ϕ1,0(u) + ϕ0,1(v))
+f2,1(ϕ0,1(u) + ϕ1,0(v)) + f2,2(ϕ0,0(u) + ϕ1,1(v))

(u,v ∈ X × Y ) .
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At the same time (as it can be seen in the following subsection), we cannot
state that the functions involved are polynomials. This is because of the fact
that the homomorphisms ϕα,β defined above in general do not fulfill the range
condition (R1), nor range condition (R2). What is more, they are injective
if and only if α, β �= 0 and in such a situation ϕ−1

α,β = ϕα−1,β−1 . Notice that
Eq. (1) involves the projections ϕ1,0, ϕ0,1 and ϕ0,0. None of these are injective.
This shows that Theorems 1 and 2 cannot be applied in our situation.

2. Special cases of the original equation

2.1. The one-variable sub-case

In this sub-case let n ∈ N, n ≥ 2 be arbitrarily fixed, X be a linear space over
the field K and suppose that for functions f, f1, . . . , fn : X → K the functional
equation

f

(
n∑

i=1

αixi

)
=

n∑
i=1

fi(xi) (x1, . . . , xn ∈ X) (3)

holds with certain constants α1, . . . , αn ∈ K.
Observe that without loss of generality

f(0) = f1(0) = . . . = fn(0) = 0 (∗)

can be assumed. Otherwise we consider the functions
f̃(x) = f(x) − f(0)

f̃1(x) = f1(x) − f1(0)
...

f̃n(x) = fn(x) − fn(0)

(x ∈ X).

They clearly vanish at zero and they also fulfill the above functional equation.
Therefore from now on we always suppose that (∗) holds.

As we will see, the solutions of Eq. (3) heavily depend on whether or not
there are zeros among the parameters α1, . . . , αn. We may (and also do) assume
that these parameters are arranged in the following way: there exists a non-
negative integer k ≤ n such that αi �= 0 for i = 1, . . . , k, but αi = 0 for all
i = k + 1, . . . , n.

Proposition 1. Let n ∈ N, n ≥ 2 be arbitrarily fixed, X be a linear space over
the field K and suppose that for functions f, f1, . . . , fn : X → K the functional
Eq. (3) holds with certain constants α1, . . . , αn ∈ K and assume that (∗) is
also satisfied. Suppose further that αi �= 0 for i = 1, . . . , k, but αi = 0 for all
i = k + 1, . . . , n. Then

(i) in case k = 0, all the functions f1, . . . , fn are identically zero and f : X →
K is any function fulfilling f(0) = 0,
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(ii) in case k = 1, all the functions f2, . . . , fn are identically zero and f, f1 :
X → K are any functions vanishing at zero and fulfilling

f (α1x) = f1(x) (x ∈ X) ,

(iii) otherwise, there exists an additive function χ : X → K such that

f(x) = χ(x) and fi(x) = χ(αix) for i = 1, . . . , k

and the functions fk+1, . . . , fn are identically zero.
Conversely, the mappings f, f1, . . . , fn : X → K vanish at zero and they also
fulfill (3).

Proof. In case k = 0 Eq. (3) reduces to
n∑

i=1

fi(xi) = 0 (x1, . . . , xn ∈ X) .

Since we have independent variables, this immediately yields that the involved
functions have to be constant functions. In view of (∗) this means that they
have to be identically zero and the only information we get for the function f
is that f(0) = 0.

In case k ≥ 1, our equation can be written as

f

(
k∑

i=1

αixi

)
=

n∑
j=1

fj(xj) (x1, . . . , xn ∈ X).

With the substitution

x1 = . . . = xk = 0

we obtain that

0 =
n∑

j=k+1

fj(xj) (xk+1, . . . , xn ∈ X),

which (similarly as above) yields that the functions fk+1, . . . , fn are identically
zero. Using this, the functions f, f1, . . . , fk fulfill

f

(
k∑

i=1

αixi

)
=

k∑
i=1

fi(xi) (x1, . . . , xk ∈ X). (4)

If k = 1, this is nothing but

f (α1x) = f1(x) (x ∈ X),

showing that in this case there is nothing to prove.
Assume that k ≥ 2 and let i, j ∈ {1, . . . , k} be different integers. Then

Eq. (4) with xl = 0 for l ∈ {1, . . . , k} \ {i, j} is

f(αixi + αjxj) = fi(xi) + fj(xj) (xi, xj ∈ X),
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which, after introducing the functions

f̃l(x) = fl

(
x

αl

)
(x ∈ X, l = 1, . . . , k)

can be reduced to the system of Pexider equations

f(xi + xj) = f̃i(xi) + f̃j(xj) (xi, xj ∈ X, i, j ∈ {1, . . . , k} , i �= j) .

This means that there exists an additive function χ : X → K such that

f(x) = χ(x) and fi(x) = χ(αix) for i = 1, . . . , k.

�

3. The two-variable case with n = 2

In this section we will focus on the functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ), (5)

where f, f1,1, f1,2, f2,1, f2,2 : X × Y → K denote the unknown functions and
α1, α2, β1, β2 ∈ K are given constants.

Observe that without loss of generality

f(0, 0) = fi,j(0, 0) = 0

can be supposed. Otherwise we consider the functions

f̃(x, y) = f(x, y) − f(0, 0)
f̃i,j(x, y) = fi,j(x, y) − fi,j(0, 0)

(x ∈ X, y ∈ Y ).

They clearly vanish at the point (0, 0) and they also fulfill the same functional
equation. Similarly as before, from now on we always suppose that all the
involved functions vanish at the point (0, 0).

This section will be divided into two parts. In the first one, we will con-
sider the so-called degenerate cases, where at least one of the parameters
α1, α2, β1, β2 is zero. After that the non-degenerate case will follow, that is,
when none of the above parameters are zero.

3.1. Degenerate cases

3.1.1. The homogeneous case α1 = α2 = β1 = β2 = 0. In case α1 = α2 =
β1 = β2 = 0 Eq. (5) reduces to

f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) = 0
(x1, x2 ∈ X, y1, y2 ∈ Y ).
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Proposition 2. Let X and Y be linear spaces over the field K and f1,1, f1,2,
f2,1, f2,2 : X × Y → K be functions such that

f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) = 0
(x1, x2 ∈ X, y1, y2 ∈ Y ). (6)

Then and only then for all i, j = 1, 2 there exist functions χi,j : X → K and
ζi,j : Y → K vanishing at 0, such that

fi,j(x, z) = χi,j(x) + ζi,j(z) (x ∈ X, z ∈ Y, i, j = 1, 2)

as well as
χ1,2(x) + χ1,1(x) = 0
χ2,2(x) + χ2,1(x) = 0
ζ2,1(z) + ζ1,1(z) = 0
ζ2,2(z) + ζ1,2(z) = 0

(x ∈ X, z ∈ Y ).

Proof. For i, j ∈ {1, 2} let us define the functions χi,j : X → K and ζi,j : Y →
K through

χi,j(x) = fi,j(x, 0) and ζi,j(z) = fi,j(0, z) (x ∈ X, z ∈ Y ).

With the notation

E(x1, x2, y1, y2)
= f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ),

identities
E(x, 0, 0, 0) = 0
E(0, x, 0, 0) = 0
E(0, 0, z, 0) = 0
E(0, 0, 0, z) = 0

(x ∈ X, z ∈ Y )

give that

χ1,2(x) + χ1,1(x) = 0
χ2,2(x) + χ2,1(x) = 0
ζ2,1(z) + ζ1,1(z) = 0
ζ2,2(z) + ζ1,2(z) = 0

(x ∈ X, z ∈ Y ).

Moreover, equations

E(x1, 0, y1, 0) = 0
E(0, x2, y1, 0) = 0
E(x1, 0, 0, y2) = 0
E(0, x2, 0, y2) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y )

yield that

fi,j(x, z) = χi,j(x) + ζi,j(z) (x ∈ X, z ∈ Y, i, j = 1, 2),
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where we used the previously proved identities, too. �

3.1.2. The case α1 = α2 = β1 = 0 and β2 �= 0. In such a situation (5)
reduces to

f(0, β2y2) = f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2)
(x1, x2 ∈ X, y1, y2 ∈ Y ).

Obviously, β2 = 1 can be assumed, otherwise we consider the functions
f̃1,2, f̃2,2 : X × Y → K defined through

f̃1,2(x, z) = f1,2

(
x, z

β2

)
f̃2,2(x, z) = f2,2

(
x, z

β2

) (x ∈ X, z ∈ Y ).

Proposition 3. Let X and Y be linear spaces over the field K and f, f1,1, f1,2,
f2,1, f2,2 : X × Y → K be functions such that

f(0, y2) = f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2)
(x1, x2 ∈ X, y1, y2 ∈ Y ).

Then and only then for all i, j = 1, 2 there exist functions χi,j : X → K and
ζi,j : Y → K such that

fi,j(x, z) = χi,j(x) + ζi,j(z) (x ∈ X, z ∈ Y, i, j = 1, 2)

as well as
χ1,2(x) + χ1,1(x) = 0
χ2,2(x) + χ2,1(x) = 0
ζ2,1(z) + ζ1,1(z) = 0
ζ2,2(z) + ζ1,2(z) = f(0, z)

(x ∈ X, z ∈ Y ).

Proof. For i, j ∈ {1, 2} let us define the functions χi,j : X → K and ζi,j : Y →
K through

χi,j(x) = fi,j(x, 0) and ζi,j(z) = fi,j(0, z) (x ∈ X, z ∈ Y ).

Furthermore, let

E(x1, x2, y1, y2)
= f(0, y2) − f1,1(x1, y1) − f1,2(x1, y2) − f2,1(x2, y1) − f2,2(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y )

to obtain the following system of equations

E(x1, 0, y1, 0) = 0
E(x1, 0, 0, y2) = 0
E(0, x2, y1, 0) = 0
E(0, x2, 0, y2) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y ),
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or equivalently

f1,1(x1, y1) + f1,2(x1, 0) + f2,1(0, y1) = 0
f1,2(x1, y2) + f1,1(x1, 0) + f2,2(0, y2) = f (0, y2)
f2,1(x2, y1) + f2,2(x2, 0) + f1,1(0, y1) = 0
f2,2(x2, y2) + f2,1(x2, 0) + f1,2(0, y2) = f (0, y2)

for all x1, x2 ∈ X, y1, y2 ∈ Y . Finally, the system of equations

E(x1, 0, 0, 0) = 0
E(0, x2, 0, 0) = 0
E(0, 0, y1, 0) = 0
E(0, 0, 0, y2) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y )

yields that

f1,2(x1, 0) + f1,1(x1, 0) = 0
f2,2(x2, 0) + f2,1(x2, 0) = 0
f2,1(0, y1) + f1,1(0, y1) = 0
f2,2(0, y2) + f1,2(0, y2) = f (0, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ),

which in view of the above definitions completes the proof. �

3.1.3. The case α1, α2 �= 0 and β1, β2 = 0. In such a situation (5) implies
that

f(α1x1 + α2x2, 0) = f1,1(x1, 0) + f1,2(x1, 0) + f2,1(x2, 0) + f2,2(x2, 0)
(x1, x2 ∈ X)

because the left hand side does not depend on y1 and y2.
Obviously, α1, α2 = 1 can be assumed, otherwise we consider the functions

f̃1,2, f̃2,2 : X × Y → K defined through

f̃1,1(x, z) = f1,1

(
x
α1

, z
)

f̃1,2(x, z) = f1,2

(
x
α1

, z
)

f̃2,1(x, z) = f2,1

(
x
α2

, z
)

f̃2,2(x, z) = f2,2

(
x
α2

, z
)

(x ∈ X, z ∈ Y ).

Proposition 4. Let X and Y be linear spaces over the field K and f, f1,1, f1,2,
f2,1, f2,2 : X × Y → K be functions such that

f(x1 + x2, 0) = f1,1(x1, 0) + f1,2(x1, 0) + f2,1(x2, 0) + f2,2(x2, 0)
(x1, x2 ∈ X).

Then and only then there exists an additive function χ : X → K such that

f(x, 0) = χ(x)
f1,1(x, 0) + f1,2(x, 0) = χ(x)
f2,1(x, 0) + f2,2(x, 0) = χ(x)

(x ∈ X).
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Proof. Consider the functions χ,ϕ, ψ : X → K defined through

χ(x) = f(x, 0)
ϕ(x) = f1,1(x, 0) + f1,2(x, 0)
ψ(x) = f2,1(x, 0) + f2,2(x, 0)

(x ∈ X)

to get the following Pexider equation

χ(x1 + x2) = ϕ(x1) + ψ(x2) (x1, x2 ∈ X).

Since all the functions χ,ϕ, ψ vanish at zero, we get that ϕ ≡ ψ ≡ χ and the
function χ has to be additive. �

To finish the discussion of Eq. (5) in this special case, apply Proposition 2
to the functions

f̃i,j(x, y) = fi,j(x, y) − fi,j(x, 0), (x ∈ X, y ∈ Y )

where fi,j(x, 0) were determined in Proposition 4.

3.1.4. The case α1, β1 �= 0 and α2, β2 = 0. In such a situation (5) implies
that

f(α1x1, β1y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(0, y1) (x1 ∈ X, y1 ∈ Y )

because the left hand side does not depend on x2 and y2.
Obviously, due to similar reasons as previously, α1, β1 = 1 can be assumed.

The proof of the following proposition is a straightforward calculation, so we
omit it.

Proposition 5. Let X and Y be linear spaces over the field K and f, f1,1, f1,2,
f2,1 : X × Y → K be functions. The functional equation

f(x1, y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(0, y1) (x1 ∈ X, y1 ∈ Y ).

is fulfilled if and only if there exist functions χ : X → K and ζ : Y → K such
that

f1,2(x, 0) = χ(x)
f2,1(0, z) = ζ(z)

f(x, z) − f1,1(x, z) = χ(x) + ζ(z)
(x ∈ X, z ∈ Y ).

To finish the discussion of Eq. (5) in this special case, apply Proposition 2
to the functions

f̃1,1(x, y) = 0,
f̃1,2(x, y) = f1,2(x, y) − f1,2(x, 0),
f̃2,1(x, y) = f2,1(x, y) − f2,1(0, y),
f̃2,2(x, y) = f2,2(x, y),

(x ∈ X, y ∈ Y ),

where f1,2(x, 0) and f2,1(0, y) are given in Proposition 5.
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3.1.5. The case α1, α2, β1 �= 0 and β2 = 0. In such a situation (5) implies
that

f(α1x1 + α2x2, β1y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(x2, y1) + f2,2(x2, 0)
(x1 ∈ X, y1 ∈ Y ),

because the left hand side does not depend on y2.
Obviously, due to similar reasons as previously, α1, α2, β1 = 1 can be as-

sumed.

Proposition 6. Let X and Y be linear spaces over the field K and f, f1,1, f1,2,
f2,1, f2,2 : X × Y → K be functions. The functional equation

f(x1 + x2, y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(x2, y1) + f2,2(x2, 0)
(x1, x2 ∈ X, y1 ∈ Y )

is fulfilled if and only if there exists a mapping A : X × Y → K additive in its
first variable and there are functions χ, χ1,1, χ2,1 : X → K and ζ, ζ1,1, ζ2,1 : Y
→ K vanishing at zero so that χ is additive and

f(x, z) = A(x, z) + χ(x) + ζ(z)
f1,1(x, z) = A(x, z) + χ1,1(x) + ζ1,1(z)
f2,1(x, z) = A(x, z) + χ2,1(x) + ζ2,1(z)

(x ∈ X, z ∈ Y )

and also

χ(x) = f(x, 0)
χ1,1(x) = f1,1(x, 0)
χ2,1(x) = f2,1(x, 0)

ζ(z) = ζ1,1(z) + ζ2,1(z)
f1,2(x, 0) = χ(x) − χ1,1(x)
f2,2(x, 0) = χ(x) − χ2,1(x)

(x ∈ X, z ∈ Y )

hold.

Proof. With the substitution y1 = 0 our equation yields that

f(x1 + x2, 0) = f1,1(x1, 0) + f1,2(x1, 0) + f2,1(x2, 0) + f2,2(x2, 0)
(x1, x2 ∈ X, ).

From this we immediately get that

f̃(x1 + x2, y1) = f̃1,1(x1, y1) + f̃2,1(x2, y1) (x1, x2 ∈ X, y1 ∈ Y ),

where the functions f̃ , f̃1,1, f̃2,1 : X × Y → K are defined by

f̃(x, y) = f(x, y) − f(x, 0)
f̃1,1(x, y) = f1,1(x, y) − f1,1(x, 0)
f̃2,1(x, y) = f2,1(x, y) − f2,1(x, 0)

(x ∈ X, y ∈ Y ).
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This means that the functions f̃ , f̃1,1, f̃2,1 fulfill a Pexider equation on X for
any fixed y ∈ Y . Thus there exists a mapping A : X × Y → K additive in its
first variable and functions ζ, ζ1,1, ζ2,1 : Y → K such that

ζ(z) = ζ1,1(z) + ζ2,1(z) (z ∈ Y )

and

f̃(x, z) = A(x, z) + ζ(z)
f̃1,1(x, z) = A(x, z) + ζ1,1(z)
f̃2,1(x, z) = A(x, z) + ζ2,2(z)

(x ∈ X, z ∈ Y ).

In terms of the functions f, f1,1, f2,1 this means that

f(x, z) = A(x, z) + χ(x) + ζ(z)
f1,1(x, z) = A(x, z) + χ1,1(x) + ζ1,1(z)
f2,1(x, z) = A(x, z) + χ2,1(x) + ζ2,2(z)

(x ∈ X, z ∈ Y ),

where

χ(x) = f(x, 0)
χ1,1(x) = f1,1(x, 0)
χ2,1(x) = f2,1(x, 0)

(x ∈ X).

Observe that χ is additive. Indeed, using the above, the forms of f, f1,1 and
f2,2, our equation with y1 = 0 and the fact that A is additive in its first
variable, we obtain that

χ(x1 + x2) = χ1,1(x1) + f1,2(x1, 0) + χ2,1(x2) + f2,2(x2, 0) (x1, x2 ∈ X),

that is, χ fulfills a Pexider equation. Since χ(0) = 0, this means that χ has to
be additive. Thus, using again the form of the functions f, f1,1, f2,1 and our
equation with x2 = 0, we get that

f1,2(x, 0) = χ(x) − χ1,1(x) (x ∈ X).

Similarly, our equation with x1 = 0 implies that

f2,2(x, 0) = χ(x) − χ2,1(x) (x ∈ X).

�

To finish the discussion of Eq. (5) in this special case, apply Proposition 2
to the functions

f̃11(x, y) = 0,
f̃1,2(x, y) = f1,2(x, y) − f1,2(x, 0),
f̃2,1(x, y) = 0,
f̃2,2(x, y) = f2,2(x, y) − f2,2(x, 0),

(x ∈ X, y ∈ Y )

where f1,2(x, 0) and f2,2(x, 0) are given in Proposition 6.



On a class of linear functional equations

3.2. The non-degenerate case

After making the degenerate cases clear, we can now focus on the case α1,
α2, β1, β2 �= 0 and provide the general solution of the functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ),

where f, f1,1, f1,2, f2,1, f2,2 : X × Y → K denote the unknown functions and
α1, α2, β1, β2 ∈ K are given constants.

Obviously, it is enough to consider the case α1 = α2 = β1 = β2 = 1, that
is, to consider the following functional equation

f (x1 + x2, y1 + y2)
= f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ).

In this subsection we always assume that the characteristic of the field K

is different from 2.

Proposition 7. Let X and Y be linear spaces over the field K. Then functions
f, f1,1, f1,2, f2,1, f2,2 : X × Y → K satisfy the functional equation

f (x1 + x2, y1 + y2)
= f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ). (7)

if and only if

f(x, z) = A(x, z) + χ(x) + ζ(z)
fi,j(x, z) = A(x, z) + χi,j(x) + ζi,j(z) (x ∈ X, z ∈ Z),

where the mapping A : X×Y → K is a bi-additive function and for i, j ∈ {1, 2}
χ, χi,j : X → K as well as ζ, ζi,j : Y → K are functions such that χ and ζ are
additive functions and χi,j and ζi,j vanish at the point (0, 0) and

χ(x) = χ1,1(x) + χ1,2(x) = χ2,1(x) + χ2,2(x)
ζ(z) = ζ1,1(z) + ζ2,1(z) = ζ1,2(z) + ζ2,2(z) (x ∈ X, z ∈ Y )

are also fulfilled.

Proof. Assume that the functions f, f1,1, f1,2, f2,1, f2,2 : X × Y → K fulfill
functional Eq. (7) for any x1, x2 ∈ X and y1, y2 ∈ Y . With the substitution
y2 = 0 we obtain that

f (x2 + x1, y1)
= f2,1(x2, y1) + f2,2(x2, 0) + f1,1(x1, y1) + f1,2(x1, 0)

(x1, x2 ∈ X, y1 ∈ Y ),
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which immediately implies that

f (x2 + x1, y1) = f̃2,1(x2, y1) + f̃1,1(x1, y1) (x1, x2 ∈ X, y1 ∈ Y ),

where the functions f̃1,1, f̃2,1 are defined by

f̃1,1(x, z) = f1,1(x, z) + f1,2(x, 0)
f̃2,1(x, z) = f2,1(x, z) + f2,2(x, 0)

(x ∈ X, z ∈ Y ).

This means that there exists a function A(1) : X × Y → K which is additive in
its first variable and a function ζ : Y → K vanishing at zero such that

f(x, z) = A(1)(x, z) + ζ(z) (x ∈ X, z ∈ Y ) .

Substituting this form into Eq. (7), with x2 = 0 and a similar argument we
receive that

A(1)(x, z) = A(x, z) + χ(x) (x ∈ X, z ∈ Y ),

where A : X × Y → K is a bi-additive mapping and χ : X → K is a function
that vanishes at zero.

All in all this means that

f(x, z) = A(x, z) + χ(x) + ζ(z) (x ∈ X, z ∈ Y ).

Additionally, Eq. (7), first with y1 = y2 = 0 yields that χ has to be additive
and secondly, with x1 = x2 = 0 we receive that the function ζ also has to be
additive.

Define functions F1,1, F1,2, F2,1, F2,2 on X × Y through

F1,1(x, z) = f1,1(x, z) − A(x, z) − χ(x)
2

− ζ(z)
2

F1,2(x, z) = f1,2(x, z) − A(x, z) − χ(x)
2

− ζ(z)
2

F2,1(x, z) = f2,1(x, z) − A(x, z) − χ(x)
2

− ζ(z)
2

F2,2(x, z) = f2,2(x, z) − A(x, z) − χ(x)
2

− ζ(z)
2

(x ∈ X, z ∈ Y )

to deduce that they fulfill functional Eq. (6). Due to Proposition 2, for all
i, j = 1, 2 there exist functions χ̃i,j : X → K and ζ̃i,j : Y → K vanishing at
zero such that

Fi,j(x, z) = χ̃i,j(x) + ζ̃i,j(z) (x ∈ X, z ∈ Y, i, j = 1, 2),

that is, for the functions fi,j we have

fi,j(x, z) = A(x, z) + χi,j(x) + ζi,j(z) (i, j ∈ {1, 2} , x ∈ X, z ∈ Y ).
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Finally, using the equations in Proposition 2 for the functions χ̃i,j and ζ̃i,j ,
the identities

f(x, 0) = χ(x) = f1,1(x, 0) + f1,2(x, 0) = χ1,1(x) + χ1,2(x)
f(x, 0) = χ(x) = f2,1(x, 0) + f2,2(x, 0) = χ2,1(x) + χ2,2(x)
f(0, z) = ζ(z) = f1,1(0, z) + f2,1(0, z) = ζ1,1(z) + ζ2,1(z)
f(0, z) = ζ(z) = f1,2(0, z) + f2,2(0, z) = ζ1,2(z) + ζ2,2(z)

fulfilled by all x ∈ X, z ∈ Y complete the proof. �

3.3. Related equations

3.3.1. The functional equation of bi-additivity. As a trivial consequence of the
results of the previous section we get the following.

Corollary 1. Let X and Y be linear spaces over the field K with char(K) �= 2.
A mapping f : X × Y → K fulfills the functional equation of bi-additivity, that
is,

f (x1 + x2, y1 + y2)
= f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y )

if and only if f is bi-additive.

3.3.2. The rectangle equation. Let X and Y be linear spaces over the field K

and let f : X × Y → K be a function.
Then the functional equation

f(x + u, y + v) + f(x + u, y − v)
+f(x − u, y + v) + f(x − u, y − v) = 4f(x, y)

(x, y ∈ X,u, v ∈ Y ),

or equivalently (provided that char(K) �= 2)

4f

(
x1 + x2

2
,
y1 + y2

2

)
= f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ).

is called the rectangle equation.
Indeed, both of the above equations express the following: the value of f at

the center of any rectangle, with parallel sides to the coordinate axes, equals
the mean of the values of f at the vertices.

This equation as well as its generalization were investigated (among others)
in [2,5,14].

With the aid of the results of the previous section, we obtain the following
straightaway.
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Proposition 8. Let X and Y be linear spaces over the field K with char(K) �= 2
and f : X×Y → K be a function. The function f fulfills the rectangle equation,
i.e.,

4f

(
x1 + x2

2
,
y1 + y2

2

)
= f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ),

if and only if there exists a bi-additive mapping A : X × Y → K and additive
functions χ : X → K and ζ : Y → K such that

f(x, z) = A(x, z) + χ(x) + ζ(z) (x ∈ X, z ∈ Y ).

Remark. In case char(K) = 2, the rectangle equation reduces to the equation

f(x + u, y + v) + f(x + u, y − v)
+f(x − u, y + v) + f(x − u, y − v) = 0 (x, y ∈ X,u, v ∈ Y ),

or equivalently

f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2) = 0 (x1, x2 ∈ X, y1, y2 ∈ Y ).

Thus, Proposition 2 yields that there exist functions χ : X → K and ζ : Y → K

such that

f(x, y) = χ(x) + ζ(y) (x ∈ X, y ∈ Y ).

The Cauchy equation on X × Y .

Proposition 9. Let X and Y be linear spaces over the field K and f, g, h : X ×
Y → K be functions. Then the functional equation

f(x1 + x2, y1 + y2) = g(x1, y1) + h(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y ) (8)

holds if and only if there exist additive functions χ : X → K, ζ : Y → K such
that

f(x, y) = χ(x) + ζ(z)
g(x, y) = χ(x) + ζ(z)
h(x, y) = χ(x) + ζ(z)

(x ∈ X, z ∈ Y ).

4. On the reduction of equations with n > 2 to the two-variable case

In this section we intend to investigate the following problem. Let X and Y be
linear spaces over the field K, let further αi, βi ∈ K, i = 1, . . . , n be arbitrarily
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fixed constants. Assume further that for functions f, fi,j : X × Y → K, i, j =
1, . . . , n, the functional equation

f

(
n∑

i=1

αixi,

n∑
i=1

βiyi

)
=

n∑
i,j=1

fi,j(xi, yj) (xi ∈ X, yi ∈ Y, i = 1, . . . , n)

(9)
is fulfilled.

We will show that in case n > 2, the results of the previous section can
be applied. Indeed, let λ, κ, μ, ν ∈ {1, . . . , n} such that λ �= κ and μ �= ν, but
otherwise arbitrary. In this case Eq. (9) with the substitutions

xi = 0 if i �= λ, κ and yj = 0 if j �= μ, ν

yields that

f (αλxλ + ακxκ, βμyμ + βνyν)
= fλ,μ(xλ, yμ) + fλ,ν(xλ, yν) + fκ,μ(xκ, yμ) + fκ,ν(xκ, yν)

+
∑

j �=μ,ν

fλ,j(xλ, 0) +
∑

j �=μ,ν

fκ,j(xκ, 0)

+
∑

i�=λ,κ

fi,μ(0, yμ) +
∑

i�=λ,κ

fi,ν(0, yν)

for any xλ, xκ ∈ X and yμ, yν ∈ Y . Consider the functions f̃λ,μ, f̃κ,ν : X ×Y →
K defined by

f̃λ,μ(x, z) = fλ,μ(x, z) +
∑

j �=μ,ν

fλ,j(x, 0) +
∑

i�=λ,κ

fi,μ(0, z) (x ∈ X, z ∈ Y )

and

f̃κ,ν(x, z) = fκ,ν(x, z) +
∑

j �=μ,ν

fκ,j(x, 0) +
∑

i�=λ,κ

fi,ν(0, z) (x ∈ X, z ∈ Y )

to receive that

f (αλxλ + ακxκ, βμyμ + βνyν)

= f̃λ,μ(xλ, yμ) + fλ,ν(xλ, yν) + fκ,μ(xκ, yμ) + f̃κ,ν(xκ, yν) (10)

is satisfied for any xλ, xκ ∈ X and yμ, yν ∈ Y . This equation can however be
handled with the aid of the results of Sect. 3.
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5. The case of a single unknown function in the equation: existence of
non-trivial solutions

Let X and Y be linear spaces over the same field K and consider the following
functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ), (11)

where f : X × Y → K denotes the unknown function and α1, α2, β1, β2 ∈ K

and γ1,1, γ1,2, γ2,1, γ2,2 ∈ K are given constants.
Recall that due to the linearity of the above equation we may (and we also

do) suppose that

f(0, 0) = 0

holds. Otherwise the function

f̃(x, y) = f(x, y) − f(0, 0) (x ∈ X, y ∈ Y )

can be considered. This function clearly vanishes at the point (0, 0) and it
fulfills the same functional equation, too.

Furthermore, the linearity of the investigated equation implies that the
identically zero function is always a solution. In this section we would like to
study under what conditions Eq. (11) admits a non-identically zero solution.
Clearly, in every case the results of the previous sections can be applied with
the choice

fi,j(x, y) = γi,jf(x, y) (x ∈ X, y ∈ Y ) .

This means that the assumption that the function f is not identically zero will
imply algebraic conditions for the involved parameters α1, α2, β1, β2 ∈ K and
γ1,1, γ1,2, γ2,1, γ2,2 ∈ K.

Similarly as before, first we consider the so-called degenerate cases.

5.1. Degenerate cases

5.1.1. The case α1 = α2 = β1 = β2 = 0. In case α1 = α2 = β1 = β2 = 0
Eq. (11) reduces to

γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2) = 0
(x1, x2 ∈ X, y1, y2 ∈ Y ),

where γi,j ∈ K for any i, j ∈ {1, 2}.
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Proposition 10. Let X and Y be linear spaces over the field K, γi,j ∈ K be
given constants such that not all of them are zero and f : X × Y → K be a
function such that

γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2) = 0
(x1, x2 ∈ X, y1, y2 ∈ Y ). (12)

Then and only then there exist functions χ : X → K and ζ : Y → K vanishing
at zero such that

f(x, z) = χ(x) + ζ(z) (x ∈ X, z ∈ Y ).

Furthermore
(i) either the following system of linear equations

γ1,1 + γ1,2 = 0
γ2,1 + γ2,2 = 0

is fulfilled or the function χ is identically zero.
(ii) either the following system of linear equations

γ1,1 + γ2,1 = 0
γ1,2 + γ2,2 = 0

is fulfilled or the function ζ is identically zero.

Proof. In view of Proposition 2 we get that there exist functions χ : X → K

and ζ : Y → K vanishing at zero such that

f(x, z) = χ(x) + ζ(z) (x ∈ X, z ∈ Y ) .

Using this representation of the function f , Eq. (12) yields that

γ1,1 (χ(x1) + ζ(y1)) + γ1,2 (χ(x1) + ζ(y2))
+γ2,1 (χ((x2) + ζ(y1)) + γ2,2 (χ(x2) + ζ(y2)) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y ),

or equivalently

χ(x1) (γ1,1 + γ1,2) + χ(x2) (γ2,1 + γ2,2)
+ζ(y1) (γ1,1 + γ2,1) + ζ(y2) (γ1,2 + γ2,2) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y ).

Since we have independent variables, we get that

γ1,1 + γ1,2 = 0
γ2,1 + γ2,2 = 0

is fulfilled or the function χ is identically zero. Similarly,

γ1,1 + γ2,1 = 0
γ1,2 + γ2,2 = 0

holds or the function ζ is identically zero. �
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5.1.2. The case α1 = α2 = β1 = 0 and β2 �= 0. In such a situation (11)
reduces to

f(0, β2y2) = γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)
(x1, x2 ∈ X, y1, y2 ∈ Y ).

In view of Proposition 3, the proof of the following proposition is straightfor-
ward and similar to that of Proposition 10. The basic step is to consider f
as the sum of single variable functions (Proposition 3) and substitute such a
special form of f into the functional equation.

Proposition 11. Let X and Y be linear spaces over the field K, β2, γi,j ∈ K be
given constants such that not all of them are zero, and f : X × Y → K be a
function such that

f(0, β2y2) = γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)
(x1, x2 ∈ X, y1, y2 ∈ Y ). (13)

Then and only then there exist functions χ : X → K and ζ : Y → K vanishing
at zero such that

f(x, z) = χ(x) + ζ(z) (x ∈ X, z ∈ Y ).

Furthermore

(i) either the following system of linear equations

γ1,1 + γ1,2 = 0
γ2,1 + γ2,2 = 0

is fulfilled or the function χ is identically zero.
(ii) either the following system of equations

γ1,1 + γ2,1 = 0
ζ(β2z) = (γ1,2 + γ2,2) ζ(z) (z ∈ Y )

is fulfilled or the function ζ is identically zero.

5.1.3. The case α1, α2 �= 0 and β1, β2 = 0. In such a situation (11) reduces
to

f(α1x1 + α2x2, 0)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ).

As before, taking f as the sum of single variable functions (Proposition 4),
substitute it into the functional equation.
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Proposition 12. Let X and Y be linear spaces over the field K, α1, α2, γi,j ∈ K

be given constants such that not all of them are zero and f : X × Y → K be a
function such that

f(α1x1 + α2x2, 0)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ). (14)

Then and only then there exists an additive function a : X → K and a function
ζ : Y → K vanishing at zero such that

f(x, y) = a(x) + ζ(y) (x ∈ X, y ∈ Y ) .

Furthermore the above additive function a has to fulfill

a(α1x1 + α2x2) = (γ1,1 + γ1,2)a(x1) + (γ2,1 + γ2,2)a(x2)

for arbitrary x1, x2 ∈ X and for the mapping ζ alternative (ii) of Proposi-
tion 10 is fulfilled.

5.1.4. The case α1, β1 �= 0 and α2, β2 = 0. In such a situation (11) reduces
to

f(α1x1, β1y1)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ).

To prove the following result, consider f as the sum of single variable func-
tions (Proposition 5) and substitute it into the functional equation.

Proposition 13. Let X and Y be linear spaces over the field K, α1, α2, γi,j ∈ K

be given constants and f : X × Y → K be a function such that

f(α1x1, β1y1)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ). (15)

Then and only then
(A) γ1,2, γ2,1, γ2,2 = 0 then f : X × Y → K is an arbitrary function fulfilling

f(α1x, β1y) = γ1,1f(x, y) (x ∈ X, y ∈ Y ),

(B) or there exist functions χ : X → K and ζ : Y → K vanishing at zero such
that

f(x, y) = χ(x) + ζ(y) (x ∈ X, z ∈ Y ).

Furthermore the mappings χ and ζ also fulfill

χ(α1x) = (γ1,1 + γ1,2)χ(x)
ζ(β1z) = (γ1,1 + γ2,1)ζ(z) (x ∈ X, z ∈ Y )

and
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(i) either

γ2,1 + γ2,2 = 0

or χ is identically zero;
(ii) either

γ1,2 + γ2,2 = 0

or ζ is identically zero.

5.1.5. The case α1, α2, β1 �= 0 and β2 = 0. In such a situation (11) reduces
to

f(α1x1 + α2x2, β1y1)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ).

Proposition 14. Let X and Y be linear spaces over the field K, α1, α2, β1, γi,j

∈ K, i, j = 1, 2 be given constants and f : X × Y → K be a function such that

f(α1x1 + α2x2, β1y1)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ). (16)

Then and only then there exists a mapping A : X ×Y → K additive in its first
variable, further there are functions χ : X → K and ζ : Y → K vanishing at
zero such that χ is additive and

f(x, y) = A(x, y) + χ(x) + ζ(y) (x ∈ X, y ∈ Y ).

Furthermore, we have that

ζ(β1y) = (γ1,1 + γ2,1)ζ(y) (y ∈ Y )

and also

(γ1,2 + γ2,2) ζ(y) = 0 (y ∈ Y ),

yielding that γ1,2 + γ2,2 = 0 or ζ is identically zero. Additionally, the alterna-
tives below also hold
(A) either γ1,2 and γ2,2 are zero, that is, Eq. (16) has the form

f(α1x1 + α2x2, β1y1)
= γ1,1f(x1, y1) + γ2,1f(x2, y1) (x1, x2 ∈ X, y1 ∈ Y )

and the identities

A(α1x, β1y) + χ(α1x) = γ1,1A(x, y) + γ1,1χ(x) (x ∈ X, y ∈ Y )

and

A(α2x, β1y) + χ(α2x) = γ2,1A(x, y) + γ2,1χ(x) (x ∈ X, y ∈ Y )

have to hold;
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(B) or γ1,2 and γ2,2 do not vanish simultaneously and then the mapping A has
a rather special form, namely there exists an additive function a : X → K

such that

A(x, y) = a(x) (x ∈ X)

and therefore

f(x, y) = a(x) + χ(x) + ζ(y) (x ∈ X, y ∈ Y )

where the identities

a(α1x) + χ(α1x) = γ1,1a(x) + γ1,1χ(x) (x ∈ X, y ∈ Y )

and

a(α2x) + χ(α2x) = γ2,1a(x) + γ2,1χ(x) (x ∈ X, y ∈ Y )

have to hold.

Proof. Using Proposition 6 we immediately get that there exists a mapping
A : X × Y → K and there are functions χ : X → K and ζ : Y → K vanishing
at zero such that χ is additive and

f(x, y) = A(x, y) + χ(x) + ζ(y) (x ∈ X, y ∈ Y ) .

Using that A is additive in its first variable and Proposition 7, from Eq. (16)
we derive that

A(α1x1, β1y1) + A(α2x2, β1y1) + χ(α1x1 + α2x2) + ζ(β1y1)
= γ1,1A(x1, y1) + γ1,1χ(x1) + γ1,1ζ(y1)

+γ1,2A(x1, y2) + γ1,2χ(x1) + γ1,2ζ(y2)
+γ2,1A(x2, y1) + γ2,1χ(x2) + γ2,1ζ(y1)
+γ2,2A(x2, y2) + γ2,2χ(x2) + γ2,2ζ(y2)
(x1, x2 ∈ X, y1, y2 ∈ Y ). (17)

Observe that this equation with x1 = x2 = y1 = 0 implies that

(γ1,2 + γ2,2) ζ(y2) = 0 (y2 ∈ Y ),

so γ1,2 +γ2,2 = 0 or the function ζ is identically zero. Similarly, Eq. (17) yields
with x1 = x2 = y2 = 0 that

ζ(β1y1) = (γ1,1 + γ2,1)ζ(y1) (y1 ∈ Y ).

Here while proving the last two identities we used that χ(0) = ζ(0) = 0 (cf.
the proof of Proposition 6) and the fact that A(0, y) = 0 for all y ∈ Y since A
is additive in its first variable. Put x2 = y1 = 0 into (17) to obtain that

A(α1x1, 0) + χ(α1x1)
= γ1,1A(x1, 0) + γ1,1χ(x1) + γ1,2A(x1, y2) + γ1,2χ(x1)

(x1, x2 ∈ X, y1, y2 ∈ Y )
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or in other words,

−γ1,2A(x1, y2)
= γ1,1A(x1, 0) + γ1,1χ(x1) + γ1,2χ(x1) − A(α1x1, 0) − χ(α1x1)

(x1 ∈ X, y2 ∈ Y ).

Similarly Eq. (17) with x1 = y1 = 0 yields that

A(α2x2, 0) + χ(α2x2)
= γ2,1A(x2, 0) + γ2,1χ(x2) + γ2,2A(x2, y2) + γ2,2χ(x2)

(x2 ∈ X, y2 ∈ Y )

or equivalently

−γ2,2A(x2, y2)
= γ2,1A(x2, 0) + γ2,1χ(x2) + γ2,2χ(x2) − A(α2x2, 0) − χ(α2x2)

(x2 ∈ X, y2 ∈ Y ).

From these latter two identities the following alternatives can be deduced
(A) either γ1,2 and γ2,2 are zero and Eq. (16) has the form

f(α1x1 + α2x2, β1y1) = γ1,1f(x1, y1) + γ2,1f(x2, y1) (x1, x2 ∈ X, y1 ∈ Y )

and the identities

A(α1x, β1y) + χ(α1x) = γ1,1A(x, y) + γ1,1χ(x) (x ∈ X, y ∈ Y )

as well as

A(α2x, β1y) + χ(α2x) = γ2,1A(x, y) + γ2,1χ(x) (x ∈ X, y ∈ Y )

follow immediately from (17) with x2 = y2 = 0 and x1 = y2 = 0, respec-
tively.

(B) or the two-variable mapping A can be represented as

A(x, y) = a(x) (x ∈ X, y ∈ Y );

A being additive in its first variable. This is possible if and only if a : X →
K is additive. This means that

f(x, y) = a(x) + χ(x) + ζ(y) (x ∈ X, y ∈ Y ).

Using this representation and Eq. (14) first with x2 = y2 = 0 and after
that with x1 = y2 = 0 we get the identities

a(α1x) + χ(α1x) = γ1,1a(x) + γ1,1χ(x) (x ∈ X, y ∈ Y )

and

a(α2x) + χ(α2x) = γ2,1a(x) + γ2,1χ(x) (x ∈ X, y ∈ Y ).

�
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5.2. The non-degenerate case

In view of the above results, now we can focus on the case α1, α2, β1, β2 �= 0
and investigate the existence of nontrivial solutions of functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ),

where for i, j ∈ {1, 2}, the constants γi,j ∈ K are given.
Here we will make use of the results of Sect. 3.2, therefore (as in Sect. 3.2)

we always assume that the characteristic of the field K is different from 2. As
a direct application of Proposition 7 we derive the following.

Proposition 15. Let X and Y be linear spaces over the field K, αi, βj , γi,j ∈ K,
i, j = 1, 2 be given constants and f : X × Y → K be a function such that

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= γ1,1f(x1, y1) + γ1,2f(x1, y2) + γ2,1f(x2, y1) + γ2,2f(x2, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y ). (18)

Then and only then, there exist a bi-additive function A : X × Y → K and
additive functions χ : X → K and ζ : Y → K such that

f(x, z) = A(x, z) + χ(x) + ζ(z) (x ∈ X, z ∈ Y ).

Furthermore the following identities also have to be fulfilled

χ(α1x) = (γ1,1 + γ1,2) χ(x)
χ(α2x) = (γ2,1 + γ2,2) χ(x)
ζ(β1z) = (γ1,1 + γ2,1) ζ(z)
ζ(β2z) = (γ1,2 + γ2,2) ζ(z)

A(αix, βjz) = γi,jA(x, y)

(x ∈ X, z ∈ Y, i, j = 1, 2).

Remark. While investigating whether Eq. (11) admits a non-trivial solution or
not we always got three types of conditions. One of them is a purely algebraic
condition, namely we have to check if the parameters γi,j fulfill a system of
homogeneous, linear equations.

The second type is about the existence of a non-trivial semi-homogeneous
additive function. More precisely, this condition is always of the following
form: let X be a linear space over the field K and let a : X → K be an additive
function such that

a(αx) = βa(x) (x ∈ X)

with certain fixed scalars α, β ∈ K. For which values of α and β will the
function a be non-trivial (that is, non-identically zero)? This question was first
investigated in Daróczy [6] if X = K = R. These results were later generalized
and extended in the papers [7–10,14,19,20]. To the best of our knowledge,
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this problem has not been investigated for fields with nonzero characteristic.
To this we provide a solution in Sect. 6.2.

Our third condition is similar to the second one, namely it concerns the non-
triviality of a semi-homogeneous bi-additive function. The attached existence
problem will also be discussed in the last section.

6. A necessary and sufficient condition for the existence of non-zero,
bi-additive semi-homogeneous mappings

According to the characteristic property

A(αix, βjy) = γi,jA(x, y) (x ∈ X, y ∈ Y, i, j = 1, 2)

of the bi-additive term in the solution (see Proposition 15), it is natural to
investigate the problem of existence of such a non-zero mapping over the field
K.

Definition 4. Let X and Y be linear spaces over the field K. An additive func-
tion a : X → K is called semi-homogeneous if there exist elements α, β ∈ K

such that

a(αx) = βa(x) (x ∈ X).

Similarly, a bi-additive function A : X ×Y → K is called semi-homogeneous
if there exist elements α, β and γ in the field K such that

A(αx, βy) = γA(x, y) (x ∈ X, y ∈ Y ). (19)

6.1. The case of fields with characteristic zero

In this subsection we restrict ourselves to the case of fields with zero charac-
teristic. According to this, let K be a field of characteristic zero. Then it is
an extension of the field Q of the rationals and we can consider the subfields
Q(α) and Q(β) in K.

We will also use the following.

Proposition 16. Let K be a field of characteristic zero. Then K is embeddable
into C if and only if the transcendence degree of the field extension K/Q is
less than c.

Remark. From the previous proposition we immediately get that if K is finitely
generated over Q, that is if K = Q(α1, . . . , αn), then K is embeddable into C.

Theorem 3. Let K be a field of characteristic zero and suppose that X and Y
are linear spaces over K. There exists a non-zero bi-additive mapping A : X ×
Y → K satisfying (19) if and only if γ can be written as the product of alge-
braically conjugated elements to α and β over Q, respectively.
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Proof. Suppose that γ can be written as the product of algebraically con-
jugated elements to α and β over Q, respectively. This means that γ =
δ1(α)δ2(β), where δ1 : Q(α) → K and δ2 : Q(β) → K are injective homomor-
phisms. Taking X and Y as linear spaces over Q(α) and Q(β), respectively,
we can write that

x =
∑
i∈I

pi(α)
qi(α)

xi and y =
∑
j∈J

rj(β)
sj(β)

yj ,

where
(i) I and J are finite index sets such that |I| = k and |J | = l,
(ii) pi, qi ∈ Q[x] for any i ∈ I,
(iii) rj , sj ∈ Q[x] for any j ∈ J ,
(iv) x1, . . . , xk belong to a basis of X as a linear space over Q(α),
(v) y1, . . . , yl belong to a basis of Y as a linear space over Q(β).

The mapping A is defined by the formula of the semi-linear extension

A(x, y) =
k∑

i=1

l∑
j=1

pi(δ1(α))
qi(δ1(α))

rj(δ2(β))
sj(δ2(β))

A(xi, yj)

and the values A(xi, yj) are not all zero.
Conversely, suppose that there exists a non-zero bi-additive mapping A : X×

Y → K satisfying (19). Let us fix elements x ∈ X and y ∈ Y such that
A(x, y) �= 0. Taking the field L = Q(α, β,A(x, y), γ) we can define the bi-
additive mapping B : L × L → C as

B(u, v) = A(ux, vy) (u, v ∈ L).

It can be easily seen that

B(αu, βv) = γB(u, v) (20)

is fulfilled for arbitrary u, v ∈ L.
Let L∗ denote the multiplicative subgroup of L and let G = L

∗ ×L
∗ be the

group equipped with pointwise multiplication. Then, for any (u∗, v∗) ∈ G, the
translate mapping, that is,

(τ(u∗,v∗)B)(u, v) = B(uu∗, vv∗)

also satisfies (20). Let V be the set of restrictions of bi-additive mappings of
the form B : L× L → C satisfying (20). Then the set V is closed with respect
to uniform convergence on finite sets and the field L is countable. Therefore
V is a closed, translation invariant linear space, in other words, it is a variety
over a field of finite transcendence degree. From this we infer that spectral
analysis holds in V , i.e., there exists an exponential element in this variety,
see Laczkovich–Székelyhidi [12]. An exponential element in this variety is a
bi-additive mapping M : L × L → C satisfying (20) so that

M(uu∗, vv∗) = M(u, v)M(u∗, v∗).
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Using the notations δ1(u) = M(u, 1) and δ2(v) = M(1, v), it follows that
M(u, v) = δ1(u)δ2(v), where δ1 and δ2 are injective (field-) homomorphisms of
L. Using property (20)

γM(u, v) = M(αu, βv) = δ1(α)δ2(β)M(u, v).

Therefore γ = δ1(α)δ2(β) as it was stated. �

6.2. The case of finite fields of non-zero characteristic

If K is a field of characteristic different from zero then it is a field of prime
characteristic. First of all we collect those results from the theory of finite
fields, that we intend to use subsequently. Here we rely on the monograph
Lidl–Niederreiter [13]. For any field K, there is a minimal subfield, namely the
prime field of K, which is the smallest subfield containing 1. It is isomorphic
either to Q (if the characteristic is zero), or to a finite field of prime order Zp

(in case char(K) = p). Moreover, if p is a prime and n ∈ N is arbitrary, then
up to isomorphism there exists exactly one finite field of order q = pn. This
field is nothing but the splitting field of the polynomial xq − x over Zp. This
field is denoted by GF(q).

Let now a : X → K be a semi-homogeneous additive function, that is,
assume that for the additive function a we have

a(αx) = βa(x) (x ∈ X).

As we have seen in the proof of Theorem 3, the problem of existence of
semi-homogeneous mappings defined on the linear space X can be reduced to
the problem of existence of semi-homogeneous mappings defined on K. It can
be easily seen that additivity automatically implies homogeneity with respect
to multiplication by elements of the prime field. By the argument of [18], it also
follows that there exists an automorphism between the extensions of the prime
field with α and β, respectively, such that it maps α into β. Conversely, such
an automorphism allows us to use the technique of semi-linear extension to
construct semi-homogeneous additive mappings. This criteria for the existence
of semi-homogeneous additive mappings does not depend on the characteristic
of the fields but it is worth investigating the problem of subfields in K in some
special cases as follows.

Let ϕ : K → K be an automorphism of K with ϕ(β) = α. Then

(ϕ ◦ a)(αx) = ϕ(β) · (ϕ ◦ a)(x) = α · (ϕ ◦ a)(x) (x ∈ X).

This means that
(i) we have to guarantee the existence of an automorphism ϕ : GF(pn) →

GF(pn) for which

ϕ(β) = α
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is satisfied;
(ii) we have to determine the homogeneity field (see Definition 6) of the

additive mapping ϕ ◦ a : X → K.

Suppose that K � GF(pn) for some prime p and n ∈ N.
To answer the above questions, for (i) we have to know the automorphism

group of GF(pn), while for (ii) we have to describe the subfields of GF(pn).

Definition 5. Let p be a prime and n ∈ N. By an automorphism ϕ of GF(pn)
over GF(p) we mean an automorphism of GF(pn) that fixes the elements of
GF(p). More precisely, we require ϕ to be a one-to-one mapping from GF(pn)
onto itself with

ϕ(a + b) = ϕ(a) + ϕ(b)
ϕ(ab) = ϕ(a)ϕ(b) (a, b ∈ GF(pn))

and

ϕ(a) = a (a ∈ GF(p)).

Theorem 4. Let p be a prime and n ∈ N. The distinct automorphisms of
GF(pn) over GF (p) are exactly the mappings ϕ0, ϕ1, . . . , ϕn−1 defined by

ϕj(a) = apj

(a ∈ GF(pn), j = 0, 1, . . . , n − 1).

Remark. In other words, the above theorem says that the automorphism group
of GF(pn) over GF(p) is a cyclic group of order n generated by ϕ1.

Let X be a linear space over the (not necessarily finite) field K and a : X →
K be an additive function. Then clearly, for any k ∈ Z we have

a(kx) = ka(x) (x ∈ X).

Nevertheless, it may happen that a satisfies the same identity for all x ∈ X
and also for some α ∈ K \ Z, therefore we introduce the following.

Definition 6. Let X be a linear space over the (not necessarily finite) field K

and a : X → K be an additive function and

Ha = {α ∈ K | a(αx) = αa(x) for all x ∈ X}.

This set is called the homogeneity field of the additive function a. Observe
that this term is well-motivated, since we have the following.

Although the following two statements are known in case K = R (see
Kuczma [11]), for the sake of completeness we present a short argument for
them.

Proposition 17. Let X be a linear space over the field K and a : X → K be an
additive function. Then Ha ⊂ K is a field.
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Proof. Let α, β ∈ Ha, then

a((α − β)x) = a(αx) − a(βx) = αa(x) − βa(x) = (α − β)a(x) (x ∈ X),

yielding that α − β ∈ Ha. Similarly, if β �= 0, then

αa(x) = a(αx) = a

(
β

α

β
x

)
= βa

(
α

β
x

)
(x ∈ X),

from which
α

β
∈ Ha follows. �

In some sense, the converse is also true, namely we have the proposition
below. The proof is based on the existence of Hamel bases of linear spaces.
Therefore, in any case it is needed, the Axiom of Choice is supposed to hold.

Proposition 18. Let X be a linear space over the field K, let further L ⊂ K be
a subfield of K. Then there exists an additive function a : X → K such that
Ha = L.

Proof. Let B be the Hamel basis of the linear space (X,L,+, ·), which (ac-
cording to Corollary 4.2.1. of Kuczma [11]) does exist. Fix c ∈ K \ {0} and
define the function f : B → K by

f(x) = c (x ∈ B).

By Theorem 4.3.1 of Kuczma [11], there exists a homomorphism a from (X,L,+, ·)
to (K,L,+, ·) such that we additionally have that a|B = f . Clearly, a is an
additive function and

a(αx) = αa(x) (x ∈ X,α ∈ L).

Thus L ⊂ Ha.
For the converse statement, let x ∈ X be arbitrary, then x =

∑n
i=1 λibi,

where λi ∈ L and bi ∈ B for all i = 1, . . . , n. Furthermore,

a(x) = a

(
n∑

i=1

λibi

)
=

n∑
i=1

λia(bi) =
n∑

i=1

λif(bi) = c ·
n∑

i=1

λi ∈ c · L,

or equivalently, a(X) ⊂ c · L.
Let now α ∈ Ha and b0 ∈ B be arbitrary, then

a(αb0) = αa(b0) = αf(b0) = αc.

On the other hand, since αb0 ∈ X, the inclusion a(X) ⊂ c · L implies that
there exists λ ∈ L such that a(αb0) = λc. Since c was to be chosen nonzero,
this means that α = λ ∈ L. Therefore Ha ⊂ L. �

Theorem 5. Let p be a prime and n ∈ N. Then for all d|n, the field GF(pn)
admits exactly one subfield isomorphic to GL(pd) and GL(pn) has no other
type of subfields. Furthermore, this subfield is the set of zeros of the polynomial
xpd − x in GF(pn).



On a class of linear functional equations

Finally, we provide necessary and sufficient conditions for the existence of
non-zero, bi-additive semi-homogeneous mappings.

The relations among the elements α, β and γ such that the semi-homogeneity
Eq. (19) is satisfied for some non-zero bi-additive mapping A : X ×Y → K are
more implicit as we will see in what follows.

Lemma 1. Let X and Y be linear spaces over the field K and let α, β, γ ∈ K be
given non-zero elements. There exists a not identically zero bi-additive mapping
A : X × Y → K satisfying the semi-homogeneity Eq. (19) if and only if there
exists a not identically zero bi-additive mapping B : K × K → K satisfying
equation

B(αu, βv) = γB(u, v) (γ �= 0). (21)

Proof. Suppose that A : X × Y → K satisfies the semi-homogeneity Eq. (19)
and A(x, y) �= 0 for a certain element (x, y) ∈ X ×Y . The bi-additive mapping
B : K × K → K defined by

B(u, v) = A(ux, vy) (u, v ∈ K)

obviously satisfies Eq. (21). Conversely, suppose that B : K × K → K satisfies
Eq. (21). Let {xμ}μ∈ΓX

and {yν}ν∈ΓY
be Hamel bases in X and Y , respectively.

Taking the projections

π1
X : X × Y → K and π1

Y : X × Y → K

onto the first coordinate of the elements with respect to the given bases it
follows that the mapping A : X × Y → K defined by

A(x, y) = B(π1
X(x), π1

Y (y)) (x ∈ X, y ∈ Y )

fulfills (19). �

Remark. Note that there is no need for any additional condition for the car-
dinality of the field K to prove Lemma 1.

From now on the results are strongly based on the cardinality condition for
K being finite. Let K = GF(q), where q = pn for some prime number p ∈ N

and consider a (finite) basis b0, . . . , bn−1 of K over its prime field Zp. It is clear
that

(H) bi-additivity implies Zp-homogeneity for any bi-additive mapping B :
K × K → K.

Since the translation τi : K → K with respect to multiplication by the ith

element of the given basis (i = 0, . . . , n − 1), that is,

τi(x) = bi · x (x ∈ K)
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is a linear transformation, we can consider its matrix representation M i given
by

τi(bk) =
n−1∑
j=0

m
(i)
jk bj,

where for any possible indices we have m
(i)
jk ∈ Zp. According to property (H),

a simple calculation shows that Eq. (21) is equivalent to

γB(bk, bl) =
n−1∑
i,j=0

αiβj

n−1∑
r,s=0

m
(i)
rkm

(j)
sl B(br, bs),

where k, l = 0, . . . n − 1, α =
n−1∑
i=0

αibi and β =
n−1∑
j=0

βjbj with αi, βj ∈ Zp.

Let Mn(K) be the linear space of matrices of order n over the field K and
consider the linear mapping

Pα,β : Mn(K) � X → Y = Pα,β(X), (22)

where

ykl =
n−1∑
i,j=0

αiβj

n−1∑
r,s=0

m
(i)
rkm

(j)
sl xrs.

In a more compact form

Pα,β(X) =
n−1∑
i,j=0

αiβj

(
M (i)

)T

XM (j).

Equation (21) is obviously satisfied if and only if 0 �= γ ∈ K is an eigenvalue
of Pα,β . The corresponding (non-zero) eigenvector B ∈ Mn(K) can be cho-
sen as the matrix of a bi-linear mapping satisfying (21). To sum up, we can
formulate the following result as the answer to the problem of existence of a
non-identically zero bi-additive mapping satisfying (19).

Theorem 6. Let K = GF(q), where q = pn for some prime number p and
n ∈ N. Consider the polynomial

P (u, v, w) = det (Pu,v − w · id) (u, v, w ∈ K),

where id stands for the identity mapping of the linear space of matrices of
order n over the field K. Then the following assertions are equivalent

(i) there is a not identically zero bi-additive mapping satisfying the semi-
homogeneity Eq. (21),

(ii) the characteristic polynomial of the linear operator Pα,β is reducible over
the field K by one of its non-zero roots,

(iii) P (α, β, γ) = 0.
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Remark. If the elements α and β are given, then the possible γ’s are among the
roots of the characteristic polynomial Pα,β . The characteristic polynomial is
independent of the choice of the basis b0, . . . , bn−1. Moreover it is a polynomial
over the prime field but the root γ belongs to K in general. Setting the variables
α and β free, the roots of the multivariate polynomial P is independent of the
choice of the basis b0, . . . , bn−1. In other words the algebraic variety

P (x, y, z) = 0

in K
3 contains all possible triplets for the solution of the semi-homogeneity

Eq. (19).

6.3. An example: the field GF(4)

The operations are summarized in the following tables:

+ 0 1 a 1 + a

0 0 1 a 1 + a
1 1 0 1 + a a
a a 1 + a 0 1
1 + a 1 + a a 1 0

and

· 0 1 a 1 + a

0 0 0 0 0
1 0 1 a 1 + a
a 0 a 1 + a 1
1 + a 0 1 + a 1 a

Since 4 = 22 it follows that GF(4) is a two-dimensional linear space over its
prime field Z2. The basis we are going to use in the following is b0 = 1, b1 = a.
An easy computation shows that the translations τ0 and τ1 are represented by
the matrices

M0 =
(

1 0
0 1

)
and M1 =

(
0 1
1 1

)
,

respectively. Choosing elements

α = α0 + α1 · a, β = β0 + β1 · a,

where α0, α1, β0, β1 ∈ Z2, it follows that
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Pα,β(X) = α0β0X + α0β1X

(
0 1
1 1

)
+ α1β0

(
0 1
1 1

)
X

+α1β1

(
0 1
1 1

)
X

(
0 1
1 1

)
,

where X =
(

x00 x01

x10 x11

)
. Taking

Pα,β(X) =
(

y00 y01

y10 y11

)
,

a direct computation shows that

y00 = α0β0x00 + α0β1x01 + α1β0x10 + α1β1x11,

y01 = α0β0x01 + α0β1(x00 + x01) + α1β0x11 + α1β1(x10 + x11),
y10 = α0β0x10 + α0β1x11 + α1β0(x00 + x10) + α1β1(x01 + x11),
y11 = α0β0x11 + α0β1(x10 + x11)

+α1β0(x01 + x11) + α1β1(x00 + x01 + x10 + x11).

Therefore Pα,β is represented by the matrix⎛
⎜⎜⎝

α0β0 α0β1 α1β0 α1β1

α0β1 α0β0 + α0β1 α1β1 α1β0 + α1β1

α1β0 α1β1 α0β0 + α1β0 α0β1 + α1β1

α1β1 α1β0 + α1β1 α0β1 + α1β1 α0β0 + α0β1 + α1β0 + α1β1

⎞
⎟⎟⎠

with respect to the basis

B00 =
(

1 0
0 0

)
, B01 =

(
0 1
0 0

)
, B10 =

(
0 0
1 0

)
, B11 =

(
0 0
0 1

)
.

If α = 1 + a, i.e. α0 = α1 = 1 and β = a, i.e. β0 = 0, β1 = 1, then we have the
matrix ⎛

⎜⎜⎝
0 1 0 1
1 1 1 1
0 1 0 0
1 1 0 0

⎞
⎟⎟⎠

and the characteristic polynomial is

P1+a,a(t) = (t − 1)2 · (
1 + t + t2

)
.

This means that the possible choices are γ = 1, a or 1 + a, that is, if X and
Y are linear spaces over the field K = GF(4), then there exist not identically
zero bi-additive mappings of the form A : X × Y → K such that

A((1 + a)x, ay) = A(x, y) (x ∈ X, y ∈ Y ),
A((1 + a)x, ay) = aA(x, y) (x ∈ X, y ∈ Y ),
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or

A((1 + a)x, ay) = (1 + a)A(x, y) (x ∈ X, y ∈ Y ).

Remark. GF(4) seems to be rich in semi-homogeneous biadditive functions in
the case of α = 1 + a and β = a. In general, if α and β are fixed, then the
characteristic polynomial is of degree n2, i.e. we have at most n2 different
possible values for λ. It is a polynomial dependence on n but the number
of elements in GF(pn) increases exponentially. Therefore the probability of a
randomly chosen element in K to be a possible value for λ tends to zero.

In this last section of the paper we investigated the existence of non-zero,
bi-additive semi-homogeneous mappings. If the field K is of characteristic zero
or K is a finite field, we could provide necessary and sufficient conditions. At
the same time, there exist infinite fields of prime characteristic (for example,
the field of all rational functions over Z/pZ). Therefore, we end this paper with
two open problems.
Open Problem 1. Let p be a prime and K be an infinite field of characteristic
p. Further, let X be a linear space over K and a : X → K be an additive
function. Find necessary and sufficient conditions for a to be a nontrivial,
semi-homogeneous additive mapping.
Open Problem 2. Let p be a prime and K be an infinite field of characteristic
p. Further, let X and Y be linear spaces over K and A : X × Y → K be a
bi-additive function. Find necessary and sufficient conditions for A to be a
nontrivial, semi-homogeneous bi-additive mapping.
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Alfréd Rényi Institute of Mathematics
Hungarian Academy of Science
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