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16 Abstract

17 Yield prediction is a major determinant of many management decisions for crop production. Farmers 

18 and their advisors want user-friendly decision support tools for predicting yield. Simulation models 

19 can be used to accurately predict yield, but they are complex and difficult to parameterise. The goal of 

20 this study is to build a simple and parsimonious model for predicting wheat yields that can be 

21 implemented in a decision tool to be used by farmers at a paddock level.

22

23 A large yield data set accumulated from trials on commonly grown varieties in Western Australia is 

24 used to build and validate a generalised additive model (GAM) for predicting wheat yield. 

25 Explanatory variables tested included weather data and derivatives, geolocation, soil type, land 

26 capability, and wheat varieties. Model selection followed a forward stepwise approach in combination 

27 with cross-validation to select the smallest set of explanatory variables. The predictive performance is 

28 also evaluated using independent data. 

29

30 The final model uses seasonal water availability, location and year to predict wheat yield. Because the 

31 GAM model has minimal inputs, it can be easily employed in a decision tool to predict yield 

32 throughout the growing season using rainfall data up to the prediction date and either climatological 

33 averages or seasonal forecasts of rainfall for the remainder of the growing season. It also has the 

34 potential to be used as an input to agronomic models that predict the effect on yield of various 

35 management choices for fertilizer, pest, weed and disease management.

36

37 Keywords: Yield prediction; Waterlogging; Precision farming; Crop modelling; Crop water relations; 

38 Decision support

39

40
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41 1. Introduction

42 Grain production in Western Australia (WA) is located in the south-west of Australia and wheat is the 

43 main crop grown. The climate is Mediterranean, with broadacre cropping reliant on winter rainfall in 

44 a dryland system. Climate variability explains around 40% of total wheat yield variability in the 

45 Australian wheat belt, and in parts of WA that figure can be greater than 60% (Ray et al., 2015).

46

47 The WA grainbelt has experienced a 20% decline in winter rainfall since the 1970s due to southward 

48 shifts in rain-bearing synoptic systems (Bates et al., 2008; Hope et al., 2006). Despite the challenge of 

49 declining rainfall, grain growers have improved productivity; largely through better use of existing 

50 technologies, including decision support tools and precision agriculture technologies (Kingwell et al., 

51 2013). 

52

53 Decision support tools help farmers assess different tactical management choices by predicting their 

54 effects on crop yield and profit. Many incorporate agronomic models that apply Mitscherlich’s law of 

55 diminishing returns, which states that the increase in crop yield as a result of increasing a single 

56 growth factor is proportional to the decrease from the maximum yield that takes into account all other 

57 limiting factors (Mitscherlich, 1909).  For instance, this approach is used in decision support tools for 

58 nitrogen application in common use in WA such as ‘NPdecide’, ‘Select Your Nitrogen’ and its 

59 derivative the N-Broadacre mobile application (Bowden, 2003; Burgess et al., 1991). The user of 

60 these decision tools is required to input an estimate of maximum yield when nitrogen is not a limiting 

61 factor. In the absence of better information, many farmers and / or agricultural advisors using decision 

62 tools use an average estimate of yield. Given that wheat yields can vary considerably from year to 

63 year depending on the amount, frequency and timing of seasonal rainfall, the benefits of using 

64 decision support tools for on-farm management can be greatly improved with better prediction of 

65 yield to use in the tools.

66
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67 With further reduction in rainfall likely for WA (IOCI, 2012), improvements in the performance of 

68 decision support tools via better yield prediction can help grain growers maintain and / or continue to 

69 improve wheat yields despite a drying climate.

70

71 In addition, yield predictions can be applied regionally to support strategic decision-making and 

72 planning processes in agribusiness in the context of the increasing pressure on food security and 

73 sustainability. Predictions of crop yield before harvest can assist transport and storage planning, 

74 allowing grain handling organisations to best allocate resources in any given season. Crop yield 

75 predictions have been used as an aid in land use planning, determining crop insurance premiums 

76 (Abbaspour et al., 1992; Choudhury and Jones, 2014) and food supply considerations (Rosengrant et 

77 al., 2002), and considering future production in a changing climate (Ludwig and Asseng, 2006). 

78 Regional yield predictions can also be used to understand where and why gaps between potential and 

79 actual yield occur (van Ittersum et al., 2013).

80

81 Prediction of crop yield is usually by one of two methods: (1) crop simulation modelling or (2) 

82 statistical crop modelling. Crop simulation models, such as APSIM (Ahmed et al., 2016; Brown et al., 

83 2018; Keating et al., 2003; McCown et al., 1996; Yang et al., 2014), CERES (Lv et al., 2017; Ritchie 

84 et al., 1988), SWAP (Mokhtari et al., 2018; van Lier et al., 2015) and WOFOST (Boogaard et al., 

85 1998; Ma et al., 2013), use fundamental mechanisms of crop growth and development, soil and water 

86 processes to simulate plant growth in different scenarios. They are mathematical representations of 

87 the real-world situation and usually include sub-models for crop growth, soil water movement, 

88 fertiliser uptake and dissolution and more. Crop simulation models give accurate predictions of yield, 

89 but require extensive parameter inputs that describing characteristics of the modelled situation 

90 (including crop, soil, climate and crop management). Use of crop simulation models for on-farm 

91 decision making typical requires soil testing and meticulous calibration, often with the assistance of a 

92 specialised consultant (Hunt et al., 2006). For regional yield predictions, a generic set of typical model 

93 parameters are used, but these parameters will give inaccurate predictions for any individual location 

94 and are therefore not of use in decision support tools.
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95

96 Statistical crop models encode relationships between environmental and/or management factors and 

97 crop yield to make predictions. The most commonly used methods in WA are French and Schultz 

98 (F&S) type equations that relate the total amount of water available during the growing season with 

99 the potential non-water-limited yield possible in Australian dryland cropping systems (French and 

100 Schultz, 1984). They developed the following equation: Potential yield (kg/ha) = (Wavail – 

101 Evaporation) x WUE, where Wavail is the amount of water that is available during the growing  

102 season, defined as Wavail = RFS/3 + RFGS, where RFS is summer rainfall (November-March) and 

103 RFGS is growing season rainfall (April-October). French and Schultz estimated values of 110 mm for 

104 Evaporation and 20 kg/ha/mm for the water use efficiency (WUE).

105

106 A recent modification frequently used in WA is the broken stick method that specifies an upper limit 

107 to potential yield dependent on the plant available water capacity of the soil (Oliver et al., 2009). This 

108 has been shown to better account for waterlogging, which has adverse effects on the development and 

109 growth of wheat in Mediterranean-type environments (Turner, 1992). Both the F&S and broken stick 

110 methods have the advantage of being simple, easy to understand, and require minimal inputs and have 

111 been employed in decision support tools such as PYCAL (Tennant and Tennant, 2000), CliMate 

112 (https://climateapp.net.au) and the Department of Primary Industries and Regional Development 

113 (DPIRD) ‘Potential yield tool’ (https://www.agric.wa.gov.au/climate-weather/potential-yield-tool). 

114 However, these equations can be perceived as being too simple and they only provide a prediction of 

115 potential non-water-limited yield not actual yield. 

116

117 Outside of WA, the most common statistical method used for predicting crop yields is multiple linear 

118 regression (linear models) which has been used with covariates including seasonal climate data 

119 (Gornott and Wechsung, 2016; Landau et al., 2000; Lobell and Burke, 2010), remote sensing 

120 vegetation indices (Kern et al., 2018; Qader et al., 2018; Zhang et al., 2017) and crop water stress 

121 indices (Schut et al., 2009), using either simulated data from crop models or real data to train the 

122 models. Bayesian implementations of linear models have also been applied (Bornn and Zidek, 2012; 

https://climateapp.net.au
https://www.agric.wa.gov.au/climate-weather/potential-yield-tool
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123 Chipanshi et al., 2015), and partial least squares regression has been used to identify patterns in daily 

124 climate records that have use for predicting yield (Ceglar et al., 2016). Machine learning approaches 

125 to yield prediction from seasonal climate data include artificial neural network (ANN) models (Çakır 

126 et al., 2014; Das et al., 2018); random forests, which have been used at global and / or regional scales 

127 (Folberth et al., 2019; Jeong et al., 2016); and genetic programming algorithms (Ali et al., 2018).

128

129 The use of time series models, including auto-regressive integrated moving average (ARIMA) 

130 models, has been investigated for forecasting crop yields (Ali et al., 2015; Choudhury and Jones, 

131 2014; Craparo et al., 2015; Debnath et al., 2013). However, these models rely on the assumption that 

132 yield in any one year is related to that of the previous year and because wheat yields in WA vary 

133 considerably from year to year with seasonal rainfall, they are unsuitable for this study.

134

135 Motivated by the need for seasonal yield predictions for use in decision support tools for farmers, the 

136 objective of this study is to determine whether a large yield data set can be used to build a statistical 

137 model that combines the advantages of simple F&S type equations with added complexity, as 

138 required, to produce results akin to those of crop simulation models. The goal is to produce a model 

139 that is more accurate than simple linear equations while still having few, easily obtained inputs so that 

140 it can be implemented in a decision tool. For this reason, we limit climate inputs to seasonal 

141 summaries rather than daily data, and compare model outputs only with F&S and not with crop 

142 simulation models that require daily climate data as input.

143

144 A generalized additive model (GAM) is a generalized linear model in which the predictor depends 

145 linearly on unknown smooth functions of some predictor variables, and interest focuses on inference 

146 about these smooth functions. GAMs were originally developed to blend properties of generalized 

147 linear models with additive models (Hastie and Tibshirani, 1990). GAMs allow for flexible 

148 specification of the dependence of the response (yield) on covariates, by specifying the model in 

149 terms of smooth functions or ‘smooths’, rather than as detailed parametric relationships (Wood, 

150 2006). GAMs have a number of advantages that suggest their use for crop yield modelling – most 
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151 importantly that they capture nonlinear relationships as compared to multivariate linear regression. 

152 GAMs are easy to interpret by plotting fitted smooths against yield. Relationships between smooths 

153 and yield can be considered in light of existing knowledge to ensure that they are sensible. They can 

154 also identify hidden patterns in the data, potentially improving our understanding of crop-soil-weather 

155 interactions.

156

157 This study uses a large yield data set accumulated from variety trials on commonly grown and well-

158 adapted wheat varieties in WA. The data encompass a wide range of locations, soils and rainfall 

159 zones. Explanatory variables tested in the study were selected using existing knowledge and following 

160 consultation with local agronomists. They include weather data and derivatives, geolocation (latitude 

161 and longitude), soil type, differences in wheat variety and various classifications of wheat variety (eg. 

162 into classes of maturity type).

163

164 Forward stepwise model selection is used to build a GAM that has the smallest possible set of inputs 

165 required to predict yield. The forward selection process starts with the null model (i.e. intercept only 

166 model) and adds variables to the model one at a time. At each step, the ability of each additional 

167 explanatory variable to add predictive performance to the model is assessed using statistics for model 

168 selection that balance the ‘goodness of fit’ of the model with its complexity. The variable that 

169 provides the most improvement is then added to the model, until no further improvement is possible. 

170 At each step, cross-validation is applied to test the ability of the model to perform on unseen data and 

171 thus avoid overfitting. The final model is also tested using previously unseen data from a separate 

172 source.

173

174 This approach is used to build a simple and parsimonious GAM that reflects current understanding of 

175 how a wheat crop responds to seasonal rainfall, and how yields vary spatially and through time in 

176 WA. Because the GAM has minimal inputs, it can be easily employed in a decision tool to predict 

177 yield throughout the growing season using rainfall data up to the prediction date and either 

178 climatological averages or seasonal forecasts of rainfall for the remainder of the growing season. It 
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179 also has the potential to be used as an input to agronomic models that predict the effect on yield of 

180 various management choices for farm inputs, pest, weed and disease management.

181

182 2. Data 

183 2.1. Yield data

184 Variety trial data: A total of 25,505 observations from variety trials, including WA-based Crop 

185 Variety Trials (CVT) and National Variety Trials (NVT, http://www.nvtonline.com.au) in a 40-year 

186 period of 1975 2014 were considered in this study. The data include 109 varieties and 775 unique ‒

187 locations; however, the majority of varieties are not commonly grown and/or not well-adapted in 

188 Western Australia (WA). A panel of 26 varieties commonly grown and well-adapted in WA with a 

189 total of 17,701 observations were selected for the base model construction. Figure 1 shows the 

190 distribution of 775 locations in variety trials conducted in the WA grainbelt, overlaid on 30-year 

191 average rainfall (Garlinge 2005).

192

193 Focus paddock data: A total of 428 observations from 164 different Focus Paddocks (Harries et al., 

194 2015) over the period of 2010 2013 were used to test the predictive performance of the base model ‒

195 constructed using the variety trial data. Unlike the variety trial data which was specifically collected 

196 to determine performance differences between wheat varieties, the Focus Paddocks included data 

197 from operational wheat-growing farm paddocks. They were mainly distributed in the medium rainfall 

198 zones (see Figure S1) and were used in this study as an independent test of the fitted yield prediction 

199 model to help understand how the model might predict previously unseen, real paddock data.

200

201 2.2. Weather and derived data

202 Weather data for the nearest weather station to each trial location were extracted from the Patched 

203 Point Database (https://www.longpaddock.qld.gov.au/silo). Data derived from the daily weather 

204 include:

205
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206 Growing season available water (Wavail): The amount of water available for crop use in any growing 

207 season is defined to be one third of summer rainfall plus growing season rainfall.

208 30-year average rainfall: Average rainfall for years 1971 to 2000 (avgrf30) was used as a continuous 

209 surrogate for rainfall zone.

210

211 Early season rainfall: Early season rainfall (sumrf2m) is defined to be the sum of the first two months 

212 of rainfall occurring after germination.

213

214 Germination time: Germination time (gdoy) is estimated from daily rainfall using a common 

215 germination rule where germination is assumed to occur if there is 25mm of rainfall over three days 

216 after 25 April, or 5mm of rainfall over three days after 5 June.

217

218 2.3. Soil data

219 Soil type: The dominant soil types for each location were extracted from the soils database managed 

220 by the Department of Primary Industries and Regional Development (DPIRD). The soil groups were 

221 first classified according to their soil-landscape mapping (Purdie et al., 2004), and then simplified to 

222 six general functional types (soils) including clays, duplex, gravel, loamy, sandy and wet to reduce the 

223 number of categories for modelling. The classification of the agricultural soil groups to functionally 

224 simplified soil classes is shown in Table S1.

225

226 Land capability and qualities: A total of 19 variables related to land capability and qualities were 

227 derived from the Natural resource information (NRInfo) database maintained by DPIRD and other 

228 government agencies (https://www.agric.wa.gov.au/resource-assessment/nrinfo-western-australia). 

229 The in-silico land capability and qualities include variables of land evaluation for percentage of map 

230 unit for soil pH value, phosphorus export hazard, surface salinity, drainage potential, subsurface 

231 compaction susceptibility, water erosion hazard, waterlogging susceptibility, water repellence 

232 susceptibility, soil water storage, wind erosion hazard, and dryland cropping (van Gool et al., 2005). 
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233 A detailed description of the 19 variables related to the land capability and qualities is presented in 

234 Table S2.

235

236 Other explanatory variables of interest for the yield prediction model were also assessed, including 

237 wheat variety (variety) and maturity type (mattype).

238

239 3. Methodology

240 3.1. Modelling using GAMs

241 A generalised additive modelling (GAM) approach (Hastie and Tibshirani, 1990) is used for the yield 

242 prediction. In particular, we used the ‘gam’ function from R package ‘mgcv’ (Wood, 2006).

243

244 3.2. Model selection

245 A forward stepwise model selection is used to determine the optimal set of explanatory variables to 

246 use in the model. The forward selection process starts with the null model (i.e. intercept only model) 

247 and adds variables to the model one at a time. At each step, variables that provide the most 

248 information to the model are calculated using various statistics for model selection.

249

250 3.3. Statistics for model performance

251 Several model performance statistics were used for model selection and to assess the goodness-of-fit 

252 of the models including the Akaike information criterion (AIC) (Akaike, 1973), Bayesian information 

253 criterion (BIC) (Schwarz, 1978), root mean square error (RMSE), correlation coefficient (r) and 

254 coefficient of determination ( ).𝑅2

255

256 3.4. Cross validation

257 When fitting statistical models, the goodness-of-fit of the model must be balanced against model 

258 complexity in order to avoid overfitting. That is, to avoid building models that describe the data used 

259 to fit them very well but predict poorly on previously unseen data. To this end, the ‘gam’ function in 
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260 R package ‘mgcv’ can be used to fit smooth terms by generalised cross validation (GCV). GCV is 

261 based on a leave-one-out cross validation, where only one datum from the dataset is omitted from 

262 model fitting (Craven and Wahba, 1978). For small data sets, this results in reasonable smooths; 

263 however, for a large data set such as ours, this resulted in smooths that appeared to be over-fitted. We 

264 therefore applied a 5-fold-cross-validation (Geisser, 1993), to divide the variety trial data into 5 

265 testing and training sets with a 80:20 split of training to test GAMs at each step of the forwards model 

266 selection procedure.

267

268 3.5. Model checking with deviance residuals

269 The final fitted GAM was checked with deviance residuals. A variety of residual plots were 

270 examined, including normal Q-Q plot, residuals versus fitted values, histogram of residuals and 

271 response versus fitted values.

272

273 3.6. Bayesian analysis

274 Bayesian inference using Gibbs sampling approach was used for comparison to the GAM approach. 

275 The ‘jagam’ function in the ‘mgcv’ package in R was used to convert the best GAM model from 

276 the frequentist approach into a Bayesian ‘JAGS’ (Just Another Gibbs Sampler) model, following the 

277 approach outlined in Wood (2016). Applying the ‘jagam’ function converts the GAM into a 

278 Bayesian graphical model for simulation with ‘JAGS’, which can then be passed to ‘JAGS’ via the 

279 ‘rjags’ package in R. The following model diagnostics were applied to test the convergence of the 

280 Markov chain Monte Carlo (MCMC) simulations: Geweke's Z-score (Geweke, 1991), Gelman and 

281 Rubin's convergence diagnostic (Gelman and Rubin, 1992) and Heidelberger and Welch's 

282 convergence diagnostic (Heidelberger and Welch, 1983).  In addition, the convergence was also 

283 checked using a variety of plots, including a trace density plot, Gelman-Rubin-Brooks plot and 

284 Geweke-Brooks plot.

285

286 4. Results
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287 4.1. Exploratory data investigation

288 In the variety trial data, there are a large number of observations with the same location, variety and 

289 year, but with large within-cluster variation (see Figure S2). To reduce the within-cluster variance 

290 component, the data were aggregated over location, variety, and year. Thus, the average yield within 

291 the same location, year and variety was used for model construction. After aggregation, there were a 

292 total of 9,116 observations for the variety trial data set.

293

294 Figure 2 shows changes in mean yield and Wavail through time. The mean yield and Wavail with 

295 standard error of the mean (SEM) are shown in Table S3. There were obvious fluctuations of the 

296 mean yield and Wavail through the 40-year period, and the overall trends of the mean yield and 

297 Wavail differ markedly. The correlation between yield and Wavail in the early years of the variety 

298 trial data is much lower compared to that in the late years. This suggests that seasonal rainfall has 

299 played a more important role in crop production as the Wavail has gradually declined in WA. 

300 Regardless of the declining trend of Wavail, yield has gradually increased over these years. This could 

301 possibly be attributed to the improvement in crop management techniques and technologies, including 

302 crop breeding for better selection of varieties and timely sowing. For this reason, we have tested the 

303 year in which the trial was conducted as a potential variable in the model. 

304

305 Figure 3 shows the distribution of yield, and its relationship with explanatory variables Wavail, 

306 sumrf2m, avgrf30, germination time (gdoy), longitude (longi), latitude (lat), year, variety and soils. 

307 Because the data are from variety trials, a range of different varieties are planted simultaneously at 

308 each trial location causing a wide range in recorded yields shown in the y-axes. The correlation of 

309 yield with each continuous variable is marked on the plots in Figure 3, showing that seasonal 

310 available water, Wavail, has the highest correlation with yield. 

311

312 As may be expected, rainfall in the first two months after germination and 30-year average rainfall are 

313 correlated with Wavail, with correlations of 0.73 and 0.69 respectively. Both show similar, but 

314 weaker, relationships with yield as for Wavail. Germination time (gdoy) has a significant correlation 
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315 with yield (p-value  (Figure 3), which reflects regional knowledge that longer < 2.2 × 10 ‒ 16)

316 growing periods (i.e. earlier sowing) results in higher yields in the absence of other constraints such as 

317 frost damage.

318

319 Analysis of variance shows that inter-variety variation in yield is significant (p-value ); < 2.2 × 10 ‒ 16

320 however, the amount of variability in yield explained by variety is only 2.5%. The same is true for 

321 soils. Similarly, the five maturity types explained less than 0.5% of variability in yield.

322

323 4.2. Model selection

324 A selected list of models for water-limited yield with the best performance at each level is presented 

325 in Table 1, with the model formulae as specified in R. A full list of models for yield compared in this 

326 study, including model performance statistics, is presented as supplementary material Table S4. 

327 Seasonal water availability (Wavail) was selected as the first variable added by stepwise forward 

328 selection using a linear model. It had the greatest coefficient of determination ( ) compared to all of 𝑅2

329 the univariate analyses, showing that more variation can be explained by Wavail than any of the other 

330 explanatory variables. This supports our prior knowledge that seasonal rainfall is the main driver of 

331 yield in water-limited environments. Use of a GAM with the single explanatory variable Wavail, 

332 showed that using a smooth term provided a better fit and resulted in a lower AIC and RMSE than the 

333 linear model, and higher correlation coefficient and . Thus, the GAM with Wavail as a smooth (s) 𝑅2

334 term was selected as a base model. The degrees of freedom of the smooth are dictated by the 

335 dimension, k, of the spline basis used. We optimised k between numbers of 3 to 10 using 5-fold cross-

336 validation. According to the test statistics and examination of the smooth plots for Wavail, increasing 

337 k beyond 3 was not required because higher values only increased the complexity of the smooth while 

338 resulting in greater values of the AIC (see Table S4). Therefore, after the first step of forward model 

339 selection, the selected model had the form: yield ~ s(Wavail, k=3) (see Figure 4). The plot of the fitted 

340 smooth against yield shows that the partial effect of Wavail on yield reaches a maximum around 400 

341 mm, after which it starts to have a negative effect on yield (Figure 5a).
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342

343 The second step in the forward model selection tested the addition of smooth terms for each 

344 explanatory variable, as well as a two-dimensional smooth term fitted to capture the spatial correlated 

345 effect of geolocation, s(lat, longi). Adding the smooth term s(lat, longi) to the base model provided 

346 the greatest improvement, and it was therefore selected as the second covariate to add into the model. 

347 Five-fold cross validation showed that setting k equal to 6 was optimal. The contour plot for s(lat, 

348 longi) is similar to the grainbelt rainfall contours, and is a realistic representation of prior knowledge 

349 that yield decreases with both rainfall and distance from the Indian and Southern oceans (Figure 5b). 

350 After adding the second term, the model after performing the step 2 of forward selection is yield ~ 

351 s(Wavail, k=3) + s(lat, longi, k=6).

352

353 Following the same process, the third covariate to be added to the model was the variable year (Table 

354 1). There was no benefit gained by adding year as a smooth term, and therefore year was fitted in 

355 model as a linear effect.

356

357 Adding soil types to the model could provide slightly better model performance based on 5-fold cross-

358 validation (Figure 4), but the model does not inherently possess higher predictive power based on a 

359 test with out-of-sample data (i.e. Focus Paddocks data). Since this model is built for a predictive 

360 purpose, a simple and parsimonious model with few inputs was selected as the final fitted model: 

361 yield ~ s(Wavail, k=3) + s(lat, longi, k=6) + year.

362

363 4.3. Model checking with deviance residuals

364 The residual plots (Figure S3) indicate that the GAM model adequately fits the data, but there is a 

365 large amount of variability in the observed data that is not captured by the model. Because this model 

366 is not accounting for any kind of farm or paddock management (e.g. fertiliser applications, soil 

367 applications or weed, disease and pest management), this variability is expected.

368
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369 4.4. Spatial and temporal model diagnostics 

370 Figure 6 shows the GAM model predicted yields compared to the observed yield for each year in the 

371 variety trial data. The model clearly performs better in later years, most obviously 2000. This is likely 

372 due to the change in the relationship between Wavail and yield (see Figure 2). Figure S4 confirms 

373 this, and also shows that model performance is better in low to medium seasonal rainfall. 

374

375 4.5. Model performance using unseen data

376 The Focus Paddocks data were used as an independent test of the fitted yield prediction model. They 

377 were not used to fit the model. The correlation between observed and predicted yields was 0.549 and 

378 the RMSE was 0.948 tonnes/ha. Compared with the results of the 5-fold cross-validation, which 

379 showed a correlation of 0.655 and RMSE of 0.833 tonnes/ha calculate over the test sets. Figure 7 

380 shows the annual plots of observed versus predicted yield for the Focus Paddock data. The GAM 

381 model tends to under-predict yield for the Focus Paddocks, particularly in years 2011 and 2012. These 

382 years are both examples of types of years that have already been identified as years in which the 

383 model performs poorly: in 2011 there was a poor correlation between yield and Wavail in the variety 

384 trial data; and 2012 was a wetter year.

385

386 The plot for the smoothing term s(Wavail) in the GAM model is displayed over the Focus Paddock 

387 data in Figure S5a. This suggests the effect of Wavail on yield is approximately linear over this data 

388 set. Similarly the smoothing term s(lat, longi) using Focus Paddocks data is displayed in Figure S5b. 

389

390 4.6. Bayesian analysis 

391 The selected “best” GAM model was used to create a  Bayesian(‘JAGS) model code and data, which 

392 was then run using ‘JAGS’ to make inference about the model via Gibbs sampling. The trace and 

393 density plot, Gelman-Rubin-Brooks plot, and the Geweke-Brooks plot for all parameters in the Gibbs 

394 simulations are presented in Figure S6, Figure S7 and Figure S8, respectively. The Geweke 

395 convergence diagnostic suggests that there is a good equity of the means of the first (10%) and last 

396 part (50%) of a Markov chain. The Gelman-Rubin convergence diagnostic indicates that the output 
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397 from all chains is indistinguishable. The Heidelberger-Welch convergence diagnostic suggests that 

398 there is little evidence to reject the null hypothesis i.e. the Gibbs sampled values come from a 

399 stationary distribution. The results of these convergence diagnostics are presented in supplementary 

400 Table S5. Together, these diagnostics indicate that the fitted Bayesian ‘JAGS’ model adequately 

401 describes the variety trial data.

402

403 The resulting ‘JAGS’ predictions were similar to those of the original GAM model with (r = 0.999), 

404 suggesting that no benefit is gained by use of a full ‘JAGS’ implementation of this model.

405

406 4.7. Comparison with French & Schultz method 

407 The comparisons between the (traditional) GAM predicted yield and French & Schultz (F&S) 

408 potential yield using variety trial data and Focus Paddock data are presented in Figure S9 and Figure 

409 S10, respectively. The potential yield was estimated using the F&S approach with 120 mm as 

410 evaporation and 20 kg/ha.mm as the water use efficiency. In general, predicted yields are lower than 

411 potential yields, as would be expected. When Wavail is low, the GAM predicted yield is slightly 

412 higher than the potential yield estimated by F&S method (Figure S9d). 

413

414 5. Discussion

415 The model selection process used in this study ensured that goodness-of-fit was balanced against 

416 model complexity by adding explanatory variables one at a time, only if they added to the predictive 

417 ability of the model. This process showed that water availability is the major determinant of wheat 

418 yield in Western Australia. Based on a historical trial series from 1975 to 2014, the partial effect of 

419 Wavail on yield reaches a plateau around 400 mm, and then it starts to have a negative effect on yield 

420 (Figure 5a).

421

422 The second most important predictor is location. The partial effect of the combination of latitude and 

423 longitude is similar to the contour map of the rainfall zones. The addition of location to the model 
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424 adds to its predictive ability, indicating that the spatial effect is caused by more than rainfall patterns. 

425 The visualised contour plot of the effect of latitude and longitude on the GAM yield prediction is 

426 shown in Figure 8, in which the partial effect of latitudes and longitudes on yield are classified into 

427 six different contours i.e. 1.5, 2, 2.5, 3, 3.5 and 4 (see Figure 8). 

428

429 The third most important predictor is the year in which the crop is sown. This predictor is most likely 

430 capturing the increasing ability of WA grain growers to grow higher yielding crops despite decreasing 

431 rainfall, either by new technology or improved knowledge. Adding soil and variety covariates did not 

432 improve yield predictions, so the final fitted GAM predicts a mean yield across all varieties and soil 

433 types.

434

435 The simple and parsimonious GAM model developed in this study can be used as a base model for 

436 predicting yield that can potentially be integrated with agronomic models for predicting further effects 

437 of farm management for nutrition, pest, disease and weed management. The GAM model can be used 

438 to predict yields throughout the growing season using rainfall data up to the prediction date and either 

439 climatological averages or seasonal forecasts of rainfall for the remainder of the growing season, 

440 similar to the  ‘Rainfall to Date‘ tool that predicts growing season rainfall , developed by DPIRD in 

441 WA . The tool provides cumulative growing seasonal rainfall and projected seasonal rainfall finishes 

442 at a given date based on climatological history (https://www.agric.wa.gov.au/climate-weather/rainfall-

443 date). 

444

445 Model assessment showed better performance in more recent years, most obviously from 2000, that is 

446 likely due to changes in the relationship between available water and wheat yield. The model also 

447 performs better in years with low to medium rainfall, with a tendency to under-predict in high rainfall 

448 years. This pattern was supported by model validation using the independent Focus Paddocks data set.

449

450 Model validation suggests that the effect of Wavail on yield is approximately linear (Figure S5a) 

451 across the domain of the Focus Paddocks data. This is probably because the Focus Paddocks data are 
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452 mainly distributed in the medium rainfall zone, with few of the high Wavail values evident in the 

453 variety trial data. 

454

455 Comparison of the GAM predictions with the French & Schultz (F&S) potential yield showed that 

456 GAM predicted yields were generally lower than the F&S potential yield (Figure S9d and Figure 

457 S10d), as is expected because F&S aims to predict non-water-limited yield potential whereas the 

458 GAM is aiming to predict actual yield taking into account other constraints.

459

460 6. Conclusions

461 Variation in wheat yield in Western Australia can be described using a simple GAM model with 

462 minimal inputs derived from rainfall, latitude/longitude and year. This model can easily be developed 

463 into a user-friendly online tool for use by grain growers and their consultants. The model can be used 

464 to predict yields throughout the growing season using rainfall data up to the prediction date and either 

465 climatological averages (Hunt et al., 2006), or seasonal forecasts of rainfall as used by (Brown et al., 

466 2018) for the remainder of the growing season. It also has the potential to be used as an input to 

467 agronomic models that predict the effect on yield of various management choices for farm inputs, 

468 pest, weed and disease management.

469
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635 10.Tables

636

637 Table 1: Selected list of models for water-limited yield tested with cross validation in this study. 

Model Model_Formula Level
Corr 

(train)

Corr 

(test)

RMSE 

(train)

RMSE 

(test)

R2 

(train)

R2 

(test)

AIC 

(all)

BIC 

(all)

1 lm(yield~Wavail) 1 0.526 0.525 0.939 0.939 0.276 0.276 24723 24744

2 gam(yield~s(Wavail, k = 3)) 1 0.583 0.582 0.896 0.897 0.34 0.338 23884 23913

12 gam(yield~s(Wavail, k = 3) + s(longi, lat, k = 6)) 2 0.631 0.63 0.856 0.857 0.397 0.394 23049 23113

22 gam(yield~s(Wavail, k = 3) + s(longi, lat, k = 6) + year) 3 0.656 0.655 0.832 0.833 0.43 0.427 22546 22617

24

gam(yield~s(Wavail, k = 3) + s(longi, lat, k = 6) + s(year, k = 

4)) 3 0.658 0.656 0.831 0.833 0.431 0.427 22522 22607

32

gam(yield~s(Wavail, k = 3) + s(longi, lat, k = 6) + year + 

soils) 4 0.663 0.661 0.826 0.828 0.437 0.433 22425 22532

33

gam(yield~s(Wavail, k = 3, by = soils) + s(longi, lat, k = 6) + 

year) 4 0.661 0.659 0.828 0.83 0.434 0.428 22473 22614

638 k refers to the degree of freedom of the smooth function; Corr: correlation coefficient; 

639 †: A full list of models for yield tested with cross validation in this study is provided as supplementary information (Table S4).

640
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641 11.Figures

642

643 Figure 1: Map of the paddocks and patched point weather stations in variety trials with interpolation of 

644 avgrf30.
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646

647

648 Figure 2: Plots of yield and Wavail through time. Note: The error bars represent 2×SEM (standard error of 

649 the mean). The non-linear curves were fitted with natural cubic spline function with knot number of 3. The 

650 shaded region represents 95% confidence intervals for the smooth curves.

651
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652

653 Figure 3: Scatter plot / boxplot matrix for the response variable (yield) and some explanatory variables 

654 including Wavail, sumrf2m, avgrf30, day of germination (gdoy), latitude (lat), longitude (longi), year, 

655 variety and soils. Scatter plots are shown for the continuous variables and boxplots for the categorical 

656 variables. The points on the scatter plots are observed yield (from the aggregated data based on year, 

657 location (latitude/longitude), variety and soil type (n=9068)) and are coloured according to soil types 

658 (red=duplex, brown=clays, green=gravel, light blue=loamy, dark blue=sandy, purple=wet). Because the 

659 data are from variety trials, a range of different varieties are planted simultaneously at each location 

660 causing a wide range in recorded yields shown in the y-axes. The non-linear curves were fitted with 

661 natural cubic spline function with knot number of 3. The shaded region on the continuous variable plots 

662 represents the 95% confidence intervals for the smooth curves. For the continuous variables, the 

663 correlation of yield with each variable is displayed in the top left-hand corner. 
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664

665

666 Figure 4: Forward stepwise model selection using AIC. Each variable that was not already in the model 

667 was tested for inclusion in the model. The most significant variable of these variables was added to the 

668 model at each level. The model started with the null-model, and followed by adding variables to the model 

669 one at a time, and continued adding variables until none of remaining variables are significant when added 

670 to the model.

671
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672

673 Figure 5: The smooth plots a) for s(Wavail, k=3) and b) for s(lat, longi, k=6) terms in the “best” GAM 

674 model. Note: The shaded region represents approximate pointwise 95% confidence intervals, the vertical 

675 bars at the base of the plots represent a frequency plot of the predictor variable.

676
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677
678 Figure 6: Plot of the observed versus predicted yields by year (aggregated over variety and soils). The 

679 lines show the one-to-one relationship between observed and predicted yields.
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680

681
682 Figure 7: Plot of observed versus predicted yields by year, using the Focus Paddock data. The lines show 

683 the one-to-one relationship between observed and predicted yields.

684

685
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686

687

688 Figure 8: The visualised contour plot of the effect of latitude and longitude on the GAM yield prediction. 

689 The contour plot was interpolated from the predicted yield in tonnes/ha, in which year is set at median of 

690 the year in the variety trial data and uses the mean of Wavail.
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692 12.Online Supporting Information

693 12.1. Supplementary tables

694 Table S1: Classification of the agricultural soil groups (Ag_soil_desc) to the functionally simplified soil 

695 classes (Soil_6class).

696

697 Table S2: Description of the variables for land capability and qualities from the Natural resource 

698 information.

699

700 Table S3: Mean yield and available water by year.

701

702 Table S4: List of models for water-limited yield tested with cross validation in this study.

703

704 Table S5: Results of convergence diagnostics for Gibbs simulations.
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706 12.2. Supplementary figures

707 Figure S1: Map of the 164 location coordinates of Focus Paddocks with interpolation of avgrf30.

708

709 Figure S2: Plot of observed yield by year at the location of Newdegate Research Station (N=796) in the 

710 variety trial data set. Note: The scatter plots were labelled by variety, where red hallow-circle=Calingiri, 

711 green triangle=Carnamah, blue plus=Spear, gold cross=Tincurrin, purple diamond=Westonia, pink 

712 inverted triangle=Wyalkatchem.

713

714 Figure S3: Model checking of the best GAM model using the residual plots including normal Q-Q plot, 

715 residuals vs. fitted values, histogram of residuals and response vs. fitted values.

716

717 Figure S4: Plots showing how the correlation of annual observed (obs.yield) versus predicted yields 

718 (pred.yield) varies with (a) the correlation of observed yield with Wavail, and (b) mean annual Wavail. 

719 Note: the number in the circle represents the last two digits of the year.

720

721 Figure S5: The smooth plots for s(Wavail) and s(lat, longi) terms in the GAM model using Focus 

722 Paddocks data. Note: The shaded region represents approximate pointwise 95% confidence intervals, the 

723 vertical bars at the base of the plots represent a frequency plot of the predictor variable.

724

725 Figure S6: Trace and density plot for all of the parameters for the Gibbs simulations.

726

727 Figure S7: Gelman-Rubin-Brooks plot for all of the parameters for the Gibbs simulations.

728

729 Figure S8: Geweke-Brooks plot for all of the parameters for the Gibbs simulations.

730

731 Figure S9: Using the variety trial data, comparison of the predicted yields from the GAM model and the 

732 potential yields from the French & Schultz approach. Where a) observed yields versus the French & 

733 Schultz’s potential yields; b) observed yields versus the GAM predicted yields; c) GAM predicted yields 

734 versus French & Schultz’s potential yields; d) water available versus French & Schultz’s potential yields 

735 minus the GAM predicted yields. Note: The scatter plots were labelled by soil types (red hallow-

736 circle=duplex, green triangle=clays, blue plus=gravel, gold cross=loamy, purple diamond=sandy, pink 

737 inverted triangle=wet).

738

739 Figure S10: Using the Focus Paddocks data, comparison of the predicted yields from the GAM model and 

740 the potential yield from the French & Schultz approach. Where a) observed yields versus the French & 

741 Schultz’s potential yields; b) observed yields versus the GAM predicted yields; c) GAM predicted yields 
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742 versus French & Schultz’s potential yields; d) water available versus French & Schultz’s potential yields 

743 minus the GAM predicted yields. Note: The scatter plots were labelled by soil types (red hallow-

744 circle=duplex, green triangle=clays, blue plus=gravel, gold cross=loamy, purple diamond=sandy, pink 

745 inverted triangle=wet).

746




