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A fuzzy model integrating shoreline changes, NDVI and1

settlement influences for coastal zone human impact classification2

Abstract3

Current approaches for obtaining shoreline change rates suffer from inability to give a4

specialist interpretation of the numerical results represented by velocities (m/yr). This5

study proposes a fuzzy model for coastal zone human impact classification that integrates6

shoreline changes, NDVI, and settlement influences to enhance numerical-linguistic fuzzy7

classification through Geographical Information System (GIS)’s graphical visualization8

prowess. The model output representing scores are numbers ranging from zero to one,9

which are convertible into fuzzy linguistic classification variables; i.e., low, moderate,10

and high on the one hand. On the other hand, use of GIS through NDVI (Normalized11

Difference Vegetation Index) provide enhancement through graphic visualization. Using12

Itamaraca Island in Brazil as an example, multi-temporal satellite images are extracted13

to provide all the required input variables. The resulting output divides the entire island14

into five sectors representing both quantitative and qualitative outcomes (i.e., fuzzy clas-15

sification composed of both scores and maps), showcasing the capability of the proposed16

approach to complement shoreline change analysis through physical (map) interpreta-17

tion in addition to the frequently used numbers. The proposed fuzzy model is validated18

using random in-situ samples and high resolution image data that has been classified19

by a coastal geomorphology specialist. The accuracy of the interpretation show 81% of20

matches are achievable compared to the results of the fuzzy model. The final results21

delivered by the proposed fuzzy approach shows the complex behavior of the local dy-22

namics, thereby adding useful and substantial information for environmental issues and23

Integrated Coastal Zone Management.24

Keywords: Shoreline, landscape evolution, fuzzy, human impact classification, NDVI,25

remote sensing.26
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1. Introduction27

Diagnosing anthropogenic impacts (i.e., those associated with human activities) in28

coastal zones around the world, e.g., coastal development and planning, overfishing,29

coastal environmental protection and sustainability endeavour, and tourism activities, is30

part of the Integrated Coastal Zone Management (ICZM) tasks (e.g., Dale et al., 2019,31

Post and Lundin, 1996, Kenchington and Crawford, 1993, among others). Such diagnosis32

is relevant to support policy formulation, resources management and conservation, and33

to pursue sustainable development (Huang and Jin, 2018, Selkoe et al., 2009, Xiqing et34

al., 2005, Small and Nicholls, 2003, Mazda et al., 2002, Albert and Jorge, 1998). Indeed,35

efforts to detect the man-made impacts and differentiate their intensities along coastal36

zones is useful before any stakeholders and government agencies are involved, i.e., once37

human impacts component related to social economic pressure are identified, practical38

actions can follow through sequence of interventions (Halpern et al., 2015, Hsu et al.,39

2007, Sánches-Arcilla et al., 2016).40

Even with this realization, considerable differences still exist between anthropogenic41

coastal zone impact classification at a particular time and spot on the one hand, and42

the identification of vulnerability (weaknesses in the system) of erosion (e.g. Andrade et43

al., 2019, Parthasarathy and Natesan, 2015) or the ecological risk (i.e., the combination44

of probability and impact) assessment (Yanes et al., 2019) on the other hand. Impacts’45

classification, risks and vulnerability assessment are all essential ingredients of coastal46

zone management and as such, require methods that can clearly identify impacts and47

assess vulnerability within the framework of a given budget.48

Methods for detecting human impacts along coastal zones include, e.g., shoreline eval-49

uation of erosion/accretion patterns, which is normally detected through (a) topographic50

profiles analysis (e.g., Jara et al., 2015, Fanos, 1995, Dally and Dean, 1984) considering51

cross-shore morphology and the balance between destructive and constructive forces act-52

ing on a beach, (b) shoreline change rates, e.g., end point rate (EPR), average of rates53

(AOR), minimum description length (MDL), ordinary least squares (OLS) (e.g. Genz et54

al., 2007, Dolan et al., 1991, Cenci et al., 2018, Rosskopf et al., 2018, Jin et al., 2015),55
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and (c), Land Use/Land Cover (LULC) monitoring combined with shoreline change rates56

that take advantage of GIS visualization, which has been considered as a successful al-57

ternative approach for human impacts detection (e.g., Ghoneim et al., 2015, Guneroglu,58

2015). In some cases, the weakness of methods (a), (b), and (c) occur when the human59

impacts focus only in one variable, making the interpretation rather difficult and tedious60

hence requiring integration that can be achieved by the fuzzy models (Zadeh, 1965),61

which enable the inclusion of more socio-economic components such as settlement, pop-62

ulation growth, tourism activities, fisheries habitats, and commercial enterprises data,63

among others (Feng et al., 2006). The fuzzy models have been recognized as alternative64

methods that combine multiple variables, thereby modeling problems associated with65

complex environmental systems and eliminating imprecise and subjective concepts is ev-66

idenced, e.g., in the work of Lizarazo (2010) who estimate quantitative land cover. Other67

applications include evolution detection (Hester et al., 2010), mapping soil pollution risk68

classes detected by heavy metals concentrations (Lourenco et al., 2010), determining69

the density of sand (Juang et al., 1996), predicting soil erosion in a large watershed70

(Mitra et al., 1998), capturing coastal geomorphological changes (Hanson et al., 2010),71

evaluating coastal scenery (Ergin et al., 2004), elucidating the objectives and priorities72

of North Lebanon’s coastal productive sectors and their coastal zone perceptions and73

knowledge (Meliadou et al., 2012), detecting mesoscale oceanic structures using satellite74

images (Piedra-Fernandez et al., 2014), and assessing coastal environmental vulnerability75

(Navas et al., 2012, Silva et al., 2013).76

Although fuzzy models can achieve integration and have widely been used as observed77

above, the problem with them however, is that on the one hand, coastal human impact78

classification and vulnerability assessments are often undertaken in such manner that79

the resulting output (i.e., numerical scores that are further converted into linguistic80

terminologies) lack the visual physical interpretation capability that could easily aid in81

identification and isolation of the impacts, especially where time and cost are constraining82

factors. To underscore the importance of integrating numerical/linguistic and physical83

(i.e., remotely sensed variables that relate directly to anthropogenic interaction), social84

and economic processes, Klein et al. (1998) and Nicholls and Branson (1998) highlight85
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coastal resilience concept considering the uncertain future that addresses the long term86

needs and vision (Kenchington and Crawford, 1993). On the other hand, the fuzzy models87

differ in configuration, input variables, output and validation process.88

This study proposes a fuzzy model that integrates three variables; (i) shoreline change89

(detected in three stages, i.e., erosion, accretion and stability) of the coastal zone, over90

time, (ii) vegetation cover status evaluated by the Normalized Difference Vegetation Index91

(NDVI), and (iii), settlement influence related with the local planning impact consider-92

ing the infrastructure and buildings near the shoreline. The novelty lies in the fact that93

rather than the traditional numerical fuzzy classification of human coastal zone impacts94

employing only linguistic variables such as high, moderate or low, the study exploits the95

potentials of using Remote Sensing (RS) data employed within Geographic Information96

System (GIS) strengthened by others influencing factors that include socio-economic data97

to enhance the numerical fuzzy classification by enabling graphical visualization through98

the resulting spatial maps. This is advantageous in that mapping of geographical features99

enhances the distinguishing of each sectoral evolution pattern recognition (Mondal et al.,100

2019, Novellino et al., 2019, Valderrama and Flores, 2019, Yan et al., 2019), which may101

lead to intensive actions of preservation or even regeneration. To demonstrate the feasi-102

bility and potential of our proposed fuzzy model, Itamaraca Island (Pernambuco State,103

Brazil) is employed as a case study where we focus on classifying the fuzzy model output104

considering levels of human impact from low to high and providing visual interpretation105

using the 1989, 1996, 2005, 2011 and 2016 temporal Landsat satellite images.106

The remainder of the study is organized as follows. In section 2, basics of the fuzzy107

logic are briefly introduced; Section 3 looks at the input data and the fuzzy modeling’s108

design; Section 4 presents the case study of Itamaraca Island in Brazil. The results are109

presented and discussed in section 5 and the study concluded in section 6.110

2. Fuzzy Logic Method: Basics111

In this section, a brief review of the basic fuzzy sets are presented. This is essential112

to understand the proposed fuzzy model introduced by this study. More details on fuzzy113
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logic can be found, e.g., in Jantzen et al., (2013); Grafarend and Awange, (2012);114

Galindo et al. (2006); Ross et al., (2002), Zadeh (1965), among others.115

Definition (fuzzy set): A fuzzy set A over a universe of discourse X (a finite or116

infinite interval within which the fuzzy set can take a value) is a set of pair117

A = {µA(x)/x : xε X, µA(x)ε[0, 1]ε<}, (1)

where µA(x) is called the membership degree of the element x to the fuzzy set A. This118

degree ranges between the extremes 0 and 1 of the domain of the real numbers. A fuzzy119

set A in a referral set U is characterized by a membership function , µA(x), which120

associates each element u in U to a real number in the interval [0, 1]. It is thus defined121

as a mapping function122

µA(x) : U → [0, 1]. (2)

Fig. 1 exposes an example of a boolean set compared to a fuzzy set representing123

the height could be considered as tall for a male. To define the set of tall men as a124

classical set, a predicate P(x) can be used, for instance x ≥ 1.80 m, where x is the125

height of a person, in this case, if someone has the height of 1.79 m according to this126

threshold, the person is considered not being tall. From the fuzzy set of tall men in Fig.127

1, a membership can be defined as a sigmoid function, with a height corresponding to a128

number in the interval [0 1]. In this example, if someone has a height taller than 1.90 m,129

the membership degree corresponds to 1. On the other hand, for a height between 1.60130

m and 1.90 m, the membership degree rise gradually and does not jump abruptly.131

A linguistic label is a word, in natural language, that expresses or identifies a fuzzy132

set that may or may not be formal defined. Thus, the membership function µA(x) of a133

fuzzy set A expresses the degree in which x verifies the category specified by A. With134

this definition, concepts such as tall, young, hot, etc. could be used as linguistic variables135

for expressing abstract concepts. The type of a membership function need to be136

set for all linguistics variables, which the most commonly used are shown in Fig. 2, e.g.,137

5



1 

0.5 

0 

150 160 170 180 190 200 210 220 

fuzzy 

crisp 

Figure 1: Set of tall men, crisp and fuzzy sets

L-function, trapezoidal, triangular and bell.138

The L-function is defined by two parameters a and b, in the following way (Galindo139

et al., 2006):140

L(x) =


1 if x ≤ a

a−x
b−a if a < x ≤ b

0 if x > b.

(3)

Trapezoidal function is defined by its lower limit c and its upper limit f, and the lower141

and upper limits of its nucleus, d and e, respectively, as142

T (x) =



0 if (x ≤ c) or (x ≥ f)

(x− c)/(d− c) if x ∈ (c, d]

1 if x ∈ (d, e)

(f − x)/(f − e) if x ∈ (d, f);

(4)

while the Gaussian function, a typical Gauss bell, is defined by its mid-value m, and the143

value of k > 0 as144

G(x) = e−k(x−m)2 . (5)

The greater k is, the narrower the bell becomes. The triangular is defined by its lower145

limit g, its upper limit i, and the modal value m, so that g < h < i, with146
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A(x) =



0 if x ≤ g

(x− g)/(h− g) if x ∈ (g, h]

(i− x)/(i− h) if x ∈ (h, i)

1 if x ≥ i.

(6)

Fuzzy membership type 

L Function Trapezoidal Bell Triangular 

y 
=

 in
te

rv
al

[0
,1

] 

1 

0 
a d c b f h i e g m 

x = range of the linguistic variable 

Figure 2: Fuzzy membership types e.g., L-function, trapezoidal, bell, and triangular.

Fuzzy set operations are then defined by means of the membership functions. For147

example, in order to compare two fuzzy sets, equality and inclusion are defined. Let A148

and B be two fuzzy sets defined on a mutual universe U, where the two fuzzy sets A and149

B are equal if and only if they have the same membership function,150

A = B ≡ µA(x) = µB(x). (7)

A fuzzy set A is a subset of (included in) a fuzzy set B, if and only if the membership151

of A is less than or equal to that of B,152

A ⊆ B ≡ µA(x) ≤ µB(x). (8)

The fuzzy union A ∪B is153

µA∪B(x) ≡ max(µA(x), µB(x)) (9)
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The fuzzy intersection A ∩B is154

µA∩B(x) ≡ min(µA(x), µB(x)), (10)

while the fuzzy complement A of A is155

µA(x) ≡ 1− µA(x). (11)

Fuzzy rules were built combining the input variables with the output using “if −156

then” rule format, e.g.,157

if x1 is A1 and...and xn is An, then y = f(x1, · · ·, xn)158

where:159

x1, · · ·, xn are the model variables, and160

A1, · · ·, An161

are the linguistic terms (e.g., short, medium, long, low, moderate and high).162

Y is the output variable,163

f(x1, · · ·, xn), is typically a linear function of the input variables, e.g.,164

y = cnxn + · · ·+ c1x1 + c0.165

Defuzzification can be considered as the last step of the process that maps a fuzzy166

set into a crisp value. Some of the methods that can be used in the defuzzification include,167

e.g., centroid of area, bisector of area, and mean value of maximum, among others. The168

defuzzification method used in this work was the centroid of area.169

3. Model Design170

The structure of the coastal zone human impact classification is grouped into three171

steps (step 1, input data; step 2, fuzzy model design; and step 3, validation) as shown172

in Fig. 3. The first step is data processing to extract shoreline positions from remotely173

sensed data, shoreline change, NDVI calculations and settlement influence. Thereafter,174

8



the fuzzy model is designed, in this case, with five variables, i.e., erosion, accretion,175

stability, NDVI and build up. All linguistics labels (fuzzy sets), membership functions,176

fuzzy rules, and defuzzification providing the output that is a crisp number representing177

the coastal zone human impact classification which is designed in step 2. Finally, step178

3 validates the model using in-situ comparison assessment. In what follows, a detailed179

examination of these three steps is presented.180

Settlement 
evolution (Build up)

Vegetation (NDVI)

Shoreline changes 
(erosion, accretion, 
stability)

 
Temporal satellite images

(1989, 1996, 2005, 2011 and 2016)
Variables

Fuzzy logic

Coastal zone impact 
classification

ValidationLow
Low/Moderate
Moderate/High
High

Figure 3: Structure of the fuzzy model for coastal zone human impact classification. Step 1 shows data

input from remotely sensed images, step 2 the model design, and step 3 the validation of the model.

3.1. Step 1: Input data181

The input baseline uses Landsat image (Path/Row, 214/65) to cover the areal ex-182

tend of the study area. Five Landsat images were selected considering the years 1989,183

1996, 2005, 2011, and 2016, and all Landsat images were downloaded from United States184

Geological Survey (USGS) (https://earthexplorer.usgs.gov/) as Level 1 products185

(Table 1). The Landsat satellite datasets are selected with consideration to be in the186

same/nearest months (August and September) for each year, seeking increase the sepa-187

ration of land use classes by minimizing the seasonal variation. Also all selected images188

should have less than 10% cloud cover over the study area, but this was not possible189

for 2005 and 2016 images as most of the time of the year, the study area was covered190

with clouds, almost everywhere and this represented one of the biggest challenges (data191

availability) for this study. To be able to overcome cloud cover and select images match-192

ing the study criteria, more than one Landsat image was downloaded for 2005 and 2016193

(Table 1). The new images for each year (2005 and 2016) were created with zero cloud194
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cover using image analysis tool (clip, mask and mosaic techniques over areas covered with195

cloud) in ArcGIS environment.196

Table 1: List of Landsat images used for Shoreline, built up and NDVI calculation

Image No. Sensor ID Scene ID Date Cloud cover (%)

1 TM LT52140651989255CUB00.tar.gz 12/09/1989 28.00

2 TM LT52140651996243CUB00.tar.gz 30/08/1996 29.00

3a TM LT52140652005251CUB00.tar.gz 08/09/2005 25.00

3b TM LT52140652005267CUB00.tar.gz 24/09/2005 42.00

4 TM LT52140652011252CUB00.tar.gz 09/09/2011 24.00

5a OLI-TIRS LC82140652016266LGN00.tar.gz 22/09/2016 25.71

5b OLI-TIRS LC82140652016250LGN00.tar.gz 06/09/2016 27.45

5c OLI-TIRS LC82140652016234LGN00.tar.gz 21/08/2016 37.36

Since remotely sensed data are influenced by a number of factors such as atmospheric197

effects, therefore those datasets cannot be used for further analysis (Tyagi and Bhosle,198

2011). Satellite images can only be used after performing number of image pre-processing199

steps including atmospheric correction to remove or minimize those atmosphere influences200

to obtain corrected full spectral information for each image element (pixels) (Tyagi and201

Bhosle, 2014). The dark object subtraction (DOS) is strictly based on image information202

having this specific characteristic can be considered ideal for this purpose (Chavez, 1996).203

Since this study will not integrate any ground-based data to be mapped and compared204

with satellite image information (e.g. land surface temperature), therefore the DOS205

method can be used to correct and normalize the Landsat image radiance differences206

which are due to variations considering solar illumination, sensor viewing geometry, and207

seasonality (Saleem et al., 2018, Gilmore et al., 2015).208

The downloaded Landsat images are Level 1 product, therefore the only pre-processing209

performed after atmospheric correction is the co-registration between Landsat 8 2016 as210

the reference image and the rest of Landsat images. This process is performed using image211

registration workflow in ENVI software. This technique defined many tie points between212

reference image (Landsat 8 2016) and the rest of Landsat images. All the registered213
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Landsat images with reference image have the total RMSE less than 0.5 pixel. A subset214

image for each Landsat scene is created using the vector dataset for the study area as215

clipping file in ArcGIS environment.216

As input, the fuzzy model uses the satellite images described before to extract infor-217

mation regarding temporal changes, considering three aspects (i) shoreline change; (ii)218

NDVI; and (iii) settlement evolution.219

(i) Shoreline change220

Since the study area is surrounded by water in all sides (island), the coastline from221

each Landsat scene is extracted as polygon shapefile using on-screen manual digitiza-222

tion technique under a similar zooming level (uniform scale of 1:5000). This technique223

was confirmed by Dewan et al. (2017) to be effective method for coastline and rivers224

boundaries delineation. Areas of erosion and accretion (sliver polygons) are calculated225

for every two successive polygons (1989-1996, 1996-2005, 2005-2011, and 2011-2016) us-226

ing the spatial union tool in ArcGIS environment as suggested, e.g., by Dewan et al.227

(2017).228

Using the five sectors shapefile, the area of erosion, accretion and stability are calcu-229

lated as percentages in regard to the total area for each sector and those values (%) has230

been used as three variables (X1, X2, and X3 ) for the first input (shoreline change).231

(ii) Normalized Difference Vegetation Index (NDVI)232

The second input dataset used in the fuzzy model is NDVI, and this index consists233

new calculated values for each pixel in the image ranging from -1 to +1. The NDVI is234

calculated by the Equation 12 and two required input bands, i.e., near-infrared (NIR)235

and red (RED) reflectance. The NDVI is calculated for each image (1989, 1996, 2005,236

2011, and 2016) after performing image pre-processing including atmospheric correction237

as the reflectance values are required during this index calculation for more representative238

vegetation cover. Using the sector shapefile, a mean value of NDVI, for each sector is239

obtained and has been used as a second input which is representing the fourth variable240

(X4 ).241
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NDV I = (NIR−RED)/(NIR +RED). (12)

(iii) Settlement evolution242

The third (final) input dataset used is the settlement influence (Built up area). The243

infrastructure and buildings near shoreline can affect directly coastal erosion as well244

as flooding. Planning at a local, state or country spheres, a minimum distance for245

geomorphological aspects preservation near shoreline is very important to reduce the246

coastal zone human impacts, however, in this study, the opposite can be observed, the247

increase of settlement advancing near coastline over time.248

The object-based algorithm has demonstrated in recent studies its potential in identi-249

fication land cover mapping in heterogeneous areas with better accuracy than pixel-based250

image classification (see e.g., Singha et al, 2016, Bisquert et al, 2015, Guan et al, 2013).251

Also, object-based algorithm analyses treat any image as objects by integrating neigh-252

borhood information, which will enhance the analysis and increase the accuracy of the253

classified image, i.e., LULC. Therefore, for this study, LULC classes (built up, vegeta-254

tion and others) are extracted from each Landsat image using feature extraction tool in255

ENVI environment using segmentation approach. During this process, many scale and256

merge levels are tested to obtain the best result for the three classes including built up257

areas in all Landsat images. The scale level of 30 and merge level of 95 demonstrated258

visually the best results, which logically agree with 30 m spatial resolution of Landsat259

data. Since an accurate result are required for the fuzzy input, therefore, the segmented260

raster is converted to vector dataset to delineate the three LULC classes more accurately261

using manual attribution for the misclassified polygons (areas) for each year in ArcGIS262

environment during editing session.263

The built up area (the third input, Fig 3, settlement influence) classified for each264

sector and temporal image, and then used as the fifth variable (X5 ) for the coastal fuzzy265

classification model.266
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3.2. Step 2: Fuzzy model design267

The fuzzy model design is developed by integrating three inputs: shoreline change;268

NDVI and settlement influence (built-up area). Those three inputs are consisted of five269

variables (X1, X2, X3, X4 and X5 ). All the input variables detected by the baseline270

information extracted by satellite images which have a different input range and units271

according to the specific variables characteristics. In this case X1, X2, X3 (shoreline272

change) ranges from 0 to 100 (%) considering the total (%) of sectoral shoreline varia-273

tions. The NDVI, variable X4, ranges from -1.0 to 1.0 and the X5 (build up) ranges from274

0 to 100km2, which then evaluated by temporal changes. The output of this fuzzy model275

is a number ranging from 0 to 1 representing a coastal zone human impact classification276

ranking. When the output number is close to 1 it manifests a high human impact classi-277

fication and close to 0 refers to low human impact classification, between this range, the278

fuzzy logic could classified according to the model design as low, low/moderate, moderate,279

moderate/high or high. The inference method used in proposed fuzzy model is based on280

Mamdani Model, which adopts a concept of fuzzy rules and outputs represented by fuzzy281

set resulting from aggregation of each inference rule, see e.g., Jang et al. (1997).282

In the fuzzy model, the first input (shoreline change) is divided into three variables283

(based on the states of the shoreline) erosion (X1 ), accretion (X2 ) and stable (X3 ),284

considering the changes detected comparing consecutive years e.g. 1989-1996, 1996-2005,285

2005-2011 and 2011-2016. The linguistic labels (section 2), considered for this variable286

is named as low, moderate and high. The type of the membership functions selected287

is triangular (Equation 6) and L-function (Equation 3) according to the parameters288

presented in Table 2.289
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Table 2: Fuzzy sets. These function numbers represent a mathematical function (triangular or L-

function) for each specific linguistic labels (low, moderate and high) according to a specific range and

variables units (X1, X2, X3, X4, and Y ).

Variable Linguistic Label Membership Function

Erosion “X1” Low (A1) triangular [-10 -5 10]

Moderate (A2) triangular [4 10 15]

High (A3) L-function [10 12]

Accretion “X2” Low (B1) triangular [-10 -5 10]

Moderate (B2) triangular [4 10 15]

High (B3) L-function [10 12]

Stable “X3” Low (C1) triangular [-40 0 40]

Moderate (C2) triangular [30 50 70]

High (C3) triangular [60 100 140]

NDVI “X4” Low (D1) L-function [-0.2 0.3]

Moderate (D2) triangular [0.2 0.4 0.6]

High (D3) L-function [0.5 0.8]

Build up “X5” Low (E1) triangular [-10 -5 10]

Moderate (E2) triangular [4 10 15]

High (E3) triangular [10 12]

CZHI* Classification “Y ” Low (F1) L-function [0.2 0.4]

Moderate (F2) triangular [0.2 0.35 0.5]

High (F3) L-function [0.3 0.6]

*Coastal Zone Human Impact

For the second input NDVI (fourth variable X4 ) in the fuzzy model (see Fig 3, step 2),290

the intervals scale background ranging from -1.0 to 1.0 are based on Lillesand et al. (2014),291

and represents the vegetation coverage for the surface, i.e., land or water. According to292

Karaburun (2010), negative values of NDVI represent areas with no vegetation cover,293

i.e., water bodies and sandy beaches, whereas NDVI < 0.1 represent infertile soil. On294

the other hand, moderated values (0.2 < NDV I < 0.3) represent pasture and shrub,295
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while (0.6 < NDV I < 0.8) refers to tropical and temperate forests, that is, vegetation in296

healthy conditions (Chouhan and Rao, 2011). The membership functions selected are L-297

function (Equation 3) and triangular (Equation 6), with 3 linguist labels: low, moderate,298

and high (Table 2).299

For the third input (fifth variable X5 ), the build up, the linguistic labels are named300

(section 2) as low, moderate and high. The type of the membership functions selected are301

L-function (Equation 3) and triangular (e.g. Equation 6) according to the parameters302

presented in Table 2.303

Table 2 also presents the fuzzy model output called coastal zone human impact classi-304

fication (Y ). The output uses three linguist labels named as low, moderate and high. The305

boundaries between the fuzzy sets normally crosses each others, in this case, the coastal306

zone human impact classification, after the defuzzification process, can be classified into307

one single linguistic label (low, moderate and high) or also belonging to two classes at the308

same time, e.g., moderate and high accordingly to the degree of relevance, considering309

the interval [0, 1], thus this is one of the advantages of fuzzy models comparing with310

Boolean model, it is more flexible.311

Finally, using three inputs (shoreline change, NDVI and settlement influence (built-312

up areas)) with five variables (X1, X2, X3, X4 and X5 ), 17 fuzzy rules are achieved.313

The rules, are composed by five variables (X1, X2, X3, X4 and X5 ) and the linguistics314

labels for them (A1, A2, A3 ), (B1, B2, B3 ), (C1, C2, C3 ), (D1, D2, D3 ), (E1, E2,315

E3 ) respectively. The final fuzzy rule output Y(F1, F2, F3) are defined by integrating316

the five variables with their linguistics labels using “if - then” rule format (Section 2) as317

followed:318

Rule 1: If X1 εA1AndX2 εB1AndX3 ε C3AndX4 εD3AndX5 εE1319

ThenY εF1 (another way to express the same rule using, e.g., the linguistics variables320

is: “If erosion is low and accretion is low and stable is high and NDVI is high, and build321

up is low, then the output coastal zone human impact classification is low”); The whole322

set of rules are presented in the Appendix A: Fuzzy Rules.323

It is important to highlight that all these set of variables and rules needs to be val-324
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idated, otherwise it might be categorized as arbitrary estimation. In this case, some325

preliminary testes are done to fine tune the rules and parameters of those functions in326

an interactive form until satisfied a validation criterion. In this study, a threshold higher327

than 80% of matches is adopted and considered in the validation process, section 3.3.328

3.3. Step 3: validation329

The validation step is used to determine the accuracy and quality of the final output330

(fuzzy coastal zone human impact classification) which is achieved. This accuracy is331

determined empirically by comparing in-situ samples of ground reference data and high332

resolution satellite images with the final classification delivered by the fuzzy model. For333

a complete discussion about the importance of fuzzy assessment, see e.g., Gopal and334

Woodcock (1994).335

4. Case Study: Itamaraca, Brazil336

The Itamaraca Island (Fig. 4), located at a distance of 48 km from Recife, is an337

island on Pernambuco State coast in Brazil, belonging to the Metropolitan Region of338

Recife, separated from the mainland by Santa Cruz channel. According to the records339

from the Instituto Brasileiro de Geografia e Estat́ıstica (Brazilian Institute of Geography340

and Statistics) (IBGE, 2010), Itamaraca has a total area of 67 square kilometers and a341

population of 21,884 people.342

The coastal ecosystem of Itamaraca Island is marked by the features of mangrove,343

rainforest and apicum (or salty), which are characterized as areas of permanent preser-344

vation in the Código Florestal Brasileiro (in english, Brazilian Forest Code). Itamaraca345

falls within the scope of small coastal rivers basins. Its main tributary rivers are Paripe346

and Jaguaribe. The watercourses are perennial with the native vegetations consisting of347

evergreen forest and sandbank vegetations. The population pressure on natural resources348

in this region has implications for economic, social, and environmental terms. These im-349

plications justify the need for planning and management actions, which are scarce due350

to data availability, and the difficulties of acquiring current information. There is also351
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Figure 4: Localization of Itamaraca (a) in Brazil, (b) the island divided in five sectors.

another factors that the region is characterized by strong dynamics involving the rivers,352

coastal tidal currents, winds and all together have continuous effects on the shoreline353

status. Fig. 4 (b) also shows the delimitation of the island into five sectors, which are354

individually examined.355

Itamaraca is, however, subjected to remarkable changes of the shoreline, causing sig-356

nificant economic losses to the region, e.g., the destruction of homes and infrastructures357

as erosion result. The shoreline change is a recurrent phenomenon in the whole Brazilian358

coast (Souza, 2009) and also around the world. Recent surveys indicate that in addition359

to the above normal processes in some places, the sea and the sediment transport are360

constantly changing the coastal zone status and positions (see, e.g., Mendonca et al.361

(2014), Aiello et al. (2013), Goncalves et al. (2012), Jackson et al. (2012), Smith and362

Cromley (2012), Baptista et al. (2011), Miller et al. (2011), Banna and Hereheret (2009),363

Stockdon et al. (2002), Thieler and Danforth (1994)).364
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5. Results and discussion365

5.1. Shoreline behavior366

Fig. 5 combines the results for shoreline change (a1, a2, a3, a4), land cover classes (b1,367

b2, b3, b4, b5) and final fuzzy classification (c1, c2, c3, c4), which represents the outputs368

for the fuzzy model: coastal zone human impact classification. Fig. 5 (a1, a2, a3, a4)369

shows the shoreline change, considering 27 years time-line (1989-2016), divided by sectors370

along Itamaraca Island. In most scenarios, the shoreline has experience changes between371

advance and retreats with different rates during the evaluated periods, which is consistent372

with Martins et al. (2017) who reported some stretches of coastline advancing and others373

retreating, with the highest rates of erosion found near Itamaraca Island (about 0.4374

m/year). Table 3 shows the three classes considering erosion, accretion and stability375

percentages (%) among the evaluated study periods (1989-1996, 1996-2005, 2005-2011376

and 2011-2016).377
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Figure 5: Results of shoreline change, land cover classes, and coastal zone human impact classification

using fuzzy model over the sectors during the study periods.
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Table 3: Erosion (E), Accretion (A) and Stability (S) Mean%

Sectors 1989-1996 1996-2005 2005-2011 2011-2016

E/A/S E/A/S E/A/S E/A/S

1 27/27/46 16/14/70 15/26/59 25/14/61

2 29/12/60 13/23/64 11/19/69 21/0/79

3 19/16/64 17/17/66 20/19/61 20/20/60

4 22/8/71 7/30/63 16/15/70 15/15/70

5 44/11/45 17/28/55 14/35/51 36/23/41

On one hand, satellite data utilization makes it possible to detect erosion periods378

that highlighted sector five between 1989-1996 and 2011-2016 representing 44% and 36%379

of eroded area, respectively. On the other hand, sector two seems to be more stable380

representing 60%, 64%, 69%, and 79% of stability for the four periods (1989-1996),381

(1996-2005), (2005-2011) and (2011-2016) respectively. For all these four periods, the382

third sector has experienced more erosion than accretion, Gomes and Silva (2014) af-383

firm that along Pernambuco’s coast unprotected areas (like the east side of Itamaraca384

Island sectors 2 and 3) and because it is in direct contact with Atlantic Ocean that might385

cause extreme wave events creating strong wave-induced currents, and consequently, the386

sediments transport would be in constant changes; also there is the sediment transport387

influence by the Jaguaribe and Paripe rivers around the island. Corroborating to the388

presented causes, high waves have been reported by Rodriguez et al., (2016), who pre-389

sented the impacts of Atlantic Ocean on coastal erosion, thus inferring that this could390

be a direct influence factor on sectors 2 and 3, however, if other parameters are closely391

observed like the ones proposed in this study (build up and NDVI), it can be seen that392

erosion is also dependent upon a joined influence parameters.393

5.2. NDVI spatial distribution over the years394

Fig. 6 shows the results for NDVI over the years in each sector. It can be seen that,395

the sectors 4 and 5 have similar NDVI values and predominantly between 0.57 and 0.67,396

while, sectors 1, 2 and 3 show values ranging from 0.33 and 0.47.397
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Regarding these results, the shoreline change can be directly influenced by the pres-398

ence/absence of vegetation cover, such as presented by Amaral et al., 2016 and Wolfe and399

Nickling, 1993, who affirm that vegetation is used as a means of stabilizing the mobile400

sand surfaces, thus reduce shoreline erosion, and consequently influencing the level of hu-401

man coastal zone impact. And still, the rates of soil loss under natural vegetation cover402

are usually low and almost have no variations with time, therefore this fact motivates403

the adoption of vegetation to quantifying the hazards impacts reduction in coastal zones,404

see e.g., Guannel et al. (2015), Luhar et al. (2010) and Domı́nguez et al. (2005).405

For instance, considering erosion detection (Table 3) and the absence of vegetation406

cover (Fig. 6 as expressed by NDVI results) for both sectors (1 and 3) and combined with407

buildings over the beach (Fig. 5 b1 to b5), once can see they are strong indicators for408

soil and natural vegetation loss. On the other hand, the majority of vegetation coverage409

in sectors 4 and 5 (Fig. 6) are detected and mapped, and also presents less erosion410

occurrence and they are mainly predominated by stability coastal status.411
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Figure 6: NDVI values for each sector over the years under study.
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5.3. Build up area evolution near the shoreline412

Silva et al. (2014) pointed out that in many Latin America case studies the increase413

of inappropriate settlement next to the shoreline, are associated with coastal erosion414

problems and sediment supply, which is also detected over sectors 1, 2 and 3, which415

shows buildings very close to the water line (Fig. 5 b1 to b5), thus affecting the natural416

vegetation growth and therefore increasing the impact on coastal erosion.417

Fig. 7 shows the built-up area in square kilometers for all sectors confirming the rising418

of the building over sector 3 and the stability detection over sector 4. Fig. 5 b1 to b5419

shows the huge difference in buildings areas over sector 3 when it is compared with other420

sectors, where the man-made areas expanded near the shoreline and this considerably421

roses over the 27 years of evaluation.422
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Figure 7: Build up area for each sector over the years under study.

Related with buildings in Itamaraca Island, the presence of Orange Fort in south-423

eastern of the island is remarkable. This landmark first built by the Dutch in 1631 and424
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rebuilt by the Portuguese in 1654, serving as a military stronghold protective structure425

as shown in Fig. 8 (b). This place needs constant attention to the coastal managers, once426

it was abandoned for so long and nowadays restoration intention has been mentioned. It427

is also highlighted around the build location indicatives of coastal erosion processes with428

high coastal zone human impact, which can also be worsened by the tourism activities429

near the shoreline.430
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Figure 8: (a) Localization map of Orange Fort in Itamaraca Island, (b) satellite image considering low

tide and (c) Orange Fort photograph considering high tide period, presenting the sea almost covering

the front wall of it.

5.4. Coastal zone human impact classification using fuzzy model431

The fuzzy model is implemented to classify coastal zone human impact (Y ), and432

applied along the sectors defined in Fig. 4, based on the input data for five variables433

named as shoreline change erosion (X1 ), accretion (X2 ), stable (X3 ), NDVI (X4 ) and434

build up influence (X5). The linguistic classification results are represented in Table 4.435

Finally, the result is represented by a thematic map shown in Fig. 5 (c1, c2, c3, c4)436

according to the five sectors in the periods assessed.437

The fuzzy classification could belong to two classes at the same time, e.g., sector 2438

moderate/low over the periods 1996-2005 and 2005-2011. This flexibility represents the439

main advantage of the fuzzy classification, highlighting the main trends in the sector440

evaluated. For the periods 1989-1996, 1996-2005, 2005-2011 and 2011-2016 sectors 3, 4441

and 5 are with the same classification over time considered high, low and moderate/high,442

respectively.443
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Sector 5 indicated vegetation presence and less build up and showed moderate/high444

classification, representing an important sector to keep alert the authorities attention445

regarding settlement and preserving existing vegetation. The ones in red like sector 3446

means that particularly problems related to settlement influence nearshore, combined447

with low vegetation index and shoreline change (erosion) over years are causing the448

extreme human impact on coastal zone classification. Sector 1 had maintained the status449

of moderate/high during all the evaluated periods.450

Table 4: Linguistic classification results

Sectors 1989 to 1996 1996 to 2005 2005 to 2011 2011 to 2016

1 moderate/high moderate/high moderate/high moderate/high

2 moderate/high moderate/low moderate/low moderate/high

3 high high high high

4 low low low low

5 moderate/high moderate/high moderate/high moderate/high

5.5. Results Validation451

For validation process, a combination of ground reference data, i.e., samples and452

scenarios documented by photographs with coordinates (latitude and longitude) and a453

high resolution image (2016) from Google Earth Pro (Hritz , 2013) are used to validate454

the outcome of fuzzy final classification map (Fig. 5 c4). The field trip data is comparable455

only for the time when this field data collection took place and this data is not suitable456

for other temporal data i.e., 2011, 2005, 1996 and 1989. In this case, it is assumed by457

validating the last period (2011-2016) the outcome of this process could indicate the458

accuracy of the fuzzy model.459

For the 2016 a total of 17 samples are collected and documented for sectors 1, 2 and460

3. And to cover unaccessible sectors i.e., 4 and 5, a high resolution image of 2016 from461

Google Earth Pro (using image slider tool) is used to identified 16 samples to complete462

the ground reference data (Fig. 9). These particular locations representing 33 samples463
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are presented to a coastal geomorphology specialist, who had in mind the variables X1,464

X2, X3, X4 and X5 to establish the final “matching values” during accuracy assessment465

process. Table B.5 shows the outcome of this process and 81% of these locations are466

matching with the same samples obtained from fuzzy model results.467
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Figure 9: 33 samples (field and high resolution image) for 2016, this referenced data was used to

evaluate the results generated from the fuzzy model.

Fig. 10 shows four pictures (a, b, c and d) taken along Itamaraca Island in 2016. Fig.468

10 (a) shows an example of destroyed houses by shoreline erosion. The model output469

ranked this as high coastal zone human impact site, a situation confirmed from the in-470
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situ data and also by the specialist. Fig. 10 (b) represents a place ranked as high with471

shoreline erosion shown dying coconut trees due to the salt water bathing its roots (i.e.,472

salinity), Fig. 10 (c) shows a coastal erosion scarp and an erosion evidence, which is473

ranked by the model as high. Finally, Fig. 10 (d) presents a low site classified from the474

model showing a mangrove protection scenario. This in situ data is fundamental for the475

coastal analysis and also useful to validate the fuzzy model effectiveness.476

Figure 10: In-situ Assessment (a) destroyed houses, (b) coconut and vegetation affected by salinity (c)

coastal erosion scarp, (d) mangrove.

5.6. Fuzzy model applicability477

This study showed the feasibility of the fuzzy coastal zone impact classification using478

Itamaraca, Brazil as a case study. The inputs which have been used for the study are479

available globally for any region and could be obtained by Landsat data as main sources480

for those inputs. The methodologies which have been applied during this study could be481

implemented to obtain the required inputs for the fuzzy coastal zone impact assessment,482

for instance, NDVI, LULC (built-up area) and shoreline change. The rules are simple483
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and make possible to define the human impact levels on Itamaraca Island (Fig. 5). The484

fuzzy modeling is flexible in terms of inputs configuration, therefore, adapting it for other485

coastal zone study cases regionally or globally is might possible and feasible. For instance,486

it is desirable to including new input variables like floods information, population, sea487

level rise impact, among other variables that may be available and might enhance the488

final outcomes of the fuzzy model significantly.489

6. Conclusion490

The proposed fuzzy model provided a first attempt for coastal zone human impact491

classification through the integration of both scores and physical remotely sensed data492

using Itamaraca Island with five sectors as case study for 27 years of the Landsat data493

evaluation. The remarks of this work are:494

1. The proposed fuzzy model provides an alternative way to integrate data (e.g.,495

shoreline change, NDVI, and settlement influence) with ranking (i.e., low, moderate,496

high) for environmental analysis in multidisciplinary teams for detecting regional497

or global problems.498

2. It is possible for the fuzzy model to give a phenomenon (physical) interpretation to499

the coastal zone human impact classification, thus simplifying the specialists role of500

interpreting the results accurately, thereby adding robustness to the fuzzy model’s501

results.502

3. The implementation of the proposed fuzzy model by integrating shoreline change,503

NDVI, and settlement (i.e., geomorphological aspects, in-situ and satellite images)504

datasets shows improvement in evaluating coastal zone human impacts.505

4. From this validation, 81% of comparison matched, which corroborates the method-506

ology and its feasibility in the present study.507

5. Sector 3 was classified as high coastal zone human impact for Itamaraca island,508

where the importance of integrated coastal zone management considering the ac-509

tual scenario found in this area highlighted that the area required environmental510

conservation and preservation actions.511
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Appendix A. Fuzzy Rules513

Rule 1: If X1 εA1AndX2 εB1AndX3 ε C3AndX4 εD3AndX5 εE1 ThenY ε F1514

Rule 2: If X1 εA1AndX2 εB1AndX3 ε C2AndX4 εD2AndX5 εE1 ThenY ε F1;515

Rule 3: If X1 εA2AndX2 εB2AndX3 ε C2AndX4 εD2AndX5 εE2 ThenY ε F2;516

Rule 4: If X1 εA2AndX2 εB2AndX3 ε C2AndX4 εD3AndX5 εE3 ThenY ε F3517

Rule 5: If X1 εA3AndX2 εB2AndX3 ε C1AndX4 εD1AndX5 εE3 ThenY ε F3;518

Rule 6: If X1 εA3AndX2 εB2AndX3 ε C2AndX4 εD2AndX5 εE3 ThenY ε F3;519

Rule 7: If X1 εA2AndX2 εB3AndX3 ε C2AndX4 εD1AndX5 εE3 ThenY ε F3;520

Rule 8: If X1 εA2AndX2 εB2AndX3 ε C3AndX4 εD3AndX5 εE1 ThenY ε F3;521

Rule 9: If X1 εA2AndX2 εB1AndX3 ε C3AndX4 εD2AndX5 εE1 ThenY ε F1;522

Rule 10: If X1 εA2AndX2 εB2AndX3 ε C3AndX4 εD3AndX5 εE1 ThenY ε F1;523

Rule 11: If X1 εA3AndX5 εE3 ThenY εF3;524

Rule 12: If X2 εB1AndX3 ε C3AndX4 εD3ThenY εF1;525

Rule 13: If X3 ε C3AndX4 εD3ThenY εF1;526

Rule 14: If X2 εB1AndX3 ε C3ThenY εF1;527

Rule 15: If X2 εB3AndX3 ε C2AndX4 εD1ThenY εF3;528

Rule 16: If X1 εB2AndX4 εD2AndX5 εE2ThenY ε F2; and529

Rule 17: If X3 ε C1AndX4 εD2ThenY εF2.530
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Appendix B. Results Validation531

Table B.5: Validation

Samples High resolution image and in situ Fuzzy model Comparison

interpreted by a specialist classification

1 High Moderate/High Differente

2 Moderate/High Moderate/High Equal

3 Moderate/High Low Differente

4 Moderate/Low Low Differente

5 Moderate/Low Low Differente

6 High High Equal

7 High High Equal

8 High High Equal

9 High High Equal

10 High High Equal

11 High High Equal

12 High High Equal

13 High High Equal

14 High High Equal

15 High High Equal

16 Moderate/High High Differente

17 Low Low Equal

18 Low Low Equal

19 Low Low Equal

20 Low Low Equal

21 Moderate/Low Moderate/High Differente

22 Moderate/High Moderate/High Equal

23 Moderate/High Moderate/High Equal

24 Moderate/High Moderate/High Equal

25 Moderate/High Moderate/High Equal

26 Moderate/High Moderate/High Equal

27 Moderate/High Moderate/High Equal

28 Moderate/High Moderate/High Equal

29 Moderate/High Moderate/High Equal

30 Moderate/High Moderate/High Equal

31 Moderate/High Moderate/High Equal

32 Moderate/High Moderate/High Equal

33 Moderate/High Moderate/High Equal
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Rodŕıguez, M. G., Nicolodi, J. L., Gutiérrez, O. Q., Losada, V. C., Hermosa, A. E,699

2016. Brazilian coastal processes: wind, wave climate and sea level. In Brazilian Beach700

Systems (pp. 37-66). Springer, Cham.701

Ross, T.J., Booker, J.M. and Parkinson J.W., 2002. Fuzzy Logic and Probability Appli-702

cations: Bringing the Gap. ASA-SIAM Series on Statistics and Applied Mathematics,703

409p.704

Rosskopf, C. M., Di Paola, G., Atkinson, D. E., Rodŕıguez, G., and Walker, I. J. 2018.705
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