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Abstract

The Swan River, Western Australia, is a valuable asset to the city of Perth. It is used for

transport, recreational fishing, water sports and is home to the symbolic black swan. In

2004, it was awarded the status of Western Australia’s first heritage icon. Its catchment

area includes farms and other nutrient inputs; however, warm weather, mixed with nutri-

ent run-off has, at times, caused toxic algal blooms, which require regular detection and

monitoring. Current monitoring methods are labour-intensive, point-based, and slow to

process in a laboratory before useful results are available to decision-makers.

Remote sensing of water quality has been successfully demonstrated in marine systems

where the water is relatively clear and the colour tends to be dominated by the phy-

toplankton. In comparison, the Swan River is a dark water colour which is dominated

by coloured dissolved organic matter (CDOM). Commonwealth Scientific and Industrial

Research Organisation (CSIRO) studies using remote sensing techniques to monitor al-

gae in the Swan River have reported that radiometric instruments, such as the Compact

Airborne Spectrographic Imager (CASI) are sensitive to radiometric spectral features but

are too expensive to use as regular monitoring tools. These studies have also suggested

that development of a hyperspectral boat-mounted radiometer and further classification

of water IOPs would be required to monitor the river water quality and conditions. This

study investigates whether such an instrument, along with existing established remote

sensing models and monitoring techniques can be used to measure the abundance of phy-

toplankton in the Swan River. In particular, it examines whether these techniques can

be used to improve and support the Swan-Canning Cleanup Program (SCCP) by mak-

ing continuous underway measurements between the ten discrete SCCP sample locations.

In this study, a hyperspectral radiometer was used to measure the remote sensing re-

flectance continuously along the SCCP water sampling sites. Water samples were mea-

sured in the laboratory for absorption by phytoplankton and gelbstoff, and in situ mea-

surements of particle scattering and other environmental ancillary data were collected.

A remote sensing optical model was used to investigate whether it was possible to derive

the concentration of phytoplankton in the Swan River from radiometric measurements

of remote sensing reflectance. It was found that it was possible to derive phytoplankton

concentration where gelbstoff absorption coefficients of ag(440) were between 0.00 m−1

and 3.402 m−1 and phytoplankton absorption coefficients of aφ(440) ranged between 0.00
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m−1 and 0.739 m−1 with an error up to ∼23% when compared to in situ measurements.

The model inversion uncertainty was ∼34% for the corresponding absorption coefficients.

For larger gelbstoff absorption coefficients of ag(440) between 3.402 m−1 and 5.573 m−1,

it was found that gelbstoff absorption was too high for the model to accurately determine

the phytoplankton levels. At these high concentrations of gelbstoff, the model often un-

derestimated the phytoplankton concentrations.

Unique mathematical techniques were developed to accomplish the outcomes of this work;

firstly, an approach to modeling the scattering of individual phytoplankton species was

developed, capable of modeling the spectral scattering of spheres, non-spherical particles

and modelling the scattering of multilayered volumes. This has future applications to

modeling site-specific SIOPs. Secondly, a mathematical inversion procedure was devel-

oped for improving IOP retrieval reliability in low light environments as well as estimating

derived IOP uncertainties from remote sensing reflectance. This approach has wider ap-

plications and can also be applied to other disciplines of science.

The outcomes of this research demonstrate that the model and methods used in this study

are capable of accurately estimating the phytoplankton concentrations in the Swan River

for a continuous transect encompassing and connecting half of the SCCP sample loca-

tions. This corresponds to approximately half (∼15 km) of the river monitoring program

assuming that the gelbstoff concentrations do not significantly increase over time at these

sites. For sites further up river, the gelbstoff absorption is too high to use the method

described, to accurately monitor the phytoplankton concentrations with confidence.
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Chapter 1

Introduction

1.1 Background

In February 2000, the Department of Health issued a health warning and closed the

Swan River Estuary for 12 days due to toxic levels of cyanobacteria; namely, blue-green

algae, (Swan River Trust, 2007). Between April and June 2003, a bloom of blue-green

algae killed thousands of fish in both the Swan and Canning rivers (Swan River Trust,

2007). When blue-green algae die, they release dangerous toxins into the water that can

accumulate in the gills of fish. These toxins include neurotoxins and hepatotoxins that

affect the brain, nervous system and liver of fish, as well as birds, animals and humans

that eat the affected fish. This can cause serious health problems in humans (Rao et al.,

2002; Zanchett and Oliveira-Filho, 2013) as well as the death of fish and other animals.

In 1999, a Swan-Canning Cleanup Program (SCCP) Action Plan was released which out-

lined the programs long-term objectives and the actions required to achieve them (Swan

River Trust 1999). Reducing the level of nutrient inflows to the estuary was one of the

key strategies to decreasing the frequency of phytoplankton blooms in the Swan-Canning

Estuary.

The Department of Parks and Wildlife (DPAW) and The Swan River Trust (later incor-

porated into DPAW) identify a range of factors which have the potential to impact on

the water quality and ecological health of the Swan River system (e.g. State of Western

Australia, 2017; Swan River Trust Riverview, 2015; Department of Parks and Wildlife,

2015; Swan River Trust, 2008; Swan River Trust, 2005).

The Swan Canning Riverpark, under the management of DPAW, was established in

2006. The current program guiding river monitoring is the Swan Canning River Protec-
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tion Strategy (SCRPS) through the Swan River Trust, started in 2015 and arising from

the Swan and Canning Rivers Management Act 2006 (Department of Parks and Wildlife,

2015). The DPAW was incorporated into the Department of Biodiversity, Conservation

and Attractions (DBCA) in July 2017 and it is acknowledged that the work conducted

and presented in this thesis was prior to this time. The relevance of the work presented

is contiguous throughout the changing department structures and therefore, for consis-

tency, the author refers to the program that existed, and under which this work was

funded and conducted, for the remainder of the thesis.

Monitoring programs such as the SCCP, require water samples to be taken from 16 (20

in summer) different sites along the river. These samples are taken back to a laboratory

where they are filtered, weighed, cell counts are conducted and the different phytoplank-

ton species are identified (Adeney, 2001). The measured cell counts are used to estimate

the biomass of different species of algae. This process takes up to three days to complete

before a report on the health of the river can be made public.

Making radiometric measurements of the Swan River is much faster than taking water

samples and can be done with much greater spatial and temporal resolution. Therefore,

radiometric monitoring of the Swan River has the potential to improve current programs,

such as the SCCP, by increasing the sample coverage of the project area and expediting

the release of health reports to the public.

Satellite remote sensing has been used to monitor the inherent optical properties (IOPs)

of ocean and coastal waters for many years. However, at the time of this study, freely

available satellite data did not have the spatial or spectral resolution to precisely map

IOPs for inland waterways such as the Swan River (Craig et al., 2006). Recent advances

in electronics have allowed ground and airborne sensors to be developed that have much

greater spectral and spatial resolution than that of satellites. This enables these sensors

to de-convolve much finer details in measured spectra and with more precise detail.

The purpose of this study is to investigate the optical properties of the Swan River and

identify if remote sensing techniques could be use to improve or support monitoring pro-

grams such as the SCCP. In particular, whether radiometric measurements can be used

to estimate algae concentration in the Swan River. A map of the Swan River and sam-

pling locations are shown in Figure 1.1 and the coordinates shown in Table 1.1.
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1.2 Significance

A report released by the Swan River Trust in 2007 entitled Potential Impacts of Climate

Change on the Swan and Canning Rivers suggests, due to rising sea-surface temperatures

and an increase in population density, an increase in eutrophication will result in dan-

gerous blue-green algal blooms occurring more frequently. For this reason, it would be

advantageous to develop a faster and more reliable monitoring method, so that hazards

can be better managed.

A report released by CSIRO (Jernakoff et al., 1996) on previous studies using remote

sensing to monitor algal blooms in the Swan River, found that airborne instruments such

as the CASI radiometer are sensitive to spectral features in the presence of moderate

concentrations of algal blooms but are logistically too difficult and too expensive to use

as regular monitoring tools. The report suggests developing a hyperspectral radiometer

very similar to the Curtin University developed, boat-mounted radiometer, DALEC and

further classification of water IOPs in low-to-moderate concentration levels is required.

This investigation was undertaken in response to the recommendations made by this re-

port.

1.3 Research Aim

The principle research aim of the study presented in this thesis was to establish whether

continuous underway measurements of remote sensing reflectance using the DALEC could

be used to improve and support river monitoring programs such as the SCCP by mak-

ing accurate measurements of phytoplankton at locations in between the discrete SCCP

sample locations along the Swan River.

This includes researching what new methodological techniques and localised inputs are

required to adapt current remote sensing optical models for use with inland waterbodies,

such as the Swan River, where the optical environment is dark and primarily dominated

by the absorption of light due to gelbstoff. Due to the wide diversity of phytoplankton

species found in the Swan River, resulting in a large variability in size and shape of the

phytoplankton. A new methodology that includes a complex scattering model using the

Finite Difference Time Domain algorithm was developed to accommodate this diversity.
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1.4 Objectives

To address the research aim, the research objectives included:

• Performing a review of the literature to determine the scope, limitations and sources

of uncertainty in regard to the current body of knowledge of using remote sensing

methodologies to measure phytoplankton.

• Conducting a comparative research assessment of Mie Theory and the Finite Differ-

ence Time Domain algorithms. Assessing whether modelling light scattering, with a

high degree of variability in shape and size of different phytoplankton species, ben-

efits from using the more advanced FDTD algorithm in order to improve results

with optical inversion of remote sensing models.

• Assessing existing remote sensing optical models, and determine their applicability

and limitations for use with the optically complex Swan River. Further, to develop

the inputs and computational tools needed to accurately model the Swan River’s

water colour, as required. Note that these optical models include radiative transfer

models, as well as bio-optical models, required for modelling the spectral inputs to

the radiative transfer equation.

• Developing new mathematical inversion methods that improve the inherent opti-

cal properties (IOPs) retrieval reliability in low light environments where the re-

lationship between remote sensing reflectance and IOPs have a highly non-linear

relationship.

• Develop a new methodology of estimating measurement uncertainties of IOPs cal-

culated from remote sensing reflectance.

• Applying the developed models and tools to investigate the sensitivity of remote

sensing reflectance with regard to a range of IOPs using synthetic data sets.

• Developing a method for calculating uncertainties of IOPs derived from remote

sensing reflectance.

• Developing an inversion algorithm and workflow capable of retrieving algal absorp-

tion concentration using the chosen optical model with inputs specific to the Swan

River. Moreover, develop a confidence interval and uncertainty range within which

estimates are deemed valid.
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• Assessing the accuracy of measuring phytoplankton abundance in the Swan River

using the research methods developed in this thesis.

• Developing an approach for using the DALEC, a boat-mounted radiometer, in the

field while using concurrent water samples to truth the results.

• Develop quality control algorithms to filter out erroneous data, such as sunglint

effects, measurements taken with the incorrect viewing geometry, and inversion

results that could not converge to a solution.

• Validating the accuracy of the phytoplankton-retrieval scheme by comparing re-

mote sensing reflectance derived measurements of phytoplankton with in situ water-

sampled laboratory measurements.

1.5 Structure of Thesis

Chapter 1, defines the scope and research objectives of this study, and outlines the struc-

ture of this thesis.

Chapter 2 is the literature review and survey of the field. This chapter begins by review-

ing both the importance of phytoplankton to the ecology of a waterbody as well as how

unsafe it can become when the growth and abundance of phytoplankton can increase

rapidly to form harmful algal blooms.

This chapter also reviews the different sensors that have been historically used to monitor

phytoplankton. Ranging from; Earth observation from space in the form of satellites,

airborne sensors used to monitor coastlines and large waterbodies, boat-mounted and

hand-held instruments used to monitor local waterbodies such as small rivers and lakes.

Various optical models used for monitoring phytoplankton are reviewed as well as the

important optically active constituents and the bio-optical models used to describe them.

The chapter concludes with a detailed assessment of the ecology of the Swan River. The

assessment discusses some of the ecological issues surrounding harmful algal blooms and

the river monitoring programs used to measure and monitor the water quality and health

of the river. Furthermore, optical studies and modelling of Swan River’s water quality

are discussed as well as attempts to characterise phytoplankton dynamics of the river.
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Chapter 3 is the comparative research assessment of Mie theory and the Finite Differ-

ence Time Domain technique. We begin this chapter by discussing the limitations of Mie

theory and how recent advances in computer hardware make more advanced modelling

techniques such FDTD possible.

This chapter derives the analytical solution to the spherical scattering equations first

described by Mie (1908), from the canonical Maxwell’s equations. The chapter continues

deriving the discretized form of the generalized scattering equations described by Yee

(1966). A comparison of the results are shown for spherical, cube and ’phytoplankton-

like’ shapes modelled in a computer simulation using both these methodologies.

The majority of this chapter is dedicated to using the FDTD method to simulate the

light scattering of various phytoplankton species and to compare the results to both lab-

oratory measurements made by Volten et al. (1998) and those approximated using Mie

theory.

Chapter 4 discusses the spectral absorption of phytoplankton cultured and grown at

Murdoch University’s Algae R & D Centre. The chapter describes the role of photosyn-

thetic pigments of phytoplankton and the relationship between those pigments and the

absorption of light. This chapter also describes, in detail, the methodology and results

of culturing phytoplankton in the laboratory as well as the phytoplankton specific ab-

sorption of the cultures.

Chapter 5 reviews the optical physics (radiative transfer) required to understand the na-

ture of the underwater light field, as well as the transition of light through the air/water

interface and the bio-optical models used in this thesis. Optical models that describe

IOPs as a function of remote sensing reflectance are discussed in detail and a comparison

and review of their limitations are shown. The justification for a chosen model is dis-

cussed as well as the inverse solution to the model. Furthermore, a novel technique for

solving the model in difficult and highly non-linear light environments is presented and

the method for using this technique to estimate the uncertainty of IOPs derived from the

model.

The chapter concludes by presenting a sensitivity analysis of the effect a small change

in phytoplankton has on the remote sensing reflectance in high CDOM environments.

The outcome of which, is used in the following chapter to help validate the uncertainty
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estimates of phytoplankton retrievals.

Chapter 6 is the detailed field survey conducted of the Swan River. This chapter details

the field work methodology including: calibration of equipment; making radiometric

measurements; taking in situ water samples; and laboratory techniques for processing

the water samples. Following sections present the field results, beginning with ‘spot’

measurements of radiometrically derived phytoplankton concentrations at each of the

SCCP Swan River sampling sites. This is followed by a full transect of the Swan River

where, radiometrically derived phytoplankton estimates were continuously made along

the length of the SCCP, and intersecting the water sample sites.

Chapter 7 is the main discussion of the results, uncertainties and validation. The efficacy

of using a boat-mounted radiometer to measure algae, and the validity of the results, are

presented in this chapter.

Chapter 8 presents conclusions; recommendations for future work; lessons learned; and

any remaining gaps in knowledge.
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Chapter 2

Literature Review

2.1 Introduction

The purpose of this chapter is to examine the current body of knowledge around measur-

ing the dominant phytoplankton pigment, chlorophyll-a, with optical models and remote

sensing instruments. In this chapter a broad view of the literature is taken, as it relates

to this thesis. In subsequent chapters, where relevant to that chapter, the literature is

reviewed in further depth.

2.2 Phytoplankton and Harmful Algal Blooms in In-

land Waters

Microscopic plants (phytoplankton) have a crucial effect on the ecology of a waterbody

because they oxygenate the water and contribute to the production of organic matter

through photosynthesis. There are tens of thousands of phytoplankton species around

the world (Jeffrey et al., 1997), almost all of which convert the sun’s energy to chemical

energy via photosynthesis (Chester, 2003). Only the visible part of the solar spectrum

can be captured by the ecosystem for photosynthesis, and the interface that couples it

to the sun is provided by the pigment molecules (principally chlorophyll, and associated

carotenoid pigments, Jeffrey et al., 1997) contained in phytoplankton. When anthro-

pogenic activity alters the balance of the natural system, phytoplankton often respond

by growing rapidly in vast numbers (i.e. blooms) and becoming a nuisance. Such nuisance

blooms are sometime referred to as harmful algal blooms (HAB), in particular when the

dominant bloom species is toxic to humans and animals, or they use up too much oxy-
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gen in a water body when they die, subsequently killing fish and lowering water quality

(e.g. Anderson et al., 2002). Cyanobacterial harmful algal blooms have been a major

cause for concern in aquatic ecosystems around the globe, with increasing pressure from

anthropogenic influence (e.g. Ogashawara et al., 2017a; IOCCG, 2014). Such blooms are

becoming increasingly common in lakes and rivers, and can be both economically and

environmentally devastating (e.g. Page et al., 2018; Clark et al., 2017; IOCCG, 2014;

IOCCG, 2008).

The term "inland waters" refer to lakes, reservoirs, rivers, ponds, swamps, wetlands, and

even coastal areas, and are usually extremely diverse environments with a wide range

of physical, chemical, and optical properties, and can be fresh, saline or brackish. In-

land waters only comprise a small percentage of Earth’s total land surface; however,

they play an essential role in the biogeochemical cycle (Bastviken et al., 2011) and are

extremely sensitive to environmental change, development pressure and land use cover

change (Ogashawara et al., 2017a) such as those described earlier in this section. Tradi-

tional field-based methods to monitor water quality, are usually costly and labour inten-

sive, and satellite remote sensing offers a low-cost, high frequency and broad coverage for

accurate monitoring inland water resources and isolating the natural and anthropogenic

stressors (e.g. Duan et al., 2010). Application of remote sensing techniques to inland

waters can be different from open ocean waters because of the variable composition of

water constituents. Concomitant use of bio-optical models to monitor optically active

water constituents, such as chlorophyll a, sediments, coloured dissolved organic matter

(explained and discussed in more detail later in this section and the thesis) has allowed

for increasing application of oceanographic and remote sensing theories and concepts in

inland waters. However, there is often a significant challenge to measuring IOPs due

to the spatial-temporal variability of water constituents at the same site. Yacobi et al.

(1995) and Huang et al. (2015), for example, show that the dominant constituent in the

water column at a study site may not only change spatially across short distances but

also across seasons and even daily. Australia, like many areas in the world, is experienc-

ing a growing concern over the increasing frequency and spatial extent of algal blooms in

inland and estuarine waterways caused by nutrient run-off from water treatment plants,

plant fertilisers and detergents (Jernakoff et al., 1996). These issues are examined fur-

ther later in this section, which a focus on a case study site, the Swan River Estuary

in Western Australia, which is particularly affected by cyanobacteria and dinoflagellate

species blooms.
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Natural resource managers and public health officials need cost effective and reliable tools

to detect and monitor HAB events so that mitigation actions can be effectively taken.

Traditionally, phytoplankton measurements and monitoring has been conducted in the

field, and continues to form an integral part of monitoring programs. Water samples

are taken for chlorophyll content assessment, and for algal cell counts of species present.

Measurement of the optical properties of water, as a descriptor for algal biomass are

also regularly conducted – as they absorb and scatter sunlight, phytoplankton exert

a profound influence on the in-water light field, including the flux upwards across the

water surface. Variations in phytoplankton communities change the optical properties

(e.g. IOCCG, 2014; Ruiz-Verdu et al., 2008; Richardson, 1996), for example the maxi-

mum cyanobacteria absorption peak in the red region is shifted into longer wavelengths,

probably caused by phycocyanin fluorescence at approximately 650 nm (IOCCG, 2014;

Ruiz-Verdu et al., 2008).

2.3 Multispectral and Hyperspectral Monitoring of Al-

gal Blooms

Radiometric remote sensing of coastal and inland water bodies is of interest to a wide

variety of research, management, and commercial users as well as the general public. The

past and current suite of satellite sensors are multispectral to optimize the detection of

phytoplankton pigments such as chlorophyll, chlorophyll fluorescence, and CDOM and

NAP absorption (Aurin and Dierssen, 2012; Gitelson et al., 2007; Lee et al., 2007a; Lee

et al., 2007b). However, they are mainly designed for observing the global ocean and not

necessarily for observing coastal and inland waters (Mouw et al., 2015).

Tyler et al. (2016), Mouw et al. (2015), and the IOCCG reports (e.g. IOCCG, 2008)

review in considerable detail the current application of satellite spectral radiometers to

coastal and inland waters. All highlight that while there is considerable potential for

large scale assessment, and synergistic multiscale observation, coastal and inland process

are not adequately captured by any existing or planned missions (Figure 2.1), and there

is a need for further algorithm development and validation for optically complex waters

(Bracher et al., 2017).
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verted to chlorophyll-a concentration as a proxy for biomass (e.g. IOCCG, 2000; Jeffrey

et al., 1997; Billy, 1986). Ocean colour radiometry by earth-orbiting spacecraft has al-

ready been conducted for some thirty years, and offers cost-effective, frequently acquired,

synoptic data pertaining to phytoplankton biomass in surface waters; it is thus of con-

siderable value to monitor and better understand primary production, phytoplankton

biomass, harmful algal blooms (e.g. IOCCG, 2008) and other environmental parameters.

The ability to fully and regularly monitor the Earth’s vast oceans is beyond the ability of

any ship-based campaign; being global in scope, the technology provides a large-scale view

of the marine ecosystem and offers a means to address outstanding issues such as climate

change on this scale. Ocean colour products are becoming more widely and more easily

accessible, and are central to the more effective use of ocean colour for HAB applications,

especially in coastal areas. Algorithm development is of considerable importance and a

number of programmes now exist globally aimed at making HAB information more avail-

able through web-based dissemination systems (IOCCG, 2008). Examples include the

ChloroGIN programme (Chlorophyll Globally Integrated Network)1, the S-3 Eurohabs

project2, utilising data from the Copernicus program, and the GEOHAB programme3, a

comparative approach across coastal ecosystems aiming to improve global understanding

of the ecology of potentially harmful phytoplankton blooms.

There are a number of missions providing freely accessible, research and climate quality

data, of which the main ones are reviewed here. The launch of one of the first Earth

Observing Satellites, the Earth Resources Technology Satellites 1 (ERTS-1) in 1972 lead

to the first bio-optical models (Gordon et al., 1975) which described the ocean colour

as a function of its biological constituents. Chlorophyll-a concentration was mapped in

lakes as early as 1974 from aircraft and satellite (Strong, 1974), and it was the first

parameter derived quantitatively from ocean color satellite sensors, and remains a focus

today (Morel and Antoine, 2000). The Coastal Zone Color Scanner (CZCS, launched

1978) was the first satellite scanner optimised for biological oceanography, in particular

chlorophyll-a (e.g. Gordon et al., 1983; Aiken et al., 1992). The sensor had four, 20 nm

visible spectral bands and one near-infrared (NIR) band used for atmospheric correction.

The CZCS was only a proof-of-concept mission, but was the first satellite to provide

oceanographers with a large temporal and spatial spread of global data. As such CZCS

data were unprecedented and unparalleled at the time and as a result have been used in

1http://www.chlorogin.org/
2https://www.s3eurohab.eu
3http://geohab.org/
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numerous studies on the dynamics of phytoplankton blooms, turbidity, and water quality

in marine waters including many focused on complex sea-shelf systems (e.g. Yoder et al.,

1987; Aarup et al., 1989). CZCS was primarily designed for ocean colour monitoring and

thus the coarse spatial resolution (825 m) of the data was suited only to the observation

of very large lake systems.

In 1997, the successor to CZCS, SeaWiFS (Sea-viewing Wide Field-of-view Sensor) was

launched providing oceanographers with two extra bands in the NIR for more accurate

atmospheric correction and a greater number of bands in the visible spectrum for better

chlorophyll-a estimates in optically complex water (Bricaud et al., 2001). While SeaW-

iFS offered improved spectral and radiometric resolutions it captured data at a coarse

spatial resolution (1.1 km) that limited its use over inland systems or close to the coast

where high spatial complexity exists in near-surface waters. Since SeaWiFS there have

been a number of generations of different satellites capable of monitoring chlorophyll

concentrations, and at a higher spatial resolution; for example MODIS-Terra (launched

1999) and MODIS-Aqua and MERIS (both launched in 2002) improved the spatial res-

olution of ocean colour data products down to 250-300m, every 1-3 days globally. The

Landsat program spans several decades at spatial resolutions down to 15m, and enables

continental, multi-temporal analysis and insights into surface water behaviour through

time (e.g. the Water Observation from Space product as described by Mueller et al.,

2016). At this resolution, the ability to observe spatial and temporal trends in water

quality in large lakes, lagoons and coastal waters was greatly enhanced and the poten-

tial for chlorophyll-a retrieval demonstrated (e.g. Palmer et al., 2015a in Lake Balaton,

Hungary, Feng et al., 2012 in Poyang Lake, Gitelson et al., 2007 in Chesapeake Bay).

Campbell et al. (2011) (for MERIS) and Odermatt et al. (2012) conclude that substan-

tial progress has been made in understanding and improving retrieval of constituents in

optically deep and complex waters, but that further validation and intercomparison of

spectral inversion procedures is needed. However, for smaller water bodies, these resolu-

tions remain too coarse (e.g. Tyler et al., 2016).

Different species of phytoplankton have varied chlorophyll-a concentration per cell mass

and can also have many different accessory pigments. Multispectral sensors, such as

OLI, Landsat 8 (albeit at a higher spatial resolution) or MODIS-Aqua are not capable of

spectrally separating waters dominated by cyanobacteria from waters dominated by other

algae species (Kutser et al., 2006) as they do not have the spectral band configuration ca-

pable of detecting absorption features caused by phycocyanin, a unique pigment present
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in all blue-green algae species (Olmanson et al., 2008; Jeffrey et al., 1997). Landsat 8 does

however show potential for detection of Coloured Dissolved Organic Matter (CDOM) re-

trieval (Olmanson et al., 2016) and Total Suspended Matter (TSM) retrieval Lymburner

et al. (2016) .

Of the newest generation of sensors (launched 2016-2018), the Copernicus Sentinel-2a and

2b, and Sentinel-3a and 3b satellites offer the greatest potential yet for coastal and inland

applications (Pahlevan and Scott, 2013). Sentinel-3a and 3b (operating in tandem as a

constellation) carry the Ocean Land Colour Instrument (OLCI), building on the heritage

of MERIS with daily observations on inland and ocean water quality, and with complete

global coverage at 300 m spatial resolution. These missions will be supported by higher

spatial resolution data from the Multispectral Instrument (MSI) on-board the Sentinel-2a

and 2b satellites, with sufficient spectral and radiometric resolutions for application over

turbid waters and with spatial resolution of 10-60 m. The planned operational lifetime

of the Sentinel series of satellites sets it apart from previous missions, with continuity

planned to 2030 and studies are emerging now examining the potential of Sentinel-2

(Johansen et al., 2018) and Sentinel-3 OLCI (Watanabe et al., 2018) chlorophyll-a algo-

rithms for near HAB detection and potential for near real-time monitoring in lakes and

rivers.

Ocean colour sensors with discrete spectral bands risk missing important spectral fea-

tures, especially in coastal and inland areas (Lee and Carder, 2002), and sensors with

higher spectral resolution, or spectrally placed bands, along with high spatial resolution

would be beneficial for such special and challenging cases (Lee et al., 2007a). The benefit

of increased spectral resolution is increasing attention toward the launch and use of hy-

perspectral sensors for phytoplankton detection; in particular, hyperspectral algorithm

development to address the limited (multi-spectral) applicability of satellite algorithms

determining phytoplankton composition for regional, especially coastal or inland, waters

(Bracher et al., 2017; Chase et al., 2017). Hyperspectral sensors measure the electro-

magnetic spectrum in numerous narrow bands. The high spectral resolution of systems

such as Hyperion (Pearlman et al., 2003) and HICO (Lucke et al., 2011) allow analy-

sis of narrow spectral features such as chlorophyll-a absorption. For example, Brando

and Dekker (2003) demonstrate that Hyperion has sufficient sensitivity to detect concen-

trations of coloured dissolved organic matter, chlorophyll, and suspended matter in the

complex waters of Moreton Bay in Western Australia. Giardino et al. (2015) also apply

a bio-optical inversion procedure to Multispectral Infrared Visible Imaging Spectrometer
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(MIVIS) data to retrieve suspended particulate matter (SPM), chlorophyll-a and CDOM

in optically deep turbid lake water. However, these systems lack the spatial resolution

for narrow waterways such as the Swan River.

Aside from the open access satellite campaigns, a number of commercial systems are

available, the potential of which has not been widely explored due to the financial cost

of acquiring the data, particularly if tasking is required (Tyler et al., 2016). Examples

include WorldView-2 and -3, Ikonos and Quickbird. These platforms offer very high

spatial resolution data (< 2 m) but lack the spectral range, sensitivity and regularity of

acquisition of the multi- and hyperspectral, and are too costly for use in algae monitoring

programmes.

2.3.2 Airborne Hyperspectral Remote Sensing

There have been many advances in application of hyperspectral systems over lakes and

other inland waters, in particular using airborne and in situ systems, again highlighting

the potential for remote sensing for inland water monitoring if, as noted previously, recent

achievements are progressed. Palmer et al. (2015b) and Dornhofer and Oppelt (2016)

provide some comprehensive overviews of these developments.

Hyperspectral sensors, mounted in small aircraft can also collect landscape images with

high spatial and spectral resolution. Some examples include the HyMap, Eagle, CASI-

2, AISA, EnMAP, HyspIRI and PRISMA and they offer the ability to collect several

hundred spectral bands of data in the infrared, visible and ultraviolet at a high-spatial

resolution, suitable for lake and other inland applications. Hestir et al. (2015) show that

high fidelity spectral and spatial resolutions are needed for freshwater ecosystem mea-

surements and that HyspIRI has unique capabilities for this. CASI provided 1.23 meter

ground resolution per 1 km of aircraft altitude. Hyperspectral sensors, such as this, can

be important sources of diagnostic information about a specific target’s absorption and

reflection characteristics. For example, Klonowski et al. (2003) conducted one of the most

extensive, fine scale (3.5m) bathymetric mapping studies, deriving light parameters over

a reef in Western Australia using the airborne HyMap imaging system (HyVista Corp.),

which records light into 126 spectral channels covering the 450nm to 2500nm spectral

range at a typical bandwidth of 15nm. Garcia et al. (2014) show that the precision of

bathymetric retrieval from HICO data is dependant on the shallow water inversion algo-
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rithm applied, but note that the atmospheric correction steps can add uncertainty that

can cumulatively render the geophysical parameter imprecise and potentially unusable.

HICO geolocation can also be inconsistent, posing issues for time-series analyses.

The expense of flying such an instrument is high and often negates the potential for

regular use in monitoring programs (e.g. Jernakoff et al., 1996). Hick (1997) presents

a thorough overview of airborne remote sensing applications in Western Australia, over

Geographe Bay and Peel Inlet, and using a CASI in the Swan River; this later site study

was published as a CSIRO technical report (Jernakoff et al., 1996) and is reviewed in

more detail later in this chapter.

2.3.3 Field-deployed Remote Sensing Instruments

Another option available for determining optical water properties is with hand-held or

field-deployed hyperspectral radiometers. A number of different types exist (described in

considerable detail in protocols documents such as the NASA protocols (Mueller et al.,

2003) and MERIS validation protocols (Barker, 2013a; Barker, 2013b). There are a wide

range of radiometers and deployment practices, see Barker (2013a) for all, from whose

data are widely used for satellite validation. They include subsurface fixed station in-

struments (e.g. those on BOUSSOLE and MOBY), above surface such as the TriOS

RAMSES fixed on "ships of opportunity" (ferries) in the Scandinavian countries, and

profiling radiometers such as the Satlantic, typically deployed in open ocean, clear water

environments.

Above water radiometers record the upward, water leaving reflectance and are more

suited to shallower water, more optically complex, environments. The DALEC is one

such example of these; developed in Australia it simultaneously measures sea and sky

radiance together with downwelling hemispherical irradiance during autonomous ship-

based deployments being a hand-held instrument held over the edge of a boat. The

DALEC (Keen et al., 2012) is used by IMOS (Integrated Marine Observing System)4 for

MODIS and VIIRS validation activities (Brando et al., 2016). An early prototype of the

DALEC was used in this thesis for reflectance measurements.

4http://imos.org.au/
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2.4 Optical Models for Measuring Phytoplankton

In this section, the concept of bio-opticals is introduced; the mathematical details are

examined further in Chapter 5, which is dedicated to describing all of the optical concepts

required for this study.

2.4.1 Bio-optical Models

The expression "bio-optical" was first used to describe the "state of ocean waters" (Smith

and Baker, 1977). Bio-optical models are based on radiometric quantities, inherent op-

tical properties (IOPs) and apparent optical properties (AOPs), such as downwelling

spectral solar and sky radiation and the absorption and scattering properties of con-

stituents in the water column. Studies by Cox and Munk (1954), Petzold (1972), Jerlov

(1968), Jerlov (1976), and Preisendorfer (1976), were some of the first attempts to use

mathematical, bio-optical models, to describe the colour of the oceans as a function of

their inherent optical properties.

The Inherent Optical Properties (IOPs) of a water column are defined as the spectral

absorption and spectral scattering coefficients of the water. The Apparent Optical Prop-

erties (AOPs) are a function of both the IOPs and the light field in which they are

measured. Detailed mathematical descriptions of these are covered in Chapter 5. The

function of bio-optical models is to quantify the Inherent Optical Properties (IOPs)

(Preisendorfer, 1976) as a function of their absorption and specific absorption as well as

their backscattering and specific backscattering (Mobley, 2001). Concentration normal-

ized IOPs are called specific inherent optical properties (SIOPs), and are used to describe

the optical absorption and scattering coefficients in terms of the specific concentration.

Remote sensing optical models are able to produce accurate predictions of IOPs in oceanic

and shallow water environments. However, IOPs vary not only across geographic regions

but also within the same site (Ogashawara et al., 2017a). Therefore, the optical complex-

ity of inland waterways require a much greater site-specific knowledge in order produce

similar results (Odermatt et al., 2012; Palmer et al., 2015b), and adequate databases for

inland waters like LIMNADES (Globolakes, 2014) are still in the evolving phase. Spec-

tral ambiguities and the diversity of composition and SIOPs introduces a fundamental

numerical problem to inversion; different combinations of water constituents can lead to

indistinguishable reflectance spectra (Defoin-Platel and Chami, 2007), making it difficult
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to create an inland optical model that generalises well for all water bodies (Cherukuru

et al., 2017).

2.4.2 In-water Constituents

Phytoplankton

The primary pigment in phytoplankton is chlorophyll-a and is the most suitable proxy

for phytoplankton abundance (Huot et al., 2007). Chlorophyll-a absorbs in the red and

the blue part of the electromagnetic spectrum and reflects in the green. This is what

gives phytoplankton its green colour. Phytoplankton contains accessory pigments that

in different combinations can alter the colour slightly. Different species of phytoplankton

are known to contain different combinations of these accessory pigments and have been

used to classify phytoplankton into different ecological functional groups (Nair et al.,

2008; Brewin et al., 2011; IOCCG, 2014).

There are numerous bio-optical models describing phytoplankton. One of the first phy-

toplankton bio-optical models was described by Bricaud et al. (1995) which was an an-

alytical model derived by inverting a model of remote sensing reflectance. Since then

a number of other quasi-analytical (Li et al., 2013), semi-analytical (Vos et al., 2003;

Mishra and Mishra, 2012), and empirical (Allan et al., 2015) bio-optical models of phyto-

plankton have been developed. These models have been developed for ocean waters and

bio-optical models describing inland waters and lakes are still remain lacking due to the

complexity of the optical environments indicative of these waters. Aurin and Dierssen

(2012) highlight, in a study of the CDOM dominated Long Island Sound Estuary, that

diverse phytoplankton assemblages create variability between spectral absorption and

chlorophyll.

Bio-optical models describing phytoplankton for inland waters are highly site specific and

models need to be ‘tuned’ for local conditions, explained in detail in Matthews (2017)

and shown by Cherukuru et al. (2017) for specific inherent optical properties and spectral

slopes of IOPs.
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Coloured Dissolved Organic Matter (CDOM)

Ocean colour is mostly dominated by the concentration of phytoplankton and are often

described as Case-I waters (Morel and Prieur (1977); Gordon and Morel (1983). Lakes

and inland waterways however, are very commonly dominated by Coloured Dissolved

Organic Matter (CDOM), the compounds of which are produced during the decay of

plant matter and consist of various humic acids and fulvic acids or melanoids. Typical

CDOM concentration ranges in absorption at 440 nm ranges from 0 to 0.16m−1 in the

open oceans, but from 0.004 to 3.82m−1 in coastal areas and from 0.06 to 19.1m−1 in

inland waters (Kirk, 1983). Furthermore, the absorption range of CDOM has been found

to span 4 orders of magnitude in a single inland lake (Gons et al., 2008).

Scattering of CDOM is small and commonly ignored, yet fluorescence may be significant

and should be accounted for in radiative transfer models at high concentrations (Pozd-

nyakov et al., 2002). Although CDOM is an important water quality characteristic,

CDOM fluorescence is not well studied in inland waters or included into routine water

water quality monitoring programs (Olmanson et al., 2016), and a bio-optical model that

describes CDOM fluorescence is lacking (Kutser et al., 2017). However, CDOM is a ma-

jor optical component of rivers and inland water and as such it is necessary to describe

the optical characteristics and their effect on remote sensing reflectance if remote sensing

is going to be used to monitor them (Mouw et al., 2015). Efforts to measure and monitor

the impact of elevated nutrient and organic loads in the Swan River are discussed later in

this chapter and the detailed bio-optical model describing CDOM is explained in Chapter

5.

Total Suspended Sediment (TSS) and Non-algal Particles (NAP)

All water bodies have a number of different types of suspended particles ranging from

soil and sand from rain runoff, silt disturbed from the bottom to phytoplankton, bacteria

and other dead cells. The sum of all these particulates is the Total Suspended Sediment

(TSS) or often referred to as Total Suspended Matter (TSM).

The size distribution of TSS is roughly hyperbolic (Bader, 1970) and varies greatly de-

pending on water body type, location and environmental conditions. Although the size

distribution of particles is wide in range, small particles do not backscatter as efficiently

as larger particles and as such, backscattering in natural waters are most frequently
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dominated by particles with a diameter greater than 2µm (Jerlov, 1976). The total

backscattering due to TSS ranges from about 0.2% to 3% (Chami et al., 2005; Antoine

et al., 2011) for oceanic waters. The total scattering for inland waterways is much more

site specific and typical values are much harder to report (e.g. Ogashawara et al., 2017b).

TSS without phytoplankton is known as detritus or non-algal particles, and the inorganic

fraction of TSS is tripton. The absorption of detritus and tripton can be modelled using

a similar bio-optical model to CDOM but with a spectral slope typically much less than

for CDOM (Ogashawara et al., 2017b).

2.4.3 Semi-analytical and Quasi-analytical Models

Semi-analytical and quasi-analytical models describe IOPs as a function of water’s AOPs,

usually the remote sensing reflectance. One of the first semi-analytical optical models

is described in Gordon et al. (1975) and Gordon et al. (1988) which defines the re-

mote sensing reflectance just below the water surface as a function of the absorption to

backscattering ratio. Inversion of the optical model allows the optical properties of the

water to be derived from the sub-surface remote sensing reflectance. The details of how

the the IOPs can be derived from an optical model though mathematical inversion are

discussed in detail in the following chapters.

The first multi-spectral method of deriving absorption and chlorophyll-a from the Moderate-

Resolution Imaging Spectrometer (MODIS) satellite was developed by Carder et al.

(1999). This model was one of the early models able to produce daily global phyto-

plankton and chlorophyll estimates. One of the limitations of the MODIS sensor and the

Carder et al. (1999) model is that is it not possible to separate the CDOM and detritus

absorption spectra, which potentially reduces the accuracy of the phytoplankton retrieval.

The Quasi-Analytical Algorithm (QAA) was developed by Lee et al. (2002) to derive

inherent optical properties of optically deep waters from remote sensing reflectance. The

model takes a two step approach to deriving IOPs; the first step derives the total absorp-

tion and backscattering coefficients and the second step decomposes the total coefficients

into the optically active constituent absorption and backscattering coefficients. Unlike

the Carder MODIS-specific model, QAA is adaptable to both multispectral and hyper-

spectral instrument data, making it adaptable for any radiometric sensor, from satellite
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to field instruments (IOCCG, 2000).

With advances in sensor technology, greater spectral bandwidth is available and more so-

phisticated models have been developed to make use of this information. With increased

spectral resolution comes the ability to discern between a greater number of IOPs that can

be considered spectrally similar by means of spectral pattern matching. Five such models

are HOPE (Lee et al., 1999), BRUCE (Klonowski et al., 2007), SAMBUCA (Brando and

Dekker, 2003), CRISTAL (Mobley and Bisset, 2011), and ALUT (Hedley et al., 2009),

all of which are able to retrieve IOP estimates as well as bathymetric depth in shallow

water environments.

CRISTAL forward estimates remote sensing reflectance from many different combina-

tions of IOPs and environmental conditions, using the commercially available software

Hydrolight (Mobley and Sundman, 2001). The inverse of the process, finding IOPs from

remote sensing reflectance, is then achieved by an exhaustive search through a lookup

table of reflectance IOP pairs. HOPE removes the requirement of a lookup table by fit-

ting a semi-analytical mathematical model to reflectance data produced by Hydrolight,

which reduces the computational requirement and processing time. The inverse process is

then achieved through the use of a predictor-corrector algorithm which matches the best

combination of IOPs and bottom depth from the model with measured remote sensing

reflectance.

ALUT takes a hybrid approach of both CRISTAL and HOPE by producing an adaptive

lookup table generated from HOPE. The adaptive lookup table is optimised and reduced

in size compared to CRISTAL by pruning the lookup table so that the reflectance data

is equidistant in reflectance spectra (Hedley et al., 2009). This results in a more efficient,

smaller and faster lookup table than CRISTAL.

Both BRUCE and SAMBUCA are canonical variants of HOPE. BRUCE has been opti-

mised to retrieve bathymetric depth as well as benthic class by finding the best match

of different end-members of benthic spectra (Klonowski et al., 2007). SAMBUCA has

been optimised to retrieve SIOPS by differentiating the spectral properties of the algal

and non-algal particles.

Dekker et al. (2011) compare all these models for accuracy and efficiency for bathymetry

mapping, with a view to resource management application and concludes that none of
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the models compared are optimal for all situations. However, this intercomparison was

conducted in a shallow water coastal environment and there still remains a paucity of

information on the performance of these models in inland waterways such as rivers.

2.4.4 Uncertainty in Bio-optical Models

Key to understanding remote sensing and optical model products is the estimation of

uncertainties associated with the inputs and algorithm parameters; this applies to both

satellite (or airborne) and in situ measurements (Bracher et al., 2017; Wang et al., 2005b;

IOCCG, 2006). For example, semi-analytical models are affected by uncertainties in re-

mote sensing reflectance but they are also influenced by uncertainties associated with the

chosen relationship between Rrs and IOPs, and uncertainties resulting from the assump-

tions used in their formulation. The complex interaction among the water constituents,

which is often intensified by anthropogenic actions, creates greater uncertainty in remote

sensing models designed for inland waters (Ogashawara et al., 2017a).

It is a major gap in using ocean colour to estimate phytoplankton from space for a

number of reasons including a lack of quantitative uncertainty estimates provided with

satellite data and the in situ measurements used for validation (Bracher et al., 2017).

This becomes a compounding, propagating issue in inversion modelling, and as Wang

et al. (2005b) and IOCCG (2006) explain, data products retrieved from the inversion of

in situ or remotely sensed ocean-colour data are generally distributed or reported without

estimates of their uncertainties. It therefore remains a challenge to improve and develop

methodologies for uncertainty quantification.

2.5 Phytoplankton in the Swan River

2.5.1 Ecological Issues in the Swan River

The Swan and Canning rivers flow through the centre of metropolitan Perth, a city of

more than two million people. The Swan River is 72km long and together with the

Canning and their tributaries, drain a catchment area of 2090km2. Algae are a natural

part of the rivers and estuary and an important part of the ecosystem, as they are in

waterways throughout the world.
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The Department of Parks and Wildlife and The Swan River Trust identify a range of fac-

tors which have the potential to impact on the water quality and ecological health of the

Swan River system (e.g. Swan River Trust, 2017; Department Of Parks And Wildlife,

2015; Swan River Trust, 2008; Swan River Trust, 2005). There is also a reasonably

large body of literature describing zooplankton (Griffin et al., 2001) and phytoplankton

species distribution in relation to organic and inorganic nutrient loading (e.g. Thomp-

son and Hosja, 1996; Pennifold and Davis, 2001; Hamilton et al., 2006; Robson and

Hamilton, 2003; Petrone, 2010; Fellman et al., 2011), oxygenation levels (e.g. Tweedley

et al., 2016), and hydrological process (e.g. Chan and Hamilton, 2001; Chan et al., 2002;

Hipsey et al., 2013) in the Swan River. Field monitoring and reporting focus on key an-

alytes including nitrogen, dissolved organic nitrogen, soluble reactive phosphorus, silica,

dissolved organic carbon, total suspended solids, alkalinity, chlorophyll-a, secchi depth,

phytoplankton, dissolved oxygen, salinity, temperature and pH (Thompson et al., 2001;

Department Of Water, 2016).

A non-nutrient contaminant measurement program was conducted by DPAW, along the

Swann Canning river system, and in particular in the vicinity of Claisebook Cove (closest

to Nile Street on the SCCP measurement program and a sample site for this thesis). The

field monitoring and reporting focuses on key analytes including metals, petroleum hy-

drocarbons and nitrogen, dissolved organic nitrogen, soluble reactive phosphorus, silica,

dissolved organic carbon, total suspended solids, alkalinity, chlorophyll-a, secchi depth,

phytoplankton, dissolved oxygen, salinity, temperature and pH. Many of these contam-

inants bind to sediment particles and settle on to the riverbed, and contaminated sedi-

ments may be re-mobilised if disturbed through activities such as dredging. A number

of reports are publically available throughout the DPAW website detailing the issues and

monitoring processes along the river, including Thompson et al. (2001), Evans (2009),

Foulsham et al. (2009), Nice (2013), Fisher (2013) and Department Of Water (2016).

In summary, vast tracts of the Riverpark’s catchment area have been cleared for agricul-

ture and development, allowing sediment, nutrients, and other contaminants to enter the

waterway (Department Of Parks And Wildlife, 2015). Permanent changes to the ground-

water and surface water drainage systems and reduced rainfall over time have resulted

in excess nutrients (phosphorus and nitrogen) and organic loading from urban and rural

catchments, promoting excess algal growth and lowering oxygen conditions which in turn

contributes to fish kills. Contaminants such as heavy metals, pesticides and herbicides,

also entering the waterway through the drainage network, can be directly toxic to organ-
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isms, affect life cycles and enter the food chain.

Most algal blooms are harmless, they may discolour the water but do not pose a prob-

lem for the rivers, wildlife or humans; however on occasion they are toxic. John and

Kemp (2006) report that bloom events of potentially toxic species increased in the Swan

River over a 20 year period, and since 1993, blooms of potentially toxic Anabaena species

have occurred in the Canning River. In 2000 the Swan River estuary also experienced

a prolonged toxic bloom of the cyanobacteria Microcystis aeruginosa for the first time,

influenced by the physical process in the estuary (Robson and Hamilton, 2003).

2.5.2 Seasonal and Site Variation in Phytoplankton

The Swan River is highly variable in phytoplankton species succession, both temporally

and spatially. Some phytoplankton species can reproduce very rapidly, doubling their

numbers in two hours to a few days under favourable conditions, and blooms can co-

occur and overlap in both time and location (Swan River Trust, 2005; Huang et al., 2017).

The estuary has a highly seasonal hydrology and typical successions of various phyto-

plankton species are observed throughout the year (Thompson and Hosja, 1996; Chan

and Hamilton, 2001; Brearley and Hodgkin, 2005). There are hundreds of species of

algae in the river, demonstrated by Hipsey et al. (2016b) (see Appendix A), dominated

by green diatom, dinoflagellate, chlorophyte, cyanobacteria and cryptophyte species and

encompassing a broad range of sizes (picoplankton to micron) and shapes (flagellated,

round, cylindrical, chain forming etc). Dominant species distribution and succession is

evident in the Hipsey et al. (2016b) report; highly variably by both site and season, driven

by seasonal rainfall, and the subsequent changes in the spatial distribution of salinity and

nutrients (John, 1984; John, 1987; Hodgkin, 1987; Twomey and John, 2001; Chan and

Hamilton, 2001; Latchford et al., 2003; Swan River Trust, 2008; Department Of Parks

And Wildlife, 2015).

Frequent blooms of problematic dinoflagellate species are of particular concern in the

mid-upper estuary reaches ( 20 to 40km from the mouth; sites NIL up to SUC), with

chlorophyll-a concentration increasing over relatively short distances to more than dou-

ble (>20µg/L) that of the lower reaches (BLA to NAR) during bloom events (e.g. Swan

River Trust, 2005). Modeling efforts (e.g. Hipsey et al., 2016b; Hipsey et al., 2016a;
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Huang et al., 2017) also indicate phytoplankton complexity in the middle Swan region.

Relatively low summertime phytoplankton activity and chlorophyll-a concentrations (0-

10µg/L) in the lower estuary the lower estuary is attributed to nitrogen limitation, due

to tidal flushing with marine waters (Thompson et al., 2001).

2.5.3 Swan River Monitoring Programmes

The Swan Canning Riverpark, under the management of DPAW, was established in 2006,

and encompasses 72.1km2 of public land and adjoining river reserve including the water-

ways and adjacent Crown land reserves. The department works closely with other State

Government agencies, local government authorities, community groups and research in-

stitutions (such as CSIRO) to manage the health of the ecosystem. The current program

guiding this is this the Swan Canning River Protection Strategy (SCRPS) through the

Swan River Trust, released in 2015 and arising from the Swan and Canning Rivers Man-

agement Act 2006 (Department Of Parks And Wildlife, 2015). The SCRPS has a number

of objectives focussed on water quality (e.g. extent and severity of low oxygen and algal

blooms) and water flow management, foreshore condition, biological indicators including

fish and seagrasses, and an overarching protection, management and communications

strategy. The Strategy report (Department Of Parks And Wildlife, 2015). details the

coordinated management approaches for the ecological health measures undertaken to

complement water quality monitoring and reporting, and releases progress reports and

newsletters on the department website to ensure effective communication to a wide range

of stakeholders (e.g. Swan River Trust, 2017; Department Of Parks And Wildlife, 2015).

The SCRPS is informed by two predecessor programs and a number of research studies

focused on the phytoplankton ecology of the Swan River and factors influencing growth

and events. The Swan Canning Cleanup Program (SCCP) ran from 1999 - 2004, and

was launched by the Swan River Trust to tackle the increasing incidences of algal blooms

in the Swan Canning river system (Thompson et al., 2001). The SCCP informed the

development of the Healthy Rivers Action Plan (Swan River Trust, 2008), 2008-2013,

and which, when reviewed in 2014 was found to have been effective with 78% of targeted

actions to improve water quality accomplished.
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2.5.4 Optical Studies and Modelling in the Swan River

While there is a strong body of work around the drivers of various aspects of water

quality, there remains little in terms of the role of the optical properties of the water,

as determined by CDOM and TSS presence. Even less exists around the application

of optical models and/or radiometric sensors (hand-held, airborne or satellite based) as

a potential monitoring technique for the Swan River estuary, either in complement to

existing and well establish field monitoring program methods (e.g. hand-held instru-

mentation) or on the wider spatial scale (airborne or satellite). Water optical properties

determine the underwater light climate, which is important for plant growth as well as

water appearance. In the Swan River estuary, the light climate varies considerably over

the length of the domain and throughout the year Kostoglidis et al. (2005), and light

attenuation (Kd) exhibits strong variability associated with pulses of CDOM-rich inflow

water. Kostoglidis et al. (2005) demonstrate that CDOM is the most significant factor

explaining variability in Kd, with contributions from TSS. Hipsey et al. (2016b) and

Hipsey et al. (2016a) go some way to identify this gap in optical property knowledge by

evaluating much of the existing body of work, to take a consensus view on the most ap-

propriate model complexity and parameterisation approach for an "Estuarine Response

Model" platform to assist decision making. They review modelling efforts to date, mainly

around sediment, nutrient, oxygen, salinity fluxes, and the turbidity work of Kostoglidis

et al. (2005), in an effort to assess the estuary’s ability to respond to multiple stressors

over the short and long term, and conclude that making targeted management action is

compounded i) these models have either a short term focus or low level of predictabil-

ity in terms of management priorities, and ii) bloom occurrence is not due to a single

limiting factor (salinity, nutrient levels or light climate), but rather a "coalescence of

variable factors", agreeing with the conclusions and findings of Hamilton et al. (2006)

and Thompson (1998). A follow up report (Huang et al., 2017) around the validation of

the Swan Canning Estuarine Response Model (SCERM v2), was unable to achieve good

model performance for total chlorophyll-a retrieval, suggesting that an improvement to

water quality algorithms (including sediment load and light) are required, among other

reasons (e.g. sampling frequency, boundary marking). Huang et al. (2017) also recom-

mend that i) higher frequency data, such as total chlorophyll-a are required in order to

capture their variations and provide more information for model settings and validations,

and ii) the spatial differences along the Swan need to be observed and accounted for in

modelling efforts. However, it has already been noted in the Introduction (Chapter 1),

and across multiple Swan River Trust reports (as previously referenced) that monitoring

programs are expensive and time consuming, and to increase spatial and temporal cov-
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erage will greatly increase the cost and effort expenditure.

It has also been highlighted in this chapter that satellites could (and increasingly do)

provide a free or low-cost alternative source of data for monitoring programs, if an ap-

propriate optical model can be applied to derive the required parameters, and if the

measurement area is large enough to be captured by the sensor in sufficient detail (or at

all). At its widest the Swan River is approximately 3km wide, but in the upper Swan

(NIL and beyond) the river narrows considerably to around 300m and continues to get

increasingly narrow to around 70m at the inland-most sampling site (SUC). Even if the

Sentinel-2b sensor spatial resolution (10m visible bands) may just about capture this

narrowest region of the river, deriving any meaningful data from this sensor would be

severely hampered by overhanging vegetation and the considerable shadow from the river

banks and urban construction.

2.6 Summary

Until such time that coastal and inland waters are adequately captured by high spatial

resolution (open access) satellite missions, other approaches for optical monitoring the

Swan River must be investigated and developed. The modelling work of Kostoglidis et al.

(2005), Hipsey et al. (2016b), Hipsey et al. (2016a) and Huang et al. (2017) are somewhat

unique in attempting to characterise phytoplankton dynamics in the Swan River partly

in response to the underwater climate (in conjunction with other parameters). The most

notable (local and national) study prior to these was conducted by CSIRO (Jernakoff

et al., 1996) and (Hick, 1997) prior to the SCCP programme, evaluating the application

and potential of airborne remote sensing techniques as a low cost means of detecting

and monitoring (in near-real time) phytoplankton, in complement to traditional field

measurements. The conclusions of the Swan River component of this study - that field

measurements with hyperspectral instruments can suffice for monitoring programs (Jer-

nakoff et al., 1996; Hick, 1997) – influenced the development of the SCCP strategy and

underpins the objectives outlined in Section 1.4 for this doctorate thesis.
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Chapter 3

Comparative Assessment: Mie Theory

and FDTD Scattering Methods

3.1 Introduction

Characterisation of particle scattering phase functions is required when modelling the

underwater light field in remote sensing oceanographic applications such as with Hydro-

light or PlanarRad. Due to the difficulty in accounting for the natural variability in the

size and shapes of the many different particle types, phase functions are often expressed

by finding analytical solutions to coarse approximations (Mie theory, Mie, 1908; Aden–

Kerker, Aden and Kerker, 1951; anomalous diffraction approximations, Hulst, 1957), as

semi-analytical solutions (Fournier and Forand, 1994) or closest fit to empirical data

(Petzold, 1972). The finite-difference time-domain Method (FDTD) was first published

by Yee (1966) as a numerical solution to Maxwell’s equations over a finite domain, or

voxel, known as a ‘Yee cell’ and is commonly used in computational electrodynamics.

The electric field components are defined around the edge of the cell and the magnetic

fields form the normals to the face of the cell. A structure is created by defining the

permeability, permittivity and conductivity of the cell and subsequent adjacent cells. A

non-homogeneous structure can be made by defining unique dielectric quantities for each

cell, forming a computational domain formed by a lattice of Yee cells. An example of

this is shown in Figure 3.1. This model makes it possible to use the FDTD method to

calculate the particle scattering phase functions for any shaped scattering particle, such

as a phytoplankton cell and other hydrosol shapes. This chapter presents the method for

calculating the scattering of algal cells using the FDTD method and aims to calculate

the algal scattering phase functions of various algal shapes.
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Volten et al. (1998) present laboratory measurements of the scattering properties of 15

different phytoplankton species. The primary aim of the work described here was to:

1. Model the scattering of analogous phytoplankton cells presented in Volten et al.

(1998).

2. Validate the ability of the FDTD method against results published in Volten et al.

(1998).

3. Assess the ability of the FDTD method to model the effects of shape and internal

phytoplankton structure.

4. Investigate the effect particle shape has on the forward:backward scattering ratio.

5. Investigate the usefulness of the FDTD method with respect to determining volume

scattering functions for use in modelling Rrs for the Swan River.

3.1.1 Particle Scattering

This section will discuss the mechanisms for particle scattering and work towards the

concept of the particle scattering phase function introduced in Section 5.1.5. Remote

sensing reflectance is a function of the phase function of all the scattering mediums in

a water column of interest. Knowing the phase function of all optical properties would

make it possible to find an exact solution to the RTE. The focus of this thesis is to

derive phytoplankton abundance from measuring the remote sensing reflectance. It is

shown in later sections that the remote sensing reflectance is a function of absorption

and scattering. The absorption properties of phytoplankton can be accurately by a dual-

beam spectrophotometer (method discussed in Chapter 6). Particle scattering is much

more difficult to measure at all angles due to the many orders of magnitude it changes

across all angles and is outside the scope of this study. Models exist that describe the

scattering of spherical particles, however, phytoplankton are rarely perfectly spherical

and are too complex in shape and structure to model as such. Therefore, a new ap-

proach to modelling the scattering was investigated and presented in this chapter. The

following section starts from first principles of Maxwell’s equations and derives a special-

case analytical solution (Mie theory) that describes particle scattering of homogeneous

spheres. Later sections will derive a numerical solution to solving Maxwell’s equations,

the finite-difference time-domain (FDTD) method. Chapter 5 will demonstrate the use

of the FDTD method to model the scattering of phytoplankton cells of arbitrary sizes
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and shapes.

Maxwell’s Equations

The fundamental theory that describes the behaviour of light is explained by Maxwell’s

equations. These four equations, shown in Table 3.1, explain the relationship between

electricity and magnetism, and as such coined the term ‘electromagnetic’.

Table 3.1: Maxwell’s Equations

Differential Form Integral Form Significance

∇× E = −∂B
∂t

∮

c
E · dℓ = − dΦ

dt
Faraday’s law

∇× H = J + ∂D
∂t

∮

c
H · dℓ = I +

∫

s
∂D
∂t

· ds Ampère’s circuital law

∇ · D = ρ
∮

s
D · ds = Q Gauss’s law

∇ · B = 0
∮

s
B · ds = 0 No isolated magnetic charge

Maxwell’s equations can be used to describe the absorption and scattering of light in any

medium (Cheng, 1992). The differential form of the equations are particularly useful for

numerical calculations, as they can be expressed conveniently in a discretised central-

difference form. This will be shown in the following sections. In order to describe the

scattering of light, it is convenient to represent the Maxwell’s equations in their time

harmonic form. That is to say, field vectors that are sinusoidal with respect to time

can be represented as vector phases that are dependent on space coordinates but not on

time. Maxwell’s equations written in terms of vector field phasors are shown in Table

3.1 (Cheng, 1992).
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Maxell’s time-harmonic equations are written in the form:

∇× E = −iωµH (3.1a)

∇× H = J + iωǫE (3.1b)

∇ · E =
ρ

ǫ
(3.1c)

∇ · H = 0 (3.1d)

Where ǫ is electrical permittivity, µ is magnetic permeability of the medium and ω is the

angular frequency of the wave.

In a simple, non-conducting source-free medium – ρ = J = ǫ = 0 – the time-harmonic

equations simplify to:

∇× E = −iωµH (3.2a)

∇× H = iωǫE (3.2b)

∇ · E = 0 (3.2c)

∇ · H = 0 (3.2d)

These equations can be combined by taking the curl of Equation 3.2a and substituting

in equation 3.2b.

∇×∇× E = −µ ∂
∂t
(∇× H) = ω2µǫ∂

2
E

∂t2

Using a vector identity ∇×∇×E = ∇(∇·E)−∇2E = −∇2E because equation 3.2c = 0.

This yields the second-order partial differential equations in E and H which are the fa-

miliar homogeneous vector Helmholtz’s equations.

∇2E + k2E = 0 (3.3)

∇2H + k2H = 0 (3.4)

Where k = ω
√
µǫ.
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3.1.2 General Scattering Problem

When describing the general scattering problem, it is convenient to define an orthogonal

coordinate system which can be used to explain both the incident and scattered field.

Considering a single scattering particle that is struck by a time-harmonic plane wave;

the direction the wave travels along is the z-axis and the scattering particle is the origin

(x, y, z). The basis vectors of the Euclidean space êx, êy, êz are positive in the x, y and

z directions. At some point, the wave scatters at an angle φ with respect to the incident

plane, the unit normal to the scattered direction is êr. It is convenient to break the

incident field in to orthogonal components with respect to the scattering plane. This

gives two components: the parallel (E||) and perpendicular (E⊥) components.

Ei =
(

E0||ê||i + E0⊥ê⊥i

)

exp (ikz − iωt) = E||iê||i + E⊥iê⊥i

Where k = 2πN
λ

is the wave number in the medium surrounding the particle; N is the

refractive index of the surrounding medium; and λ is the wavelength in a vacuum.

The basis vectors are therefore:

ê⊥i = sinφêx − cosφêy

ê||i = cosφêx + sinφêy

Or in spherical polar coordinates:

ê⊥i = −êφ

ê||i = sin θêr + cos θêθ

Multiplying by the x and y components, the parallel and perpendicular fields are:

E||i = cosφExi + sinφEyi

E⊥i = sinφExi − cosφEyi

At large distances from the particle (kr ≫ 1), the ‘far-field region’, the scattered electric

field Es is approximately transverse (êr ·Es) ≃ 0 and has the asymptotic form (Jackson,

1975):
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Es ≈
eikr

−ikrA kr ≫ 1 (3.5)

Therefore, the far-field scattered region is:

Es = E||sê||s + E⊥sê⊥s

The relationship between the incident and the scattered field, written in matrix form, is

(Bohren and Huffman, 1983)

(

E||s

E⊥s

)

=
eik(r−z)

−ikr

(

S2 S3

S4 S1

) (

E||i

E⊥i

)

(3.6)

The elements of the matrix Sj are the amplitude components of the scattering matrix.

Poynting Vector

The Poynting vector describes the ‘flow’ of electromagnetic energy in W/m2. When

describing the scattering process the Poynting vector is the sum of the incident wave,

scattered wave and the extinction field. The extinction field is a result of interaction

between fields and the medium.

S =
1

2
Re{E2 × H∗

2} = Si + Ss + Sext (3.7a)

Si =
1

2
Re{Ei × H∗

i } (3.7b)

Ss =
1

2
Re{Es × H∗

s} (3.7c)

Sext =
1

2
Re{Ei × H∗

s + Es × H∗
i } (3.7d)

Considering a non-absorbing material, if a detector is placed sufficiently far from the

scattering particle and the detector’s surface area ∆A is sufficiently small, Ss does not

vary greatly. The detector only measures light from the scattered field provided it is not

aiming at the source of the incident field. Therefore, substituting Equation (3.5) in to

Equation (3.7) we get:
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Ss · êr∆A =
k

2ωµ

|A|2
k2

∆Ω (3.8)

Where ∆Ω = ∆A/r2 which is the solid angle subtended by the detector. If we place po-

larising lenses between the particle and the detector and record the measured irradiances,

we can obtain the Stokes parameters of light scattered by the particle. They are:

Is =
〈

E||sE
∗
||s + E⊥sE

∗
⊥s

〉

(3.9a)

Qs =
〈

E||sE
∗
||s − E⊥sE

∗
⊥s

〉

(3.9b)

Us =
〈

E||sE
∗
⊥s + E⊥sE

∗
‖|s

〉

(3.9c)

Vs = i
〈

E||sE
∗
⊥s − E⊥sE

∗
‖|s

〉

(3.9d)

The relationship between the scattering matrix and the Stokes parameters in matrix form

is:













Is

Qs

Us

Vs













=
1

k2r2













S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

























Ii

Qi

Ui

Vi













(3.10)

This 4× 4 matrix is the Mueller matrix and describes the scattering of light by a single

particle. The Stokes parameters of randomly separated and oriented particles is the

sum of the individual particles. The Mueller matrix describes the scattering event of an

incident wave and the polarisation of the scattered light.

Is
Ii

= S11,
Qs

Ii
= S21,

Us

Ii
= S31,

Vs
Ii

= S41 (3.11)

Because the scattered light is a function of φ the scattering angle, so is the degree of

polarisation of the scattered field.

Scattering, Absorption and Extinction

If a finite volume of particles is illuminated by a beam of light, the rate at which the

energy enters the volume is denoted by U0 and the rate at which it enters a detector is
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denoted by U . If U0 > U the volume has resulted in an extinction of the incident beam.

If the volume surrounding the particles is non-absorbing, the unaccounted for energy is

due to either scattering by the particles or by absorption of the particles. In the case

of absorption, the light energy is transformed into other forms of energy. In the case

of scattering, the extinction is dependent on the chemical composition of the particles,

their size, shape, orientation, the surrounding medium, the number of particles and the

polarisation state and frequency of the incident beam (Bohren and Huffman, 1983).

Considering a single particle illuminated by a plane wave; the net rate at which energy

enters an imaginary unit sphere of radius r around the particle; then the net rate at

which the wave enters the sphere of surface area A is:

Wa = −
∮

S · êr dA

Using the Poynting vector relationship shown in Equations (3.7).

Wa = Wi −Ws +Wext

Where:

Wi = −
∮

Si · êr dA, Ws = −
∮

Ss · êr dA, Wext = −
∮

Sext · êr dA (3.12)

Wi vanishes for any non-absorbing medium: Ws is the rate at which energy is scattered

across the surface of the imaginary sphere. Therefore, Wext is the sum of the energy

absorption rate and the energy scattering rate:

Wext = Wa +Ws (3.13)

Taking the incident electric field to be polarised along the x-axis Ei = Eêx and choosing

a distance from the particle r such that the distance is considered to be in the far-field

region, the scattered electric field is:
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Es ≈
eik(r−z)

−ikr XE, Hs ≈
k

ωµ
êr × Es (3.14)

Where X is related to the scattering elements by:

X = (S2 cosφ+ S3 sinφ)ê||s + (S4 cosφ+ S1 sinφ)ê⊥s (3.15)

And, after a considerable amount of algebraic manipulation (Bohren and Huffman, 1983),

the cross-section is obtained, which is the ratio of the net energy rate to the incident

energy, and has the dimensions of area:

Wext = Ii
4π

k2
Re{(X · êx)θ=0}

Cext =
Wext

Ii
=

4π

k2
Re{(X · êx)θ=0} (3.16)

And following on from Equation (3.13) the extinction cross-section may be written as

the sum of the absorption cross-section Cabs and the scattering cross-section Csca

Cext = Cabs + Csca (3.17)

Substituting:

Cabs =
Wabs

Ii
Csca =

Wsca

Ii

We end with:

Csca =

∫ 2π

0

∫ π

0

|X|2
k2

sin θ dθ dφ =

∫

4π

|X|2
k2

dΩ (3.18)

Finally making |X|2

k2Csca
= p and substitute, the solution is the definition of the phase

function:
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∫

4π

= p dΩ = 1 (3.19)

Which describes the normalised distribution of scattered light over a unit sphere.

3.1.3 Mie Theory

Mie theory is an analytical solution to Maxwell’s equations that describes scattering from

homogeneous spheres that are much larger than the wavelength of the scattered light.

A full derivation of Mie theory is exhaustive and shown in Bohren and Huffman (1983).

A summarised version is presented here as Mie theory will be used to compare and check

results from the numerical solution to FDTD.

Solution to scattering of spheres

The analytical solution to Mie scattering begins with time-harmonic Maxwell’s equa-

tions shown in Equation (3.3). That is to say that the electromagnetic field in a linear,

isotropic, homogeneous medium must satisfy the wave equation:

∇2E + k2E = 0, ∇2H + k2H = 0

Where k2 = ω2ǫµ

And remembering:

∇ · E = 0, ∇ · H = 0

And that E and H are not independent:

∇× E = iωµH, ∇× H = −iωǫE

Given the scalar function ψ and an arbitrary constant vector c, we construct a vector

function M
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M = ∇× (cψ)

The divergence of the curl of any vector function vanishes:

∇ · M = 0

Using the vector identities:

∇× (A × B) = A(∇ · B)− B(∇ · A) + (B · ∇)A − (A · ∇)B

∇(A · B) = A × (∇)× B) + B × (∇× A) + (B · ∇)A + (A · ∇)B

We obtain:

∇2M + k2M = ∇×
[

c
(

∇2ψ + k2ψ
)]

(3.20)

Therefore, M satisfies the vector wave equation if ψ is a solution to the scalar wave

equation:

∇2ψ + k2ψ = 0

If we take:

N =
∇× M

k

With zero divergence:

∇2N + k2N = 0
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And:

∇× N = kM

The purpose of the derivation so far is to show that it is possible to construct two

equations that satisfy the required properties of the electromagnetic field. Therefore, the

solution scheme becomes the simpler problem of finding solutions to the scalar function

ψ. As we are looking to solve the problem of scattering by a sphere, it is convenient

to choose a function ψ that satisfies the wave equation in spherical polar coordinates.

Therefore, it makes sense to choose a constant vector c to be the radius vector r:

M = ∇× (rψ) (3.21)

M is a solution to the vector wave equation in spherical polar coordinates. The scalar

wave equation in spherical polar coordinates is:

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0 (3.22)

Using the method of separation of variables to see the particular solutions to Equation

(3.22) of the form:

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ)

When substituted into Equation (3.22) this yields the three separated equations:

d2Φ

dφ2
+m2Φ = 0 (3.23a)

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+

[

n(n+ 1)− m2

sin2 θ

]

Θ = 0 (3.23b)

d

dr

(

r2
dR

dr

)

+
[

k2r2 − n(n+ 1)
]

R = 0 (3.23c)

The separation constants m and n are determine by the subsidiary conditions that φ

must satisfy. The linearly independent solutions to the first equation for a given m and

Φm are:
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Φe = cosmφ φo = sinmφ (3.24)

Where the subscripts e and o denote even and odd.

The solutions to the second equation that are finite at θ = 0 and θ = φ are the associated

Legendre functions of the first kind, Pm
n (cos θ), of degree n and order m, where n =

m,m+ 1, ...

∫ 1

−1

Pm
n (µ)Pm

n′ (µ)dµ = δn′n

2

2n+ 1

(n+m)!

(n− 1)!
(3.25)

The linearly independent solutions are the spherical Bessel functions (jn, yn). As lin-

ear combinations of jn and yn, the spherical Hankel (hm) functions, are also solutions

to the third equation.

Spherical Bessel functions of the first and second kind are:

jn(ρ) =

√

π

2ρ
Jn+ 1

2

(ρ) (3.26a)

yn(ρ) =

√

π

2ρ
Yn+ 1

2

(ρ) (3.26b)

The solution to the third equation in Equations (3.23) is any linear combination of spher-

ical Bessel functions. Two combinations of linearly independent Bessel functions of the

third kind are the spherical Hankel functions.

Spherical Hankel functions are:

h(0)n (ρ) = jn(ρ) + iyn(ρ) (3.27a)

h(2)n (ρ) = jn(ρ)− iyn(ρ) (3.27b)

Now we have a series expansion functions that satisfy the scalar wave equation in spherical

polar coordinates:
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ψemn − cosmψPm
n zn, ψemn − sinmψPm

n zn

Where zn is any of the four Bessel functions

The vector spherical harmonics generated by φemn and φomn are:

Memn = ∇× (rψemn)

Momn = ∇× (rψomn)

Nemn =
∇× Memn

k

Nomn =
∇× Momn

k

Defining two angle-dependent functions:

πn =
P 1
n

sinθ
, τn =

dP 1
n

dθ

It is possible to write the vector spherical harmonics in component form, where m = 1:

Mo1n = cosφπn(cos θ)zn(ρ)êθ − sinφτn(cos θ)zn(ρ)êφ

Me1n = − cosφπn(cos θ)zn(ρ)êθ − cosφτn(cos θ)zn(ρ)êφ

No1n = sin θn(n+ 1) sin θπn(cos θ)
zn(ρ)

ρ
êr + sinφτn(cos θ)

[ρzn(ρ)]
′

ρ
êθ

+cosφπn(cos θ)
[ρzn(ρ)]

′

ρ
êφ

Neln = cos θn(n+ 1) sin θπn(cos θ)
zn(ρ)

ρ
êr + cosφτn(cos θ)

[ρzn(ρ)]
′

ρ
êθ

+sinφπn(cos θ)
[ρzn(ρ)]

′

ρ
êφ

Expansion of a plane wave in vector spherical harmonics

Considering the scattering of a plane x-polarised wave in spherical polar coordinates, the

incident field is given by the equation:
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Ei = E0e
ikr cos θêx (3.28)

Where:

êx = sin θ cosφêr + cos θ cosφêθ − sinφêφ (3.29)

We expand Equation 3.28 in vector spherical harmonics:

Ei =
∞
∑

m=0

∞
∑

n=m

(BemnMemn +BomnMomn + AemnNemn + AomnNomn) (3.30)

Where Aemn, Aomn, Bemn and Bomn are the expressions describing the expansion coeffi-

cients required. With considerable mathematical manipulation shown in (Bohren and

Huffman, 1983, 90–93) the expansion of the incident electric field vector as a plane wave

in vector spherical harmonics is:

Ei = E0

∞
∑

n=1

in
2n+ 1

n(n+ 1)

(

M
(1)
o1n − iN

(1)
e1n

)

(3.31)

The corresponding incident magnetic field is obtained by taking the curl of Equation

(3.31).

Hi =
−k
ωµ

E0

∞
∑

n=1

in
2n+ 1

n(n+ 1)

(

M
(1)
e1n − iN

(1)
o1n

)

(3.32)

It is possible to span the scattered electromagnetic field Es,Hs and the field inside the

particle E1,H1 by imposing the boundary conditions:

(Ei + Es − E1)× êr = (Hi + Hs − H1)× êr = 0 (3.33)
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Inside the particle:

E1 =
∞
∑

n=1

En

(

cnM
1
o1n − idnN

(1)
e1n

)

(3.34)

H1 =
−k1
ωµ1

∞
∑

n=1

En

(

dnM
1
e1n − icnN

(1)
o1n

)

(3.35)

Where:

En = inEo

2n+ 1

n(n+ 1)

And µ1 is the permeability of the sphere. Again, rigorous mathematical manipulation

(Bohren and Huffman, 1983) shows the expansion of the scattered field is:

Es =
∞
∑

n=1

En

(

ianN
(3)
e1n − bnM

(3)
o1n

)

(3.36)

Hs =
k

ωµ

∞
∑

n=1

En

(

ibnN
(3)
o1n + anM

(3)
e1n

)

(3.37)

3.1.4 Finite-Difference Time-Domain (FDTD)

In the following section, it will be shown, that by defining a source electric field at time=0

it is possible to calculate the magnetic field everywhere in the lattice from the electric

field at time step n+1 = ∆t. Calculating the electric field at time n+2 is then possible

from the resultant magnetic field and so on over subsequent iterations. The algorithm is

repeated until a steady state solution is reached. The scattered field is then calculated

using a near-to-far-field transformation.

The FDTD technique can be used for any shaped scattering particle. This, potentially,

makes it particularly useful for finding phase functions of hydrosols such as phytoplank-

ton cells that are highly non-spherical. However, the FDTD is a numerical technique and

there is always a computational error due to discretising the computational domain. It

is important to define the computational domain with sufficiently small quantisation to

produce an error that falls within acceptable tolerance. This may, however, require large

amounts of computing resources; in particular, computer memory.
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Derivation of the FDTD Equations

The first step in the FDTD method is to convert the vector form of Ampère’s and Fara-

day’s laws into a derivative form by taking the curl of each side of both equations.

Beginning with:

∇× E = −µH

∂t
, ∇× H = σE +

∂E

∂t

(

∂Ez

∂y
− ∂Ey

∂z

)

x̂ −
(

∂Ez

∂x
− ∂Ex

∂z

)

ŷ +

(

∂Ey

∂x
− ∂Ex

∂y

)

ẑ =

−µ
[

∂HX

∂t
x̂ +

∂HY

∂t
ŷ +

∂Hz

∂t
ẑ

] (3.38)

(

∂Ez

∂y
− ∂Ey

∂z

)

= −µ∂HX

∂t
(3.39a)

−
(

∂Ez

∂x
− ∂Ex

∂z

)

= −µ∂HY

∂t
(3.39b)

(

∂Ey

∂x
− ∂Ex

∂y

)

= −µ∂Hz

∂t
(3.39c)

And:

(

∂Hz

∂y
− ∂Hy

∂z

)

x̂ −
(

∂Hz

∂x
− ∂Hx

∂z

)

ŷ +

(

∂Hy

∂x
− ∂Hx

∂y

)

ẑ =

σ [Ex + Ey + Ez] + ǫ

[

σEz

∂t
x̂ +

∂Ey

∂t
ŷ +

∂Ez

∂z
ẑ

] (3.40)

Any solution to the field equation can now be expanded in an infinite series of the above

vector harmonic equations.

Discretising the FDTD grid

The next step is to derive the difference equations for both the electric and magnetic

field over a finite volume. This is done by defining a unit cube in the (x, y, z) planes and
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defining the orthogonal components on the cell.

Figure 3.2: Yee cell with the orthogonal electric and magnetic field vectors mapped to
its surface.
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[

En
z(i,j+1,k) − En

z(i,j,k)

∆y
−
En

y(i,j,k+1) − En
y(i,j,k)

∆z

]

= −µ(i,j,k)





H
n+ 1

2

x(i,j,k) −H
n− 1

2

x(i,j,k)

∆t





(3.41a)

−
[

En
z(i+1,j,k) − En

z(i,j,k)

∆x
−
En

x(i,j,k+1) − En
x(i,j,k)

∆z

]

= −µ(i,j,k)





H
n+ 1

2

y(i,j,k) −H
n− 1

2

y(i,j,k)

∆t





(3.41b)

[

En
y(i+1,j,k) − En

y(i,j,k)

∆x
−
En

x(i,j+1,k) − En
x(i,j,k)

∆y

]

= −µ(i,j,k)





H
n+ 1

2

z(i,j,k) −H
n− 1

2

z(i,j,k)

∆t





(3.41c)

Where time = (n)×∆t.





H
n+ 1

2

z(i,j,k) −H
n+ 1

2

z(i,j−1,k)

∆y
−
H

n+ 1

2

x(i,j,k) −H
n+ 1

2

x(i,j,k−1)

∆z



 = σ(i,j,k)

[

En+1
x(i,j,k) − En

x(i,j,k)

2

]

+ǫ(i,j,k)

[

En+1
x(i,j,k) − En

x(i,j,k)

∆t

]

(3.42a)

−





H
n+ 1

2

z(i,j,k) −H
n+ 1

2

z(i−1,j,k)

∆x
−
H

n+ 1

2

x(i,j,k) −H
n+ 1

2

x(i,j,k−1)

∆z



 = σ(i,j,k)

[

En+1
y(i,j,k) − En

y(i,j,k)

2

]

+ǫ(i,j,k)

[

En+1
y(i,j,k) − En

y(i,j,k)

∆t

]

(3.42b)





H
n+ 1

2

y(i,j,k) −H
n+ 1

2

y(i−1,j,k)

∆x
−
H

n+ 1

2

x(i,j,k) −H
n+ 1

2

x(i,j−1,k)

∆y



 = σ(i,j,k)

[

En+1
z(i,j,k) − En

z(i,j,k)

2

]

+ǫ(i,j,k)

[

En+1
z(i,j,k) − En

z(i,j,k)

∆t

]

(3.42c)

Where time = (n+ 1
2
)×∆t.
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Solving the FDTD equations is a matter of iteratively walking through the solutions,

alternating between the electric field and the magnetic field. Taking the solution of one

and passing it on as the initial condition of the next. The many iterations that are

required for this method would take a desktop computer’s central processing unit (CPU)

quite a long time to iterate through. A method and tool (RTCode) for solving this

method on a GPU was developed by Hedley (2012) which greatly decreases the time

required to converge to a solution. This tool was used to produce the particle scattering

results shown in Chapter 5.

3.1.5 FDTD Scattering Modelling of Hydrosols

The reflectance, and reflectance models (HOPE etc.) depend on the IOPs, ‘a’ and ‘b’,

thus appropriate and accurate models of the ‘a’ and ‘b’ processes are important. In-

vestigating and understanding the scattering process of hydrosols of complex shapes is

quite challenging. There are well-established models of scattering of relatively simple

structures and shapes, some of which are described in this chapter. It was considered

whether or not the Swan River had particularly non-spherical particles and if that would

greatly affect the reflectance model inversion results. A question still remained whether

or not the scattering models could accurately model the scattering despite them being

a crude approximation to the shape and structure of typical phytoplankton. An added

complication is that the difficulty is, measuring the scattering of particles at all angles

is extremely difficult to do accurately. In the field it is difficult to isolate phytoplankton

particles from other particles. Making measurements in the laboratory is also quite dif-

ficult, especially in the forward scattering angles. This is in part due to many orders of

magnitude the scattering energy changes over the forward-facing to back-facing angles.

There are both field-based and laboratory specialist equipment that can measure particle

scattering, however none could be made available for this project.

The opportunity to investigate a new approach to scattering of hydrosols presented it-

self through collaboration with Environmental Computing Sciences (ECS). The FDTD

method is described in detail in Chapter 2 and the software (RTCode) to execute this

method, specifically using GPUs, was made available for this project. The software itself

does not model hydrosols but provides tools for modelling the scattering of any abstract

shape by defining the lattice structure (Yee cell) in a text file along with the complex

refractive index of the scattering lattice layers. Quite some effort was assigned to build-

ing scripting tools that could model different shapes with multiple layers that RTCode
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could use in scattering calculations. Python scripts were designed to define cell struc-

tures in a format that the software tool Gmsh1 could read. Gmsh was used to visualise

and further build Platonic solids, as well as the more complex phytoplankton cell ana-

logues. Further scripts2 were written to interface with RTCode that made it possible

to define the other cell properties, such as size, rotation and refractive index of all the

layers, and execute multiple ‘batch runs’ of the scattering calculations. Furthermore, as

the calculations require a very large amount of computer resources, access to the GPU

supercomputer Fornax was granted by Pawsey Supercomputing Centre, Perth, Western

Australia. Special scripts and compile tools were developed in order for the code to run

on the specialist computer and interface correctly with the job scheduler and file system.

The following section presents the preliminary results of building and running the software

tools and workflows that enabled the scattering of virtualised phytoplankton cells. The

results provide a ‘sanity check’ to make sure the outputs from RTCode and other software

tools developed to work alongside it were sensible. A full description of the phytoplankton

modelling, including results of the simulations, is presented in Chapter 5, originally

written, submitted and presented as an oral presentation at the international Ocean

Optics Conference XXI in Glasgow (Marrable et al., 2012). The first test was designed

to test that RTCode could replicate the scattering results for a sphere, as predicted by

Mie theory. Other tests were designed to evaluate whether or not non-spherical shapes

could be accurately modelled using Mie theory.

1http://gmsh.info/
2https://code.launchpad.net/dalecppt
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It was expected that Mie theory would produce the same results as FDTD for a spherical

particle, regardless of the scattering angle. These were the results produced from RTCode

and the other scripting tools and, therefore, gave good indication that the tools were

working correctly (Figure 3.3). The non-spherical shapes (figures 3.4, 3.5 and 3.6) showed

significant differences between the Mie theory and the FDTD method. This was expected,

as Mie theory is an exact solution of electromagnetic scattering for perfect spheres only.

It should be noted that calculating the scattering for a single incident angle only is not

a reliable method for calculating volume scattering functions for collections of particles

compromising of different sizes and shapes. Volume scattering functions for natural

water bodies are functions of an ensemble scattering of many particle shapes, sizes and

orientations. This is addressed later in this chapter which presents results for simulations

run for many size and orientation perturbations, based on cell population size distribution

data. At the time of producing the figures presented here, access to enough computing

resources to make the repeat measurements was not available. These initial data were

used as a proof of concept and contributed to the application for time to run more

comprehensive simulations on the Fornax supercomputer at the Pawsey Supercomputing

Centre. As noted in an early section, a full description of those simulations is presented

in Chapter 5.

3.2 Method

3.2.1 Particle Shape

Ten of the phytoplankton presented in Volten et al. (1998) (Table 3.2) were approximated

by three basic shapes: a sphere, a rounded cylinder and a sickle shape. The sphere and

the rounded cylinder shapes were modelled programmatically, while the sickle shape was

built in the 3D–modelling program Blender3 and exported in a file format that could be

used with the FDTD solver using Gmsh4.

3.2.2 Phytoplankton Internal Structure

Data on the complex refractive index (RI) of phytoplankton is scarce. Furthermore, data

on the refractive index of individual internal structures are extremely difficult to find.

Therefore, the approach taken was to assume the refractive index data in Volten et al.

3http://www.blender.org
4http://geuz.org/gmsh
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Table 3.2: Summary of the phytoplankton properties modelled. Reproduced in part from
Volten et al. (1998)

Name of Hydrosol Cell Shape Structural Cell Cell Radius Refractive Index

Features Radius (µm) Variance (µm)

Microcystis aeruginosa Sphere No gas vac 5.23 0.500 1.04− 0.000i

Microcystis sp. Sphere Gas vac 1.87 0.063 1.02− 0.001i

Prochlorothrix hollandica Cylinder Filamentous 1.55 0.080 1.24− 0.006i

Oscillatoria amoena Cylinder Filamentous 2.58 0.002 1.05− 0.004i

Oscillatoria agardhii Cylinder Filamentous with gas vac 1.64 0.044 1.05− 0.000i

Melosira granulata Cylinder Filamentous 3.74 0.004 1.02− 0.002i

Asterionella formosa Cylinder Star-shaped col 4.23 0.010 1.03− 0.003i

Selenastrum capricornutum Sickle 1.09 0.037 1.24− 0.020i

Emiliania huxleyi Sphere Calcite mantel 1.90 0.070 1.04− 0.000i

Emiliania huxleyi Sphere No calcite mantel 1.80 0.002 1.04− 0.042i

(1998) represented the mean refractive index of the object. A simple two–component

model was designed which broke the virtual phytoplankton cell into gas vacuoles and

non-gas material. The mean refractive index was reduced to the sum of the two compo-

nents. The refractive index of gas was assumed to be 1.00− 000i. Therefore the non-gas

material was calculated using the following simple formula.

RInon−gas =
RI −%ofgas× 1.00

%ofnon− gas
(3.43)

Table 3.3: Ratio of gas vacuoles to volume of plankton cell. Reproduced from Smith and
Pete (1967)

Name of Hydrosol Width of Gas Cylinders Range of Lengths Mean % Volume Mean RI non-gas RI

Oscillatoria agardhii 70mu 100–500 39 1.05− 0.000i 1.08− 0.000i

Microcystis aeruginosa 75mu 100–500 30* 1.04− 0.000i 1.06− 0.000i

Mircrocystis sp. 75mu* 100–500* 30* 1.02− 0.000i 1.03− 0.001i

3.2.3 Model Run

To find the scattering of the distribution of a species, the model was run hundreds of

times and the average of all the runs was taken to be the mean scattering of the particle

distribution. For each run, a random number was generated from a statistical distribu-

tion with a mean value centred around the mean particle size and with a variance that

corresponded to the variance of phytoplankton size shown in Table 3.2. This random

number was used to build an analogous phytoplankton cell with the size of the randomly

generated number and material properties that corresponded with that species RI shown

in Table 3.2. Each time a new simulation was executed, the cell was randomly rotated
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with respect to the incident light. This process was repeated until the average of all the

runs converged to a small tolerance of change. A tolerance was chosen at a compromise

between modelling accuracy and the time required to reduce the residual error between

the mean value and the subsequent model run. This process was repeated for all of the

species presented in Table 3.2 and using the gas vacuoles data presented in Table 3.3

where appropriate.

The integral of the phase function over solid angle should sum to unity. Furthermore,

the phase function can be expressed as:

p(θ) =
S11(θ)

k2 × Cscat

(3.44)

Where:

k =
2π

λ
(3.45)

And Cscat is the scattering cross-section. Therefore, the irradiance scattering was nor-

malised by numerically integrating the over all angles and dividing by the result. For

further quality control, the integral was checked to see that it was equal to k2 × Cscat.

Volten et al. (1998) scale the scattering curves to match Petzold (1972) phase functions

at 90◦. In order to be consistent with the definition of the phase function presented in

Bohren and Huffman (1983), the empirical results presented in Volten et al. (1998) were

rescaled to match FDTD results at 90◦.

Every time an FDTD run was executed, a Mie calculation was performed for a sphere of

equal volume as the particle that was being modelled – regardless of particle shape. This

was done in order to compare the FDTD method to Mie. In order to reduce clutter, only

the average of the Mie runs are shown (figures 3.7–3.12).

Volten et al. (1998) results were measured at a wavelength of 633 nm in air and the

refractive index of the cells is given relative to water. The FDTD model does not include

the air-water interface, therefore, to enable direct comparison of FDTD and Volten et al.

(1998) results, the FDTD model wavelength was calculated at 475 nm which is approxi-

mately 633 nm divided by the refractive index of water (1.33).
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theories. Although there are differences in between the two, they are both many orders

of magnitude smaller than Petzold (1972).

3.4 Discussion

Although a single FDTD simulation (grey curves, figures 3.8–3.15), can show a large

difference in scattering when compared to what Mie theory predicts, averaging the en-

semble simulations together converges the results towards Mie theory calculations. The

exception being Selenastrum capricornutum Figure 3.14 which is a sickle shaped cell.

This suggests that the shapes that differ significantly from spherical shapes may not be

as accurately modelled with Mie as with FDTD. Furthermore, Figure 3.14 shows that

FDTD results agree more closely with Volten et al. (1998) than Mie. However, when

considering the scattering fractions presented in Table 3.4 the scattering fractions of Se-

lenastrum capriconutum predicted by both Mie and FDTD agree very closely with each

other.

All of the results here show that there is a difference between the modelled scattering

(both Mie and FDTD) and the scattering measured by Volten et al. (1998). As ex-

pected, the Mie-calculated scattering and the FDTD-modelled scattering agree very well

for spherical particles (figures 3.7, 3.8, 3.16 and 3.15), especially in the forward-scattering

directions. The greatest differences in the backscattering were in the direction close to

180◦.

In the case of rounded cylinders (figures 3.9, 3.10, 3.11, 3.12 and 3.13), there was only

a small disagreement between Mie and FDTD results. Both results showed differences

between both simulations and Volten et al. (1998).

Possibly the most interesting results are that the FDTD modelled scattering more closely

agrees with the experimental results for the highly aspherical sickle-shaped cell, where

it was found that there was a larger degree of difference between FDTD and Mie. This

seems intuitive, as it is the least spherical of the shapes modelled and Mie is applicable

only to spherical scatterers. This may be evidence that FDTD is useful and accurate for

modelling shapes that differ greatly from a sphere.

Figures 3.7–3.15 also show the individual FDTD runs (light-grey) for each rotation and

random size. It can be clearly seen in all plots that the variance in scattering, related
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to the spread in the light grey curves at each scattering angle, is much smaller in the

forward-scattering direction. All shapes showed the greatest variance in the backscatter-

ing directions, often by a few orders of magnitude.

Differences in backscattering may be for a few different reasons. Due to internal wave

reflections at boundaries of discontinuity, such as the edge of the cell boundary, it can

take a long time for modelled internal waves to extinguish compared to the time it takes

for the waves scattering from the surface of the cell. If insufficient time was given for

FDTD to reach a steady state, it is possible that there could be some energy lost after

the far-field transformation. The time allocated to the simulation was, in part, limited

to the run-times allocated to the project on the supercomputer.

Further differences due to structure may be due to the discretisation of the three-

dimensional structure. It is impossible to make a perfectly smooth surfaces using cube

voxels. However, this error should be relatively small, as voxel sizes were chosen that are

much smaller than the wavelength of interest. A much larger effect is likely present on

the rounded cylinder shapes used to model the filamentous algae species. The dimensions

of length-to-width ratio of the filamentous species are much greater than it is possible to

build on the current generation of graphics cards, due to the limitation of their available

memory, related to the number of discrete voxels required.

Another limitation of the models presented here is the ability to accurately model the

material properties of the cells. A simple homogeneous or even two-part volume struc-

ture is not sufficient enough to represent a single algal cell accurately. It may be the

case that a two-part or three-part model may be sufficient for modelling bulk scatter-

ing distributions, as differences in different algal cells may average out in phytoplankton

communities. More investigation on this is required as it is difficult to find much em-

pirical literature on this topic. The FDTD model has shown to be a useful tool when

investigating the differences that shape and material structures can make on scattering;

in particular, the forward-to-backscattering ratio. This ratio is used directly in forward-

modelling IOPs of water in Hydrolight and PlanarRad.

When considering scattering fractions of different particle sizes, figures 3.17–3.26, with the

same refractive indices in Table 3.4, all of the scattering fractions are orders of magnitude

lower than particles of much smaller size. Considering the estimated particle scattering

fraction from Petzold (1972) measurements is ∼0.018, it is likely that the scattering was
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due to particles much smaller than those modelled in this chapter. Furthermore, even

though there were differences between Mie and FDTD simulations, figures 3.17–3.26 show

that the particle size is the most significant factor in calculating the scattering affects.

3.5 Summary

The FDTD model shows differences in the scattering predicted by Mie theory and mea-

sured by Volten et al. (1998). FDTD modelling shows that internal structure and material

properties affects the scattering phase function. The FDTD method agrees closely with

both Mie and laboratory measured scattering in the forward direction of all shapes but

may struggle at backscattering directions close to 180◦. This is more a limitation of

current generation hardware and the ability to accurately model the volume rather than

the FDTD calculation itself.

The differences between the FDTD method and Mie theory are small, for equivalent

volume particles, when compared to the differences in scattering due to change in size

makes. Therefore, Mie theory may be a suitable approximation for estimating the scat-

tering fraction of hydrosols.

Considering that the FDTD results, for the most aspherical particle Selenastrum capri-

cornutum (Figure 3.14), agreed more closely than Mie, FDTD shows promise of being a

very useful tool for modelling the scattering effects due to different shapes and internal

structures. However, further investigation into these differences is required before the

FDTD method can be used for modelling the specific scattering effects of shape and

internal cell structure of algae. In order to investigate this further, more data on the

refractive index of cell structures of different algal cells is required.
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Chapter 4

Phytoplankton Culturing and

Absorption

4.1 Introduction

Advances in chromatography, and the ability to purify and crystallise chlorophylls (Mack-

inney, 1941; Zscheile, 1941), has made it possible to rapidly separate and quantitate the

many pigments found inside a single species of phytoplankton. This ability has also

spawned the field of chemotaxonomy, which has developed the ability to distinguish

classes of microalgae.

There are four major and taxonomically significant pigments in phytoplankton divisions:

chlorophylls, carotenes, xanthophylls and biliproteins. All contain many subclasses of

pigments. In particular, cyanobacteria, such as blue-green algae, is known to contain

chlorophyll-a, β-carotene, zeaxanthin, allophycocyanin, phycocyanin and phycoerythin

(Cox, 1993), all of which make the identification of cyanobacteria identifiable through

high pressure liquid chromatography (HPLC) and, because these pigments are photosyn-

thetic in the visible spectra, they are also detectable through radiometric measurements.

This chapter describes the processing of culturing three different species of algae and

measuring their absorption properties. At this time, mono-cultures native to the Swan

River were not available. Therefore, cultures with different absorption properties were

used to develop algorithms for inverting the optical model as well as developing laboratory

techniques. Although the mono-culture results were unused in the optical model, in

favour for using in situ measurements of phytoplankton absorption, the results were used
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to help develop the algorithms.

4.1.1 Phytoplankton Classification

The term ‘algae’ has no formal taxonomic definition. The origin of the term comes from

the Latin word alga, which means seaweed. The term algae is routinely used in biology

to describe polyphyletic organisms. Generally speaking, algae is considered to be a group

of aquatic, photosynthetic, eukaryotic organisms and can be unicellular or multicellular

(Barsanti and Guarltieri, 2006). The term ‘phytoplankton’ refers to microalgae which

are buoyant and usually found in the upper part of the water column. Microalgae are the

focus of this thesis and the term algae and phytoplankton may be used interchangeably.

This thesis is not concerned with benthic macroalgae.

Most algae are aquatic; however, a considerable number of algae are subaerial and have

adapted to life on land. Aquatic algae can be both planktonic, living suspended in lighted

water columns; or benthic, attached to the bottom of shallow-water areas. Algae are di-

verse in size, ranging from 0.2 µm in diameter in the case of picoplankton, to 60 m in

length, in the case of giant kelp (Barsanti and Guarltieri, 2006).

A classification scheme can be very difficult to define due to the polyphyletic nature of

the term ‘algae’ and because taxonomy is under constant and rapid revision. Table 4.1

shows kingdom, division and class of different classes of phytoplankton.
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Table 4.1: Different Classes of Phytoplankton. Reproduced from Barsanti and Guarltieri
(2006)

Kingdom Division Class
Prokaryota eubacteria Cyanophyta Cyanophyceae

Prochlorophyta Prochlorophyceae
Glaucophyta Glaucophyceae
Rhodophyta Bangiophyceae

Florideophyceae
Heterokontophyta Chrysophyceae

Xanthophyceae
Eustigmatophyceae
Bacillariophyceae
Raphidophyceae
Dictyochophyceae
Phaeophyceae

Haptophyta Haptophyceae
Cryptophyta Cryptophyceae

Eukaryota Dinophyta Dinophyceae
Euglenphyta Prasinophyceae
Chlorarachniophyta Chlorarachniophyceae
Chlorophyta Prasinophyceae

Chlorophyceae
Ulvophyceae
Cladophorophyceae
Bryopsidophyceae
Zygnematophyceae
Trentepohliophyceae
Klebsormidiophyceae
Charophyceae
Dasycladophyceae
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4.1.2 Photosynthetic Pigments

As with all plants, algae use photosynthesis to convert light energy and carbon molecules

into chemical energy. Algae use light-harvesting pigments to assist in this process. These

pigments can be classified as chlorophylls, carotenoids or biliproteins. Chlorophylls are

greenish pigments which contain a porphyrin ring from which electrons are free to migrate.

This ring can gain or lose electrons easily and has the potential to provide energised elec-

trons to other molecules. This is the fundamental process by which chlorophyll ‘captures’

the energy of light. All plants that photosynthesise contain chlorophyll-a, the primary,

most abundant, pigment in photosynthetic algae. Chlorophyll-b is a less abundant pig-

ment and helps the plant increase the range of light it can use for energy. Another form

of chlorophyll is chlorophyll-c which is found only in dinoflagellates and some diatoms.

It is primarily chlorophyll which gives plants, including algae, their green colour. Table

4.2 shows a list of different classes of algae. It shows that all classes have chlorophyll-a

however the accessory pigments vary across the classes.

Carotenoids contain the compound carotene which gives the usual red, orange and yellow

colours. Carotenoids are organic compounds that are non-soluble and cannot transfer

the energy from sunlight directly in the photosynthesis process. Instead, they must pass

their absorbed energy to chlorophyll. For this reason, they are commonly referred to as

‘accessory pigments’.

Biliproteins are water-soluble and are found in the cytoplasm of the chloroplast. Bilipro-

teins are commonly found in cyanobacteria and in rhodophyta (red algae).
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Table 4.2: Photosynthetic pigments found in different classes of algae. The markers; ⊗
indicates an important pigment; + indicates the pigment is present and ± indicates the
pigment occurs rarely. (reproduced from Hoek et al., 1995)
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Chlorophylls
Chlorophyll-a ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Chlorophyll-b ⊗ ⊗ ⊗ ⊗
Chlorophyll-c1 ⊗ + ⊗ ⊗ ⊗ ⊗ ⊗
Chlorophyll-c2 ⊗ + ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ±
Chlorophyll-c3 ± ⊗ ⊗
Phycobilins
Phycocyanin ⊗ ⊗ ⊗ ⊗
Allophycocyanin ⊗ ⊗ ⊗
Phycoerythrin ⊗ ⊗ ⊗
Carotenes
α-carotene ⊗ + + ⊗ + ±
β-carotene ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ± ⊗ ⊗ ⊗ ⊗
γ-carotene ± ±
ε-carotene + + + ±
Xanthophylls
Zeaxanthin ⊗ ⊗ ⊗ ⊗ + ± + ± + ± +
Echinenone ⊗ + + + + ± ±
Canthaxanthin ⊗ + + + +
Myxoxanthophyll ⊗
Oscillaxanthin ⊗
α-cryptoxanthin ± + ± +
β-cryptoxanthin + + + ± ± ± ± ± ±
Isocryptoxanthin + +
Mutachrome + +
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4.1.3 Harvesting Light Energy

Plants that are able to synthesize food from carbon dioxide using light as an energy

source are called photoautotrophs. In the case of algae, oxygen is released as a product

of photosynthesis. This is called oxygenic photosynthesis. The process in which carbon

dioxide is converted into sugars is called ‘carbon fixation’. Carbon fixation is a redox

reaction; therefore, a source of electrons is needed to convert carbon dioxide into carbo-

hydrate. The general equation for photosynthesis is:

2nCO2 + 2nH2O + photons→ 2(CH2O)n +O2 + 2nA

Carbon dioxide + electron donor + light energy → carbohydrate + oxygen + oxidised electron donor

Photosynthesis takes place within the algae cells in the chloroplasts. All light-harvesting

pigments are known to be bound to proteins found within cell membranes, called thy-

lakoids. Thylakoids are tightly folded into cylindrical sheets giving them large surface

areas, so they are capable of absorbing a larger amount of light than if they were not.

However, in the case of cyanobacteria the thylakoids generally lie in concentric rings in

the cytoplasm, although there are a few exceptions (Graham and Wilcox, 2000).

It is this process of photosynthesis which explains the existence of these pigments, within

the cells, which are responsible for absorbing particular wavelengths from the incoming

sunlight radiation. The absorption of these wavelengths is what gives the absorption

signal a particular spectral shape or ‘spectral features’.

4.2 Algal-Culturing Techniques

Three species of algae were chosen for culture and obtained from the Murdoch Univer-

sity Microalgae Culture Collection. Details of the species of algae used in this study are

described in Table 4.4. These species were chosen as they were inexpensive and readily

available. The three species cultured are not native to the Swan or Canning rivers but

were cultured in order to test the viability of setting up a culturing laboratory for further

investigation of Swan and Canning specific cultures.

Seawater used for media preparation was obtained from Hillarys Boat Beach (Perth,

Western Australia) and was stored in 10 000 L holding tanks at Murdoch University.
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The seawater was charcoal-treated overnight by adding 10 g of activated charcoal to 10

L of seawater. After treatment, the water was filtered twice through triple thickness

Whatman No.1 filter paper, followed by a 0.45 µm Whatman nitrocellulose membrane

filter. The seawater was then stored at 4 ◦C in polycarbonate containers in the dark.

Cultures were maintained in 100 mL of culture medium and stored in 250 mL conical

flasks. Cultures were grown at 25 ◦C in constant temperature growth rooms at approx-

imately 10 Wm−2 ambient light provided by a combination of cool white and day light

fluorescent lights. All cultures were grown in f/2 medium, Table 4.3 (Andersen, 2005).

Silicon was added to MUR-158. MUR-158 and CCMP-1211 were grown at 3.3% NaCl

salinity and MUR-29 were grown at 12.5% NaCl salinity.

Table 4.3: Phytoplankton Culture Medium Recipe f/2

Component Stock Solution Quantity Used
(gL−1dH2O)

NaNO3 75 1 mL
NaH2PO4.1H2O 5 1 mL

Trace Metal Mix
Na2EDTA.2H2O 0.4725 3.15 g

FeCL3.6H2O 0.61 4.36 g
MnCL2.4H2O 180 1 mL
ZnSO4.7H2O 22 1 mL
CoCl2.6H2O 10 1 mL
CuSO4.5H2O 9.8 1 mL

Na2MoO4.2H2O 6.3 1 mL
Vitamin Mix

Cyanocobalamin (vitamin B12) 1 200 mg
Thiamine HCL (vitamin B1) 1 1 mL

Biotin (vitamin H) 1 1 mL

Cell counts were taken daily in order to keep track of growth rate, growth phase and cul-

ture volume. Subcultures were performed every few days in the log phase of growth until

spectrophotometric analysis. Subculturing was performed using aseptic microbiological

techniques outlined in Andersen (2005) by transferring culture into fresh, pre-sterilised

medium.
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4.3 Algal Spectral Absorption in Optical Model

Ultimately, the algal absorption results were not used in the model inversion as originally

planned but are presented here to illustrate the different absorption characteristics that

algae from different classes have as a result of the different photosynthetic pigments. The

original vision of the project was to build a spectral library of mono-cultures found in the

Swan and Canning Rivers. In practice, the amount of time it took to grow the cultures

in the laboratory detracted far too much time from the modelling, algorithm develop-

ment and fieldwork requirements of the project. Furthermore, early in the algorithm

development stage of the project, it was found that chlorophyll-a and CDOM absorption

features were so dominant in the measured reflectance spectra that differences in species

due to accessory pigments made very little difference to the inversion results. It was

found that it was far more important to accurately measure the reflectance, being careful

to keep the sun and sensor viewing geometry correct without corrupting measurements

through sunglint, foam or debris. This is discussed in more detail in later chapters. This

ultimately led to the decision to refocus the project on field measurements and algorithm

development. The field results presented in Chapter 6 used phytoplankton pigment spec-

tra taken from the river during the field campaigns and measured in the laboratory.

In Chapter 5, it is identified that there were three possible optical models that could be

used for model inversion. Two were published and one was being developed in-house.

Time was spent coding all three models in Python and testing their suitability for the

project. The following chapter shows the major results of this investigation. These results

were used to decide which model was the most suitable model to use for the subsequent

field campaigns.

Over the course of the project there were many opportunities to make radiometric mea-

surements at the water sampling locations along the Swan River. It was not possible to

measure a complete transect on these field trips due to the speed the Swan River Trust

boat which was far too high for making underway measurements. It was possible to make

measurements at the sample locations while the boat was stationary and water samples

were being collected. This provided an opportunity, however, to test and develop work-

flows as well as make adjustments to equipment and the processing software. The results

for these measurements are shown in Section 6.7.2.

The work presented in this chapter so far was used as a development platform to get
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the necessary tools and workflows together in order to complete a full underway transect

between the first and final water sampling locations. A boat was secured for use on one

occasion that, unlike the Swan River Trust boat, could make way at the optimal speed

(approx. 3–5 knots, depending on traffic) for radiometric measurements. The results of

this transect including the in situ measurements of the IOPs are presented in the last

part of Chapter 6, Section 6.7.14. Access to this boat, unfortunately, was not available

for any other field campaigns.

This section presents the absorption due to pigments of three different species of algae.

These particular species were chosen as they were readily available from the Murdoch

University culturing laboratory and were considered as potentially the closest type to

what might be found in the Swan River (personal communication Michael Borowitzka).

The phytoplankton presented in Table 4.4 were used to produce the absorption plots

show in Figure 4.1. A detailed description of the methodology used to measure the

phytoplankton absorption of these samples as well as the those collected in the field

campaign are described in Section 6.5.

Table 4.4: Phytoplankton culture details

Species/class Culture Collection Number Source
Pleurochrysis sp. CCMP-1211 Hawaii, North Pacific
Dunaliella salina MUR-8 Hutt Lagoon, Western Australia

Diatoms MUR-158 unknown
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Chapter 5

Development of Numerical Techniques

for Solving the Optical Model

5.1 Introduction

Radiative transfer describes the change of energy of light as it passes through a medium.

A fundamental understanding of this phenomenon is required to predict the behaviour of

the underwater light field and the processes affecting it. The following subsections define

terms, units and coordinates required to understand the radiative transfer equation.

5.1.1 Light

In this thesis, the term ‘light’ refers to a subset of wavelengths that make up the elec-

tromagnetic spectrum. In general, this thesis is concerned with wavelengths of light that

range from the infrared to the ultraviolet, approximately 380–750 nm.

All units used in this document are shown in Table 5.1, unless otherwise stated.

5.1.2 Coordinate System

The coordinate system used in this thesis follows the system used in Mobley (1994),

shown in Figure 5.1.
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Figure 5.1: Definition of the polar coordinates (θ, φ) and of the upward (Ξu) and down-
ward (Ξd) hemispheres of directions. ∆Ω(ξ̂) is an element of solid angle centred on ξ̂.

5.1.3 Radiometry

Considering a beam of light passing through a finite volume of water, the radiant energy

of the beam is defined in units of ‘per unit volume’ – or the energy density.

Radiance

The amount of power that an object emits (or reflects) in a particular direction is de-

scribed by the quantity radiance. Radiance is a geometrical and spectral quantity and

is, therefore, a function of angle and frequency. It is defined as:

L(~x, t, ξ̂, λ) =
∂4Q

∂t∂A∂Ω∂λ
(Wm−2sr−1nm−1) (5.1)

Where:

L is radiance (Wm−2sr−1nm−1)

~x is the position vector of a detector ~x = (x1î + x2ĵ + x3k̂)

Q is spectral energy (J)

ξ̂ is the direction of travel of the wave

λ is the wavelength (nm)
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t is time (s)

A is the area of the water surface (m2)

Ω is the solid angle (sr)

Irradiance

The amount of power per unit area incident on a surface is called irradiance. Most

commonly, the amount of power reaching a surface is considered incident irradiance

arriving at a flat surface as a plane wave, and therefore, often considered irradiance over

a hemisphere. In terms of passive remote sensing, the incident source of irradiance is

solar irradiance (the sun) usually described as downwelling scalar irradiance (Ed) and is

defined as:

Ed(~x, t, λ) =

2π
∫

0

π
2
∫

0

L(~x, t, θ, φ, λ) sin θdθdφ (Wm−2nm−1) (5.2)

Where:

Ed is irradiance (Wm−2nm−1) in the direction θ

~x is the position vector of a detector ~x = (x1î + x2ĵ + x3k̂)

ξ̂ is the direction of travel of the wave

t is time (s)

A is the area of the surface (m2)

Ω is the solid angle (sr)

L is radiance (Wm−2sr−1nm−1)

λ is the wavelength (nm)

θ is the zenith angle radian

φ is the azimuth angle radians

The upwelling scalar irradiance (Eu) is defined in much the same way. The difference

between radiance and irradiance is the dependence that radiance has on the viewing solid

angle. Measuring the downwelling radiance over the complete hemisphere, would lead to

the definition of downwelling scalar irradiance. That is to say, integrating radiance over

φ : 0− > 2π and θ : 0− > pi

2
would yield upwelling scalar irradiance:
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Eu(~x, t, λ) =

2π
∫

0

π
∫

π
2

L(~x, t, θ, φ, λ) sin θdθdφ (Wm−2nm−1) (5.3)

So far, the definitions presented here have assumed that the surface is illuminated equally

from all photons of light, regardless of their incident angle. In practice, irradiance is often

measured with a detector that has a flat collection surface. In this case, the effective area

a beam of light makes with the detector is ∆A| cos θ|, where ∆A is the collection surface

of the detector (such as the DALEC). That is to say that, light entering a detector’s

collection surface at an angle θ from the axis of the instrument, projects a larger surface

area than a beam of light parallel with the axis of the instrument. This results in a

detector response directly proportional to the cosine of the angle θ the light makes with

the instrument.

In this case, equations (5.2) and (5.3) must take in to account the cosine response of

the detector and are slightly modified to be:

Ed(~x, t, λ) =

2π
∫

0

π
2
∫

0

L(~x, t, θ, φ, λ)| cos θ| sin θdθdφ (5.4)

and

Eu(~x, t, λ) =

2π
∫

0

π
∫

π
2

L(~x, t, θ, φ, λ)| cos θ| sin θdθdφ (5.5)

Equations 5.4 and 5.5 are the vector irradiances. Some instruments are designed to be

equally sensitive to photons from all directions. However, the instrument used for this

study was not; therefore equations (5.4) and (5.5) are used to calculate vector irradiance

for all measurements.
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Table 5.1: Physical quantities and their units

Quantity Unit Symbol
length metre m
mass kilogram kg
time second s
temperature kelvin K
plane angle radian rad
solid angle steradian sr

5.1.4 Radiative Transfer Equation

Conservation of Energy

The following section will continue to define some fundamental quantities and principles

that are required to define the radiative transfer equation.

When a small collimated beam of light (Φi) enters a volume of water, only three pro-

cesses can occur. Some of the beam (Φa) may be absorbed by the medium, some of the

beam may be scattered (Φs) by the medium and the remaining beam (Φt) is transmitted

unaffected.

Figure 5.2: The transmitance, scatterance and absorptance of a collimated beam of light
through a small volume of water (Mobley, 1994).

Φi = Φa + Φs + Φt

The fraction of power that is absorbed within the volume is the spectral absorptance,

defined as:
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A(λ) =
Φa(λ)

Φi(λ)

The fraction of power that is scattered out of the volume is the spectral scatterance,

defined as:

B(λ) =
Φs(λ)

Φi(λ)

The fraction of power that is transmitted through the volume is the spectral transmit-

tance, defined as:

T (λ) =
Φt(λ)

Φi(λ)

And, by conservation of energy, A(λ) + B(λ) + T (λ) = 1

5.1.5 Inherent Optical Properties

The inherent optical properties (IOPs) of a water column are defined as the spectral

absorption a(λ) and spectral scattering b(λ) coefficients. They are the absorptance and

scatterance per unit distance in the medium and are defined as:

a(λ) = lim
∆r→0

A(λ)

∆r
(m−1) (5.6a)

b(λ) = lim
∆r→0

V (λ)

∆r
(m−1) (5.6b)

c(λ) = a(λ) + b(λ) (m−1) (5.6c)

Where:

c is the spectral attenuation coefficient (m−1)

λ is the wavelength (nm)

r is the beam of light path length (m)

V is the volume of water (m−3)

When modelling or predicting IOPs, it is common and useful to break the absorption
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and scattering down into the contributions from each of the water’s constituents. It is

usually these individual contributions that are of interest. For example, the absorption of

light due to phytoplankton, as shown in the following section, can be used to characterise

the concentration levels of phytoplankton present in the water body. Other important

IOPs include; absorption due to coloured dissolved organic material and scattering due to

suspended particles. All of these IOPs are commonly used in water quality measurements

and used in environmental monitoring of water bodies. The individual IOPs contribute

to the total IOPs by:

a(~x, t, λ) =
Na
∑

i=1

ai(~x, t, λ) (5.7a)

b(~x, t, λ) =
Ns
∑

i=1

bi(~x, t, λ) (5.7b)

Where:

Na is the number of absorbing substances

Nb is the number of scattering substances

~x is the position vector (x1î + x2ĵ + x3k̂)

t is time (s)

λ is the wavelength (nm)

While equations 5.7a and 5.7b show that the IOPs vary in position and over time, single

measurements of a water body which are being studied are usually a snapshot of position

in time. As such, the units of position and time are often dropped.

Section 5.1.5 defines the remote sensing reflectance as a function of IOPs. Mathemati-

cal inversion of an optical model along with measurements of remote sensing reflectance

will be used to infer the concentration of IOPs, in particular, phytoplankton absorption.

Chapter 3 will describe this process and how it was used to measure the remote sensing

reflectance of the Swan River with the DALEC and estimate the concentration of phy-

toplankton.

Another essential property is the spectral single-scattering albedo, defined as:
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ω0(λ) =
b(λ)

c(λ)
(5.8)

The spectral single-scattering albedo is the probability that a photon will be scattered,

rather than absorbed, in an interaction. The term bottom albedo is often used to

describe the ‘colour’ of a benthic substrate.

Volume Scattering Function

The volume scattering function is a fundamental IOP that describes the intensity of

scattering for a given angle ψ and is described by β(ψ, λ). Using the previous definition

of scatterance over a finite volume ∆V , scattered into a solid angle ∆Ω, the spectral

volume scattering function is defined as:

β(ψ, λ) = lim
∆r→0

lim
∆Ω→0

Φs(ψ, λ)

Φi(λ)∆r∆Ω
(m−1sr−1) (5.9)

Integrating β(ψ, λ) over all solid angles gives the total scattered power per unit volume of

water, which is the same definition as the spectral scattering coefficient shown in equation

(5.6).

b(λ) =

∫

β(ψ, λ)dΩ = 2π

π
∫

0

β(ψ, λ) sinψdψ (m−1) (5.10)

Dividing the spectral volume scattering function by the scattering coefficient yields the

spectral volume scattering phase function.

β̃(ψ, λ) =
β(ψ, λ)

b(λ)
(sr−1) (5.11)

The phase function is essentially the normalised spectral volume scattering function and

describes the distribution of energy over the scattering angle, and as such, should inte-

grate to = 1.

2π

π
∫

0

β̃(ψ, λ) sinψdψ = 1 (5.12)
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It was be shown in Chapter 3 that the volume scattering function can also be found by

considering time-harmonic Maxwell’s equations. This, in fact, provides a way of check-

ing numerical calculations and is used in Chapter 3 in order to validate the results of

modelled phase functions of algal cells.

As remote sensing reflectance is the quantity that is used in this study to characterise

the IOPs, it is convenient to separate the total scattering coefficient into forward (bf ),

and backscattering coefficients (bb).

bf (λ) = 2π

π
2
∫

0

β(ψ, λ) (m−1) (5.13a)

bb(λ) = 2π

π
∫

π
2

β(ψ, λ) (m−1) (5.13b)

It will be shown in later sections that the measurement used in this thesis, i.e. remote

sensing reflectance to derive phytoplankton abundance, is a function of absorption and

backscatter. It was shown in Chapter 3 that the abundance of phytoplankton can be

estimated by considering its contribution to the total absorption and scattering. For this

reason, it is important to characterise the absorption and scattering processes in radiative

transfer theory.

Apparent Optical Properties

Apparent optical properties (AOPs) are a function of both the IOPs and the light field

in which they are measured. For an AOP to be a useful descriptor of a water body, it

must show regular features and be stable for the period of measurement. Traditionally,

direct measurement of IOPs has been difficult, especially when discussing oceanography.

Generally, it is the AOPs that are measured and as they are a function of IOPs, they can

be useful in describing the bulk properties of a water column. Satellite observations are

only able to directly measure AOPs. For this reason, a few useful AOPs have been defined.

The spectral irradiance reflectance at depth z is the ratio of spectral upwelling to

downwelling irradiance:
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R(z, λ) =
Eu(z, λ)

Ed(z, λ)
(5.14)

The spectral remote sensing reflectance Rrs is defined as:

Rrs(θ, φ, λ) =
L(0+, θ, φ, λ)

Ed(0+, λ)
(5.15)

Where depth 0+ indicates just above the water surface. The remote sensing reflectance is

a measure of how much downwelling irradiance is scattered back through the water and

exits the surface. The scattering is due to water, phytoplankton and other suspended

particles.

Other commonly used AOPs are the diffuse attenuation coefficients, particularly the

downwelling spectral diffuse attenuation coefficient Kd(z, λ). If we consider the depth

dependence of Ed and assume that it decreases exponentially with depth1. Then we can

write Ed as:

Ed(z, λ) = Ed(0, λ) exp



−
z
∫

0

Kd(z
′, λ)dz′



 (5.16)

Solving for Kd yields (Smith and Baker, 1978):

Kd(z, λ) = −d lnEd(z, λ)

dz
= − 1

Ed(z, λ)

dEd(z, λ)

dz
(m−1) (5.17)

Other diffuse attenuation coefficients or ‘K-functions’ can be defined in a similar fash-

ion. K-functions are strongly affected by phytoplankton chlorophyll concentration and,

therefore, can be used as an indicator of phytoplankton biomass. There are commercially

available instruments that can measure K-functions.

1True only far from both the surface, the bottom.
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Absorption and Scattering of Pure Water

The scattering of photons in pure water is due to refraction. When a photon passes

through water it experiences small changes in the refractive index of the water. These

small changes are usually a result of small thermal fluctuations through the medium.

When a photon experiences a change in the refractive index, its phase velocity is altered,

causing a change in direction, as the wavelength is altered but its frequency remains the

same. If there were no changes in the refractive index through the water, there would be

no scattering of light at all.

Smith and Baker (1981) made careful indirect measurements of the absorption of pure

water, by measuring the Kd of extremely clear natural waters. Pope and Fry (1997) have

made laboratory measurements of pure water absorption using an integrating cavity ab-

sorption meter, shown in Figure 5.3. More recently, field measurements similar to those

of Smith and Baker (1981) have been carried out by Morel et al. (2007) in the hyperolig-

otrophic waters in the South Pacific in an attempt to determine an upper bound limit to

the absorption coefficients in the UV domain.

The scattering of pure water can be shown to be (Mobley, 1994):

bw(λ) = 16.06

(

λ0
λ

)4.32

βw(90
◦, λ0) (m−1) (5.18)

Morel (1974) shows that a sodium chloride solution of 0.035%� of water, which is approx-

imately the same salinity as sea water, scatters light 1.18–1.20 times as much as pure

water.

It is very difficult to make measurements of the absorption or scattering of pure water

for the following reasons: Precise calibration of optical equipment is difficult do the large

orders of magnitude differences between incident and scattered fields; the presence of

stray light is difficult to eliminate; purification of water is difficult and electronic sensors

sensitive enough to the large change in scattering energy are difficult to make. For these

reasons, when modelling radiative transfer the published values of absorption and scat-

tering are used.
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Figure 5.3: Historical data of the pure water absorption coefficient. Open circles (◦)
represent Smith and Baker (1981), closed circles (•) represent Pope and Fry (1997).
Figure taken from Pope and Fry (1997).
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Absorption and scattering of phytoplankton

The spectral absorption and scattering due to phytoplankton is very difficult to charac-

terise. One reason for this is the complex chemical make-up of cells and the complex

structure of the cells themselves. These complex structures are so varied between differ-

ent classes that a simple bio-optical model is difficult to define. The other reason cells

are difficult to characterise in terms of their scattering and absorption is due to the large

variability in community size, structure and composition.

At the most fundamental level, the absorption and scattering of light can be described

by solving Maxwell’s equations for electromagnetics for light passing through a medium.

Analytical solutions to Maxwell’s equations are very difficult. One solution, however, is

Mie theory, after Mie (1908), who found a solution for homogenous spherical particles.

Although Mie theory has been used in an attempt to describe scattering by phytoplank-

ton, cells in nature are much more complicated than Mie theory allows for (Quirantes

and Bernard, 2004). Mie theory is presented in full later in this chapter and used in

Chapter 5 to compare different scattering models.

Another approach to characterising the absorption and scattering process in cells is the

anomalous diffraction approximation (ADA) (Hulst, 1957). In general, the ADA is only

valid for small angles but, unlike Mie theory can be used to explain scattering by non-

spherical particles. A study by Morris and Jennings (1977) found that the ADA was

useful when considering large cells with little internal features, but with optically signifi-

cant cell walls or membranes. This limits the validity of the model to only a few species,

mostly bacteria.

The absence of a suitable analytical solution leaves only numerical solutions or empirical

modelling as a practical approach. One such numerical solution is the finite-difference

time-domain (FDTD) method. Chapter 5 describes this method in detail and uses it

to model the scattering of different algal cells with more complex structures than other

traditional methods. These results are compared with laboratory measurements made

by Volten et al. (1998).

The absorption of phytoplankton is mostly due to the organisms’ photosynthetic pig-

ments, of which chlorophyll is the most dominant. Chlorophyll absorbs predominantly in

the blue and red bands of the visible spectrum, with very little absorption in the green.

Accessory pigments are often present altering the total spectral absorption slightly and
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can potentially be used as ‘marker’ pigments to identify a group of species that a sample

of phytoplankton may belong to. Chlorophyll, however, remains the most optically sig-

nificant pigment and, as such, its concentration is often used to estimate phytoplankton

abundance. Figure 5.5 shows to different classes of phytoplankton, with different acces-

sory pigments, have unique spectral absorption shapes. Figure 5.6 shows that different

phytoplankton classes, with different shapes and structures, results in unique spectral

scattering shapes. Furthermore, the concentration of phytoplankton can also vary the

spectral attenuation and absorption as shown in figures 5.10 and 5.11 respectively. This

large variability becomes a challenge when modelling the remote sensing reflectance and,

is a large source of uncertainty when estimating the phytoplankton concentration from

remote sensing reflectance measurements.

Figure 5.5: Spectral absorption of five different phytoplankton classes. Different accessory
pigments result in unique absorption characteristics.

There are a few factors, however, affecting the absorption of phytoplankton. The most

significant being the size, density and distribution in a water column, as well as pigment

packaging, self-shading and multiple scattering. Trying to account for all of this vari-

ability is extremely difficult to model. Attempts have been made to derive relationships

theoretically, semi-empirically and empirically.
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Figure 5.6: Spectral scattering of five different phytoplankton classes. Differences in both
shape and chemical composition are responsible for unique scattering characteristics.

Absorption of Dissolved Organic Material

Most water bodies found in nature include some amount of dissolved organic compounds,

often as a result of rotting vegetation or water run-off over wetlands and tree roots. The

organic compounds mostly consist of fulvic and humic acids. They are usually brown

in colour and make the water a yellow–brown colour. The dissolved organic compounds

are often – in the general sense – referred to as yellow matter; gelbstoff; gilvin; coloured

dissolved organic matter; or chromophoric dissolved organic matter and are often given

the acronym CDOM. As CDOM is dissolved in the water it has little to no effect on

scattering (except by possibly changing the refractive index of the water) but, rather,

absorbs heavily in the blue part of the spectrum.

However, the most accepted model for describing CDOM absorption, and the model used

by Lee et al. (1999) as described byBricaud et al. (1981):

aCDOM(λ) = A0 exp
(−SCDOM (λ0−λ)) (5.19)

Where A0 and SCDOM are modelled parameters found through regression analysis, λ

is the wavelength and λ0 is a reference wavelength. An example using this model can
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Absorption of Gelbstoff

Gelbstoff literally means "yellow stuff" in German. Originally used to described CDOM,

in this thesis it is used to describe the total contribution of CDOM and anap to the ‘yellow

stuff’ budget.

ag(λ) = A0 exp
(−SCDOM (λ0−λ)) +B0 exp

(−Snap(λ0−λ)) (5.21)

Scattering of Suspended Particles

Most water bodies have a certain amount of suspended particles in the water contributing

to the total scattering of light. The particles usually include both minerals, phytoplank-

ton and other non-algal particles. As the backscattering of suspended particles (bbp) is an

IOP that contributes to the remote sensing reflectance, it is useful to model the spectral

backscattering. Lee et al. (1999) describes such a model:

bbp = X

(

400

λ

)Y

(5.22)

Where:

X = bbp(400)

Y ≈ 3.44[1− 3.17 exp(−2.01χ)]

χ = Rin
rs(440)

Rin
rs(490)

Figure 5.8 shows and modelled particle scattering spectrum using Equation (5.22). This

is the model for particle scattering used for inputs into PlanarRad, the radiative transfer

model which is describe in detail in further sections.

Specific Inherent Optical Properties

Specific Inherent Optical Properties (SIOPs) are parameters that relates the spectral ab-

sorption and scattering of an IOP to a physical concentration level, such as chlorophyll-a

concnetration from aφ(440). The relationship between spectral absorption and cell size

of phytoplankton investigated in Morel and Bricaud (1981) is presented in Figure 5.9.
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Figure 5.9: Change in spectral absorption values with variable cell size (Morel and
Bricaud, 1981).
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If the relationships between the absorption and scattering of SIOPs and IOPs are under-

stood. The specific concentration of those IOPs can be derived by optical measurements.

5.1.6 Characterising Volume Scattering Functions

Petzold’s Measurements of Volume Scattering Functions

As mentioned previously, measuring the volume scattering functions of oceanic water is

problematic, due to the difficulty of designing electronic equipment that can measure the

orders of magnitude change in scattering over very small angles. Furthermore, the issues

of multiple scattering, internal scattering of the instrument and precise measurement of

viewing geometry also present significant problems. However, instruments – such as the

ECO VSF (WET Labs) – have been developed in an attempt to characterise this phe-

nomena. The most widely cited measurements of volume scattering functions of oceanic

waters are those made by Petzold (1972) which were carefully made at three different

sites of three different water types: clear; productive coastal; and turbid waters, at the

Bahamas, California and San Diego, respectively.

Figure 5.12: Measured volume scattering functions from the three different natural waters
(Petzold, 1972), and the computed volume scattering function for pure sea water (Mobley,
1994). The dotted line is the particle phase function in Table 3.10 (Mobley, 1994).

The volume scattering functions presented in Figure 5.12 are commonly used in radiative

transfer calculations. It is important to recognise, however, that scattering values may
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deviate from these values significantly in waters dominated by large or small particles.

This is very much due to the very limited data set available when considering the wide

variety and combinations of water types commonly found around the world.

Fournier-Forand Volume Scattering Function

In an attempt to approximate an analytical phase function of particles that have a hyper-

bolic (Junge) particle size distribution, Fournier and Forand (1994) derived an analytical

form of volume scattering function based on the anomalous diffraction approximation of

Mie theory. In the latest form presented in Fournier and Jonasz (1999):

β̃(θ) =
1

4π(1− δ)2δν

[

ν(1− δ)− (1− δν) + [δ(1− δν)− ν(1− δ)] sin−2

(

θ

2

)]

+
1− δµ180

16π(δ180 − 1)δµ1802 cos
2 θ − 1

(5.24)

Where:

µ =
3− µ

2
(5.25)

And:

δ =
4

3(n− 1)2
sin2

(

θ

3

)

(5.26)

Where n is the real index of refraction of the particles, µ is a spectral slope parameter and

δ180 is δ evaluated at θ = 180◦. Equation 5.24 can be integrated to obtain the backscatter

fraction:

bb
b
= 1− 1− δν+1

90 − 0.5(1− δν90)

(1− δ90)δν90
(5.27)

Where δ90 is δ evaluated at 90◦.

The Fournier-Forand phase functions, shown in Figure 5.13 are able to reproduce the

shapes of ocean phase functions. However, for the reasons already discussed, it is difficult

to validate, particularly at near forward-scattering angles. The advantage over Petzold’s

phase functions is that they can be produced for a known backscatter fraction. If the

backscatter fraction is known, the Fournier-Forand method can be used to generate a

complete phase function.
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5.1.7 Radiative Transfer Equation

The following section of this chapter’s goal is to develop a radiative transfer equation

that can be used to model the underwater light field of a water body. To achieve this, a

few constraints need to be defined. Firstly, the theory developed here will be restricted to

‘plane–parallel’ water bodies as described by Mobley (1994). The plane–parallel model

assumes that the water body has no horizontal variations in the inherent optical proper-

ties. The inherent optical properties may significantly vary with depth. The full radiative

transfer equations is an important tool in understanding the underwater light field and

how solar radiation passes through a water column and is reflected back up through the

water surface. The radiative transfer equation can be used to calculate the remote sens-

ing reflectance (along with other quantities) by providing IOPs and VSFs as inputs. In

this study, a solution to the inverse problem is required. The remote sensing reflectance

can be measured, however, it is the IOPs that are desired an an output. The full and

complex radiative transfer equation will be developed in this section. In later sections of

this chapter, it will be shown that software tools that solve the radiative transfer equation

for remote sensing reflectance, have been used to develop simpler, less computationally

burdened models. These simpler models, unlike the full radiative transfer equation, can

be inverted using mathematical optimisations techniques to obtain IOP concentrations

from remote sensing reflectance inputs. Hence, providing a solution to the inverse prob-

lem stated previously.

The first consideration is the boundary conditions. It is assumed that the water body is

infinite in the horizontal plane, so the two boundaries that need to be considered are the

air–water boundary and the bottom surface – these are the upper and lower boundaries

shown in Figure 5.14.

Figure 5.14 shows an infinitesimally thin surface ‘slab’ denoted by S[a, w] between the

air and water at depth a = 0.

Another useful quantity to define is the optical depth, defined as:

ζ =

z
∫

0

c(z′)dz′ (5.28)

Where c(z′) is the attenuation coefficient and z is the geometric depth. As c(z′) is in units

per metre and geometric depth is in units of metre, the optical depth is dimensionless.
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Figure 5.13: Fournier-Forand phase functions for selected backscatter fractions.

Figure 5.14: Representation of a plane–parallel water body (Mobley, 1994).
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If the maximum depth of interest is denoted by m and the bottom b, then the lower

boundary slab is denoted by S[m, b]. The lower boundary can either be infinitesimally

thin or a finite thick slab of water below the greatest depth of interest.

Interaction Across the Air–Water Interface

Considering the air-incident radiance on the surface, L(a, ξ̂), ξ̂ ǫ Ξd, and the water-

incident radiance, L(w, ξ̂), ξ̂ ǫ Ξu, there are two incident radiances on the slab S[a, w].

The interaction principle for radiance defines four radiance transfer functions for S[a, w]

from the functions:

Air-incident:

L(a, ξ̂) =

∫

Ξu

L(w, ξ′)t(w, a, ξ̂′ → ξ̂)dΩ(ξ̂′)+

∫

Ξd

L(a, ξ′)r(a, w, ξ̂′ → ξ̂)dΩ(ξ̂′) for ξ̂ ǫ Ξu

(5.29a)

Water-incident:

L(w, ξ̂) =

∫

Ξu

L(w, ξ′)r(w, a, ξ̂′ → ξ̂)dΩ(ξ̂′)+

∫

Ξd

L(a, ξ′)t(a, w, ξ̂′ → ξ̂)dΩ(ξ̂′) for ξ̂ ǫ Ξd

(5.29b)

The left and right terms of both equations with t and r, denote the radiance that is

transmitted, or reflected, respectively.

Following the same principle, it is possible to obtain the irradiance transfer functions

by multiplying equation (5.29a) by |ξ̂ · î3| and integrating over Ξu and by multiplying

equation (5.29b) by |ξ̂ · ξ̂î3| and integrating over Ξd:

Eu(a) = Eu(w)t(w, a) + Ed(a)r(a, w) (5.30)

Ed(w) = Eu(w)r(w, a) + Ed(a)t(a, w) (5.31)
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t(w, a) =
1

Eu(w)

∫

Ξu





∫

Ξu

L(w, ξ̂′)t(w, a, ξ̂′ → ξ̂)dΩ(ξ̂′)



 |ξ̂ · î3|dΩ(ξ̂) (5.32a)

r(a, w) =
1

Ed(a)

∫

Ξu





∫

Ξd

L(a, ξ̂′)t(a, w, ξ̂′ → ξ̂)dΩ(ξ̂′)



 |ξ̂ · î3|dΩ(ξ̂) (5.32b)

r(w, a) =
1

Eu(w)

∫

Ξd





∫

Ξu

L(w, ξ̂′)r(w, a, ξ̂′ → ξ̂)dΩ(ξ̂′)



 |ξ̂ · î3|dΩ(ξ̂) (5.32c)

t(a, w) =
1

Ed(a)

∫

Ξd





∫

Ξd

L(a, ξ̂′)t(a, w, ξ̂′ → ξ̂)dΩ(ξ̂′)



 |ξ̂ · î3|dΩ(ξ̂) (5.32d)

Equations 5.29 and 5.32 describe everything that is needed to model the interaction of

light at the air–water interface.

Fesnel Reflection

When the air–water interface is flat, the reflection and transmission of a beam across the

surface can be easily described using geometrical optics. The partial transmission and

reflection of light from one medium to another, as a function of their refractive indices,

can be described using Fresnel’s equation [unpolarised case]:

r(θ′) = r(ξ̂ · n̂) = 1

2

{

[

sin(θ′ − θt)

sin(θ′ + θt)

]2 [
tan(θ′ − θt)

tan(θ′ + θt)

]2
}

(5.33)

Where:

θr = cos−1 |ξ̂′ · n̂| = θ′

θt = sin−1(nw sin θ′)

And nw is the refractive index of water, n̂ is the unit normal vector to the surface, and

assuming the refractive index of air = 1.0.
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Surface Topology

The Fresnel equation, Equation 5.33, is a special case and not very useful for modelling

real water body surfaces that usually present waves, due to wind, capillary and gravi-

tational processes. There is no analytical case that can describe this kind of surface so

numerical techniques need to be employed.

The most common form of modelling an air–water surface transmission is to use Monte

Carlo methods to statistically estimate a solution. A complete description of the process

is outlined in Mobley (1994); however, an overview will be presented here.

Consider a sea surface that is covered by wind-induced waves that are free from white

caps. The Monte Carlo method of tracing light beams through the air–water interface

first requires a realistic model of the sea surface. A surface can be constructed using the

wave slope wind speed law described by Cox and Munk (1954).

At some position, the water surface elevation η changes, due to wind blowing across the

surface. The upwind and crosswind slopes of the water surface are:

ηu =
∂η

∂x1

ηc =
∂η

∂x2

Slopes ηu and ηc vary randomly described by a normal distribution with zero mean and

variances described by:

σ2
u = auU where au = 3.16× 10−3sm−1

σ2
c = acU where ac = 1.93× 10−3sm−1

Where U is the wind speed in metres per second measured at 12.5 m above the mean sea

level.

This relationship between wind speed and surface slope can be used to generate a large

number of random capillary wave surfaces. The process of which is described in detail in

Mobley (1994).
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Figure 5.15: Model of the sea surface as a hexagonal grid of triangular wave facets
(Mobley, 1994).

Figure 5.15 shows one possible realisation of a wave surface. A complete sea surface

topology is created by repeating this process to create an ensemble average. The two-

dimensional probability distribution is described by:

p(ηu, ηc) =
1

2πσuσc
exp

[

−1

2

(

η2u
σ2
u

+
η2c
σ2
c

)]

(5.34)

Once a suitable water surface is constructed, it is possible to proceed with the ray-tracing

algorithm as shown in the following steps:

1. Construct the sea surface using the technique outlined above.

2. Trace randomly generated parent light rays over, under and through the realised

surface toward their ultimate destinations.

3. Assign radiant energy content to each processed daughter ray.

4. Store the daughter rays (for multiple scattering processes) for later processing by

repeating steps (1) and (2).

5. Accumulate the assigned ray energies of the daughter rays to obtain associated

reflectance and transmittance properties of the surface.
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6. Continue until changes in the ratio of the total amount of reflected radiant power

S(ω) from a small neighbourhood converges some defined limit.

It is important to store the daughter waves and reprocess them by repeating steps (1)

and (2) to account for multiple scattering. Rays in the most simple case will pass from

the air through the water. However, it is shown in Figure 5.16 how rays can be reflected

and transmitted off multiple surfaces.

Figure 5.16: Schematic diagrams of common water-surface scattering events (Mobley,
1994). ns and nb show the total number of rays involved in the scattering event.

The incident radiant power is:

Φ(I) = L(ξ̂′)∆Ω∆A

And the upward emergent power Φ(R, ω) through the surface of the horizontal monitoring

surface S(ω) is given by:

Φ(R, ω) = Φ(I)r+(ξ̂
′, ω)

= (ξ̂′)∆Ω∆Ar+(ξ̂
′, ω)

The ensemble average is found by solving for r+(ξ̂
′, ω) and dividing through by |ξ̂′ · k̂|.
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Eω

{

r+(ξ̂
′, ω)

}

=

Eω

{

Φ(R,ω)
(

∆A

|ξ̂′·k̂|

)

}

L(ξ̂′)∆Ω|ξ̂′ · k̂|
= r+(ξ̂

′) (5.35)

The values of r−(ξ̂
′) and t±(ξ̂

′) are found in a similar way. Then r±(ξ̂
′) and t±(ξ̂

′) can

be regarded as the functions that describe the reflective and transmissive properties of

the mean horizontal surface of a wind-roughened water surface. The reflectance and

transmission can be modelled for a range of wind, sun and surface conditions (Mobley,

1999) providing a useful lookup table for quick calculation of transmitted light2. An

example of this is shown in Figure 5.17.

2This is mentioned here as it is used in calculations to estimate the remote sensing reflectance in later
chapters.
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Figure 5.17: Reflectances for random capillary waves and water-incident light rays from
distant point sources. For each group of θ′s curves, the solid lines are for φ′

s = 0◦ (nadir),
and the dashed curves are for φs = 90◦ (source at right angles to the wind direction). For
each pair of solid curves or pair of dashed curves, the top curve is for the total scattering
and the bottom curve is for single scattering only (Mobley, 1999).
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The wave model described here has some limitations. The first one is that the model does

not include the effects of gravity waves, tide, swell, internal waves or shallow water waves.

This is due to computational limitations. The inclusion of gravity waves is discussed in

Mobley (1994). There are a number of different stochastic wave distributions that can be

used to generate a surface realisation. The (Joint North Sea Wave Project) JONSWAP

and the Pierson-Moskowitz (Pond and Pickard, 1983) are two popular wave spectra in

oceanography. These spectra were designed for waves generated from wind blown over

large distances (fetch) and were used for modelling the sea state effects on radar. Wave

spectra that focuses on the effect at visible wavelengths still requires some work.

It should also be noted that any realisation is a snapshot in time and, therefore, does

not consider temporal effects. Such effects include time-dependent wave focusing, which

may be important to some organisms. The lensing effect of the moving water surface can

cause fluctuations of many times the average energy value over less than a second.

Furthermore, the effects of foam and white caps are not modelled by any of the traditional

wave spectra but may have a significant effect on radiative transfer. This is also an area

requiring more research.

Bottom Surfaces

The bottom surface is the lower boundary of the radiative transfer equation and is de-

scribed using Equation 5.8. Common bottom classes include; sand, seagrass, rocks and

coral. It is possible to break these classes into subclasses that each have different spectral

properties. Identifying these spectral properties and classifying benthos based on these

spectral properties is currently the subject of further remote sensing research in the field

of benthic habitat mapping. Figure 5.18 shows an example of six spectrally different

surfaces. As the Swan River is predominantly optically deep, i.e. the bottom surface

cannot be seen, a completely black surface is used in modelling. The exception being, a

small section between the two of the sample locations BLA and ARM. In this region, the

bottom surface is all sand and therefore a sand reflectance is used for the HOPE model

inputs in this corresponding area.
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Figure 5.18: Spectral values of the albedo for various colour substratum (Fearns et al.,
2011).
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Generalised Radiative Transfer Equation

Putting all of the information together from the previous sections, it is possible to define a

generalised radiative transfer equation. Chapter 5 of Light and Water: Radiative Transfer

in Natural Waters (Mobley, 1999) shows in detail how to derive this equation.

µ
dL(z, ξ̂, λ)

dz
= −c(z, λ)L(z, ξ̂, λ)+

∫

Ξ

L(z, ξ̂′, λ)β(z, ξ̂′ → ξ̂, λ)dΩ(ξ̂′)+S(z, ξ̂, λ) (5.36)

It is this general form of the RTE that many modelling tools, such as Hydrolight and

PlanarRad, attempt to solve for remote sensing reflectance given IOPs and VSFs as

inputs. The S(z, ξ̂, λ) term is a source term and accounts for IOP fluorescence. This

term is not calculated in PlanarRad used for this study and is a limitation of the software

tool.

5.1.8 Solution to the Radiative Transfer Equation

The most common way of solving the RTE is by using Monte Carlo techniques. Monte

Carlo methods use ray-tracing methods to calculate the probability of an event occurring

and are commonly used as they are quite simple to implement but can be computation-

ally inefficient. Another popular numerical method for solving the RTE is the invariant

imbedding technique. A detailed description of this method of solving the RTE is de-

scribed in Chapter 8 of Mobley (1999) and will not be discussed here, other than to note

that the very popular numerical modelling package Hydrolight uses these techniques.

Hydrolight was written by Curtis Mobley and has become the industry standard in mod-

elling underwater light fields. PlanarRad (Hedley, 2008) is an open source implementation

of Hydrolight that uses the same solution methods and produces the same solutions as

Hydrolight. This thesis uses PlanarRad for the numerical modelling of remote sensing

reflectance.

5.2 Modelling the Radiative Transfer Equation

Previous sections described the development of the RTE and mentioned two popular

tools used to solve the RTE which are very useful for calculating the spectral reflectance

of a water body based on a range of water properties and environmental inputs. In

practice, it is often the case that it is those inputs that are of interest and the inverse

problem presents itself. That is, the water colour can be measured and it is the water
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properties that need to be known. In the case of this body of work, the remote sensing

reflectance of the Swan and Canning rivers can be measured, but it the absorption due

to phytoplankton abundance that is required.

One solution to this problem would be to run PlanarRad many times for many combi-

nations of IOP and environmental inputs and then match the measurements with the

closet output from PlanarRad i.e. create a lookup table. The inputs required to produce

that output could be inferred as the water property inputs that would reproduce the

measurement. One problem with this approach is that there are a very large number,

range and combinations of inputs that could be used to generate a very large number

of outputs. PlanarRad (and Hydrolight) are already very computationally intensive and

take a long time to run simulations. Furthermore, the size of the lookup table very

quickly becomes large and difficult to load into a computer’s memory, so searches can

become slow. One solution to this problem has been developed by Hedley et al. (2009)

by creating an adaptive lookup table which significantly reduces the search time. This

does not negate the problem that generating the lookup table is very computationally

expensive and time consuming. In fact, Hedley et al. (2009) generates the lookup table

using a semi-analytical model rather than the full RTE.

Another and more commonly used approach is to use a simpler semi-analytical or quasi-

analytical model of the full RTE. One of these simpler models has the advantage of being

much faster to solve and computationally and mathematically much simpler. A semi-

analytical or quasi-analytical model is much more constrained than the full RTE and

usually requires some assumptions and/or approximations for the inputs. PlanarRad or

Hydrolight provide accurate tools that can be used to build such a simpler and more

constrained model that is easier to solve.

Many remote sensing reflectance models have been based on the work produced by Gor-

don et. al. (1988). This work was one of the first to describe upwelling spectral radiance

at the water surface as a function of phytoplankton pigment concentration. Gordon et.

al. (1988) show that the remote sensing reflectance is some function of absorption and

backscatter as follows:

Rrs(λ) = f

{

bb(λ)

a(λ) + bb(λ)

}

(5.37)

Where a(λ) is the total spectral absorption and b(λ) is the total spectral backscatter.
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Most of these simpler models are, in part, an attempt to accurately estimate Gordon’s

remote sensing function f and represent the function in terms of the water’s IOPs. The

model used in this proposal is based on work by Lee et al. (1999). This model (HOPE)

is a refinement on a previous model of Lee et al. (1998) and was developed using both

computer-simulated data and field-measured data. The model was refined using Monte

Carlo and Hydrolight calculations and defines the remote sensing reflectance as:

Rrs(λ) = f [a(λ), β(λ), ρ(λ), H, θw, θ, φ] (5.38)

Where f is a function of:

H, the bottom depth (m)

ρ(λ), the bottom reflectance

a(λ), the total absorption (m−1)

β(λ), the volume scattering function (m−1)

θw, the subsurface solar zenith angle (rad)

θ, the subsurface viewing angle from the solar plane (rad)

φ, the viewing azimuth angle from the solar plane (rad)

All these parameters can be measured in the field. Furthermore, the authors show that

a(λ) and b(λ) is the absorption and backscatter due to IOPs and that the spectrum of

each IOP can be parameterised using parameter coefficients. This allows modelling and

retrieval of specific absorption and backscatter spectra via single value parameters using

bio-optical models. This is described in detail in Section 5.3.1.

HOPE has been used successfully and validated for ocean and coastal waters (Lee et.

al., 1999). Inland waters high in CDOM, such as the Swan and Canning rivers, are more

optically complex than the model was originally designed for. The current model uses

semi-empirical data taken from the Atlantic Ocean around Florida, USA (Lee et. al.,

1999). Furthermore the model was developed for reflectances measured with the sun at

nadir angle. In this study, a transect of the Swan River takes approximately six hours.

The sun is at nadir for only a fraction of this time, ignoring seasonal angular effects.

In 2008, field trials of the DALEC showed that HOPE can model the spectral features of

the measured reflectance, between 400 nm and 650 nm in low concentrations of CDOM

(Marrable, 2008). However, for wavelengths greater than 650 nm, i.e. these that are im-
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portant for information regarding the red end of the spectrum and particulate scattering,

the model is not an acceptable fit. Furthermore, in the presence of high concentrations

of CDOM, the model does not fit at well any wavelengths. There was enough evidence

to show that IOP retrieval from measured remote sensing reflectance was in fact possible

but further research was required. The field trials did not cover the full range of the river

and limited in situ measurements were made. It was concluded that a greater number

and range of in situ measurements were required as well as a greater assessment of the

optical model and available optical models. For this reason, 3 more optical models are

assessed in the thesis.

5.3 Remote Sensing Optical Models

Since Gordon et al. (1988) first published a semi-analytical model of ocean colour, var-

ious remote sensing optical models (‘optical models’ for brevity) have been presented

as incremental improvements have been made. This chapter investigates the ability of

a number of optical models to accurately model the remote sensing reflectance of the

Swan River. The models presented here were originally designed for inversion of ocean

reflectance data; therefore, their suitability to model the generally higher attenuating

water found in the Swan and Canning rivers is still unknown. An investigation into the

performance of each optical model is presented further in the following sections.

5.3.1 HOPE

Hydrolight is a very useful tool for forward modelling of light. That is to say that, if the

boundary conditions and all of the IOPs are known, Hydrolight will describe the light

distribution at any point in the water column or just above the water surface. It is usually

the case that when making measurements in the field, the inverse problem presents itself.

That is to say, the light field is measured and it is the IOPs that are the required solution.

HOPE uses a quasi-single-scattering theory (presented in Gordon et al., 1975) and Hy-

drolight to develop a semi-analytical model for describing the remote sensing reflectance.

As mentioned earlier, remote sensing reflectance is an AOP and is a function of IOPs –

including phytoplankton absorption, which is the focus of this thesis. HOPE is described

by:
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rrs = rdprs

(

1− α0 exp

{

−
[

1

cos(θw)
+D0(1 +D1u)

0.5κH

]})

+α1ρ exp

{

−
[

1

cos(θw)
+D′

0(1 +D′
1u)

0.5

]

κH

} (5.39)

Where:

rdprs = (g0 + g1u
g2)u (5.40)

And:

u =
bb

a+ bb
(5.41)

κ = a+ bb (5.42)

The terms g0, g1, g2, α0, α1, D0, D1, D
′
0, D

′
1 are the model parameters and were solved by

fitting those values to a large generated set of rrs values. The model parameters are3:

g0 = 0.089, g1 = 0.125, g2 = 1

α0 = 1, α1 =
1

π

D0 ≈ 1.03, D1 ≈ 2.4

D′
0 ≈ 1.04, D′

1 ≈ 5.4

This gives:

rrs = rdprs

(

1− exp

{

−
[

1

cos(θw)
+ 1.03(1 + 2.4u)0.5κH

]})

+
1

π
ρ exp

{

−
[

1

cos(θw)
+ 1.04(1 + 5.4u)0.5

]

κH

} (5.43)

With:

rdprs ≈ (0.089 + 0.125u)u (5.44)

The relationship between the above water remote sensing reflectance and the subsurface

3g0 and g1 have been updated here in accordance with Lee et al. (2009), not the original values
presented in Lee et al. (1999).
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remote sensing surface is:

Rrs =
ζrrs

1− Γrrs
(5.45)

Where:

Rrs ≈
0.5rrs

1− 1.5rrs
(5.46)

The IOPs, a and bb embedded in equations 5.41 and 5.42. The individual IOPs are

parameterised by:

a = aφ + ag + aw (5.47a)

bb = ε(λ)bbp + bbw (5.47b)

Where:

ε(λ) ≈ 1.0 + [0.1 + 0.8bbp(λ)/bb(λ) sin(θ) sin(θw)] (5.48)

And:

aφ(λ) = P [a0(λ) + a1(λ)ln(P )] (5.49)

ag(λ) = G exp[−S(λ− 440)] (5.50)

bbp = X

(

400

λ

)Y

(5.51)

And the bottom reflectance is parametrised by:

ρ(λ) = Bρsd(λ) (5.52)

This gives the parameters P,G, S,X, Y,H and B as scalar parameters the model can be

inverted for. The coefficients in Equation 5.49, a0 and a1, are tabulated values from Lee

(1994).

limitations

HOPE was designed for retrieving shallow water ocean bathymetry. The benthic sub-

strate in shallow water can be very bright, and where this is the case, it can be difficult

to retrieve water column parameters, as their brightness is weak in comparison. Further-
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more, if the benthic colour is similar in colour to the in-water constituent of interest, it

can be difficult to distinguish between them. For example, it can be difficult to estimate

phytoplankton concentrations in the water column in the presence of macroalgae on the

seafloor. This is because their colour are both dominated by chlorophyll i.e. they are

both green.

5.3.2 BRDF Corrected Optical Model

HOPE was designed by forward modelling ocean reflectance in Hydrolight and curve fit-

ting a number of model coefficients. One of the forward model constraints is the solar

and sensor geometry. The model coefficients published in Lee et al. (1999) were calcu-

lated with the sun position at nadir. The bi-directional reflectance distribution function

(BRDF) corrected model published in Lee et al. (2011), presents a method suitable for

optically deep4 water that corrects for variations in angular geometry. Furthermore, un-

like HOPE, the BRDF-corrected model coefficients are a function of the above-water

remote sensing reflectance directly and thereby avoids the need to calculate the subsur-

face remote sensing reflectance, then the effects of the air–water interface. A summary

is presented below:

Rrs(λ,Ω) =

(

Gw
0 (Ω) +Gw

1 (Ω)
bbw(λ)

κ(λ)

)

bbw(λ)

κ(λ)
+

(

Gp
0(Ω) +Gp

1(Ω)
bbp(λ)

κ(λ)

)

bbp(λ)

κ(λ)
(5.53)

Where κ = a+ bb.

The G coefficients are dependent on angular geometry and phase function and indepen-

dent of absorption and backscattering coefficients. The G model coefficients are derived

from numerically simulated remote sensing reflectance. The numerical simulations pre-

sented by Lee et al. (2011) use two phase functions, 1% Petzold averaged and Fournier-

Forand for minerals and phytoplankton, respectively. A sample number of G coefficients

reproduced from Lee et al. (2011) are presented in Table 5.2

4Where bottom contributions are negligible.
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Table 5.2: Sample Values of Gw
0 (Ω), G

w
1 (Ω), G

p
0(Ω), G

p
1(Ω) for Angular Rrs. Reproduced

from Lee et al. (2011)

θS 0◦ 0◦ 15◦ 30◦ 0◦ 15◦ 30◦

θv 0◦ 30◦ 30◦ 30◦ 40◦ 40◦ 40◦

ψ 0◦ 90◦ 90◦ 90◦ 135◦ 135◦ 135◦

G0
w 0.0604 0.0596 0.0590 0.0584 0.0581 0.0614 0.0624

G1
w 0.0406 0.0516 0.0562 0.0601 0.0581 0.0524 0.0524

G0
p 0.0402 0.0408 0.0411 0.0418 0.0414 0.0425 0.0434

G1
p 0.1310 0.1420 0.14161 0.1492 0.1458 0.1408 0.1406

limitations

The BRDF corrected model works for optically deep water only and does not work if the

bottom reflectance contributes to the remote sensing reflectance.

5.3.3 BRUCE-LUT Optical Model

The next model investigated for the project is an unpublished (at the time of writing)

Klonowski model that includes BRDF-corrected coefficients and a variable, retrievable

particle scattering fraction. The particle scattering fraction should allow the model to

vary the contribution of particle backscattering to total backscattering. This model was

selected for testing as the Swan River as the optical properties vary greatly along the

lengths of the river (Marrable, 2008). A summary of the model is presented below:

The subsurface remote sensing reflectance is described by:

rdprs = gu (5.54)

Where:

u =
bb

a+ bb
(5.55)

And:

g = gw
bbw
bb

+ gp
bbp
bb

(5.56)

gp is expressed as:
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gp = G0

[

1−G1 exp

(

−G2
bbp

a+ bb

)]

(5.57)

And:

rrs = (p0u+ p1u
2 + p2u

3 + p3u
4) (5.58)

pi are coefficients expressed a functions of
bbp
bp

.

p0 = α0 + α1 ln

(

bbp
bp

)

+ α2 ln

(

bbp
bp

)2

(5.59a)

p1 = β0 + β1 ln

(

bbp
bp

)

+ β2 ln

(

bbp
bp

)2

+ β2 ln

(

bbp
bp

)3

(5.59b)

p2 = γ0 + γ1 ln

(

bbp
bp

)

+ γ2 ln

(

bbp
bp

)2

+ γ3 ln

(

bbp
bp

)3

+ γ4 ln

(

bbp
bp

)4

(5.59c)

p3 = δ0 + δ1 ln

(

bbp
bp

)

+ δ2 ln

(

bbp
bp

)2

+ δ3 ln

(

bbp
bp

)3

+ δ4 ln

(

bbp
bp

)4

+ δ5 ln

(

bbp
bp

)5

(5.59d)

And the above-water remote sensing reflectance (Rrs) is related to the subsurface remote

sensing reflectance rrs by:

Rrs =
ζrrs

1− Γrrs
(5.60)

With:

ζ = ζ ′0 + ζ ′1 ln

(

bbp
bp

)

+ ζ ′2 ln

(

bbp
bp

)2

(5.61a)

Γ = Γ′
0 + Γ′

1 ln

(

bbp
bp

)

+ Γ′
2 ln

(

bbp
bp

)2

+ Γ′
3 ln

(

bbp
bp

)3

(5.61b)

The particle backscattering to scattering fraction
bbp
bp

is a free parameter that is limited to

a range of 0.01−0.1. The coefficients, gw, G0, G1, G2, αi, βi, γi, δi, ζ
′
i and Γ′

i are numerically

generated from simulated remote sensing reflectance and dependent on the sun-sensor
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geometry. A lookup table is used to find the pre-calculated values and is saved with the

DalecPPT software5.

limitations

The lookup table generated for this particular model is very large and has a much greater

computer performance requirement than the two other models defined earlier. Further-

more, the inclusion of another free parameter and sun-sensor geometry factors increase

the chances of the solution scheme to converge at a local minimum, in solution space,

rather than the global minimum.

As with the BRDF-corrected model, the BRUCE-LUT model is only suitable for optically

deep water.

5.3.4 SAMBUCA

The Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration Assessment

(SAMBUCA) optical model (Brando et al., 2009) is based on HOPE. The difference being

that the optical properties of water due to anap and bbnap are seperated from ag and bbp

respectively. SAMBUCA alters the algorithm described in Lee et al. (1999) to retrieve

the optically active constituents; Chlorophyl-a, CDOM and anap. in the SAMBUCA

model Brando et al. (2009) alters equation 5.47 to be:

a = aw +
N
∑

j=1

a∗jCj (5.62)

and:

b = bbw +
N
∑

j=1

b∗bjCj (5.63)

Where a∗ and b∗ are the Specific Inherent Optical Properties (SIOPs). Furthermore,

equation 5.49 is modelled as:

5http://bazaar.launchpad.net/~marrabld/dalecppt/trunk/files/head:/inputs/BRUCE_LUT/
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aφ(λ) = Cchla
∗
φ(λ) (5.64)

and gelbstoff is devided into its two constituents CDOM and anap.

aCDOM = CCDOMa
∗
CDOM(λ0) exp[−SCDOM(λ− λ0)] (5.65)

and:

anap(λ) = Cnapa
∗
nap(λ0) exp[−Snap(λ− λ0)] (5.66)

Furthermore, the particulate scattering term 5.51 is parameterized into:

bbp = bbφ + bbnap (5.67a)

bbφ = Cchlb
∗
bφ(λ0)(

λ0
λ
)Yphy (5.67b)

bbnap = Cnapb
∗
bnap(λ0)(

λ0
λ
)Ynap (5.67c)

Where b∗bφ and b∗bnap are the specific backscattering of algal particles and NAP respectively.

The advantage that SAMBUCA has over the optical models previously discussed is that

the total phytoplankton absorption can be scaled to chlorophyll-a concentration from the

absorption coefficient.

limitations

Allthough SAMBUCA can derive chlorophyll-a concentration from remote sensing re-

flectance, additional knowelege of Specific IOPs is required. Specific IOPs of phyto-

plankton are highly variable (Braga et al., 2017). For example, the specific absorption

coefficient of Chl-a may vary within a single species (Dupouy et al., 2008) depending

on growth conditions and light availability (Fujiki and Taguchi, 2002). Natural phy-

toplankton assemblages vary greatly. It is obvious that if the specific absorption and

scattering coefficients of a single species are highly variable then the optical properties of

phytoplankton assemblages consisting of many species are even more variable. To certain
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extent, this variability can be taken into account in modeling by using variable phyto-

plankton absorption coefficient like those proposed by Bricaud et al. (1995) or developed

for lake waters, e.g., by Ylostalo et al. (2014) and Paavel et al. (2007). However, when the

light conditions are low and the measurement uncertainty of IOPs are high, the sensible

approach would be to retrieve absorption and scattering coefficients not concentrations

of optically active substances (Braga et al., 2017).

As discussed earlier, the range and variability of phytoplankton from site to site along

the Swan River can vary greatly in just a single day. If bespoke SIOPs are required for

each of the sample locations, and for each day measurements are made, the advantages

of using remote sensing techniques are negated. Under these conditions it would be more

suitable and accurate to measure the phytoplankton concentration from cell counts and

to continue using the laboratory methods currently used by the Swan River Trust.

5.4 Inverting the Model Through Optimisation

As has been discussed in Section 5.2, Rrs can be measured by the DALEC but it is usu-

ally the magnitude of one or more of the IOPs that is of interest. It is often impractical,

expensive and time-consuming to take water samples to characterise the IOPs using in

situ samples plus laboratory measurements such as those outlined earlier. The goal of

this thesis, to accurately measure phytoplankton absorption, is based on the idea that a

reflectance model may be inverted for IOP concentrations and that Rrs can be quickly

and easily measured with the DALEC.

To achieve this, the IOPs needed to be characterised, using the techniques described in

sections 6.5 and 6.5.3. It was then assumed that the IOPs of the water did not change

significantly while making a measurement of reflectance.

In order to invert the reflectance model for IOP concentrations, a predictor-corrector

algorithm is used. The algorithm works by making an initial prediction of the contribu-

tions of each IOP to the reflectance. These are entered into the model, and the Rrs is

calculated from the reflectance model. The Rrs measured by the DALEC is also passed

to the algorithm, where it compares the model predicted Rrs with the measured one.

The magnitude of each IOP is then corrected in order to find the closest match possible

between the measured and modelled Rrs. The the IOP inputs that produce the closest
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Rrs match are the quoted results. The process is referred to as optimisation. The opti-

misation routine is described below in Section 5.4.1.

5.4.1 Optimisation

The specific method of solving the optical model used in this project is the Levenberg–

Marquardt method (LM-fit) (Press et al., 2007). Before understanding the LM-fit method

it is necessary to define three main functions. They are, the chi-square merit function

(χ2(a)), which is a measure of how accurate the approximation is based on the difference

between modelled and measured values; the Hessian matrix (D), which is the second

derivative of χ2(a); and the steepest descent formulae δa.

The χ2(a) merit function (Press et al., 2007) is:

χ2(a) =
N−1
∑

i=0

[

yi − y(xi|a)
σi

]2

(5.68)

Where:

y = y(x|a) is the function to be solved

a is a vector of parameters that LM-fit is trying to solve for

σ is the standard deviation.

In our case, y(x|a) is the reflectance model, y is the DALEC measured reflectance and a

is the vector of IOP parameters.

The gradient of χ2(a) with respect to parameters a Press et al. (2007) is:

∂χ2

∂ak
= −2

N−1
∑

i=0

[yi − y(xi|a)]
σ2
i

∂y(xi|a)
∂ak

k = 0, 1, ...M − 1 (5.69)

Which describes the rate at which a change in parameters will converge to a solution.

And the second-order partial derivative that defines the Hessian matrix D:
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∂2χ2

∂ak∂al
= 2

N−1
∑

i=0

1

σ2
i

[

∂y(xi|a)
∂ak

∂y(xi|a)
∂al

− [yi − y(xi|a)]
∂2y(xi|a)
∂al∂ak

]

(5.70)

Which is used to calculate how fast the algorithm is converging to a solution. The Hes-

sian matrix is used to vary the IOP input parameter steps with each iteration.

It is convenient to define:

βl ≡ −1

2

∂χ2

∂ak
αkl ≡

1

2

∂2χ2

∂ak∂al
(5.71)

The steepest descent function is then defined by:

δal = C × βl (5.72)

Where:

C is a constant

δal is the amount estimated to increase or decrease the parameters with each new iteration

This can be represented by a system of linear equations by:

M−1
∑

l=0

aklδal = βk (5.73)

Which defines the changes needed to be made to the initial estimates to converge to a

solution by the fastest descent in solution space. LM-fit attempts to find λ by varying

smoothly from the inverse-Hessian method (Press et al., 2007) and the steepest descent

method. The steepest descent method is used far from a minimum in solution space and

the inverse-Hessian method is used as it gets closer to a solution. LM-fit is considered to

have found a solution when the gradient of the χ2(a) value is 0.

Looking back at Equation 5.37, which defines the absorption and backscattering terms

of the reflectance model (HOPE), and expanding the absorption and backscatter terms,

it is possible to parameterise each term that are being solved for, as shown in Equation

5.74.
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u ≈ bw(λ) + bp(λ,X)

[aw(λ) + ay(λ,G) + aφ(λ, P )] + [bw(λ) + bp(λ,X)]
(5.74)

P,G and X are now the parameters that make up, a, in LM-fit. When LM-fit returns

values for these constants, they show relatively how much of each absorption or backscat-

tering term contributes to the total Rrs. If the model (HOPE) accurately represents Rrs,

these values are correlated with concentration levels of the water’s IOPs.

The general LM-fit approach is as follows:

1. Predict values for P, G and X, these are used as the starting values.

2. Compute χ2(a) for the DALEC measured and HOPE calculate Rrs

3. Pick any starting value for C

4. Solve Equation 5.73 for δa and evaluate χ2(a + δa)

5. If χ2(a + δa) ≥ χ2(a) increase C by a factor of 10. Repeat previous step.

6. If χ2(a + δa) < χ2(a) decrease C by a factor of 10, update the trial solution

a ←a + δa and go back to step 3.

There are a number of caveats with this method. If there is more than one possible

solution, then it is possible that the algorithm does not find the ‘real-world solution’ (a

solution that does not represent the ‘true’ values); rather, one of the other possible solu-

tions. By adding more IOP parameters into a reflectance model, the more potential IOP

concentrations can be solved for. However, this means that there is potentially also a

greater number of possible solutions and increases the chance of finding an incorrect one.

The possibility of this happening is reduced by making an accurate prediction about the

water property concentrations in step 1. The closer the initial prediction, the less likely

the wrong solution will be found. In this study, it was found that the number of IOP

parameters had to be restricted to just three (P, G and X) in order to avoid converging

on solutions that were not representative of the measured conditions. I.e. the model

converged to a local minimum in the solution space rather than the global one. In order

to improve the accuracy further, the model was re-run by passing only a single parameter

(P) to the algorithm. This is discussed in detail in Section 6.7.14.
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The LM-fit algorithm for this project was written in Python, its procedure can be found

in (Press et al., 2007, page 803).

LM-fit is not the fastest algorithm capable of finding a solution to this kind of problem;

however, it is very robust at finding the correct solution provided the initial estimate is

a close approximation of the solution.

5.4.2 Confidence Intervals

The goal of this next section is to find a definitive uncertainty for the IOP measurements.

Uncertainty comes from three main sources. The natural variability in the environment

is very difficult to account for, the presence of varying cloud cover, water-surface facets

due to wind and the natural variability in water constituents over a sample period all con-

tribute the environmental factors of uncertainty. Factors such as electrical noise, variation

in instrument temperature and changing measurement angle account for instrumentation

uncertainty. The final source of uncertainty comes from how well the radiative transfer

model represents the local environment. HOPE was designed for ocean water and tested

with data taken from measurements along west Florida shelf (Lee et al., 1999). It is likely

the IOPs of the Swan River differ and, therefore, the model may not represent the Swan

River conditions.

When solving the HOPE using LM-fit, one of the returned values is the covariance ma-

trix, representing the covariance of IOP parameters, which can be used to calculate the

uncertainties of retrieved parameters. However, in order to use the covariance matrix, a

few assumptions must be made. First of all, in order to calculate the covariance matrix,

LM-fit requires the standard deviation of each measurement of wavelength of reflectance.

Because any spectrum produced by the DALEC is only one instantaneous measurement,

a distribution of all possible ‘realisations’ is impossible to produce. It is possible to make

educated assumptions in terms of what the standard deviation would be if it were pos-

sible to measure all realisations. To do this, it is first assumed that the instantaneous

measurement is the mean value of all possible ‘true’ values and that if it were possible

to make many instantaneous measurements the values would produce a normal distri-

bution around that mean value. It is then assumed that the measurement uncertainty

represents the standard deviation of the theoretical distribution. Therefore, when defin-

ing the chi-square merit function, the standard deviation is assumed to represent as the



5.4. INVERTING THE MODEL THROUGH OPTIMISATION 153

uncertainty of that measurement. Because LM-fit is only concerned with minimising the

change in χ2, the absolute value of χ2 does not affect the parameter retrievals greatly,

unless a local minimum is found. However, if the uncertainty value does not accurately

predict the standard deviation of the natural variability in the data, the χ2 value and

parameter covariance that LM-fit returns is effectively meaningless as it also will not be a

true representation of the natural variability. If the covariance matrix does not represent

the covariance of measured IOPs, it cannot be used to calculate the uncertainty.

The measurement and instrument uncertainty of DALEC measurements and predictions

of phytoplankton are described in detail in Section 5.5, which describes how the confi-

dence intervals are found from the optimisation method. Section 5.5 describes how these

confidence intervals are used to determine the field uncertainty measurements.

Because the covariance is a measure of the natural variability of the ‘true’ parameters, it

was predicted that if the DALEC was pointed at the same patch of water while holding

as many variables (such as sensor geometry and environmental conditions) as constant

as possible, it should produce a distribution of parameters when inverted that represent

the in-water IOPs. In the purely theoretical case, because it was the same patch of water

that did not change significantly, LM-fit should retrieve the same parameter values for

every spectral measurement. In reality, small perturbations in instrument noise, water

surface, water currents, measurement geometry, etc., produce small changes in the mea-

sured reflectance. An example of this can be seen in Figure 5.20. Repeated inversion of

these reflectance data produce a distribution of possible IOP parameters. This distribu-

tion can be used to define the covariance matrix and, therefore, infer the uncertainties of

the inverted IOPs. Many examples of this are shown in Section 5.5.

Once the covariance matrix had been defined, the method outlined in Press et al. (2007)

was used to find the uncertainties and confidence limits. The technique is summarised

here (Press et al., 2007, page 815):

1. Let N be the number of parameters whose joint confidence region is to be displayed.

2. Let p be the pre-defined confidence limit, e.g. 0.95.

3. Find ∆ such that the probability of a chi-square variable with N degrees of freedom

being less than ∆ is p. Useful values are given in (Press et al., 2007, page 815).

4. Take the M×M covariance matrix of IOPs C = α−1 of the chi-square fit. Copy the
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intersection of the N rows and columns corresponding to the inverted IOPs into a

N ×N matrix denoted Cproj.

5. The equation for the elliptical boundary of the desired confidence region in the

N-dimensional subspace of interest is:

∆ = δa C−1
proj δa' (5.75)

The method discussed here was used to define the confidence intervals in Section 5.5.4

and draw the error ellipses in figures 6.30, 6.32, and 6.34. This method was also used in

Chapter 6.7 to defind the uncertainty boundaries of the transects in figures 6.90, 6.91,

6.92 and 6.96.

5.5 Coherent Noise Modelling for Uncertainty Esti-

mates of Remote Sensing Data

Estimating uncertainties in remotely sensed environmental parameters presents a chal-

lenge, especially as repeated measurements are sometimes difficult to make and noise is

produced variously from different environmental and instrument sources. The method,

outlined in the previous section, used to calculate the uncertainties of the inverted IOPs,

is a useful method for calculating an uncertainty for a single reflectance measurement. It

assumes that a single measurement is the mean value of a distribution of all possible re-

alisations. A common estimation method (Press et al., 2007) describes a generic method

of estimating uncertainties by generating random synthetic measurements by randomly

perturbing model inputs by a small percentage of random noise, then optimising by

minimising a cost function and then generating surrogate input parameters. When this

process is repeated often enough a distribution of surrogate parameters is generated and

the deviation of the distribution is used to infer an uncertainty for the ‘true’ parameter.

When applying this general case to this project, it is unlikely to result in perturbations

that reflect the real world, due to the mismatch between modelling, using spectrally

random noise, and the effects of natural variability in optical properties being spectrally

coherent. It is insufficient to randomly perturb the reflectance and expect this to mimic

natural variations found in nature.

In the following section, we build upon the idea of producing surrogate parameters (IOPs

in this case) by perturbing the reflectance in a way that is representative of variations

in Rrs seen in repeat field measurements. The difference between previous Monte-Carlo
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methods, and the method we describe in this section is, rather than perturbing the re-

flectance by random noise, we build a model of coherent noise from a training set of

data. The following sections describes a method of perturbing the reflectance that is

used to generate synthetic reflectance data that is more representative of natural vari-

ations found in field measurements than random perturbations alone. By measuring

natural variations in Rrs, we produce a power spectrum that can, in turn, be used to

generate random synthetic reflectance data. There are a number of reasons this method

is useful in this project. Firstly, making repeat measurements at the SCCP locations of

Rrs makes it possible capture the variations in Rrs due to changing environmental con-

ditions and model their effect on the Rrs. Secondly, repeat measurements can be made

at the SCCP locations while water samples are being collected, but not while making

way along the transect. This method allows the coherent noise model, calculated at

the sample locations, to be applied to the Rrs measurements made between the sample

locations, while the boat is making way. Furthermore, the coherent noise model makes

it possible to generate many more realisations of reflectance than would be practical to

measure. For example, 2400 modelled reflectance, given the symbol in this thesis R̂rs,

are generated from approximately 50 repeat measurements (50 after filtering erroneous

data). If each measurement took one second to make, 2400 Rrs samples would take 40

minutes to collect at each SCCP site. This would be far to long and would mean the

transect could not be completed in a day. The advantage of generating 2400 R̂rs is that

after inverting all spectra, a statistical distribution of IOPs can be generated and the

covariance matrix calculated over a range of IOPs. Not only does this method provide

more values of IOPs in which to derive statics from, it was found that it reduced the

probability of this method finding a local, incorrect, solution. It was found that at some

locations a single optimisation was able to converge to a local minimum in solution space,

but the majority of the ensemble did not. Because the average inverted IOP parameters

are the reported ones, the majority of optimised IOP parameters, which do not converge

to the local minimum, prevents the incorrect values (the ones in the local minimum) from

being reported. This is discussed more at the end of this section.

5.5.1 Uncertainty calculation methodology

The purpose of this coherent noise method is to estimate the uncertainties on the range

of possible IOP parameters for a single measurement of Rrs.

The process of generating a set of synthetic Rrs would be extremely slow using modelling
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packages such has Hydrolight and PlanarRad and it would be impractical to do this for

every single measurement. This approach to estimating confidence intervals presented

here is, therefore, extended so that a method for generating realisations can be achieved

without the need for complex modelling packages.

A naive approach to generating synthetic realisations would be to generate random noise

within the uncertainty range of the DALEC measured Rrs and multiply the noise with

the measurement, repeating for as many iterations required in order to generate statis-

tically valid data set. The problem with this approach is that random perturbations in

‘nature’ do not happen completely randomly, in respect to one reflective band to an-

other. Naturally occurring variations in CDOM, for example, will affect the blue part of

the spectrum more than the red. Furthermore, it is logical to assume that wavelengths

that are close together will vary with much higher correlation that wavelengths that are

far apart. Or, to be more accurate, certain wavelengths will be highly correlated and

others will not. In the case of phytoplankton, there are pigments, such as chlorophyll-a,

that absorb more at ∼440 nm and ∼676 nm. Therefore, naturally occurring variances in

chlorophyll-a should affect variances in both 440 nm and 676 nm wavelengths. It may

be found, therefore, that 440 nm and 676 nm are highly correlated.

It is this correlation that should be adhered to when randomly perturbing values. This is

done by finding the power spectrum (also known as the power spectrum density (PSD)

function) of a training set of data and the PSD function to generate the random per-

turbations or ‘noise’. The PSD is a measure of the distribution of the variance over the

cumulative signals. In fact, the autocovariance can be found by calculating the inverse

Fourier transform of the PSD. The autocovariance (Figure 5.25) will describe, in this

case, how the components in the Fourier domain vary with each other, including the

correlation length. In this case, the cumulative signals are repeat measurements of Rrs

at a single SCCP location.

Once the PSD function has been modelled, new artificial realisations can be generated

very quickly without the need for computationally expensive PlanarRad runs. If a train-

ing set is chosen that mimics the natural variability expected in the field, the correlated

noise model can be used to accurately generate synthetic realisation of Rrs which can be

used to estimate the variance of the IOP parameters and infer confidence intervals and

measurement uncertainty.
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Assumptions:

• The DALEC measured reflectance spectra variance is well characterised. This can

be estimated by making repeat measurements at a single location.

• The IOPs in the study area do not vary wildly in spectral shape while repeat

measurements are being made.

• IOPs can be modelled accurately using bio-optical models or are known from lab-

oratory measurements.

• Uncertainties in laboratory measured IOPs are small when compared to uncertain-

ties derived from DALEC measurements.

Summary of method: Training Stage

• Choose a phytoplankton spectrum that best represents the absorption spectral

shape, this may be obtained from laboratory measurements.

• Define a set of training Rrs that captures the natural variance seen in field mea-

surements. In this study this was achieved by making repeat measurements of Rrs

at the SCCP sample locations while the boat was stationary and water samples

were collected. Careful attention was made to keep the sensor pointing at the same

point of the water surface.

• Detrend the ensemble average of all the reflectance spectra:

µRrs
(λ) =

1

n

n
∑

i=1

Rrsi(λ) (5.76a)

∆Rrs(λ) = 〈Rrs(λ)〉 − µRrs
(λ) (5.76b)

• Calculate the standard deviation:

σ∆Rrs(λ) =

√

√

√

√

1

n

n
∑

i=1

(Rrsi − µRrs
)2 (5.77)

• Calculate the normalised difference of the standard deviation:

∆̄Rrs(λ) =
∆Rrs(λ)

σ∆Rrs(λ)

(5.78)
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• Calculate the power spectrum:

Y = F{∆̄rs(λ)} (5.79a)

Sλλ = 〈Y Y ∗〉 (5.79b)

Summary of method: Generation Stage

• For each wavelength, generate k random points between -0.05 and 0.5, where k is

the number of synthetic measurements to be generated

n = rand(k, λ)0.5−0.5 (5.80)

• Calculate the Fourier transform of n

N = F{n} (5.81)

• Multiply the Fourier transform of the random points by the square root of the

power spectrum

Y = N
√

SY Y (5.82)

• Transform the correlated noise to the real domain by taking the inverse Fourier

transform

y(λ) = F−1 {Y } (5.83)

• Normalise the correlated noise in the real domain

ŷ(λ) =
y(λ)

σy
(5.84)

• Multiply the standard deviation of the measured Rrs by the normalised correlated

noise

z(λ) = ŷ(λ)σ∆rs
(λ) (5.85)
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The sun was set to nadir and the sensor geometry was set to 135◦ and 40◦ for viewing

azimuth and zenith, respectively, as these are the angles used in field measurements to

reduce the effect of sunglint. The wind set to 5 ms−1.

The sensitivity Xag of the model to a change in aφ(440) at a given ag(400) is defined here

as:

Xag =
dRrs

daφ
(5.90)

Where:

dRrs is a infinitesimal change in Rrs

daφ is a infinitesimal change in aφ

In order to model Xag , a set of aφ(440)(0.107 − 1.554) m−1 and ag(400)(0.746 − 5.573)

m−1 concentrations that spanned the minimum and maximum values observed on the

day of the transect, a set of Rrs values were generated using PlanarRad. For each value

of ag(400) a pair of aφ(440) values were generated by perturbing each aφ(440) value ±
15% which generated a corresponding pair of Rrs spectra for every single ag(400) value.

The sensitivity was approximated by descretising Equation 5.90:

Xag ≈
∆RRMS

rs

∆aφ(440)
(5.91)

Where:

∆RRMS
rs is the root mean square of the difference in Rrs

∆aφ(440) is the difference in aφ at 440 nm

An example of the Rrs pairs generated for a pair of aφ(440) values at six different ag(400)

values is shown below in Figure 5.41. The approximated sensitivity for each ag(400) value

for a ∆aφ(440) of ± 15%, for each aφ(440) value in the set, is shown below in Figure

5.42.
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dividing ∆Rrs by the average of the Rrs pairs and dividing result by Xag :

∆aφ(440) ≈
R̄RMS

rs

Xay

(5.92)

Where:

R̄RMS
rs is the root mean square of the normalised Rrs

Xay is the sensitivity of the model at a given ag(400)

Consequently, the changes in reflectance were normalised and the corresponding change

in aφ(440) was calculated. The results of this analysis is shown in Figure 5.43. This

figure makes it possible to estimate the uncertainty that can be expected in aφ(440)

given an RMS change in Rrs. For example, if a 1.15% RMS change in measured Rrs at

ag(400) = 1.0m−1, an uncertainty of ≈ 2% of aφ(440) can be expected. A 1.3% RMS

change in measured Rrs at ag(400) = 5.0m−1 would result in an expected uncertainty of

≈ 15% in aφ(440).

Figure 5.43: Change in aφ(440) that can be expected for a percentage change in re-
flectance.

There are some assumptions made with the method outlined in this section. Because

it is not possible to change the reflectance directly by a desired amount, changes in re-

flectance were, in effect, due to changes in IOP values. Consequently, the changes in
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reflectance were rescaled by a ‘per cent’ change due to IOPs. This implies that there

is a linear relationship between the change in reflectance and change in phytoplankton

absorption, aφ(440). It is assumed that for small changes in reflectance, this assumption

is reasonable. For large changes in reflectance, this may not necessarily hold true. The

results of this process are shown in Figure 5.43.

As there were some assumptions and estimations made in this simulation, the results from

the sensitivity analysis must be used with caution. It does, however, provide a useful

table that can be used to estimate approximate error boundaries for particular CDOM

and phytoplankton concentrations. The method described here also negates the effect of

due to other sources of uncertainty such as wind, perturbations in viewing geometry etc.

5.7 Summary

This chapter has summarised all of the terms, quantities and coordinates required to

understand the radiative transfer process, and how RTE can be used to calculate the

remote sensing reflectance from IOPs and VSFs. It is not the focus of this thesis to find

solutions to the RTE as this problem has already been solved. It is important, however,

to understand the inputs, process and outputs of solving the RTE. Without that under-

standing, it would be impossible to use the computational tools correctly or to correctly

interpret the results.

PlanarRad and Hydrolight are ‘full’, complex models of the radiative transfer process.

Due to their complexity, these models are only able to run in the forward sense, i.e. with

IOPs, geometry and environmental factors as inputs and remote sensing reflectance (as

well as other parameters) as outputs. This study requires the inverse process, i.e. remote

sensing reflectance as an input and IOPs as an output. In order to achieve this, this

study requires an efficient model that is able to be run thousands of times. In this chap-

ter, three simplified, parametrised, forward models are therefore evaluated. By using a

parametrised and more efficient optical model, it is possible to invert the simpler equation

hundreds of times in less than a second on a modern desktop computer. Marrable et al.

(2009) shows that real-time processing of transects using optical models can be achieved

with graphics processing units (GPUs) on relatively cheap laptop computers.

The three optical models evaluated for their ability to reproduce reflectance spectra ob-
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served in the river were HOPE, BRDF-corrected HOPE and BRUCE-LUT. It was con-

cluded that HOPE was the most suitable, being capable, in principle, of finding IOPs in

both shallow and deep water but with the limitation that IOP inversions are only capable

of describing the total absorption and scattering coefficients. Furthermore, high spatial

and temporal variability of phytoplankton species and assemblages make it impractical

to find sensible SIOP models required to measure chlorophyll-a or cell concentration with

the current body of knowledge of the Swan River’s optical environment.

The mathematical methodologies used to invert the optical model so that IOPs from

remote sensing reflectance are also described. The method used to calculate confidence

intervals is shown and a new algorithm (coherent noise model) for calculating measure-

ments uncertainties of the IOPs derived from inverting the optical model is described in

detail. This method was used to draw the error ellipses in the figures showing scatter

plots of the modelled IOPs. The same method is used to draw the error ellipses of the

field derived estimates of IOPs and also used to define the uncertainty of the IOP tran-

sects as presented in the next chapter.

A sensitivity analysis of the reflectance model was conducted, to establish the potential

IOP uncertainties from field measurements, over a range of CDOM concentrations. These

were then compared with the uncertainty estimates derived from using the coherent noise

model.
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Chapter 6

Application to the Swan River

6.1 Introduction

There are three major parts to this research method: the modelling methods; and the

fieldwork and laboratory methods. Fieldwork is required to make measurements of the

water spectral reflectance and to collect water samples. The water samples are required

to calibrate the results and to provide inputs into the optical models.

As introduced in Section 5.2, the remote sensing reflectance is a function of absorption

and scattering and both are required as inputs into the optical model, it is therefore im-

perative to understand the unique absorption and scattering characteristics for the study

area of interest; the Swan River in this case. The two dominant absorption components

are: absorption due to pigments found in phytoplankton (primarily green chlorophyll);

and absorption due to dissolved organic material (yellow/brown colour). At the begin-

ning of this research project, it was decided that it was important to understand the

different absorption characteristics of the main classes of algae found in the Swan River.

In a partnership with the Murdoch University Algae R & D Centre, a plan to grow many

different species of algae, commonly found in the river, and measure the different absorp-

tion characteristics was developed. Before the task of growing specific cultures of the

Swan River, three cultures that were immediately available were grown. This decision

was made in order to quickly make progress in gaining an understanding of the labora-

tory techniques required, as well as developing methods and procedures for building a

localised spectral library.

It was found, after many weeks of culturing, that the logistics of building a spectral

library, within the time budget of the project, was not sustainable. Culturing, subcul-
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turing, cell counting and measuring the absorption characteristics, required much more

time than was available. Furthermore, obtaining monocultures of the species of interest

was also challenging due to price and availability. For these reasons, the plan to build

a spectral library through culturing was changed. The research approach was altered to

use a spectral library built from the available literature. Finally, after many iterations

of refining the optical model inputs and work-flows, it was decided to use the in situ

measurements from water samples of bulk phytoplankton absorption as an input into

the optical model. This meant that it would not be possible to classify phytoplankton

through model inversion but it would be possible to determine the total phytoplankton

abundance.

As mentioned earlier, measuring the algal-specific scattering is difficult. It was decided

early in the project that an investigation into the scattering of different algal shapes and

sizes was required as the naturally occurring phytoplankton in the Swan River varies

greatly in size and shape. As this investigation was a substantial amount of work and of

scientific interest in its own right, and led to the investigation in Chapter 3.

Before radiometric measurements of the river could be made, the DALEC required care-

ful calibration in a facility with a NIST-traceable1 light source. The steps required to

calibrate the DALEC are described in detail in Section 6.3 before Section 6.4, followed

by a description of the field campaign.

Details of the fieldwork are outlined in Section 6.4.1, including describing the transect,

water sampling locations and a description of the data that the Swan River Trust collect

and have made available.

Following Section 6.4.3, the methods used to process the water samples in the laboratory

are described. The methods include filtering the water samples, as well as measuring the

absorption properties in a dual-beam spectrophotometer.

Lastly, the results for both the spot measurement and the transect fieldwork are pre-

sented.

1NIST is the US Department of Commerce National Institute of Standards and Technology.
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6.2 Measuring the Above-Water Remote Sensing Re-

flectance

Before the DALEC was deployed in the field, the spectral response of the instrument

needed to be characterised i.e. convert counts to radiometric quantities. This was done

by determining the radiometric responsivity calibration coefficients – these define how the

radiometers in the DALEC respond to changes in wavelength and sampling ‘integration’

time. In addition, the spectrum produced by each channel for zero incident light (known

as ‘dark current’) was determined and removed from the signal. The process of calibrating

the DALEC and making measurements are outlined as follows.

6.3 Calibrating the DALEC

Finding the radiometric response of the DALEC required some special calibration equip-

ment. One of the crucial pieces of equipment was an extremely stable and very flat

optical bench with evenly spaced threaded holes in the table top. It was important to

make sure that the calibration equipment could be anchored in such a way that it was

unable to move once fastened to the bench.

Another piece of specialist calibrating equipment used was a FEL quartz-halogen lamp.

The lamp had been modified, by the manufacturer, specifically to calibrate optical equip-

ment. The spectral irradiance output of the lamp was scanned by the manufacturer with

a high-resolution monochromator to make sure the spectrum had very little noise and no

unwanted spectral emission features, as well as characterising the irradiance. The lamp

was powered with a regulated current source for approximately 24 hours to ‘season’ it.

While it was being seasoned, its terminal voltage was monitored. If the voltage was not

stable over the seasoning process the lamp would have been discarded. This ensured the

power that the lamp was radiating was highly likely to be constant over its entire life-

time. A highly stable, constant current power supply was used to run the lamp during the

DALEC calibration process. The Ocean Optics protocols (Mueller et al., 2003) explain

that a well maintained, properly used FEL lamp should maintain an uncertainty level

of < 2% for spectral irradiance and < 3% for spectral radiance calibrations. FEL-type

lamp standards of spectral irradiance are provided by the US National Institute of Stan-

dards and Technology (NIST) and secondary standards are usually available through the

manufacturer of the lamp.
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The irradiance calibration procedure was as follows:

The DALEC irradiance sensor was mounted, in a dark room, on the optical bench and

baffled so that no light other than that from the FEL-type lamp could enter the sensor.

The baffling was extended to cover the lamp holder so that the light path was not inter-

rupted except by a small closable occult hole used for creating a light window and when

making background light measurements. An alignment target window was mounted on

the lamp holder to mark the position that the filament was in when the lamp was turned

on. To optically align the DALEC with the lamp, a laser was carefully mounted behind

and normal to the alignment target and shone through the target crosshair. A mirror was

mounted normal to the DALEC irradiance sensor, and its position was altered until the

reflected laser light shone back through the target window crosshair, i.e. retro-reflection

and its distance from target was made 0.5 m[2].

Next, the FEL-type lamp was turned on with the current ramped slowly so as not to

thermally shock the filament. The FEL-lamp was left to warm up for 10 minutes before

any measurement was made. The operating current and operation hours were both mon-

itored. Any fluctuations in operating voltages would suggest the lamp was not emitting

a stable spectrum and, hence, not suitable for calibration measurements.

The dark current, Vdark, for the sensor was found by replacing the caps over the DALEC

sensor window and measuring the response. Next, the occult window was closed and a

measurement of the background ambient light, Vamb, was measured and recorded. The

baffling was adjusted and improved if the ambient light was greater than 0.1% of the

instruments dark current. The occult window was then opened and the sensors response

Vr was measured and recorded in counts per channel. The sensor’s irradiance responsivity

calibration factors (in air) are determined as:

FE(λ) =
Er(λ)

Vr(λ)− Vamb(λ)
, (µWm−2nm−1[digitalcount]−1) (6.1)

2This is the distance at which the lamps NIST-traceable spectral radiances are calculated. If the
DALEC saturates when making measurements and needs to be moved further away from the lamp, the
steps required to recalculate the radiances at the new distance are the ones outlined by Mueller et al.
(2003).
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Where: Er is the irradiance of the lamp at 0.5 m.

The spectral irradiance responsivity factors are applied to subsequent radiometric mea-

surements by:

E(λ) = FE(λ) [V (λ)− Vdark(λ)] , (µWm−2nm−1) (6.2)

Where: V (λ) is the field-measured response.

The spectral radiance calibrations procedure is as follows:

To calibrate the radiance response, a Spectralon plaque large enough to fill the view of

the DALEC’s radiance channels was used. Spectralon is used because it is a Lamber-

tian (spatially uniform) reflector and it has a known bidirectional reflectance distribution

function (BRDF), ρBRDF (λ, θ0, θ). θ0 = 0 is the normal incidence light beam and θ = 45◦

is the viewing angle.

The physical setup for spectral radiance calibration was almost identical to the spectral

irradiance calibration. The DALEC was replaced with the Spectralon plaque which was

set up so that retro-reflection was achieved using a mirror, as before. If the Spectralon

plaque was not uniformly illuminated in the field of view of the DALEC, the Spectralon

plaque would have been moved further away from the FEL lamp. The DALEC was then

placed on the bench so that its field of view was 45◦ to the normal of the Spectralon

plaque. Care was taken to ensure the plaque filled the field of view of the DALEC and

that there were no shadows covering the plaque or DALEC. The alignment laser was

used to ensure retro-reflectance between the lamp, plaque and DALEC.

The sensor was occulted and the ambient light was measured, followed by the dark current

by replacing the covers on the DALEC. The occulter was removed and the responses to

radiance reflected from the plaque were measured and recorded. The radiance for the

plaque viewed at this angle was found using the following equation:

L(λ) =
1

π
ρBRDF (λ, 0

◦, 45◦)Er(λ) (6.3)
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Where Er(λ) is calculated by:

Er(λ) = E0.5(λ)

[

0.5 + ∆f

r +∆f

]

(6.4)

Where: E0.5(λ) is the irradiance at 0.5 (m)

r is the distance between the lamp filament and the plaque (m)

∆f is the distance that the centre of the lamp filament is offset behind

the front plane of its terminal posts (m).

The radiance responsivity calibration coefficients of the field radiometer were determined

as:

FL(λ) =
L(λ)

Vr(λ)
, (µWm−2nm−1[Digitalcount]−1) (6.5)

L(λ) from field measurements were found by applying the coefficient by:

L(λ) = FL(λ) [V (λ)− Vdark(λ)] , (µWm−2nm−1sr−1) (6.6)

Where: V (λ) is the field measured response

In both radiance and irradiance calibration cases, at least 10 measurements were made.

The average of these measurements was taken and repeated for different integration times.

A linear fit of all points was interpolated between points and applied to the calibration

coefficients versus integration time. Because the DALEC dynamically changes its in-

tegration time with changing light conditions when collecting data, the corresponding

coefficient is found by finding the appropriate coefficient from the linear fit, based on the

integration time of its measurement.

Other responses that could be characterised and investigated further are temperature

response, pressure effects and polarisation sensitivity. Increasing internal temperature

can result in increased electronic noise and a changing DC offset, i.e. dark current. The

DALEC’s internal temperature was logged and could be characterised with further inves-

tigation. Pressure effects can deform the DALEC’s collectors, resulting in errors, as well
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as hysteresis in a time-varying pressure field. Currently, pressure effects have been ig-

nored but may be investigated at a later date. When making above water measurements,

the reflected light field is linearly polarised. This can cross-polarise with the upwelling

radiance and change the response of the DALEC’s sensors. This effect is also ignored at

this time and could be investigated further.

6.4 Fieldwork

The research methods presented here are primarily based on the International Ocean

Optics Protocols For Satellite Ocean Color, published by NASA (Mueller et al., 2003).

These protocols outline best practice for making measurements and calibrating sensors.

Before any radiometric measurements were made, the DALEC was calibrated for its radio-

metric responsivity and temporal response for varying integration times. The instrument

was calibrated with a NIST-traceable light source made available from the Remote Sens-

ing Satellite Research Group (RSSRG). Calibration coefficients were generated using the

method outlined in Mueller et al. (2003).

Additional in situ water samples were collected for spectral absorption of CDOM and phy-

toplankton using a dual-beam spectrophotometer and the methods outlined in Mueller

and Fargion (2000). The spectral absorption of phytoplankton was characterised for use

in the radiative transfer model.

The remote sensing reflectance was measured using the DALEC and the techniques out-

lined in Mobley (1999). Calculations of radiometric quantities were made using the

equations outlined in Mobley (1999) and were corrected for sunglint due to surface facets

caused by capillary waves.

6.4.1 Radiometric Measurements

DALEC was used to make above water measurements of the Swan River starting at ap-

proximately -32.019038008:115.783139857 lat:lon at approximately 1050 hours, making

continuous measurements up to -31.898440276:115.959250125 lat:lon at approximately
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1645 hours3. Ten water samples and Secchi depth measurements were taken at the

SCCP sample sites along the Swan River4. Secchi depth measurements were made by

lowering a white and black Secchi disc into the water and measuring the depth at which

it could not be seen by the operator.

The DALEC was mounted to the end of a boom by means of a two axis plane pivot

gimble to keep the DALEC as upright as possible while the boat lists and squats over

waves. The boom was allowed to pivot so its orientation could be controlled by hand.

The boat traversed the transect at approximately 5 knots to try and minimise any bow

waves and reduce foam. The DALEC simultaneously logged Vsky, Vt and Vd
5. All of

the other DALEC’s sensors were also continually logged using the DALEConTransect

software while the spectral output was monitored for any obvious aberrations or mea-

surement errors. Erroneous measurements were removed with filters described in 6.7.3.

Remote sensing reflectance was derived following Mobley (1999):

Rrs(λ) =
Lt(λ)− ρLsky(λ)

Ed(λ)
(6.7)

Where ρ is the sky radiance fraction. The viewing angle of the DALEC was set so that

the Lu channel was pointing at ∼40◦, and at an azimuth angle of ∼135◦ relative to the

sun. This viewing azimuth is suggested by Mobley (1999) to be the best angle to reduce

sunglint from surface facets. All data were logged in a text file containing all the infor-

mation required to convert the counts measured by the DALEC into a remote sensing

reflectance using the calibration formulae discussed in Section 6.3. Other measurements

included; UTC time, geographical location (lat:lon), heading. Sky conditions, water state

(i.e. foamy, clear, etc.) and dark current for different integration times were logged in

field-notebooks.

3A transect map is shown in Figure 6.16
4The Canning River was inaccessible due to the draft on the boat being too great and the water

depth too shallow. Therefore, the Canning river was not included in this study
5Vsky, Vt and Vd are the sensor’s response to sky radiance, reflected skylight and downwelling irradi-

ance, respectively. These quantities are calibrated to Lu, Lsky and Ed, respectively, at post-processing
using the techniques discussed in Section 6.3. These sensors will be referred to as Lu, Lsky and Ed. It
should be understood that, technically, these quantities are not directly measured.
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6.4.2 Backscattering Coefficients

The spectral particulate backscattering coefficient, bbp(λ) was measured in situ using a

HOBI Labs HydroScat-6, HS6, backscatter meter. The HS6 was manufacturer-calibrated

one month prior to the Swan River survey. At each sampling site, the HS6 measured

the fixed-angle volume scattering function at 140◦, β(λ, 140) for six wavelengths (420,

442, 470, 510, 590, and 700 nm). Values of β(λ, 140) were then processed according to

the manufacturer protocols (HOBI Labs, 2011) to derive the bbp(λ). A ‘sigma’ correction

(Maffione and Dana, 1997) was applied to the data to correct for attenuation along the

illumination and collection pathlength. Values of bbp(λ) were subsequently fit using a

power law.

bbp(λ) = bbp(λ0)(
λ0
λ
)γbb (6.8)

Where λ0 is a reference wavelength taken as 590 nm and γbb is the power law exponent

of bbp(λ).

6.4.3 Water Sample Acquisition

The accuracy of the optical model depends, in part, on the accuracy of the IOP model

inputs. It would be best practice to accurately measure all of the IOPs; however, this is

not always possible due to limitations in laboratory and field equipment, time and money.

IOPs that are relatively easy to measure are: phytoplankton absorption, non-algal ab-

sorption and CDOM absorption. IOPs that are difficult to measure are: absorption and

backscatter of pure water (due to the difficulties in water purification as discussed by

Pope and Fry, 1997). The absorption and backscatter of pure water doesn’t change and

is well documented. Therefore, the values published in Smith and Baker (1981) and Pope

and Fry (1997) were tabulated and used in the project. The phytoplankton, detritus and

CDOM do vary with location and need to be measured for each field-trip.

In order to characterise the IOP absorption spectra, water samples were taken at the same

time the Rrs was measured. The absorption of the water constituents were measured in

a dual-beam spectrophotometer. This was done quickly before the living phytoplankton

die, degraded and adds to the detritus and CDOM spectra changing the aφ:CDOM ratio



6.4. FIELDWORK 191

in a way not representative of the field conditions.

On the dates shown in Table 6.1, field trips were conducted to measure Rrs of the Swan

River. The purpose of these trips was to collect water samples that were used to find the

absorption spectra of aφ and ag. The absorption spectra were used along with the optical

model (HOPE) to produce a phytoplankton concentration estimates. As discussed in

earlier sections, taking local samples helps improve the accuracy of the optical model

and inversion process.

Triplicate, one-litre water samples were taken at the SCCP sample locations (Figure

6.1) along the river while simultaneously measuring Rrs with the DALEC6. The sample

bottles were cleaned beforehand as well as rinsed with in situ water to remove any con-

taminants that may have been present in the water used to clean the bottles. After the

water samples were collected, they were stored in a dark box, care was taken to keep the

samples at a similar temperature to the location where they were collected from, i.e. out

of the sun. Samples were filtered within six hours of collection for total total particulates

(aφ and anap). The particulate samples were stored overnight in liquid nitrogen before

analysis the following day. The CDOM samples were kept in a cool, dry store before

analysis.

6See Figure 6.1
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The other dates indicate days were a limited range of measurements were made, mostly

for instrument and methodology testing.

6.5 Laboratory Work

The first laboratory measurement conducted were the spectral absorption of phytoplank-

ton and non-algal particles (aφ + anap). Firstly, the phytoplankton needed to be filtered

from the water. The problem with the filtering process is that it filters out more than

just the phytoplankton: it also filters out any non-algal particles (NAP). This can in-

clude silt and minerals, as well as the detritus material from the algal cells. This filtered

matter was then placed in a dual-beam spectrophotometer and an absorption spectrum

was produced. The method of isolating the phytoplankton absorption spectra from the

total absorption spectra was to bleach the pigments out of the biomatter and remeasure

the absorption. This left the absorption spectra of all the NAP, anap, as the bleach only

removed the phytoplankton pigments. The phytoplankton absorption, aφ, was found by

subtracting anap from the first total absorption measurement. This process was as follows.

The filters used during the filtering process were Whatman GF/F glass fibre filters. They

are binder free and combustible, as well as having a nominal pore size of 0.7 µm. These

filters are recommended for particle absorption by Mueller et al. (2003). The GF/Fs were

placed onto a filtration ring along with two blank filters that had been soaked in Milli-Q

water. The filters were clamped tightly between the filter ring and the collection cup.

The volume of filtrate needed for optimal spectrophotometric absorption signal strength,

without clogging the filter, was found through trial and error to be one litre. The proto-

cols in Mueller et al. (2003) recommend that optical densities be in the range of 0.05–0.4

for best performance of measurement. One litre samples were added to the collection

cups after agitating to mix particles and then drawn through the filter pads at approxi-

mately 5 in Hg in dim light. A vacuum higher than approximately 5 in Hg risks bursting

the chloroplasts that hold the pigments in the cells. If this happens, chlorophyll can slip

through the fibre pores and will be lost. Dim light was needed to reduce the risk of any

living cells adjusting their pigments for the different light field.
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6.5.1 Optical Density of (aφ + anap)

After the filter pads were prepared using the technique discussed above, they were scanned

using a dual-beam spectrophotometer which compares the light transmission at different

wavelengths between two optical paths. The absorption of a sample was found by com-

paring a blank sample with a filtered sample. Ideally, this negates the effect the filter pad

itself has on transmission. Because filter pads have a very large backscatter attenuation,

it was very important that a scan be done over a large dynamic range to achieve the best

possible signal-to-noise ratio.

Before the phytoplankton samples were scanned, two reference pads were saturated with

filtered river water, placed in the two optical paths and scanned to achieve a ‘baseline’

scan that was used as the zero reference point and was subsequently subtracted from all

the sample scans. The baseline was stored in the spectrophotometer and automatically

subtracted from scans by the operating software. The baseline was checked simply by

rescanning the blank filters. When the blank scan produced a scan within a deviation of

(±0.005) optical density (OD) for all frequencies, the instrument was considered baseline

calibrated.

Before the samples were placed in the optical path, they were rehydrated with river wa-

ter, filtered through a 0.2 µm filter, and left to soak for approximately 10 minutes. Two

thin glass plates were securely attached in front of the instrument’s optical windows,

perpendicular to the optical path. These glass mounts were rinsed with Milli-Q water

and dried with a lint-free tissue. The saturated filters were then placed on the glass

mounts and held in place by the surface tension of the water. Any bubbles between the

glass and the filter were removed by carefully lifting the pad and rolling it back onto the

glass until none were apparent when looking through the plate from the back of the filter.

One of the reference filters was removed and replaced with one of the particulate matter

filtered samples and the absorption spectrum was measured. This was repeated for all

of the samples making sure the reference filter was rehydrated with filtered river water

between samples. The spectra produced were the (aφ + anap) absorption. To isolate aφ,

the samples were bleached of all their organic pigments and remeasured. The following

section describes this process.
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6.5.2 Depigmented Absorption (anap)

The sodium hypochlorite oxidation method described in Mueller et al. (2003) was chosen

to bleach the pigments in the sample, due to chemical availability. 0.1% active chlorine

was mixed with Milli-Q water to make a bleaching solution. The filter pads were placed

back on the filtering rings with the filter valves in the closed position and the sample

particle side facing up. The bleaching solution was then gently poured down the sides

of the filter funnels onto the filter pads until the pads were completely covered by ap-

proximately 1 mm of solution. The samples were left to sit for approximately 10 minutes

and were periodically topped up to replace any solution lost through the filters. After

the filters had been left to sit, they were rinsed with approximately 50 mL of filtered

river water. The blank filters were then measured in the dual-beam spectrophotometer

in exactly the same way as the sample filters.

The optical density of the bleached sample was found in exactly the same way as the non-

bleached samples. If the absorption spectra still showed a peak at 675 nm, this suggested

pigments were still present in the sample, as this is the characteristic absorption peak

of chlorophyll-a. If this was observed, the bleaching process was repeated until the peak

disappeared.

6.5.3 Gelbstoff Absorption

To ascertain CDOM absorption, all suspended particles must be removed from the water.

The sample water caught after filtering for the combined aφ & anap, was filtered once

more through a 0.2 µm filter to remove any remaining particles, as well as any glass

particles from the GF/F filters themselves. The water sample needs to be placed in a

longer light path than the phytoplankton (usually 0.1 m). The process of collecting a

CDOM absorption is outlined below.

Two 0.1 m path length quartz cuvettes were prepared by rinsing twice with 10% hy-

drochloric acid (HCl) followed by rinsing twice with pure ethanol and finally rinsing with

Milli-Q water. After preparation, the cuvettes were not handled with bare hands to avoid

contamination. Two cuvettes were then filled with Milli-Q water and dried with lint-free

laboratory tissues. They were inspected to ensure that there were no bubbles, dust or

obvious contaminants by looking through the cuvettes against a black background.

To make sure that both cuvettes had matched optical properties, they were both scanned
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individually in the spectrophotometer against an air blank (i.e. no sample in the other

optical path). If the cuvettes had been handled correctly and were optically matched,

they had the same spectral response. If there were anomalies, the preparation procedure

was repeated until they were matched.

The matched cuvettes were placed back in the spectrophotometer to collect a baseline

scan. A baseline scan was achieved if the deviation was less than (±0.0007) OD across

all wavelengths. When an acceptable baseline was achieved, one of the cuvettes was

emptied and rinsed three times with approximately 10 mL of sample water. Once it

was fully rinsed, it was filled with the sample water and the outside completely dried

and then checked for bubbles, dust and contaminants before being replaced back in the

spectrophotometer. A scan was run and saved. This process was repeated for all samples.

6.6 Sample Data Processing

At this point in the procedure, the absorption of both CDOM and particle absorption ap

were expressed as optical density (%). Before they can be used to compare the optical

model derived absorption with laboratory measured absorption they need to be converted

into units of m−1. The process of deriving ap is described in Mueller et al. (2003).

ap(λ) =
2.303A

βV
[ODf (λ)] (6.9)

Where: ODf is the optical density of the filter sample

A is the clearance area of the filter with the concentrated particles (m2)

V is the volume of water filtered (m3)

β is the pathlength amplification parameter.

Scattering of light within the GF/F filter increases the absorption pathlength. The

pathlength amplification parameter, described by Kiefer and SooHoo (1982), is found

through the empirical formula:
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Table 6.2: The pathlength amplification factors for various particle types. Reproduced
from Mueller et al. (2003)

Quadratic functions Particle type C1 C2

Mitchell (1990) Mixed cultures 0.392 0.655
Cleveland and Weidemann (1993) Mixed cultures 0.378 0.523
Moore et al. (1995) Prochlorococcus marinus 0.291 0.051
Moore et al. (1995) Thalassiosira weissflogii 0.299 0.746
Moore et al. (1995) Synechococcus WH8103 0.304 0.450
Tassan and Ferrari (1995) Scenedesmus obliqus 0.406 0.519
Nelson et al. (1998) Dunaliella tertiolecta 0.437 0.022
Nelson et al. (1998) Phaeodactylum tricornutum 0.294 0.587
Nelson et al. (1998) Synechococcus WH7803 0.277 0.000

β = [C1 + C2 (ODf (λ))]
−1 (6.10)

C1 and C2 are dependent on the particle type and are usually found by optimisation and

published for different particle types. Table 6.2 shows a list of pathlength amplification

factors for various particle types.

As the particle type was not yet known for the Swan River samples, the Clevelend and

Weidemann (1993) mixed culture values were used to produce the filter absorption. In-

vestigation of particle type and its effect on absorbance is something that needs to be

investigated further. The absorption of the detritus (bleached) material, anap, is found

using the same procedure.

After the appropriate pathlength calibrations have been applied to the filter samples,

before and after bleaching, the phytoplankton absorption spectrum is simply found by

subtracting the bleached absorption from the non-bleached sample, i.e.:

aφ(λ) = ap(λ)− anap(λ) (6.11)
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This gave the first absorption spectrum used in the optical model. To find the CDOM

absorption, ay, a similar pathlength amplification factor needed to be applied (Clevelend

and Weidemann, 1993):

ag(λ) =
2.303

l
[ODs] (6.12)

Where: ODs is the optical density of the soluble sample.

l is the length of the cuvette (m).

This gave the second spectrum that was measured in this project. The other parameters

that are more difficult to measure, aw and bw were obtained from tabulated data in Pope

and Fry (1997) and Smith and Baker (1981) respectively.
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6.7 Results

This section presents the major results of the study conducted on the Swan River. This

chapter presents the results of the spot measurement, in Section 6.7.2, used to help

develop the methods, equipment, software and workflows used conduct the transect in

Section 6.7.14. In particular, the spot measurement data was used to develop the coher-

ent noise model which was used to estimate the IOP measurement uncertainties. A full

transect of the Swan River was conducted on the 29/11/2011 and the results are shown

in Section 6.7.14. The reflectance at each SCCP sample location is first observed and

shown in Section 6.7.3. The reflectance measured at the water sample locations were

used to train 10 different coherent noise models. An example of these results are shown

in Section 6.7.3. In this section the results of inverting 2400 synthetic R̂rs are presented

for aφ(440), ag(440) and bbp(550).

6.7.1 Modelling Comparisons

In Section 5.3, a number of models are described and three are investigated in more

detail here. These models were chosen as they derive the absorption coefficient due to

phytoplankton aφ(440). We note here that SAMBUCA, described earlier, is designed to

retrieve chlorophyll-a concentration, but would require knowledge of the SIOPs of anap

and bnap in the Swan River. As discussed in great detail in Chapter 2, Literature Review,

the variability in phytoplankton, size, species and concentration is highly variable sea-

sonably and from site to site. Deriving chlorophyll-a concentration from an optical model

would require knowledge about SIOPs spanning all combinations of this variability. The

complexity of such an investigation was outside the scope of the Swan river study and

SAMBUCA was excluded from consideration on this basis. Instead, this study limits

itself to models that derive total phytoplankton absorption coefficient. At the beginning

of the Swan River project, it was not known which optical model would be the most suit-

able. Three candidate models were implemented in the Python programming language

under the GPL 3 open source licence and can be downloaded from Launchpad7.

In order to investigate which of the models was most suitable for this project, three

DALEC measured remote sensing reflectance samples from the beginning middle and

end of the river were chosen; BLA, RON and SUC. The three spectra were collected by

the DALEC in ‘best possible conditions’. At this stage in the study, access to a dual-

7https://launchpad.net/dalecppt
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beam spectrophotometer was not possible. Therefore, the accuracy of the reflectance

models was initially considered based on the RMS difference between the modelled and

DALEC measured spectra. The colour of the Swan River changes along the length of the

river and it was decided that these three sampling locations suitably represented that

variability. The Rrs spectra were inverted using the three different models in order to

choose the ‘best’ candidate. Figures 6.2, 6.3 and 6.4 show a comparison between the

measured spectra and HOPE ‘predicted’ spectra at BLA, RON and SUC respectively.

Figures 6.5, 6.6 and 6.7 show a comparison between the measured spectra and BRUCE-

LUT ‘predicted’ spectra at BLA, RON and SUC respectively. Figures 6.8, 6.9 and 6.10

show a comparison between the measured spectra and the BRDF corrected reflectance

model’s ‘predicted’ spectra at BLA, RON and SUC respectively.
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The BRUCE-LUT model was able to more accurately reproduce the reflectance shape

when compared with the measured reflectance, particularly around the phytoplankton

fluorescence peak (around 680 nm) where the other models did not perform very well.

However, BRUCE-LUT was produced IOP inverted parameters that were not sensible

such as negative IOP values. There were no significant differences between HOPE and

BRDF-corrected HOPE. HOPE has the ability to model shallow water where the bot-

tom surface can be seen, as well as deep water. Although the Swan River is very dark

and mostly optically shallow, there is a small section of river near BLA where bottom

reflectance of sand can be seen. For these reasons it was decided that HOPE would be

used for the rest of the project.

The optical models can be reasonably complex and, as such, there are many potential

errors, if coded incorrectly, potentially resulting in inaccurate predictions. In order to

make sure that the optical model HOPE was coded correctly and the required inputs to

the model were also correct, a ‘sanity check’ was devised using PlanarRad which uses

a completely independent radiative transfer method and was coded and published in-

dependently. In order to model a range of different water types, shown in Figure 6.11,

PlanarRad (Hedley et al., 2009; Hedley, 2012) was used as a point of truth. Further-

more, it produced the same results as the popular proprietary radiative transfer model

Hydrolight8 that was used by Lee et al. (1999) to design HOPE.

The comparison between HOPE and PlanarRad is shown in Figure 6.11 and shows that

the two models agree with each other within a small tolerance. It is not expected that

the two models be identical, as HOPE is a semi-analytical model that uses some approx-

imations in order to reduce the complexity of the calculations. It was decided that the

tolerance between the two models was acceptable, and as such, it was unlikely that any

errors had been made when coding up the Python version of HOPE for this project.

8http://www.planarrad.com/images/f/f2/Pr_hl_report.pdf
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6.7.2 Spot Measurements

During the development phase of the project, there was the opportunity to make mea-

surements with the Swan River Trust. Although the ultimate goal was to develop a

monitoring system that would include a full transect of the Swan River, the opportunity

to make measurements at the sampling stations of the SCCP afforded the opportunity

to build a spectral library, test processing code, and develop a workflow. A full transect

of the Swan River was made on 29/11/2011 the results of which are presented in Sec-

tion 6.7.3. The sampling locations for the DALEC measurements and water sampling

locations are shown in Table 6.3. The Swan River Trust boat did not stop at Heathcote

(HEA) on these occasions so samples were not collected.

The following section presents the estimated phytoplankton concentration derived from

the DALEC measured remote sensing reflectance and inverted using HOPE. The phy-

toplankton estimates were made by using the absorption profiles of both phytoplankton

and CDOM measured in the laboratory but collected at the sample locations. The HOBI

labs HydroScat-6 was not available on these dates, therefore, bbp could not be measured.

The following results were limited to inverting for a single aφ(440) parameter. It was

found that inverting the model for all aφ(440), ag(440) and bbp(550) for these field dates

did not yield sensible results. Often retrieved IOP values were negative of many orders

of magnitude too high. By using the measured ag(440) values, and the full measured aφ

spectral shape in the inversion routine, values of aφ(440) that were close to the measured

values were achieved. These results are shown in figures 6.12, 6.13, 6.14 and 6.15 below

for the dates, 08/02/2010, 22/02/2010, 18/07/2011 and 14/11/2011 respectively.

The three IOP parameters aφ(440), ag(440) and bbp(550) were inverted for the full tran-

sect shown in Section 6.7.14. It will be shown in Section 6.93 that by using this same

model restriction, discussed above, the accuracy of the aφ(440) parameter is improved.

The spot DALEC measurements presented here provided a useful tool for testing equip-

ment, software and algorithms. Table 6.3 shows the coordinates of the sample locations.
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Table 6.3: Swan River sampling site locations

Site Name Station Code Latitude (◦S) Longitude (◦E)

Blackwall Reach BLA -32.0190380 115.7831398

Armstrong Spit ARM -320070686 115.8089498

Heathcote HEA -31.9948919 115.8353485

Narrows Bridge NAR -31.9636573 115.8487799

Nile Street NIL -31.9548452 115.8853411

Saint John’s STJ -31.9513718 115.9134004

Maylands Pool MAY -31.9398069 115.9081728

Ron Courtney Is RON -31.9214037 115.9401324

Kingsley Street KIN -31.9125821 115.9610263

Success Hill SUC -31.8984402 115.9592501

Table 6.4: In situ measurements of aφ(440), ag(440) and HOPE-derived values of aφ(440)
for 9 of the SCCP sampling locations on 08/02/2010.

Site BLA ARM HEA NAR NIL STJ MAY RON KIN SUC

in situ aφ(440)(m
−1) 0.003 0.004 - 0.002 0.008 0.016 0.015 0.027 0.019 0.025

HOPE aφ(440)(m
−1) 0.003 0.003 - 0.002 0.007 0.014 0.012 0.017 0.011 0.015

in situ ag(440)(m
−1) 0.600 1.121 - 2.018 3.202 4.000 4.612 5.201 5.517 5.432
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The four sampling days with spot measurements presented here did not agree very well

between reflectance-derived IOP concentrations and laboratory measurements. Differ-

ences between values were often greater that 60%. There were a number of reasons

for this. It was expected that it would be possible to show good agreement between

the HOPE derived IOPs and the co-located laboratory-measured concentrations. One

possible reason for the disagreement was the attenuation of the dark water. This was

especially true further up the river, past NAR, where the water became very laden with

CDOM. This can be particularly seen in figures 6.12 and 6.13 where the relative error

steadily increases up river. The sensitivity analysis in Section 5.6 shows that increased

levels of CDOM increases the uncertainty of model retrieved aφ(440).

Another possible reason for the disagreement between model derived IOPs and labora-

tory measurements was the difficulty in keeping the DALEC level, and at a constant

viewing geometry of 135◦ and 40◦ (relative sun azimuth and viewing zenith, respectively)

proved difficult with the available equipment, even on calm days. A viewing geometry of

135◦ and 40◦ reduces the effect of sunglint in the Rrs measurements (Mobley, 1999), so

deviating from these angles likely introduces extra noise. Furthermore, as the DALEC

can take up to six seconds to make a measurement (depending on light availability) if

the sensor moves while making a measurement this can introduce further errors. Time

was spent building a new gimble and mount but it remained a challenge due to boat-drift

and the difficulty in keeping the boat on a constant heading.

In fact, much time was spent trying to get reasonable results from the inversion process.

It was not known at the time how difficult the heavy amount of CDOM was making

the inversion task. This later triggered the sensitivity investigation presented in Chapter

5. In order to get the model to invert, the CDOM and scattering parameters were set

constant and only the aφ(440) parameter was allowed to be free in the solution scheme.

If the CDOM and particle scattering parameter were allowed to be varied in the in-

version process, the model would quickly diverge, producing no result at all. This is

discussed further in Chapter 7. Improved accuracy was later achieved, on final transect

trip (29/11/2011), by paying special attention to keeping the geometry of the sensor con-

stant, in part, due to the extra boat crew on this day. On this occasion, the model was

inverted for aφ(440), ag(440) and bbp(550) without the model diverging. It was found,

however, the most accurate measure of aφ(440) was achieved by enforcing the single pa-

rameter inversion restriction. This is shown by comparing figures 6.90 with 6.96 and is

discussed in detail in Chapter 7.
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6.7.3 Continuous Underway Measurements

One of the aims of this project was to make continuous underway measurements (‘tran-

sect’) of reflectance in order to create a continuous map of the distribution of phytoplank-

ton. The previous section described field trips where reflectance was measured only at

the water sampling sites. The next section describes the extra steps required to collect

data continuously along an underway transect and the extra steps necessary to process

the data.

Transect Preprocessing

While making underway measurements of Rrs, the DALEC was prone to collecting erro-

neous data. Samples could be corrupted for a number of reasons, including foam caused

by either the bow of the boat, breaking small waves, or by passing boats. Other sources

of corruption included sunglint, and the geometry of the sensor changing mid-sample due

to a rocking boat, as well as reflections on the water from trees or houses, particularly in

narrow parts of the river.

To deal with these corrupt data points, a preprocessing filter was applied to the data to

remove any reflectance spectra that were corrupted before using the data in the model

inversion. The filter process comprised three parts. Firstly, the filter would consider the

reflectance at 750 nm, where the reflectance was assumed to be zero. If the reflectance at

this wavelength was above zero, above a small tolerance 10% of the maximum reflectance

vale, the spectrum was discarded. Secondly, the compass data were scanned for sensor ge-

ometries that appeared to be erroneous. Wherever the sensor geometry deviated beyond

a tolerance of 10% between successive measurements, the Rrs spectra was also discarded.

Finally, for each reflectance spectrum, the RMS was calculated and any neighbouring Rrs

that significantly changed above a threshold of 15% were also removed from the suite of

Rrs spectra. Even after filtering out many of the data points, there still remained over

13 000 Rrs spectra for the transect.
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Transect Processing

After the preprocessing filter was applied to the reflectance data, each Rrs spectrum was

temporally co-located with the sensor compass and GPS measurements. Because the

reflectance measurements are made with a dynamic integration time and the supporting

sensors are not, all measurements are interpolated to a common time – the CPU time of

the computer logging the measurements.

The DALEC processing software parsed the reflectance data and the sensor geometry to

the HOPE model used the LM-fit algorithm to invert the model for IOP estimates. Where

the river was not optically deep and the bottom could be seen from the boat, the albedo

for sand was used and the depth from the echosounder was used. The HOPE model

described by Lee et al. (1999) defines six variables that can be varied through the optimi-

sation routine. It was found, however, that if the routine allowed that many (six) degrees

of freedom, the model, in the context of this study, was not able to converge to a solution.

In order for the model to converge on estimates of phytoplankton, which was the ultimate

goal of the project, the degrees of freedom had to be restricted. The model was restricted

to retrieve only three optical parameters – aφ(440), ag(440) and bbp(550). These results

are shown in figures 6.17, 6.18 and 6.19 respectively. These figures show that it is pos-

sible to invert the parameters for all three IOPs, however, the accuracy for aφ(440) was

low when compared to in situ measurements. The difference between the model derived

aφ(440) parameter and in situ measurements was around 70% for sites up to NIL and

many times different past STJ, up to ≈ 485% different. In contrast, the model derived

ag(440) parameter agreed more closely than aφ(440) in the upper parts of the river. The

modelled and measured ag(440) parameters were many times different for the first three

SCCP sites, but were on average ≈ 20% different for sites up river from HEA. The

model derived bbp(550) parameter was the most accurate. Model derived and measured

values agree, on average, within ≈ 34% across all sites or ≈ 13% for sites up river of NAR.
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uncertainty estimates for each model derived IOP measurement of aφ(440), ag(440) and

bbp(550).

Lastly, the optimisation routine was also further restricted from diverging, by defining

limits that LM-fit was able to invert while using the steepest decent method. Limits of

the phytoplankton optimisation were set to zero and twice the initial estimate for the

lower and upper boundaries respectively.

Transect Postprocessing

As the preprocessing filter often removed some data points before the optimisation, and

some data was interpolated to a new timestamp, the inverted phytoplankton estimate

points were not defined at regular points along the transect. Figures 6.90, 6.91, 6.92

and 6.96 were interpolated to a regularly spaced transect by firstly applying a nearest-

neighbour interpolation, and secondly, passing both the transect data and uncertainty

calculations through a Savitzky-Golay filter (Press et al., 2007, page 766) of length 15

points and a polynomial order of 2 to smooth the transect results.

Water Sampling Sites

This section presents the Rrs measurements, as well as the IOP inverted parameters, for

each of the SCCP water sampling sites. The ensemble DALEC Rrs measurements were

used to train the coherent noise model and the mean Rrs spectra was subsequently used

to produce 2400 synthetic R̂rs measurements. These R̂rs data were inverted using the

LM-fit algorithm, and the HOPE optical model, for aφ(440), ag(440) and bbp(550).

In the following section, for each of the 10 sample sites, the range of Rrs values are pre-

sented, indicated by the light blue envelope. The average reflectance is drawn as a dashed

line. Following on, a hex-bin plot and a scatter plot are presented together, for each IOP

parameter pair, for all of the inverted R̂rs data. The hex-bin plot shows a histogram,

along each axis, presenting the distribution of derived parameters. The density of the

parameter distribution is indicated by the intensity of colour of the hexes. The scatter

plots show the same data as the hex-bin plots but with 95% confidence interval, indicated

by an error ellipse, and the mean values point, indicated by a red dot. The mean values

are the values considered the ‘solution’ for the retrieved IOP values.
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Figure 6.96 shows that the model is able to accurately predict the phytoplankton ab-

sorption within ∼18% at sampling sites BLA, ARM, HEA, NAR and NIL when the

optimisation routine is restricted to retrieving the single aφ(440) IOP parameter. The

uncertainty for all of the aφ(440) retrievals, as estimated by the coherent noise model is

∼34%. For the upper river sites, STJ, MAY, RON, KIN, and SUC, the model regularly

underestimates the amount of phytoplankton, when compared to the in situ samples.

This mismatch is generally seen on the four spot-sampling field days as well (Figure

6.98). It is at these sites that in situ measurements do not fall within the uncertainty

estimates as predicted by the coherent noise model. It is encouraging that the accuracy of

the DALEC-derived results (for all sites) lies will within the 34% uncertainties predicted

by the coherent noise model.

Figure 6.98 shows the model versus measured results across all of the field trips presented

in this thesis. The figure shows that phytoplankton concentration is generally underesti-

mated by the model, particularly for the higher values of aφ(440). The sites STJ, MAY,

RON, KIN and SUC are marked in red and represent the sites where the model does not

agree with the water sample results and the CDOM is too high. If the data is restricted

to the sites BLA, ARM, HEA, NAR and NIL, (Figure 6.99) the model results show

good agreement with the phytoplankton concentration, albeit slightly underestimating

for most of the data points.

These data show that the results presented here suggest there is a clear limit to where the

model and methods described in this study can be used to estimate the phytoplankton

concentration with confidence, even with the single parameter restriction.

6.8 Summary

Over the course of the study, the Swan River Trust (SRT) made a place available on

their boat so that the DALEC and associated equipment could be tested. It was not

possible at that stage to make underway measurements due to safety rules, imposed by

the SRT, and the speed that the boat travelled between sample sites. There was quite a

large learning curve, and time to make measurements at each site, while the Swan River

Trust collected their samples, was short. For this reason, and due to equipment failure

or by sample contamination and other errors on many days reflectance spectra were not

collected. Of the many occasions in which field trips were undertaken, only four were
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able to produce acceptable results (tables 6.4, 6.5, 6.6 and 6.7). These days provided

invaluable opportunities to improve equipment and workflows. There were many lessons

learned on how to collect this data accurately, which ultimately lead to the best results

possible when the transect data was eventually captured.

This chapter presented the transect results, as well as the IOP data that were used in

the optimisation process. The transect started at Blackwall Reach (BLA) and ended at

Success Hill (SUC). Continuous measurements of reflectance were made with the DALEC

following the methods described earlier in Section 6.7.14. Discrete water samples were

collected at ten sample locations along the length of the transect for both inputs into

the optical model and for model truthing. The transect results (Figure 6.96) shows that

when compared to in situ measurements, the phytoplankton abundance, described here

by aφ(440), can be estimated within a 18% accuracy for approximately the first half of

the river; that is, between BLA and NIL. To achieve this accuracy, however, the opti-

misation routine must be restricted to retrieve just the single aφ(440) parameter. After

NIL, for the upper reaches of the transect, the accuracy quickly becomes very low (with

above 80% error at SUC) when compared to the in situ samples regardless of any model

restrictions. It is at this point that the model has a lot of difficulty in accurately es-

timating the phytoplankton absorption and the differences in modelled and measured

results are not captured by the uncertainty estimates. It is at points, close to NIL, where

the uncertainties are not accurate predictions of model uncertainty due to the model’s

inability to accurately model the conditions of the Swan River.

The main reason the model fails in the upper reaches of the river is, the CDOM load in

the river at these points makes the water too dark to retrieve accurate results of phyto-

plankton. At these high CDOM concentrtions, changes in aφ have little to no affect on

the Rrs. It is shown in Figure 6.100 that there is a very high correlation between the

CDOM load and the percentage difference between the measured and modelled values of

phytoplankton absorption. This suggests that it is likely to be the CDOM causing the

difference between the measurements.

After the transect on 29/11/2011 was completed, the in situ measurements were used to

generate reflectance spectra using PlanarRad that spanned the CDOM and phytoplank-

ton absorption observed during the experiment. These sensitivity results are presented

in Section 5.6. In this section Figure 5.43 shows that, as the CDOM increases, the model

uncertainty increases.
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The procedure used to invert the model, to achieve the higher accuracy results, was much

more restrictive than originally intended. With Lee et al. (1999) outlining six parameters

that can be used to optimise the model, it was originally planned to have a workflow that

enabled the reflectance data to be used to predict the phytoplankton abundance, CDOM

concentration and particulate scattering. It was planned that in situ measurements would

be used to independently verify the results and not in the optimisation process itself. Any

attempt to optimise for all six parameters resulted in parameter values that were orders

of magnitude from the expected values, or the optimisation routine would not be able to

converge on a solution. It was only by restricting the model to three IOP parameters,

aφ(440), ag(440) and bbp(550), that the optimisation routine could converge to a solu-

tion. Furthermore, in order to achieve the most accurate measures of phytoplankton,

the model and optimisation routine had to be further restricted to retrieve only a single

parameter, aφ(440). Restricting the optimisation to a single parameter aφ(440), was the

only way that the model was able to reliably converge on sensible phytoplankton results.

Nonetheless, this is only true for those parts of the river where the CDOM concentration

is relatively low. Where the CDOM levels exceed those seen past NIL, (≈ 3.402m−1),

the model quickly starts underestimating the phytoplankton absorption.

This chapter has shown that, where the water is relatively low in CDOM, a restricted

version of the optimisation routine and optical model can accurately estimate the phyto-

plankton concentration, expressed as aφ(440). These high CDOM conditions are reported

at the first five sample locations accounting for approximately half of Swan River’s length.

Attempting to apply the inversion routine passed NIL, exceeded the upper limit of the

optical model and inversion routine. The section of the transect where the model is un-

able to retrieve accurate estimates of the phytoplankton are the narrow sections of the

river, high in CDOM, shown in Figure 6.101 below.
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Chapter 7

Discussion

7.1 Introduction

The principle research aim of this study was to establish whether continuous underway

measurements of remote sensing reflectance using a boat-mounted instrument (e.g. the

DALEC) could be used to improve and support river monitoring programs such as the

Swan-Canning Cleanup Programme (SCCP), and more recently the Swan Canning River

Protection Strategy (SCRPS), by deriving accurate estimates of phytoplankton concen-

trations at locations in between the discrete sample locations along the Swan River.

A number of key issues were identified in the literature review and addressed throughout

the study, principly that satellite data and airborne-based data are not feasible for mon-

itoring the Swan River because of spectral and spatial resolution limitations, or the cost

associated with acquisition of commercial data. As explained, due to the high range of

individual components and variability in concentrations, the in-water light environment

is extremely complex, and specialised remote sensing algorithms are necessary to derive

the inherent optical properties from remote sensing reflectance (e.g. Morel and Prieur,

1977; IOCCG, 2000).

A range of approaches were taken to address this aim, from field sampling to optical

modelling, and this discussion will consider and examine the results and novel method-

ology developments in relation to the research objectives.
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7.2 Swan River Results and Validation

The following sections span a number of the research objectives focused on fieldwork and

optical modelling. In this section, the IOP results from the field work conducted along the

Swan River are first discussed, followed by the measurement uncertainties, including the

range of uncertainties observed in different sections of the river. The field measurement

uncertainties are then compared to the sensitivity analysis results in order to assess the

validity of the field uncertainties. Lastly, this section looks at the suitability of HOPE

for this particular application.

7.2.1 DALEC and Field Measurements

Huang et al. (2017) present a clear daily modeled chlorophyll-a variation that is currently

not captured by the Swan River weekly sampling campaigns, and conclude that weekly

sampling may not be sufficient for understanding some key water quality variables such as

chlorophyll-a concentration, among others. Moreover, field sampling can only take place

when weather conditions are favourable, thus resulting in too sparse data to capture

the required information. From a modeling perspective therefore, Huang et al. (2017)

recommend that higher-frequency data are required in order to capture variation and

provide more information for models and their validation. The results in Chapter 6, par-

ticularly figures 6.16 and 6.96, showed that it was possible to make continuous underway

measurements of DALEC-derived phytoplankton absorption between the discrete SCCP

sample locations with varying accuracy depending on how the model was restricted. The

accuracy of the results improved by restricting the model to a single aφ(440) parameter.

As a result, an accuracy within 18% was achieved at the sampling sites BLA, ARM,

HEA, NAR and NIL and an accuracy of within 34% for the upper river sites, STJ, MAY,

RON and SUC. Addressing the modelling requirements raised by Huang et al. (2017)

underway data is shown here to increase spatial coverage, and offers potential for greater

temporal coverage also; a DALEC (or DALEC style) instrument, can be cost effective

for a monitoring program as it offers the opportunity to make continuous autonomous

measurements, and more than one could be deployed at once. While the potential for

collecting more optical data than currently exists, and augmenting sampling campaigns

with autonomous optical instruments is demonstrated here, more work to improve accu-

racy of retrieval would need to be done.

There are hundreds of different species of phytoplankton commonly present in the Swan

River (Hipsey et al., 2016b; Hipsey et al., 2016a and Huang et al., 2017). SIOPs of these
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different species can be used, in principle, to relate the spectral absorption and scattering

to chlorophyll-a specific concentration. SIOPs vary greatly between species and can even

vary greatly within a single species (Fujiki and Taguchi, 2002). As discussed in Chapter

2, the chlorophyll-a concentration can double between the mouth of the river and the

upper parts of the estuary; therefore, the limitation of using HOPE and the methodology

outlined in 6 is, the accuracy of the reported phytoplankton abundance is restricted to

total phytoplankton absorption. The concentration of chlorophyll-a cannot be inferred,

nor species specific information can be drawn from the results, until accurate measure-

ments of the SIOPs are known. However, the advantage to limiting the model to total

phytoplankton absorption is, monitoring can be carried out using instruments such as the

DALEC rapidly, and simple laboratory measurements can be carried out to validate the

results. An empirical model relating average SIOPs to total phytoplankton absorption

maybe developed in the future, but currently there is insufficient data available (Huang

et al., 2017).

In the Swan River, and for many inland waterways, the high CDOM concentration com-

pounds the difficulty of accurate phytoplankton concentration retrieval and increases the

measurement uncertainty. In the models by Kutser (1997) and Kutser et al. (2001)

changing chlorophyll by 0.1 mg/m3 when the concentrations are in tens to hundreds or

changing CDOM with the step of 0.1 m−1 when the values approach tens is not feasible as

such small changes in concentrations have negligible effect on reflectance spectra that no

remote sensing instrument can detect. The results presented in this thesis are consistent

with the findings of Kutser (1997) and Kutser et al. (2001), and are confirmed with the

sensitivity study conducted in Section 5.6.

Furthermore, separating the dissolved and particulate fraction from each other based on

water reflectance spectra is very difficult and sometimes nearly impossible (Del Castillo,

2005; Siegel et al., 2013; Wei and Lee, 2015). The issue with solving the inverse problem

is non-uniqueness of the results. In the case of water remote sensing it means that many

different combinations of chlorophyll-a, CDOM and TSS may give perfectly identical

reflectance spectra. Creating more IOPs for the inverse of the model only creates more

combinations of these IOPs that give identical reflectance spectra. As we saw in figures

6.85, 6.86 and 6.87, the total contribution of anap to the gelbstoff compared to CDOM is

negligible. For this reason and due to the complexity in defining the requisite SIOPs, in

this study of the Swan River, the absorption due to CDOM and anap are not separated

in the optical model.
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7.2.2 Measurement Uncertainties

As discussed by IOCCG (2006) a systematic approach to calculating uncertainties in

IOPs derived from remote sensing optical models is lacking. Measurements are generally

reported without uncertainties and are instead, simply compared with in situ measure-

ments. Furthermore as noted by the IOCCG, this common approach is insufficient for

documenting the variations in uncertainty in both time and space. One of the research

objectives of this thesis was to address this in the Swan River by developing a uncertainty

methodology capable of reporting uncertainties for the sites encompassed by the Swan

River Trust sampling programme. In particular, this new approach does not require in

situ measurements. Moreover, this methodology has the advantage that is applicable to

any remote sensing application where IOPs are derived from remote reflectance. Another

research objective was to develop a new methodology of estimating measurement uncer-

tainties of IOPs calculated from remote sensing reflectance.

This new approach to estimating uncertainties of model optimised-parameters was pre-

sented in Section 5.5. The method simulates the uncertainty in the model parameters by

including the natural variation of the remote sensing reflectance spectrum due to changes

in the environment. Unlike the approach presented in the IOCCG report (IOCCG, 2006),

the method developed in this thesis does not require synthetic data or in situ measure-

ments; rather, the method requirements are taken completely from field measurements

of remote sensing reflectance. The coherent noise model was used to estimate the uncer-

tainties of the DALEC-derived aφ(440), ag(440) and bbp(550). Using the coherent noise

method to generate 2400 R̂rs spectra revealed that on some occasions, the solutions to

each R̂rs resulted in clusters of solutions. An example of this can clearly be seen at NIL

in figures 6.50–6.55. In these figures two distinct clusters of solutions can be seen for

all pairs of aφ(440), ag(440) and bbp(550). This is due to the fact that the reflectance

model HOPE is highly non-linear and more than one combination of aφ(440), ag(440)

and bbp(550) can result in a minimum in solution space. The LM-fit optimisation method

can often converge on a local minimum, particularly when the initial guess is close to one.

These clusters can be seen, most clearly, in the results shown in sections 6.7.8 and 6.7.11

at the NIL and KIN sites. It is quite possible that these local minima are very common in

the solution space, particularly when the number of parameters LM-fit is trying to solve

for is large. It may be the case, in this study, that the solution space has a large number

of these local minima and is what prevented the model to converging to sensible solutions

when all six model parameters were optimised for. It is likely that, in the case of the
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Swan River, by reducing the number of parameters in HOPE from six to three (aφ(440),

ag(440) and bbp(550)) the optimisation method was able to converge on a solution by

reducing the number of local minima, hence avoiding them and reducing the number of

false positive solutions. For this reason, it is likely that by further restricting the model

to a single aφ(440) parameter, as shown in Figure 6.96, the model was able to give the

most accurate results for aφ(440).

Even when the number of model parameters are restricted to three parameters (aφ(440),

ag(440) and bbp(550)), there are local minima present in the solution space. This can

be seen as multiple clusters in figures 6.50–6.55. An example of this is shown in Figure

6.55, where it can be seen that the solution of HOPE, for each R̂rs converged in two

different clusters. One at ∼0.25 and ∼0.85 for aφ(440) and bbp(550) respectively and one

at ∼1.5 and ∼0.12 for aφ(440) and bbp(550) respectively. The median value of all the R̂rs

points, indicated by a red dot in the figure, is the value reported for a single DALEC

measurement. Using the median value of all the R̂rs weights the result heavily toward

the cluster with the majority of points. Using the coherent noise method, in this case,

avoids the local minimum. If the coherent noise model were not used, and only a single

Rrs was inverted, that data point may have corresponded to any one of the points on

the scatter plot and not weighted towards the median point. And as such, more likely to

report a value corresponding to a local minimum or extreme point.

The uncertainty of each measurement is indicated by the error ellipse. The existence

of these clusters skews and elongates the error ellipses. An example of this can be seen

in Figure 6.55. It can be seen that the error ellipse is skewed by the cluster of higher

values in the top right corner and the ellipse passes through the zero axis because it is

stretched. Uncertainty ranges that go below 0 are not possible in real world measurements

as negative values of aφ(440), ag(440) and bbp(550) are not possible. This overestimate

in uncertainty can be seen in 6.90 where the error bars and error envelope are both very

large and go below zero and is likely due to the existence of multiple clusters in solution

space which skew the error estimates.

The coherent noise method was used to define ten different coherent noise models (one

at each SCCP site) that were used in the inversion process for reflectance data closest

to the corresponding sampling site. This method should capture all of the variation that

is expected to be seen, due to fluctuations in environmental parameters, many of which

cannot be captured by modelling alone, or would be too complex to model individually.
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For each measurement made by the DALEC, 2400 pseudo R̂rs measurements were gener-

ated by the coherent noise models. All pseudo-measurements were inverted for aφ(440),

and the distribution of the parameter was used to define the uncertainty of the derived

aφ(440) for each DALEC measurement of Rrs. For the length of the transect between

BLA and NIL, the in situ measurements of aφ(440) agreed within the uncertainty mea-

surements of aφ(440) at the sample locations. Up river from the NIL sample location,

the in situ measurements did not lie within the uncertainty estimate.

The section of the transect from NIL to SUC was where the CDOM absorption was the

greatest. It appears from the results in Figure 6.16 that the uncertainty estimates are too

low. These estimates are smaller than the difference between the measured and derived

values. The reason that the uncertainties are small is that the model itself is not able

to accurately model the environment for many of the reasons already presented here.

For the coherent noise model to accurately estimate the uncertainty, it assumes that the

model is able to accurately reproduce the measured IOPs when inverted. If the model is

unable to invert accurately then the uncertainty estimates will also be inaccurate. It can

be seen in Figure 6.16 that upstream from NIL the relative difference between DALEC-

derived aφ(440) and in situ measurements are larger than accounted for by the blue error

envelope. It is at this point in the transect that the reflectance model is unable to ac-

curately predict aφ(440) through inversion and, as a result, the coherent noise model is

also unable to accurately estimate the uncertainty in the DALEC-derived aφ(440).

When comparing the relative errors, it can be seen that for sites up river from NIL,

the model consistently underestimates the phytoplankton concentration and underesti-

mates the uncertainty. This is consistent with comments made by Lee et al. (1999) in

the discussion section of the paper which states that aφ(440) and ag(440) were generally

underestimated, and that in order to identify the cause of the underestimation, further

measurements would need to be made (Lee et al., 1999). The sensitivity analysis shown

in Figure 5.42, shows that when CDOM concentration is very high the model is not very

sensitive to change in aφ(440). Therefore, under these high CDOM conditions, it is be-

lieved that the optimisation routine (LM-fit) is able to converge to a solution faster by

altering the ag(440) parameter than the aφ(440). The model is not sensitive enough to

changes in phytoplankton absorption when the CDOM concentration is high and there-

fore LM-fit preferences changing ag(440).

A major contribution to the error budget is that there are non-unique solutions to the
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optical model. That is to say, there are many different combinations of IOPs that will

results in the same remote sensing reflectance. This problem is amplified in low light

conditions where the signal to noise ratio is low and furthermore, in estuarine environ-

ments where number of different IOPs range greatly compared to the ocean.

The coherent noise method, discussed in this thesis, was originally designed to calculate

uncertainties in IOP, particularly in low light conditions where environmental noise such

as shadows, sunglint and debris make a high contribution to the overall remote sensing

signal . As an unintended consequence, the coherent noise method reduced the number

of times the inverse method to solving the optical model was unable to converge to a

sensible solution. Furthermore, by making many permutations of reflectance, much of

the error space was mapped and local minima were self evident. Examples of this can be

seen in Sections 6.7.8 and 6.7.11. By taking the median value of all these permutations,

the confidence that the final IOP value used had not converged to a local minima, or a

physically impossible results was improved. One of the consequences of using this un-

certainty method, is there was a very high computational demand for all permutations

of the pseudo R̂rs measurements; this may present a limitation if attempting to do a

real-time inversion (Marrable et al., 2009), particularly if using low-powered instruments.

The methodologies and results discussed in this section address two of the research ob-

jectives of this thesis: to improve IOPs retrieval confidence in highly non-linear and low

light conditions, and further, to estimate measurement uncertainties of these results.

7.2.3 Model Sensitivity

The results presented in Figure 6.100 show that there is a correlation between the phy-

toplankton retrieval error and the magnitude of CDOM present in the river. This is

particularly evident in the upper parts of the river past NIL. To investigate this phe-

nomenon further and address one of the research objectives, the sensitivity analysis in

Chapter 5 was subsequently carried out. The sensitivity analysis also assists in bet-

ter understanding the limitations of the model and its impact on monitoring the Swan

River. Many reflectance spectra were generated using PlanarRad for values of aφ(440)

and ag(440) that spanned the values measured at the sample locations on the day of the

full transect, shown in Table 6.8. The plots of reflectance shown in Figure 5.41 show

that for a high CDOM concentration value of 5.0 m−1, changing aφ(440) by 15% only

results in an approximate change of 1% RMS reflectance. What this shows is that the
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model is not very sensitive to change in phytoplankton absorption when the CDOM con-

centration is high. The full sensitivity analysis for all values is presented in Figure 5.42

and shows that the model is most sensitive to changes in aφ(440) at low CDOM values.

The figure shows the model is relatively sensitive for sites BLA, ARM, HEA and NAR

and moderately sensitive at NIL; however, beyond this location, where ag(440) are high,

the model is the least sensitive to change in aφ(440) even though aφ(440) is high. This

finding is consistent with the results seen after making the transect upriver. Figure 6.100

shows that along the transect, as ag(440) increases so does the relative error between

DALEC-derived aφ(440) and in situ measurements of aφ(440). It is because of the low

sensitivity to a change in aφ(440) that the model is unable to converge without applying

the restrictions described in previous sections.

Furthermore, when the sensitivity was used to estimate the order of magnitude of un-

certainties expected to be seen in the uncertainty models shown in Figure 5.43, it was

shown that for a 1% change in RMS reflectance, magnitudes of 16% uncertainty could

be expected, depending on conditions. If this behaviour extrapolates linearly, typical

changes of a few percent of Rrs would result in 30% − 45% uncertainty under modelled

conditions. It is expected that it would be even higher in practice, due to the added

effects of environmental noise, that are not captured by the sensitivity analysis. This

level of uncertainty is observed in the field measurements. When the CDOM is high,

the model is so insensitive to changes in phytoplankton concentration that it is unable

to converge to an accurate solution. In order to increase the accuracy of the DALEC-

derived aφ(440) parameter, the model has to be restricted to retrieving a single aφ(440)

parameter in order to get a result reflective of the river conditions; however even under

these restrictions it is unable to make accurate or precise predictions of phytoplankton

concentration upriver from NIL, as the CDOM concentration is too high. Furthermore,

the estimates of the DALEC-derived aφ(440) uncertainty reach approximately 40%, after

which they are unable to account for the difference between the inverted and measured

results.

As noted earlier uncertainties are often not quoted in literature (e.g. IOCCG, 2006),

so a direct comparison of the published uncertainties and those presented in this thesis

becomes problematic. The literature does show however, that high phytoplankton un-

certainty in the presence of high CDOM is not unexpected due to both the aφ maximum

near 440 nm and the high absorption of gelbstoff at this wavelength. The compounding

effect of the absorption properties of tripton being so similar to the exponential function
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of CDOM (e.g. Babin et al., 2003; Binding et al., 2008; Matthews and Bernard, 2013),

causes much uncertainty when solving for the additive total absorption coefficient, and

significant ambiguity in solutions given the nonuniqueness of the solution (Defoin-Platel

and Chami, 2007). Therefore, high uncertainties as seen in the Swan River are consistent

with the literature, and an uncertainty range 30%− 45% is consistent with those shown

by the sensitivity analysis.

7.2.4 Optical Model Assessment

As specified in the research objectives, preliminary studies were conducted to assess

the suitability of different remote sensing reflectance models; HOPE, BRUCE-LUT and

BRDF-corrected. SAMBUCA was considered for use, but with no SIOP models specific

to the Swan River available, it was not possible to be used for field trials. Three Rrs

measurements at different points in the river, that best represented the different water

quality parameters were used to test the three different models. The results of this study,

shown in Figures 6.2–6.10, compare the ability of the models to reproduce the DALEC

measured Rrs. The BRUCE-LUT model was able to reproduce the DALEC-measured

Rrs the most accurately when comparing the difference between the spectra (see figures

in Section 6.7.1. However, the inverted IOP values were not as accurate as HOPE or

BRDF-corrected HOPE when compared to in situ measurements. The reasoning for

choosing HOPE over other models for the remainder of the project is explained in more

detail in Section 5.3.

HOPE was originally designed using IOP values much lower than those observed in the

Swan River and therefore one research objective was to assess its performance in the Swan

River, in particular under high CDOM conditions. Of the field data presented in Lee et al.

(1999) the ag(440) values ranged between (0.023−0.240) m−1 and aφ(440) values ranged

between (0.010 − 0.07) m−1. In contrast the values presented in this study of ag(440)

ranged between (0.746− 5.573) m−1 and aφ(440) values ranged between (0.107− 1.554)

m−1, respectively, on the day of the full transect on the 29/11/2011. These values are

much higher, 20-30 times larger, than simulated in Lee et al. (1999).

HOPE parameterises the full radiative transfer model down to a function of six vari-

ables that uniquely influence the remote sensing reflectance. These variables are; P, G,

X, B, H and ∆, which parameterise phytoplankton, CDOM, particle scattering, bottom

albedo, depth, and a spectrally constant offset of Rrs, respectively. These variables are
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derived through mathematical optimisation of the model and are used to infer the total

contribution of each parameter to the remote sensing reflectance. HOPE was originally

designed for deriving bottom depths for shallow water coastal environments. Although

it is a simplified version of the full radiative transfer model, when applied to the Swan

River it was demonstrated that the six retrievable parameters still resulted in too many

degrees of freedom; this resulted in high ambiguity due to the environment being more

optically complex to that which the model is optimised for in the original publication.

Therefore, the number of degrees of freedom was reduced by restricting the number of

parameters firstly from six to three and later down to one; the consequence of doing this

was an improvement in accuracy and precision which can be seen by comparing Figure

6.90 (three) with Figure 6.96 (one). It is worth emphasising that with six degrees of

freedom, the model was not able to converge on a realistic solution; furthermore, with

six degrees of freedom, the inversion method resulted in IOP combinations that do not

represent ‘real world’ values such as negative, infinity or unrealistically large values of

IOPs. Attempts to restrict the model from diverging from unrealistic values (less than

zero and greater than 30% of the maximum measured value) by applying minimum and

maximum thresholds cause IOP values to get stuck at those thresholds suggesting that

the error space is divergent from the global minima at these thresholds. As discussed

previously (Section 7.2.2, it is conjectured that these unrealistic values are a consequence

of the nonunique nature of the problem due to having so many degrees of freedom in

the presence of a highly variable number SIOPs and sources of SIOPs (Defoin-Platel and

Chami, 2007) as occurring in many inland waterways, e.g. many phytoplankton species,

combinations of mineral types and non-algal particles). In this case, there is a direct

correlation between the number of degrees of freedom and the number of nonunique so-

lutions.

The findings of this study are consistent with the study conducted by Mouw et al. (2013),

which concludes that they were unable to retrieve chlorophyll concentration using an in-

version algorithm approach, due to the very large contribution of absorption due to

CDOM and the error in the derived CDOM being greater than the phytoplankton val-

ues. Furthermore, Mouw et al. (2015), based on the studies of (Dong, Shang, & Lee,

2013; Le & Hu, 2013; Zhu, Yu, Tian, Chen, & Gardner, 2011) state that in order to

retrieve many OACs simultaneously, improved separation of aφ and adg and anap are re-

quired. That anap is not separated from ag nor bnap from bbp in this study may be an

additional source of uncertainty. When comparing 6.85, 6.86 and 6.87, the contribution

of anap to ag is low compared acdom to ag. It is not known what contribution this makes to
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the total error budget and is therefore left as future work, if and when, more SIOP data

becomes available for the Swan River. Furthermore, it is recommended that a further

uncertainty analysis be conducted by measuring site specific SIOPs along the Swan River

at the monitoring sampling sites and analysing the error contribution as a result of not

separating anap and bnap from the other IOPs.

The values of error cited in Lee et al. (1999) (7% - 8%) are much lower than the results

presented in this study (30% - 45%), which is almost certainly due to the reasons discussed

above. However, another source of error may well be due to the model hyper-parameters

and application to an optical environment it was not designed for. The general form of

HOPE is shown in Equation 5.39. Based on quasi-single-scattering theory, this equation

defines nine spectrally constant model hyper-parameters; g0, g1, g2, α0, α1, D0, D1, D
′
0

and D′
1. Hydrolight was used to solve the model for these hyper-parameters giving the

specific form of the model shown in Equation 5.43. These hyper-parameters were solved

for by making multiple forward runs with Hydrolight for three different viewing angles

and a number of changes in optical properties and water depth. It was these published

model hyper-parameter values that were used in this study. It is assumed that because

the Swan River light environment is different to the original designed application, that

the model hyper-parameters that best fit our environment may well be different than

those published in Lee et al. (1999). It remains unknown at this time what the effect of

not having site-specific hyper-parameters have had on the accuracy and precision of the

results presented in this thesis, and finding more site specific hyper-parameters would be

recommended as further work.

Following an assessment of remote sensing optical models and their suitability for the

Swan River, this study adapts a methodology outlined by Lee et al. (1999) and uses

localised in situ measurements as inputs into the bio-optical models. There are other

bio-optical models (e.g. Twardowski et al., 2004, Allen et al., 2015), that may be more

suited to the Swan River, and it remains as further work to investigate and assess how

these models could affect the accuracy and precision of the results in this thesis, as

alternatives to the ones defined in Lee et al. (1999).

7.3 Optical Scattering Comparison and Assessment

To address the Mie Theory and Finite Difference Time Domain algorithms research ob-

jective, a comparative assessment of both methods in regards to modelling the scattering
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of different phytoplankton was presented in Chapter 3. This assessment found that, even

though there was a large difference in scattering between Mie and FDTD for any one

particular scattering simulation, when the scattering was run multiple times and the re-

sults averaged, the results between Mie and FDTD converged quite closely for most of

the simulations, with exception to the sickle cell Selenastrum capricornutum where the

results agreed more closely with the experimental results in Volten et al. (1998).

It was also found that the scattering fraction of bb
b

was very low in comparison to the

Petzold measurements (Figure 5.12) of phase functions and measurements published in

Ladner et al. (2002). The scattering fractions in 3 were many orders of magnitude lower.

Figures 3.17–3.26 show that when considering the scattering fractions of spherical parti-

cles with the same refractive indices of the particles in Table 3.4, the size of the particle

is the dominant scattering feature. That is to say that smaller particles scatter orders of

magnitude more light than the cells modelled in this study. It is for this reason that the

scattering fractions measure by Petzold (1972) were dominated by smaller algal particles

and mineral sediment.

A preliminary study of the FDTD algorithm and its ability to model the spectral scat-

tering of non-spherical particles shown in Section 3.1.5; this provided evidence that this

approach yields a more accurate scattering model than the traditionally used Mie the-

ory. Constructed 3D models of homogeneous spheres gave results that very closely agreed

with Mie theory, as expected (shown in Figure 3.3), the small differences being due to the

finite discretisation of the volume. Further investigation of non-spherical homogeneous

solids (figures 3.4 and 3.5) showed that there were differences between the scattering of

the solids and the Mie-predicted equivalent volume sphere.

These results led to the idea that this technique could be used to model the scattering

of algal cells more accurately than using Mie theory. A number of multilayered 3D algal

cells were built using Gmsh1 and Blender2 modelling packages, and exported to RTCode.

The models were simple representations of real algal cells and used as a test bed to see if

it was possible to calculate the scattering of a multilayered model of a cell with different

refractive indices describing different parts of the cell structure. Figure 3.6 shows that

it is possible, in principle, to build analogical phytoplankton cells and model the light

scattering using the FDTD method and RTCode software.

1http://gmsh.info/
2https://www.blender.org/
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The RTCode software enables the scattering of light to be modelled using GPUs. GPUs

are highly parallel processors compared to CPUs and speed up the processing time of

these particular simulations by at least an order of magnitude. RTCode makes it possi-

ble to run the FDTD calculations on a standard gaming PC with a high–end graphics

card. For the simulation of realistic algae cells however, nearly all commodity GPUs lack

the onboard video RAM needed to build phytoplankton cells that are sufficiently large

enough. An algal cell of a few micrometres requires approximately 4 − 6 Gb of video

RAM to fit the Yee cell in memory. Furthermore, in order to model the total scattering

of algae, as seen by a sensor in the field, it is insufficient to simply complete a single scat-

tering event as cells found in nature vary in shape, size, rotation and structure. To model

this as accurately as possible with RTCode, many repeat simulations were run where the

cell’s rotation and size was varied randomly within measured cell size variances measured

by Volten et al. (1998) for each species.

This high computational workload meant that the standard desktop GPU was not suf-

ficiently powerful enough to model the number and size of the simulations presented in

Chapter 3. To address this problem, a proposal was submitted to the Pawsey Super-

computing Centre3 (iVEC at the time) to get access to the Fornax supercomputer. The

Fornax supercomputer system comprises 96 nodes, each containing two 6-core Intel Xeon

X5650 CPUs, an NVIDIA Tesla C2050 GPU and 48 GB of RAM. This results in a system

containing 1152 cores and 96 GPUs. It was this access to Fornax that made it possible

to produce the scattering results in 3. Even with this increased computing resource, only

10 out of 17 (Table 5.1) of the cells presented in Volten et al. (1998) were able to be

simulated, due to the cell size and time restraints.

Ultimately, these scattering results were not used in the radiative transfer modelling by

either PlanarRad or by the inputs into HOPE not to develop bio-optical models of phy-

toplankton scattering. This chapter showed that there were differences in the scattering

predicted by Mie theory and the FDTD method. In particular for highly aspherical par-

ticles such as Selenastrum capricornutum. Further investigations into the cause of these

differences and if they can be explained using FDTD is required, particularly when more

data on the refractive indices of difference algal cells and cell structures are published.

3www.pawsey.org.au
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tory grown cultures. The largest difference between results was Dunaliella salina and the

other two laboratory grown cultures. This was also the culture that showed the largest

difference in spectral absorption (Figure 4.1). This suggests that the accessory pigments

may in fact affect the inversion results. However, these results are small when compared

to the larger uncertainties in the inversion results. It may be the case, in much clearer

water types, where the algae pigments contribute much more to the Rrs signal, the dif-

ferences between species may have a larger effect on the inversion results. This remains

as future work at this point in time.

Although spectra from the Murdoch University cultures were not used to produce the

results in 4, the time spent was still a useful and worthwhile part because the lessons

learned helped set up the radiometry laboratory at Curtin University and provided the

cultures used to test and calibrate the dual-beam spectrophotometer before field trips

were undertaken. The experience also provided a beneficial experience that helped to set

up the wet laboratory, used for filtering and analysis of the in situ measurements that

were ultimately used to produce the final results.

7.5 Software and Open Source Community Tools

There was a considerable amount of software written and used for this study. Wherever

possible, open source tools were used in preference of proprietary ones, such as PlanarRad

over Hydrolight. Wherever software was written to support the study, the source code

was published under a GPL licence and hosted in publicly accessible code repositories.

This was done in order to improve the reproducibility of the results through open access

to most of the tools, and is increasingly recognised as a standard in software development

(Jimenez et al., 2017), for adhering to FAIR data principles (Wilkinson et al., 2016). This

has resulted in a small community of researchers who actively use the tools and report

bugs in the software, contribute to the source code and make improvements (see Appen-

dices for descriptions of the software tools as well as instructions on how to access them

and their community pages).

Section 5.1 of the literature review introduces the radiative transfer process and equa-

tions. Even though software packages like PlanarRad and Hydrolight exist to solve the

RTE, the results they produce are only as good as the inputs they are given. These

tools will always produce a result of some sort. Whether or not those results accurately
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represent the environment they are trying to model is dependent on the inputs. If bad

parameters are passed to the tool, the outputs will be incorrect and it is up to the oper-

ator to check and identify errors in the results.

PlanarRad can take over 100 different input parameters, including sun and sensor viewing

geometries; absorption and scattering properties; different phase functions; the sky and

water surface state; and the type of integration method, including the number of integra-

tion steps. These are just a few of the exhaustive parameters that need to be defined in

order for the tool to work correctly. Combining the different combinations of parameters

required to develop the coherent noise mode in Section 5.5 or for the sensitivity analysis

in Section 5.6, required special scripts and access to supercomputing facilities to run them.

PlanarRad is essentially an integration tool that integrates through plane–parallel slabs

of water. The software comes with a graphical user interface (GUI) that can be used

to run the tool and visualise the outputs. This is useful for single simulations; but in

practice, the tool needs to run for many (often hundreds of) runs for many different

input parameters. This has been particularly true for this project; specifically, for the

sensitivity analysis, presented in Chapter 5; as well as the uncertainty method, also pre-

sented in Chapter 5. In order to run these many simulations, software was developed

as part of this project (Planarradpy) to batch run PlanarRad for the many different in-

puts required4. Users can define a range of parameters that they wish to simulate, such

as many different phytoplankton concentrations or different environmental conditions.

Planarradpy will generate the many run scripts that PlanarRad requires which define

the conditions in which to simulate. Planarradpy also acts as job a job scheduler that

distributes multiple instances of PlanarRad across the available CPUs on the simulation

computer. When jobs are complete, the results are saved in unique directories for post-

processing and reporting, and new jobs are spawned.

As many different parameters are defined in a particular PlanarRad analysis, the total

number of combinations can quickly hit hundreds, or thousands of runs. The time that a

single run can take is up to an hour at a time, depending on a few different conditions. In

particular, PlanarRad lacks the ability to directly model optically deep water. A water

depth and bottom albedo must be defined. In the case of this project, the Swan River

is considered optically deep. In order to accurately approximate this water type using

PlanarRad, a sensitivity analysis was conducted to see how deep that PlanarRad simula-

4See Appendix for community page and download instructions
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tion needed to be, in order for it to approximate optically deep water. A bottom albedo

of all zeros (black) was used and the depth was set to incrementally increase while all

other conditions were kept constant. The depth in which no change in reflectance was

detected between simulations was considered to be optically deep. This does change

with different IOP concentrations. To be on the safe side, a depth greater than all of the

tested conditions was used – 50 m. Such a great depth for optically deep water means

that there are many more plane-parallel slabs to integrate over, and increases the simula-

tion time significantly, when compared to a shallow-water coastal simulation, for example.

Nearly all of the simulations required for this project met these long-running criteria

and it was quickly realised that more computational time was needed than could be rea-

sonably handled by a standard desktop computer. In order to conduct the sensitivity

analysis, and the uncertainty method, presented in 5, many thousands of simulations

were run. Access to the supercomputer Magnus at the Pawsey Supercomputing Centre5

was required, in order to complete these simulations, and in excess of 10 000 CPU hours

were used running many simulations at once, using the Planarradpy software. These sim-

ulations produced many gigabytes of data that included reports from PlanarRad which

included full-radiance distributions. Planarradpy includes tools for collating data in a

sensibly sized report, as well as tools for making the necessary calculations and interpola-

tions needed to produce the surface reflectance at the viewing geometries that represented

the DALEC-measured reflectance of the Swan River.

As a result of this project, open-sourcing the Planarradpy software and publishing in the

public domain, a small user community has formed, and contributions and bug reports

have been made by many other researchers who have started using the software to make

batch simulations using PlanarRad. There are more features that exceed the scope of

this project that will be added in the future, and it is hoped that the community will

continue to grow.

PlanarRad is a reliable model that can be used to make calculations to accurately predict

Rrs for the wide range of conditions encountered in the Swan River. This tool has been

used extensively in this project to understand how the environmental factors are related

to the Rrs and develop the model inversion tools.

5www.pawsey.org.au
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7.6 Project Challenges and Limitations - Lessons Learned

7.6.1 Fieldwork

One of the major challenges of this project was getting access to a boat that was suitable

for making remote sensing reflectance measurements with the DALEC. In retrospect,

committing to a project that required access to a boat without first securing access to

one was not the best approach. The Swan River Trust (SRT) gave access to its boat on

a number of occasions, but with some limitations. Firstly, any activities undertaken by

this project could not interfere with any of the activities undertaken by the SRT. This

meant that loading equipment onto the boat for early departure was quite a challenge, as

mounting the DALEC to a non-permanent fixture was difficult in its own right. Custom-

made brackets were made in the Curtin University Physics Department workshop with

the help of workshop staff. Furthermore, the DALEC is quite cumbersome and requires

many cables to operate it, as well as heavy battery power supplies and a laptop com-

puter. Stowing all of this equipment, and the equipment required for collection of water

samples without contamination on a small boat without impeding on the work of other

scientists aboard was a tremendous challenge. On more than one occasion, data was

incorrectly recorded, equipment failed or water samples were contaminated or lost as a

result of these complications.

Furthermore, as the SRT had strict deadlines, any activities had to adhere to its schedule.

Early boat departures (no later than 7.30 am) meant that light conditions were usually

too low in the early part of the trip, especially in winter when it was often still very dark.

The SRT boat crew were only interested in collecting their own data at the discrete

sampling locations (shown in Figure 6.1). As such, the speed at which the boat travelled

between the locations was too fast and unstable for making any underway measurements.

Despite these challenges, four of the trips yielded data that were instrumental in testing

and refining the processing methodologies, which included all of the steps, from mak-

ing the reflectance measurements, processing the water samples, and testing the optical

model. Many software bugs, fieldwork and laboratory equipment issues were improved

as a result of these preliminary field trips.

As mentioned above, the equipment required to make the measurements, namely the

DALEC, is bulky and cumbersome. This is, in part, due to the DALEC being actively

developed over the duration of the project. There is scope for the DALEC to be reduced
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in size and complexity in the future but this was not possible during the developmental

stages of the project6. In particular, having equipment, such as the laptop computer and

DALEC with large power requirements and sensitive electronics, is often difficult to man-

age around a wet boat and while collecting water samples. Power and cable management

was difficult in its own right, even without introducing a wet working environment. More-

over, the noise that most boat motors produce interferes with the electronic equipment

and produces noise in the reflectance signal. This meant that the boat’s power supply

could not be used, so large, portable lead–acid batteries had to be used instead. The

draw on the batteries, especially when powering water pumps and laptops with 240V,

was particularly high.

The length of time that it took to load the boat and mount the DALEC, as well as make

the measurements on the river, was quite a burden. Especially when coupled with the

time it took to filter water samples before they degraded. This needed to be carried

out on the same day, as soon as possible, before the samples could be stored in liquid

nitrogen for processing the following day. Field days often ran well over 12 hours which

meant that repeat field trips were logistically difficult to plan for, especially when it came

to booking time on a boat. The majority of the fieldwork described in this study was

carried out by one person (the author), who also drove the boat on many occasions7. The

exception being, the day on which the last transect was carried out where a team of four

people (a coxswain and three researchers)8 were able to share the field and laboratory

work. This meant that measurements could be made with much more attention and due

diligence and this was reflected in the quality of the results.

7.6.2 Laboratory work

The original vision of this study included an analysis of phytoplankton pigments and

a method of unmixing signals in reflectance due to accessory pigments with a view to

identifying major classes of algae in the river. This fuelled a further investigation into

growing different species in a laboratory. However, it was quickly concluded that this

was too ambitious and would not be possible until the inversion of the optical model was

6A commercial version of the DALEC has since been developed by In-situ Marine Optics (http:
//insitumarineoptics.com/).

7This was not true of the field trips conducted with the SRT; they had their own coxswain. There
were many development days in the early part of the study where access to a boat was donated by
Graham Thompson.

8Special thanks to Lachlan McKinna, Rodrigo Garcia and Graham Thompson for volunteering their
time for this field trip.
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able to produce much more accurate results.

The Murdoch Algae R & D Centre agreed to donate time and laboratory space for cul-

turing and growing phytoplankton for this project. Although the original plan to build a

spectral library using these facilities was abandoned due to time and resources constraints,

it provided a valuable experience for gaining an understanding of the phytoplankton and

provided many samples that were used when developing the workflows for spectrometry

in the laboratory.

Culturing and growing algae required a specialist laboratory and trained technicians,

something that this project did not have access to at the beginning. As mentioned be-

fore, the Murdoch Algae R & D centre kindly agreed to donate both time and laboratory

access for this project. However, there was not the resource for staff to donate time to

the task itself. Nevertheless, substantial training was donated and much time was spent

by both technicians and researchers toward this project in order to provide expertise and

training in safely culturing algae.

The time it took to learn the laboratory techniques and safe use of chemicals and equip-

ment were substantial. Combined with the time taken to grow algae in the media,

culture, daily subculture, cleaning the equipment, as well as counting cells, quickly ex-

ceeded the time and scope of the project. It was soon realised that the time it was taking

to complete this work was subtracting from time required in other areas of the project,

such as building equipment, designing data-processing tools and conducting fieldwork.

A compromise was made between building an algae-absorption library that would repre-

sent local conditions, and a more generic approach of using either published absorption

profiles or by using in situ profiles of algae absorption. It was originally believed that

growing monocultures in the laboratory would provide very useful inputs for identifying

different algal species at a later point in the algorithm development. It was found however

that getting the model to converge to an accurate estimate of aφ(440) was more difficult

than originally expected. Therefore, it was decided that using in situ measurements of

phytoplankton absorption taken at the time of DALEC measurement would likely yield

the most accurate results in total DALEC-derived measurements of phytoplankton.

Three species of algae were successfully grown in the laboratory and the spectral absorp-

tion of each are presented in Figure 4.1. Shortly after growing the algae at Murdoch

University, a dual-beam spectrophotometer had just been acquired by the Curtin Uni-
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versity Physics Department and was made available for use in this project. The algae

grown at Murdoch University was used to test the spectrophotometer, and laboratory

techniques to correctly operate the machine in accordance with the methods described

in Chapter 6. Python scripts were written to process the outputs, including subtracting

the calibration slides and applying the path-length amplification factors, as described

in Section 3.5. The algae grown at Murdoch University was used in the development

process of the laboratory measurements and workflows.

As well as making the spectrophotometric measurements, in situ water samples needed

to be correctly filtered and bleached. Before this part of the project was carried out, a

wet laboratory was created with space made available in the Curtin University John de

Laeter building by the Curtin University Physics Department and new equipment was

purchased through funding provided by the Swan River Trust. It took time to set up

the laboratory with the correct equipment, safety equipment and procedures. The algae

grown at Murdoch University was used to help develop the laboratory and procedures in

a controlled manner.
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Chapter 8

Conclusions

The work presented in this thesis was focused on the viability for water quality monitor-

ing programmes such as the SCCP to include remotely-sensed optical measurements in

sampling campaigns, to determine chlorophyll-a concentration, a key indicator of water

quality in the Swan River.

In the course of reviewing relevant literature, and assessing and investigating optical mod-

els for the potential for adapting them for localised application, novel methodologies were

developed and open source coding practises employed to support potential application in

monitoring campaigns. In particular:

• A new method for modeling the optical scattering of non-spherical particles using

the FTDT algorithm;

• A new data-driven approach for estimating uncertainties - the coherent noise method;

• A mathematical inversion methodology for improving IOP retrieval reliability in

low light environments;

• All the code is available on Github for researchers, managers, government etc to

access, use again and develop further for mutual community benefit and potential

improvement to monitoring programmes.

Overall, the study presented in this thesis has shown that it is possible to estimate the

phytoplankton concentration derived from DALEC measurements of Rrs using a remote

sensing optical model (HOPE) using inputs of ag(400) and bbp(550) from in situ measure-

ments. It was found that it was possible to derive phytoplankton concentration where

CDOM values of ag(400) were between 0.00 m−1 and 3.402 m−1, and phytoplankton
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concentration of aφ(440) were between 0.00 m−1 and 0.739 m−1, with an error less than

∼23% when compared to in situ measurements. The model inversion uncertainty was

∼34% for the corresponding concentrations. For larger CDOM concentrations of ag(400)

between 3.402 m−1 and 5.573 m−1, it was found that the model could not accurately

determine the phytoplankton absorption. At these high values of CDOM absorption, the

model consistently underestimated the phytoplankton concentration.

The SCCP sampling methodology was limited to 10 discrete measurements. This the-

sis has demonstrated that continuous underway transect measurements of hyperspectral

remote sensing reflectance can be processed to give continuous measurements of phyto-

plankton absorption. This means that it is possible to use the methods described in this

thesis to supplement the data collected at the discrete sampling sites up to and including

NIL by estimating the phytoplankton concentration in between the SCCP sampling sites

between BLA and NIL. Using these methods and DALEC measurements, the coverage

of phytoplankton can be significantly increased between these sites. Furthermore, algal

mats and blooms could be potentially missed by only sampling at the 10 discrete SCCP

locations, where the methods here would identify them.

Specific conclusions are drawn next, in reference to the original research objectives as

laid out in Section 1.4, and the key findings and developments are highlighted.

Conducting a comparative research assessment of Mie Theory and the Fi-

nite Difference Time Domain algorithms. Assessing whether modelling light

scattering, with a high degree of variability in shape and size of different phy-

toplankton species, benefits from using the more advanced FDTD algorithm

in order to improve results with optical inversion of remote sensing models.

A novel approach to modeling the scattering of individual phytoplankton species was

developed that makes use of the FDTD algorithm, and demonstrated to be capable of

i) modeling the spectral scattering of spheres as well as non-spherical particles and ii)

modelling the scattering of multilayered volumes. Although limited to a small number

of species in this study, this model is applicable to any species with enough available data.

While Mie theory provides a good method for calculating the b/bb ratio, it was shown

that with highly non-spherical particles the FDTD is more accurate for modeling the total

scattering of particles. The method described in this thesis is recommended for further in-
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vestigation as complex refractive index data become available for more individual species.

Assessing existing remote sensing optical models, and determine their appli-

cability and limitations for use with the optically complex Swan River. Fur-

ther, develop the inputs and computational tools needed to accurately model

the Swan River’s water colour, as required. Note that these optical models

include radiative transfer models, as well as bio-optical models, required for

modelling the spectral inputs to the radiative transfer equation.

Three different optical models which were able to approximate the radiative transfer

equations (RTE) with parameterised inputs, were assessed and compared. Of these,

HOPE was determined to have the most applicability to the Swan River and was used to

produced estimates of phytoplankton absorption. Using in situ measurements of ag and

bbp, the model converged to a solution using the coherent noise model and Levenberg–

Marquardt optimisation method; this demonstrated that it is possible to estimate phy-

toplankton concentration from a DALEC (and potentially, other boat-mounted instru-

ments) using a remote sensing optical model (HOPE).

A Swan River water quality monitoring programme may therefore consider employing

this as an additional monitoring method up to NIL, but be aware that HOPE generally

underestimated the phytoplankton concentration, particularly in high CDOM concentra-

tions. Upriver after NIL this method is not reliable.

All the computational tools and source code that were developed for this thesis are made

openly available on Github for anyone (managers, government, researchers) to access,

use and contribute to.

Developing new mathematical inversion methods that improve the IOPs re-

trieval reliability in low light environments where the relationship between

remote sensing reflectance and IOPs have a highly non-linear relationship.

Due to the non-linearity of HOPE, there are local minima in which the model has a

propensity to converge to, particularly when the initial estimates of the inputs are inac-

curate. Under very high CDOM conditions, the six solvable parameters of HOPE provide

too many degrees of freedom when applied to the Swan River, and the optimisation rou-
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tine is not able to converge to a solution.

It was shown here that HOPE can be constrained in order to converge to an accurate

solution of phytoplankton concentration in the Swan River by limiting the degrees of

freedom to a single parameter, aφ(440). Furthermore, it was found that the coherent

noise method, developed in this study to define the uncertanties, was also required for

the model to converge to realistic solutions and produce accurate results up to NIL.

Applying the developed models and tools to investigate the sensitivity of

remote sensing reflectance with regard to a range of IOPs using synthetic

data sets.

The results of both a sensitivity analysis and field results show that due to the very

high CDOM absorption in the Swan River compared to ocean waters, the model is not

very sensitive to changes in phytoplankton absorption. When CDOM is high, a 1% RMS

change in measured reflectance can correspond to up to 16% uncertainty value of the mea-

sured phytoplankton absorption. This presents a significant challenge when attempting

to make accurate estimates of phytoplankton absorption using the optical model, HOPE,

in particular upriver from NIL.

These high levels of CDOM make it difficult to detect small changes in phytoplankton

absorption; the difference in absorption spectra between species of phytoplankton are

even smaller and therefore, difficult to measure. As a result, it is infeasible to detect

different species of phytoplankton under these optical conditions.

Developing a method for calculating uncertainties of IOPs derived from re-

mote sensing reflectance.

As highlighted by Bracher et al. (2017) and the IOCCG (2006), the lack of quantitative

uncertainty estimates provided with satellite and in situ data, remain a major gap in

remote sensing of IOPs. As such, using traditional uncertainty methods, these uncer-

tainties cannot be propagated through to IOP inversions.

As an outcome of this research a purely data driven approach that is model and sensor

agnostic, and which does require in situ data, has been developed; this has the advantage

of circumventing the above highlighted issues, and has major potential for many appli-



298

cations, including ocean colour and quantifying uncertainties.

The coherent noise model developed for calculating the uncertainties of derived IOPs is a

completely data driven model that can be applied to any remote sensing reflectance model

and does not require, any knowledge of the model, or in situ measurements. Furthermore,

the method is not limited to remote sensing and can be applied to many disciplines of

science where parameters are derived from any number of signal sources, for example;

acoustic, electrical or radio.

Developing an inversion algorithm and workflow capable of retrieving algal absorption

concentration using the chosen optical model with inputs specific to the Swan River.

Moreover, develop a confidence interval and uncertainty range within which estimates

are deemed valid.

The coherent noise model developed in this study for calculating uncertainties had an

added advantage; the model design also helped the optimisation method avoid converging

to local minima in solution space which would result in false positive inversion results.

As a result, this allowed HOPE to converge to a realistic solution when the parameters

(degrees of freedom) were restricted to one (aφ440).

Assessing the accuracy of measuring phytoplankton abundance in the Swan

River using the research methods developed in this thesis.

There is a high correlation between the model accuracy and the CDOM concentration, in

that HOPE generally underestimated the phytoplankton concentration, particularly in

high CDOM concentrations. It is possible to measure the phytoplankton concentration

ranging between 0.00m−1 and 0.739m−1 within an accuracy of ∼ 23% when the CDOM

concentration of ag(400)m
−1 is less than 3.402m−1.

The sampling sites where CDOM concentrations are low enough to confidently estimate

the phytoplankton concentrations are BLA, ARM, HEA, NAR and NIL which covers

approximately 15 km of the river and about half of the SCCP sampling Sites.
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Developing an approach for using the DALEC, a boat-mounted radiometer,

in the field while using concurrent water samples to truth the results.

The fieldwork component of the study required several developments in order to meet

this objective of taking continuous underway radiometric measurements and truthing

them with water samples. The transects along the river were presented following this

approach. Significantly, software was written for the DALEC for this specific application

(available on Github), inversion techniques were developed and field trials designed to

acquire local inputs for the optical models.

Developing quality control algorithms to filter out erroneous data, such as

sunglint effects, measurements taken with the incorrect viewing geometry,

and inversion results that could not converge to a solution.

The coherent noise model developed for optimising the optical model had the largest

influence on the ability of the model to converge to a solution. Without it, and in par-

ticular if the degrees of freedom were not restricted, HOPE was not able to converge to

a solution under high CDOM conditions.

The transect data were also quality controlled using both pre- and post-processing filters

develop- specifically for this study and application.

Validating the accuracy of the phytoplankton-retrieval scheme by comparing

remote sensing reflectance derived measurements of phytoplankton with in

situ water sampled laboratory measurements.

The results of the underway transect were compared to in situ measurements of aφ, ag

and bbp at the 10 SCCP sampling locations. These comparisons show that up to and

including NIL, the in situ measurements agree with the inverted IOP estimates. Up

stream from NIL, the model derived IOPs do not agree with the in situ measurements,

supporting the recommendations that a monitoring programme in the Swan River up to

NIL may benefit from the work presented in this thesis.
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8.1 Recommendations and Future Work

It was originally planned that the algae commonly found in the Swan River would be

grown in the laboratory in partnership with Murdoch University and those algae absorp-

tion spectra would be used as inputs into the optical model. It was also planned that he

scattering of those algae would be modelled using the methods presented in Chapter 3

and could be used to define SIOPs for specific phytoplankton found in the Swan River.

This was overly ambitious for the length and scope of this study and the question of

how this could be used to improve the results in this thesis remains unanswered. This

remains as the focus of future work of optical modelling in the Swan River and other

inland waterways.

The software tools developed for this project were designed to address specific needs.

There is a lot of scope for these tools to be developed, making them more generic and

adaptable to other environments. It is recommended that time be spent increasing the

scope of the software tools, and increasing their uses, making them more generic. In fact,

this is already happening due to the project software being open source, with a small

international group of users contributing to the development of the tools. As the tools

become more user-friendly and more useful to a greater audience, there will be greater

participation in their development.

It was posited in the original project plan that the different accessory pigments in the

phytoplankton absorption spectra could be used to help identify different classes of algae.

In particular, the pigment phycocyanin could be used to identify the toxic species of blue-

green algae. The Swan River is dominated by CDOM absorption and the relatively small

changes in reflectance due to these pigments are likely to be too small to use in classifica-

tion under such conditions. A small study done by Marrable et al. (2010) and presented

at Ocean Optics XX, 2010, Anchorage, USA, showed that it was possible to separate

and quantify blue-green algae from other species of algae in Hydrolight-simulated data.

Further work could include the clearer parts of the Swan River or in other Case 1 ocean

waters. Moreover, it is feasible with further refinements to the accuracy of the model,

a station with a sensor similar to the DALEC may be deployed at fixed stations along

the river, potentially providing a real-time data stream that could be used to monitor

for HABs.

For sections of the river where CDOM is low, and reasonable estimates of the phyto-
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plankton concentration can be made, the onboard GPU of the laptop used to run Dale-

cOnTransect, could be used to do real-time inversions of the model. A proof of concept

of this is shown in Marrable et al. (2009). The CUDA GPU libraries could be leveraged

to develop a real-time detection system. This would be particularly useful if a harmful

bloom is suspected and the DALEC could be used to quickly identify the location of the

bloom and respond appropriately. Health warnings could be issued much faster than the

current method of in situ sampling and cell counting allows, and risk control plans could

be executed immediately.

In this thesis, the coherent noise model was used to estimate the uncertainties of the

DALEC-derived aφ(440), ag(400) and bbp(550). Furthermore, The coherent noise model

provided a method that was less likely to converge to a non-global minimum. An example

of this is shown in Figure 6.55, where it can be seen that the solution of HOPE, for each

R̂rs converged in two different clusters. One at ∼0.25 and ∼0.85 for aφ(440) and bbp(550)

respectively and one at ∼1.5 and ∼0.12 for aφ(440) and bbp(550) respectively. The coher-

ent noise model weights the reported result close to the larger cluster corresponding to

lower IOP values. The corresponding uncertainty of the measurement is indicated by the

error ellipse. It can be seen in the figure that the error ellipse is skewed by the cluster of

higher values and the ellipse passes through the zero axis. Assuming that the cluster with

less data points represents a local minimum in the solution space, which we would like

to avoid, a method could be devised that ignores these points when calculating the error

ellipse. A clustering algorithm such as the k-means method could be used to identify

discrete clusters of solutions. Once identified, the cluster with the majority of points

could be considered as the global minimum and all other points excluded. The mean

value of the points could be reported as the DALEC-derived results and the error ellipse

defined over only these points. In the case shown in Figure 6.55 this would likely result

in an error ellipse defined over a much smaller range and would not pass through zero on

the x-axis. Therefore, uncertainty ranges would be less likely to report values of aφ(440),

ag(440) and bbp(550) that are less than zero, as is the case in real-world measurements.

Such a clustering method is left as future work and investigation.

As noted in Chapter 7 a potential source of error may well be due to the choice of model

hyper-parameters when using HOPE. In this study, the published values from Lee et al.

(1999) of g0, g1, g2, α0, α1, D0, D1, D
′
0 and D′

1 were used for the Swan River. These

values may not be the most suitable hyper-parameters for the river as the light environ-

ment is different to the originally designed application. Therefore, it is recommended
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that the hyper-parameters be recalculated, for a light environment more representative

of the Swan River, using the method outlined in Lee et al. (1999) and the impact of the

new site specific hyper-parameters be investigated. The mismatch between modelled and

measured results may be used to improve the model hyper-parameters (Baird et al., 2016).

It is also recommended that a further uncertainty analysis be conducted by measuring

site specific SIOPs along the Swan River at the monitoring sampling sites and analysing

the error contribution as a result of not separating anap and bnap from the other IOPs.

The particle scattering results in Chapter 3 showed that there were some differences

between Mie theory and the FDTD method. The most aspherical particle Selenastrum

capricornutum (Figure 3.14) showed the greatest difference in scattering between Mie

and FDTD and the FDTD predicted scattering agreed more closely with Volten et al.

(1998) than Mie. Because there is not a lot of documented data on the complex refrac-

tive index of phytoplankton, this study was limited to simulations of only 10 different

species. Furthermore, the scattering of 7 out of the 17 phytoplankton studied in Volten

et al. (1998) were unable to be simulated due to the phytoplankton cell size. The larger

cell radii meant that they could not fit in the available GPU memory. As the technology

of GPUs are advancing at a very fast rate, accelerated by the personal gaming industry,

hardware with much larger memory is likely to be available on the market soon. As

hardware with larger memory becomes available and data regarding the refractive index

of phytoplankton is published, the FDTD method could be used for further investigation

into the scattering of complex shaped hydrosols.

The environmental modeling work of Hipsey et al. (2016b), Hipsey et al. (2016a) and

Huang et al. (2017) could potentially incorporate more sophisticated optical modeling

than currently included, accounting more than CDOM absorption (Kostoglidis et al.,

2005).
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Appendix A

Dominant Phytoplankton Species by

Cell Count
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Figure A.1: From Hipsey et al. (2016b) Summary of the dominant phytoplankton species
by cell count, identified and quantified for each season and sampling site.
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Figure A.2: From Hipsey et al. (2016b) Summary of the dominant phytoplankton species
by cell count, identified and quantified for each season and sampling site.
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B.3 Planarradpy

Planarradpy was written in Python in order to batch run and batch process the outputs

from PlanarRad. The tool can be driven by parsing batch scripts or via the GUI. The

reports can also be visualised in the GUI. PlanarRad has a small community of users

that have made a number of meaningful contributions to the project. The community

page with instructions on how to download and use the tool can be found at https:

//marrabld.github.io/planarradpy/

Figure B.4: Community web for Planarradpy. The page includes instructions for use as
well as links to the source code hosted on github.
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B.4 Bootstrappy

The code for using the coherent noise model can be found at https://github.com/

marrabld/bootstrappy, and a Jupyter notebook with an example and instructions on

how to use the tools at http://goo.gl/Qht2zh

Figure B.5: Jupyter notebook with examples of how to use the coherent noise model of
uncertainty estimates.
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B.5 DALEC and Boat Mount

The DALEC in used in this thesis shows the instrument and boat–mount.

Figure B.6: DALEC mount.
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Appendix C

Coherent Noise Model

The method of using Planarrad to train the coherent noise model, when multiple field

measurements are unavailable, is described in the following section.

C.1 Training Stage

A range of reflectance spectra using different input values of phytoplankton, CDOM, par-

ticulate scattering and wind speed values were generated and all combinations of them

were batch run in PlanarRad with a fixed sun geometry of 0, 0 degrees azimuth, zenith,

respectively.
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