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Abstract

Single-marker genome-wide association studies (GWAS) have successfully detected associations between single 
nucleotide polymorphisms (SNPs) and agronomic traits such as flowering time and grain yield in barley. However, 
the analysis of individual SNPs can only account for a small proportion of genetic variation, and can only provide 
limited knowledge on gene network interactions. Gene-based GWAS approaches provide enormous opportunity both 
to combine genetic information and to examine interactions among genetic variants. Here, we revisited a previously 
published phenotypic and genotypic data set of 895 barley varieties grown in two years at four different field loca-
tions in Australia. We employed statistical models to examine gene–phenotype associations, as well as two-way epis-
tasis analyses to increase the capability to find novel genes that have significant roles in controlling flowering time 
in barley. Genetic associations were tested between flowering time and corresponding genotypes of 174 putative 
flowering time-related genes. Gene–phenotype association analysis detected 113 genes associated with flowering 
time in barley, demonstrating the unprecedented power of gene-based analysis. Subsequent two-way epistasis ana-
lysis revealed 19 pairs of gene×gene interactions involved in controlling flowering time. Our study demonstrates that 
gene-based association approaches can provide higher capacity for future crop improvement to increase crop per-
formance and adaptation to different environments.

Keywords:   Barley, epistasis, flowering time, gene-set association analysis, GWAS, heritability, phenology, next-generation 
sequencing, target enrichment, target capture.
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Introduction

Barley (Hordeum vulgare L.) is one the most important cereal 
crops in the world and is cultivated both in highly productive 
agricultural regions and in marginal environments prone to 
adverse conditions (Baum et  al., 2007). As a particularly re-
silient crop compared with other cereals such as wheat and 
rice, barley has the ability to adapt to biotic and abiotic stresses, 
holding a great deal of potential to increase production in mar-
ginal areas to sustain food security (Tester and Langridge, 2011). 
It is vital that barley flowers within a particular time window 
in a given environment to maximize yield, while minimizing 
exposure to frost, heat, and drought stress during the growing 
season (Maurer et al., 2015). It is also known that genes con-
trolling phenology including flowering time (FT) overlap with 
many grain yield-related genes (Hill et al., 2019a). Sharma et al. 
(2018) identified a total of 96 quantitative trait loci (QTLs) 
mapped for grain yield in a nested association mapping popu-
lation, the majority of which also co-localized with known 
genes controlling FT.

Harnessing the power of genomic tools to manipulate FT 
for barley improvement is of considerable importance to meet 
the food and feed demands of the future. Understanding the 
genetic basis of FT including the interactions between dif-
ferent FT genes has the potential to considerably enhance gen-
etic improvement and future barley breeding. Insights gained 
from model plants such as Arabidopsis thaliana made it possible 
to explore the function of gene orthologues and related path-
ways in barley, but not all genes and gene networks discovered 
in A. thaliana are conserved across the plant kingdom. For ex-
ample, monocot-specific genes and gene networks, including 
species-specific flowering gene networks in rice, have been re-
ported (Xue et al., 2008; Matsubara et al., 2011).

Rapid advancements in genome sequencing technologies 
including reduced representation sequencing approaches, com-
bined with high-throughput genotyping and the availability 
of a high-quality reference genome, now allow for an unpre-
cedented view into complex genetic architectures in barley 
(Waugh et  al., 2009; Huang et  al., 2011; Mayer et  al., 2012; 
Mascher et  al., 2017; Sharma et  al., 2018; Hill et  al., 2019a). 
Genome-wide association studies (GWAS) have emerged as 
powerful tools for identifying genetic variants associated with 
crop plant phenotypes (Pasam et al., 2012; Yano et al., 2016; Fang 
et al., 2017). Commonly used single-marker GWAS approaches 
test each single nucleotide polymorphism (SNP) individually 
for the association with a trait, which has delivered consider-
able insight into the genetic control of traits (Yang et al., 2014). 
However, only the most significant SNPs in the genome are 
taken into account with the single-marker approach, thus can 
often explain only a small proportion of the genetic variation. 
In fact, single SNP variants explained <10% of phenotypic 
variation for the majority of complex phenotypes (Manolio 
et al., 2009). Moreover, single SNP analyses consider only the 
effect of individual SNP and often examine additive models 
only, while most quantitative traits are polygenic and thus also 
determined by gene×gene interactions (epistasis).

Epistasis is known to play a crucial role in regulation of 
many complex traits in plants, animals, and humans (Doust 

et  al., 2014; Phillips, 2008). Different theoretical frameworks 
and statistical methodologies for epistasis analysis have been 
developed to improve the detection of genes responsible for 
complex human diseases (as reviewed in Wei et  al., 2014). 
However, models that take multiple SNP markers into account 
are still not widely adopted and have only recently been ap-
plied to plants, including crops, to identify novel candidate 
genes and gene networks controlling complex agronomic 
traits. For example, FT is a crucial yet complex trait of interest 
in barley and other agronomically important crops (Hill and 
Li, 2016); several studies have reported gene×gene interactions 
affecting FT in different plant species (Caicedo et  al., 2004; 
Durand et al., 2012; Maurer et al., 2015). Mathew et al. (2018) 
observed genomic regions with main or higher order epistatic 
effects overlapping with known candidate genes that were re-
ported previously in barley and closely related species for FT. 
In sorghum, it is known that Maturity locus 1 (Ma1) represses 
expression of the floral activator Early heading date 1 (Ehd1), 
which activates FT to produce florigen for floral induction 
(Rooney and Aydin, 1999). Li et al. (2018) revealed a signifi-
cant interaction between the QTL harbouring Ma1 and the 
QTL harbouring FT through epistasis analysis. The reported 
gene×gene interactions are consistent with the networking 
system proposed for the control of the timing of flowering 
(Blázquez, 2000; Valverde et al., 2004; Imaizumi and Kay, 2006).

To overcome these limitations, gene-set analysis (GSA) has 
emerged as a more powerful approach than single SNP ana-
lysis (Nam et al., 2010). GSA has several advantages. First, GSA 
can aggregate effects of many SNPs with weak associations. 
Although individual SNPs may show little or no effect, their 
interactions may have a non-linear effect if an unbiased analysis 
for interactions within combinations of SNPs is performed 
(Wang et  al., 2012; Mooney and Wilmot, 2015; Pers, 2016). 
Secondly, GSA takes allelic heterogeneity into consideration 
(i.e. different SNPs within a gene linking to a similar pheno-
type) which is usually not possible in the single SNP GWAS 
test (Zöllner and Pritchard, 2005; Guan and Stephens, 2011; 
Jiang et  al., 2018). Thirdly, GSA could capture local epistatic 
interactions between SNPs within a gene and therefore poten-
tially increase prediction accuracies (Zhang et al., 2014; Jiang 
et al., 2018). As FT is believed to be controlled by a complex 
interacting gene network probably influenced by the effects of 
sets of genes (Hill and Li, 2016, and reference therein), testing 
associations between a phenotype and the cumulative effect of 
genes may identify more functionally relevant candidate genes 
with higher accuracy than single SNP GWAS.

Here, we revisited previously published data sets: (i) pheno-
typic data of 895 barley varieties grown over two years in four 
different field locations with varying seasonal temperature and 
rainfall conditions in Western Australia’s South West; and (ii) 
genotypic data obtained from the targeted resequencing of 174 
putative phenology-related genes and gene orthologues (Hill 
et al., 2019a, b). Building on the previous study, here we aimed 
to achieve higher statistical power to detect significant genes and 
gene networks that influence FT in barley by expanding single 
SNP GWAS analysis to gene-based analysis and epistasis analysis. 
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By taking only SNPs detected within gene-coding regions of 
putative FT-related genes into account, we first re-calculated the 
narrow-sense SNP-based heritability of awn emergence as an 
equivalent to FT (Alqudah and Schnurbusch, 2017). We then 
re-assessed the association of individual SNPs and FT by stand-
ardizing and averaging FT across multiple locations and experi-
mental years. We further grouped SNPs from the same genes 
into distinct gene sets and tested the association of each gene 
set with FT. Finally, we identified interacting SNP pairs using a 
two-way epistasis analysis and determined an expanded and im-
proved gene interaction network which regulates FT in barley.

Materials and methods

Plant material, phenotypic data, and genes enriched in SNPs
Plant material, phenotypic data, and phenology gene-enriched genetic 
variants were previously reported in detail in Hill et al. (2019a, b). Briefly, 
952 barley accessions from 41 countries in Europe, Asia, North and 
South America, Africa, and Australia were initially selected to represent 
the global diversity for phenology genes in barley. These accessions repre-
sent the entire spectrum of cultivated barley, including two- and six-row 
genotypes, and winter and spring growth habits. These accessions were 
grown in 2015 and 2016 at four locations in Western Australia which 
significantly differ in rainfall and temperature during the growing season. 
Awn emergence, defined as the number of days from sowing to the first 
awn emergence above the flag leaf (Z49) (Zadoks et al., 1974), was re-
corded as an equivalent to FT (Alqudah and Schnurbusch, 2017). A total 
of 2758 SNPs were enriched from 174 putative genes that are related to 
phenology and the development of meristem and inflorescences. Full de-
tails of field experiments, targeted resequencing of phenology genes, and 
SNP discovery and filtering were provided in Hill et al. (2019a, b).

Data preparation
The original measurement of days to Z49 for each accession was trans-
formed to standardized FT (FTD) separately for each growing environ-
ment and year using the formula:

FTD =
Days to Z49accession −Min (Days to Z49)site

Max (Days to Z49)site −Min (Days to Z49)site
.

�

(1)

We then averaged FTD across four locations and two years for each barley 
variety to minimize the random effect, while not shrinking the genetic 
effects (Piepho et al., 2008).

Barley accessions or SNP loci with >10% missing data were excluded 
from analysis. For the remaining missing SNP data in the data set, we 
inspected each missing datum individually and replaced the missing data 
manually with the most likely allelic combinations with consideration of 
linkage equilibrium and allelic state of the individual in other SNP loci. 
After the filtering, 895 barley accessions and 2758 SNPs remained for 
heritability estimation and GWAS analysis.

Estimation of narrow-sense SNP-based heritability
A genome-based restricted maximum likelihood method (GREML-
LDMS) was used to estimate the heritability of FT using all filtered SNPs. 
GREML-LDMS corrects linkage disequilibrium biases in the estimated 
SNP-based heritability (Yang et al., 2015). To calculate narrow-sense her-
itability from SNP data, h2

SNP, we first computed linkage disequilibrium 
(LD) scores between SNPs with the block size of 100 kb using the com-
puter software package GCTA (Yang et al., 2011). We used the GREML (a 
function within GCTA) to estimate the proportion of variance in a pheno-
type explained by all SNPs (i.e. the SNP-based heritability), following an 
LD score regression approach as detailed in Yang et al. (2015). h2

SNP was 
estimated both with and without additional data descriptors (growth habit, 
row type, and origin of the barley accessions) fitted as fixed effects.

Genome-wide association analysis
We used a linear mixed model (LMM) for GWAS analysis as imple-
mented in the Factored Spectrally Transformed Linear Mixed Models 
(FaST-LMM) package to perform single SNP, gene-set GWAS, and epis-
tasis analysis (Lippert et al., 2011; Listgarten et al., 2012; Widmer et al., 
2014). GWAS are often confounded by population substructure and 
sample relatedness. LMMs are a powerful and established tool for studying 
genotype–phenotype relationships. LMMs can capture confounders (e.g. 
population substructure and family relatedness) of GWAS simultaneously, 
without requiring prior knowledge of whether the confounders are pre-
sent or not (Lippert et al., 2011). Its computational efficiency also makes 
it feasible for an exhaustive search for gene×gene interactions (Lippert 
et al., 2013; Widmer et al., 2014).

For GWAS analysis, we calculated the first five principal eigenvectors 
from principal components analysis (PCA) using GCTA (Yang et  al., 
2011) and subsequently included them as covariates in the model as fixed 
effects for association analysis. GWAS analysis was conducted using the 
Python-based program FaST-LMM (Listgarten et al., 2012) following the 
developers’ instructions (available from http://microsoftgenomics.github.
io/FaST-LMM/). Genetic data were formatted into the binary Plink ped 
input file format (*.bed, *.bim, and *.fam) using Plink 2.0 (Chang et al., 
2015). For single SNP association analysis, we used the average FTD (see 
Equation 1) of each filtered barley accession as the phenotypic data, all 
filtered SNPs as genetic data, and the first five principal eigenvectors from 
the PCA as the covariate. For GSA, we first grouped the SNPs into 174 
gene sets with each set of SNPs corresponding to one gene (each gene 
set had an average of 18 SNPs ranging from 1 to 167). The algorithm as 
employed in FaST-LMM uses two random effects—one to capture the 
confounder’s effect and the other to reflect the set association signal—to 
correct for confounder, and uncovers signal not recoverable by single-SNP 
GWAS analysis (Listgarten et al., 2013). For epistasis testing, one SNP (the 
first polymorphic SNP locus) was taken from each gene, as such a filtering 
approach significantly reduces the required statistical power for multiple 
testing. The GWAS analysis was then used to test whether pairs of SNPs 
taken together explain a higher proportion of variance than the sum of the 
individual effects of each SNP analysed separately (Widmer et al., 2014).

Because the SNPs were enriched from putative genes that were reported 
to be associated with FT in barley, A. thaliana, and other cereal crops, we 
adopted a less stringent threshold than Bonferroni correction to define the 
significance in GWAS. We instead used the Holm’s sequential Bonferroni 
correction (Holm, 1979) with a significance threshold at P<0.05 to deter-
mine significant SNPs, gene sets, and SNP pairs with epistatic interaction. 
Sequential Bonferroni correction is an adjusted Bonferroni correction de-
pending on rank to maximize the statistical power in GWAS whilst being 
stringent. ANOVA was implemented using SPSS (Statistical Package for 
the Social Sciences, SPSS Inc., Chicago, Il, USA) software, and P<0.05 was 
used as the statistically significant threshold.

Regulatory connections between flowering genes
Interacting network of flowering genes was constructed using STRING, 
a database of known and predicted gene–gene (protein–protein) inter-
actions (Szklarczyk et  al., 2017). In STRING, each protein–protein 
interaction is assigned a score, as an indicator of confidence of a true 
interaction. A score of 0.7 was used to assign high confidence when re-
taining the interaction. Connections between the networks of each key 
gene were achieved by connecting the overlapping genes and epistatic 
interactions as revealed in the epistatic analysis.

Results

Flowering time and environmental influence

All 895 barley accessions were grown across multienvironment 
field trials, conducted over four geographical locations and two 
years in Western Australia. Significant phenotypic differences 
of agronomic and phenological traits measured were present 
for the set of barley genotypes grown in the field at different  
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Table 1.  Locations and experimental years, major climatic factors, and flowering time mean (days to Z49)

Location  
(year)

Tmin–Tmax  
(°C)

Tmean  
(°C)

Rainfall  
(mm)

Global solar radiation  
(MJ m−2)

Growth period  
(d)

Days to Z49 median 
(range)

Geraldton (2015) 2–40 17.3 189.8 18.03 182 72 (46–89)
Geraldton (2016) 3–41 15.1 355.4 17.50 210 80 (44–91)
Katanning (2015) 4–36 14.0 550.0 14.63 208 105 (69–132) 
Katanning (2016) -3–38 12.9 256.2 16.87 244 105 (75–131)
Esperance (2015) 1–41 14.7 318.2 12.35 203 104 (60–136)
Esperance (2016) 3–37 13.6 343.6 12.86 201 110 (72–146)
Merredin (2016) -1–37 14.1 181.4 16.39 191 111 (80–131)

Tmin/Tmax/Tmean: minimum/maximum/mean temperature during the growing season. Environmental data were taken over 200 d since the sowing date 
during the growth period for comparisons. Modified from Hill et al. (2019a)

Fig. 1.  Mean temperature influencing flowering time (days to Z49) in barley 
in seven experimental environmental sets across four locations in two 
years. r and p represent correlation coefficient and probability, respectively, 
assuming a linear relationship between flowering and temperature. 
Whiskers are standard deviations.

geographical locations in WA in the 2015 and 2016 growing 
seasons (Table 1; with more details in Hill et  al., 2019a). 
Average time to flowering for the 895 accessions ranged from 
65 d to 85 d, with median time from 72 d to 111 d, after 
sowing across the trial environments. The range in FTs for all 
accessions evaluated varied from 42–94 d to 63–136 d across 
the environments. Geraldton in the North of WA is charac-
terized by a hot and dry environment with a short growing 
season, with the lowest median number of days to Z49 re-
corded for any environment (72 d), with a range of 46–89 d 
recorded in 2015. The trial environments at Esperance (ESP) 
in Southern WA have a longer, wetter, and cooler growing 
season, and thus recorded the longest maximum days to Z49 
(146 d) in 2016.

The average range to Z49 between the earliest and the latest 
flowering types was 59 d, showing the considerable genetic 
difference in controlling the switch from vegetative growth 
to reproduction among the tested barley accessions. Variation 
of FT within barley accessions in different environments is 
strongly influenced by average temperature during the growth 
period. Growing season average temperature explained 62.9% 
(P=0.0001) of variance in FT across environments of four lo-
cations and two years (Fig. 1), while minimum/maximum tem-
perature, global solar radiation, and rainfall during the growth 
period had no significant influence on FT (P>0.05). The trial 
environments received an optimum rainfall throughout the 
two growing seasons at all four locations.

Barley accessions with contrasting growth habit (spring 
or winter type) had similar standardized days to Z49 
(FTD), as did the barley accessions with different row 
type (P>0.05). However, average FTD of barley accessions 
with different origin was significantly different (ANOVA 
P<0.0001) (Fig. 2). Barley accessions with different origin 
also had unequal variances in FTD (ANOVA, F=9.117, 
df=44.2, P<0.0001).

Gene-set GWAS analysis of flowering time

After filtering (<10% missingness) and pruning to only SNPs 
located within gene-coding regions of the 174 targeted phen-
ology genes, 895 barley accessions and 2758 SNP markers were 
retained. Genetic variation of the 2758 SNPs across the barley 
accessions were not structured by row type, nor by growth 

habit, nor by geographic origin, confirming previous findings 
(Hill et  al., 2019a, b). Narrow-sense heritability as estimated 
from all SNP (h2

SNP) was estimated at 0.395±0.048. Specifying 
the origin of each barley line in the analysis as a fixed effect 
increased h2

SNP to 0.503±0.056, while including growth habit 
or row type as fixed effects did not improve the estimation of 
heritability. Average temperature, as one of the most significant 
environmental factors, explained 3.8% of the variance in FTD 
between barley accessions which was a small yet significant 
(P<0.001) amount.

Using the sequential Bonferroni correction and significance 
threshold of P<0.05, GWAS analysis was performed using 
FaST-LMM (Listgarten et al., 2012), and 170 SNP loci were 
found to be associated with FTD across all environments (see 
the Materials and methods). Systematic biases in GWAS were 
low, indicated by a λ GC, the genomic inflation factor, close to 
1.1 (Winkler et al., 2014) (Supplementary Fig. S1 at JXB on-
line). These SNPs were located within the gene-coding regions 
of 32 genes on six chromosomes, with no significant SNPs 
detected on chromosomes 4H (Fig. 3). The subsequent GSA 
revealed 113 gene sets, corresponding to 113 putative genes, 
among the 174 genes that were previously shown as flowering-
related genes in cereal crop species or in A. thaliana (Hill et al., 
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2019a, b), associated with FTD in the barley accessions. Those 
significant genes are located on all seven chromosomes (Fig. 
4) and from all flowering pathways (Table 2): photoperiod and 
circadian clock (34 genes), meristem response and develop-
ment (27 genes), gibberellin signalling and metabolism (19 
genes), grain development (15 genes), vernalization regula-
tion (14 genes), and light perception and signalling (10 genes). 
Among the 170 significant SNPs as detected in single SNP 
GWAS, 167 SNPs and the 29 corresponding genes they belong 
to were also detected as part of gene sets to be significantly as-
sociated with FTD (Table 2).

Epistatic effects of genes associated with 
flowering time

Two-way (interaction of two SNPs) epistasis analysis revealed 
19 pairs of SNPs (sequential Bonferroni corrected P<0.05), 
among the overall 30 276 pairs between each of the phenology 
genes studied here, interacting to influence FT. Depending on 
the combination of SNPs in their allelic state, 12 pairs sig-
nificantly promoted earlier flowering (–8 d), and seven pairs 
were linked with later flowering (+10 d) when compared with 
average FT (Table 3). A homozygote at an alternative state (‘GG’ 
versus ‘TT’ in the reference genome) in HvELF7 (an RNA 
polymerase II-associated factor 1 homologue gene) interacted 

winter (63)
spring (743)

six-row (80)

two-row (810)

Africa (20)

Asia (30)

Australia (293)

Europe (153)
Middle East (5)

North America (201)

South America (39)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Growth habit

Row type

Origin*

Standardised days to Z49

Fig. 2.  Phenology of barley accessions with contrasting growth habits, row types, and geographic origin of accessions. Asterisk indicates significant 
difference in ANOVA. Numbers in parentheses indicate the number of samples, and only the samples positively identified were included.

Fig. 3.  Manhattan plot of single SNP GWAS showing significant SNPs 
that are associated with flowering time in barley accessions. Significant 
SNPs are shown with larger symbols above the red dashed line as 
the significance threshold. Significance was determined by sequential 
Bonferroni correction at P<0.05.

Fig. 4.  Manhattan plot of gene-set GWAS showing significant genes that 
are associated with phenology in the barley accessions. Significant genes 
are shown above the red dashed line as the significance threshold as 
determined by sequential Bonferroni correction at P<0.05.
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Table 2.  Genes, their annotation, and associated flowering pathways in barley, as revealed to be significantly associated with flowering 
time through gene-set analysis 

Putative  
gene name

Annotation  
(Hv_IBSC_PGSB_r1_HighConf)

Gene ID  
(Hv_IBSC_PGSB_r1 _HighConf)

Flowering pathway

HvADA2 Transcriptional adapter 2 HORVU5Hr1G095400 Vernalization
HvAGL1 MADS-box transcription factor TaAGL1 HORVU6Hr1G002330 Vernalization and autonomous pathways
HvAGL32 MADS-box transcription factor 31 HORVU2Hr1G098930 Meristem response and development
HvAGLG1 MADS-box transcription factor 34 HORVU5Hr1G095710 Meristem response and development
HvAP2 AP2-like ethylene-responsive transcription factor HORVU2Hr1G113880 Meristem response and development
HvARF2 auxin response factor 2 HORVU3Hr1G096510 Grain size and reproductive development
HvBB E3 ubiquitin ligase BIG BROTHER HORVU4Hr1G055690 Grain development
HvBM1 MADS-box transcription factor 47 HORVU4Hr1G077850 Meristem response and development
HvBM16 MADS-box transcription factor 16 HORVU7Hr1G091210 Meristem response and development
HvBM3 MADS-box transcription factor 18 HORVU0Hr1G003020 Meristem response and development
HvBM5 (HvVRN-H1) MADS-box transcription factor 14 HORVU5Hr1G095630 Vernalization 
HvBM8 MADS-box transcription factor 15 HORVU2Hr1G063800 Meristem response and development
HvBM9 MADS-box transcription factor 7 HORVU7Hr1G054220 Meristem response and development
HvCBF10A ethylene-responsive element binding factor 13 HORVU5Hr1G080430 Vernalization
HvCBF14 Ethylene-responsive element binding factor 14 HORVU5Hr1G080350 Vernalization
HvCBF2A Dehydration-responsive element-binding protein 1B HORVU5Hr1G080310 Vernalization
HvCBF3 C-repeat-binding factor 4 HORVU5Hr1G080420 Vernalization
HvCBF4A Dehydration-responsive element-binding protein 1B HORVU5Hr1G080300 Vernalization
HvCBF6 C-repeat-binding factor 4 HORVU5Hr1G080450 Vernalization
HvCBF8A C-repeat binding factor 3-like protein HORVU2Hr1G041090 Vernalization
HvCBF9 Dehydration-responsive element-binding protein 1B HORVU5Hr1G080230 Vernalization
HvCCA1 circadian clock-associated 1 HORVU7Hr1G070870 Photoperiod and circadian clock
HvCDF1 DOF zinc finger protein 1 HORVU2Hr1G017290 Photoperiod and circadian clock
HvCEN Protein TERMINAL FLOWER 1 HORVU2Hr1G072750 Meristem response and development
HvCIGARP GRAS family transcription factor HORVU2Hr1G043780 Gibberellin signalling and metabolism
HvCIGARP-2 SCARECROW-like 1 HORVU3Hr1G091250 Gibberellin signalling and metabolism
HvCK2B casein kinase II beta subunit 4 HORVU1Hr1G055250 Photoperiod and circadian clock
HvCKX Cytokinin dehydrogenase 2 HORVU3Hr1G027460 Grain development
HvCMF4 CCT motif family protein HORVU4Hr1G084020 Photoperiod and circadian clock
HvCMF6b Zinc finger protein CONSTANS-LIKE 4 HORVU1Hr1G095410 Photoperiod and circadian clock
HvCO11 Zinc finger protein CONSTANS-LIKE 16 HORVU6Hr1G073170 Photoperiod and circadian clock
HvCO2 receptor kinase 3 HORVU6Hr1G072620 Photoperiod and circadian clock
HvCO8 CONSTANS-like 5 HORVU7Hr1G027560 Photoperiod and circadian clock
HvCOP1 Erect panicle 2 protein HORVU2Hr1G031030 Grain development
HvCry1a cryptochrome 1 HORVU6Hr1G049950 Light perception and signalling
HvCry2 cryptochrome 2 HORVU6Hr1G058740 Light perception and signalling
HvCYP1 Cytochrome P450 superfamily protein HORVU2Hr1G081650 Grain development
HvDRF1 Ethylene-responsive transcription factor 4 HORVU1Hr1G060490 Meristem response and development
HvDRF2 Ethylene-responsive transcription factor 4 HORVU6Hr1G050500 Meristem response and development
HvEFS Histone-lysine N-methyltransferase 2A HORVU2Hr1G000940 Photoperiod and circadian clock
HvELF3 Early flowering 3 HORVU1Hr1G094980 Photoperiod and circadian clock
HvELF4-like4 ELF4-like 4 HORVU5Hr1G060000 Photoperiod and circadian clock
HvELF7 RNA polymerase II-associated factor 1 homolog HORVU3Hr1G001430 Photoperiod and circadian clock
HvFCA FCA-A1 HORVU5Hr1G050820 Photoperiod and circadian clock
HvFD Lysine-specific histone demethylase 1 homolog 3 HORVU2Hr1G096300 Meristem response and development
HvFT1 FLOWERING LOCUS T 1 HORVU7Hr1G024610 Photoperiod and circadian clock
HvFT2 Protein FLOWERING LOCUS T HORVU3Hr1G027590 Photoperiod and circadian clock
HvFT3 Protein FLOWERING LOCUS T HORVU1Hr1G076420 Photoperiod and circadian clock
HvFT5 Protein FLOWERING LOCUS T HORVU4Hr1G090390 Photoperiod and circadian clock
HvFTL5 Protein FLOWERING LOCUS T HORVU2Hr1G084540 Photoperiod and circadian clock
HvGA20ox1 gibberellin 20 oxidase 1 HORVU5Hr1G124120 Gibberellin signalling and metabolism
HvGA20ox2 gibberellin 20-oxidase 2 HORVU3Hr1G090980 Gibberellin signalling and metabolism
HvGA20ox2-2 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein
HORVU1Hr1G070710 Gibberellin signalling and metabolism

HvGA20ox2-2 1-aminocyclopropane-1-carboxylate oxidase 1 HORVU2Hr1G114980 Gibberellin signalling and metabolism
HvGA20ox2-3 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein
HORVU4Hr1G013840 Gibberellin signalling and metabolism

HvGA20ox3 gibberellin 20 oxidase 2 HORVU3Hr1G089980 Gibberellin signalling and metabolism
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Putative  
gene name

Annotation  
(Hv_IBSC_PGSB_r1_HighConf)

Gene ID  
(Hv_IBSC_PGSB_r1 _HighConf)

Flowering pathway

HvGA2betadiox7 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein

HORVU3Hr1G117870 Gibberellin signalling and metabolism

HvGA3ox1 gibberellin 3-oxidase 1 HORVU2Hr1G118350 Gibberellin signalling and metabolism
HvGA3ox2 gibberellin 3-oxidase 2 HORVU3Hr1G022840 Gibberellin signalling and metabolism
HvGARMP Scarecrow-like transcription factor PAT1 HORVU4Hr1G071670 Gibberellin signalling and metabolism
HvGID1 Gibberellin receptor GID1 HORVU1Hr1G060810 Gibberellin signalling and metabolism
HvGID1L2-3 alpha/beta-Hydrolases superfamily protein HORVU5Hr1G068140 Gibberellin signalling and metabolism
HvGID1L2-4 alpha/beta-Hydrolases superfamily protein HORVU5Hr1G069040 Gibberellin signalling and metabolism
HvGID1L2-5 alpha/beta-Hydrolases superfamily protein HORVU5Hr1G098770 Gibberellin signalling and metabolism
HvGID1L2-8 Acetylesterase HORVU4Hr1G015550 Gibberellin signalling and metabolism
HvGRP7a Histone-lysine N-methyltransferase HORVU4Hr1G003060 Photoperiod and circadian clock
HvGW7 unknown function HORVU2Hr1G032710 Grain development
HvHYL alpha/beta-Hydrolases superfamily protein HORVU0Hr1G004410 Gibberellin signalling and metabolism
HvLFY1 Floricaula/leafy homolog HORVU2Hr1G102590 Meristem response and development
HvLNG1 unknown function HORVU2Hr1G063820 Grain development
HvLUX1 Two-component response regulator ARR1 HORVU3Hr1G114970 Circadian clock
HvMADS25-2 MADS-box transcription factor 25 HORVU7Hr1G023940 Meristem response and development
HvMADS25-3 MADS-box transcription factor 25 HORVU7Hr1G024000 Meristem response and development
HvMADS26 MADS-box transcription factor 26 HORVU7Hr1G076310 Meristem response and development
HvMADS68 MADS-box transcription factor family protein HORVU4Hr1G032440 Meristem response and development
HvMADS75 MADS-box transcription factor family protein HORVU5Hr1G110470 Meristem response and development
HvNAT Acyl-CoA N-acyltransferases (NAT) superfamily 

protein
HORVU7Hr1G113480 Grain development

HvNHL NHL domain-containing protein HORVU6Hr1G045970 Grain development
HvPAF Phytochrome A-associated F-box protein HORVU1Hr1G058630 Light perception and signalling
HvPFT1 Mediator of RNA polymerase II transcription subunit 

25
HORVU5Hr1G054650 Light perception and signalling

HvPhyA phytochrome A HORVU4Hr1G008610 Light perception and signalling
HvPhyB phytochrome B HORVU4Hr1G053400 Light perception and signalling
HvPhyC phytochrome C HORVU5Hr1G095530 Light perception and signalling
HvPI MADS-box transcription factor 4 HORVU1Hr1G063620 Meristem response and development
HvPI-2 MADS-box transcription factor 2 HORVU3Hr1G091000 Meristem response and development
HvPIF4 Transcription factor EB HORVU5Hr1G011780 Light perception and signalling
HvPPD-H1 pseudo-response regulator 7 HORVU2Hr1G013400 Photoperiod and circadian clock
HvPRR59 Two-component response regulator-like APRR5 HORVU4Hr1G021010 Photoperiod and circadian clock
HvPRR73 pseudo-response regulator 7 HORVU4Hr1G057550 Photoperiod and circadian clock
HvPRR95 Two-component response regulator-like PRR95 HORVU5Hr1G081620 Photoperiod and circadian clock
HvRLPK Leucine-rich receptor-like protein kinase family 

protein
HORVU4Hr1G079040 Grain development

HvRNG Protein SIP5 HORVU6Hr1G044080 Grain development
HvSCPL33 Carboxypeptidase Y homolog A HORVU3Hr1G033550 Grain development
HvSHP1 MADS-box transcription factor 13 HORVU1Hr1G023620 Meristem response and development
HvSP1 Protein NRT1/ PTR FAMILY 4.3 HORVU4Hr1G015640 Grain development
HvSPL11 squamosa promoter binding protein-like 2 HORVU6Hr1G031450 Photoperiod and circadian clock
HvSPL12 squamosa promoter-binding-like protein 3 HORVU6Hr1G019700 Photoperiod and circadian clock
HvSPL14 squamosa promoter-binding-like protein 17 HORVU0Hr1G020810 Photoperiod and circadian clock
HvSPL3 squamosa promoter binding protein-like 8 HORVU6Hr1G030490 Meristem response and development
HvSS1 strictosidine synthase-like 3 HORVU5Hr1G091230 Grain development
HvSTK MADS-box transcription factor 21 HORVU1Hr1G064150 Meristem response and development
HvTEM1 AP2/B3 transcription factor family protein HORVU3Hr1G010100 Photoperiod and circadian clock
HvTFL1 Protein TERMINAL FLOWER 1 HORVU5Hr1G042230 Meristem response and development
HvTOC1 Two-component response regulator-like PRR1 HORVU6Hr1G057630 Photoperiod and circadian clock
HvTT16 MADS-box transcription factor 29 HORVU6Hr1G032220 Meristem response and development
HvTUBA3 tubulin alpha-4 chain HORVU4Hr1G009520 Meristem response and development
HvVEL1 Protein VERNALIZATION INSENSITIVE 3 HORVU6Hr1G022770 Vernalization
HvVIN3 Protein VERNALIZATION INSENSITIVE 3 HORVU7Hr1G099250 Vernalization
HvWPSRLK Mitochondrial transcription termination factor family 

protein
HORVU2Hr1G061060 Grain development

Table 2.  Continued
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with six other SNPs promoting earlier flowering, while the 
HvGA2ox3 (a gibberellin 2-oxidase gene) homozygote at an 
alternative state (‘AA’ versus ‘GG’ in the reference genome) 
interacts with other genes to delay flowering in barley (Fig. 5). 
For example, cultivar ‘UWA2Rsel9506’ which has genotype 
‘GG’ in HvELF7 tends to flower earlier when HvCO1 (a zinc 
finger protein CONSTANS-LIKE gene) has genotype ‘GG’ 
across all experimental locations. Seven accessions (‘07T741’, 
‘B559’, ‘B751’, ‘Han 85-222’, ‘I92-562’, ‘ICB104039’, and ‘Lao 
Wu Hu Xu Mai’) with HvGA2ox having genotype ‘AA’ and 
HvCKX (a cytokinin dehydrogenase gene) having genotype 
‘GG’ usually flower later across our trials. When homozygous in 
an alternative state (‘GG’ versus ‘CC’ in the reference genome), 
HvPhyB (a phytochrome B gene) interacts with two other 
genes (HvNHL, an NHL domain-containing protein gene, 
and HvTOC, a two-component response regulator-like PRR1 
gene) to promote early flowering, while when in the hetero-
zygous state, this gene interacts with other genes (HvSPL3, 
a squamosa promoter-binding protein-like gene) to promote 
late flowering. Eight out of the 13 genes revealed to have epi-
static interactions were also significant in the SNP-set GWAS 
analysis, while the remaining five were defined as insignificant 
both in the single SNP and gene-set GWAS analyses (Table 2).

Gene interaction network in regulation of flowering time

Using key genes involved in flowering regulation in barley as 
recorded in the comprehensive protein–protein interaction 
database ‘STRING’ and also including additional candidate 
genes as revealed in our gene–gene interactions (epistatic inter-
action) analysis, we constructed a complex gene regulatory 
network (Fig. 5). The network involved 18 genes that were 
identified as significant in the above gene-based associated ana-
lysis. These genes are known to have roles in light signalling 
(e.g. HvPhyC), photoperiod response (HvPpD-H1), circadian 
clock (HvELF3), and development of the inflorescence meri-
stem (HvCEN). Twenty-one genes were uncharacterized in 
the Hordeum vulgare genome assembly 082214v1.

Discussion

We have previously identified 429 functional alleles within 
the coding regions of 95 genes associated with FT in barley 
using single-marker GWAS (Hill et al., 2019a). In this study, by 
expanding to GSA and epistasis analysis, we achieved higher 
statistical power, and with potentially high accuracy, to de-
tect significant genes and gene networks that influence FT in 
barley. We have identified 121 genes that have been associated 
with FT in barley, including 26 that have not been described 
in barley in previous research. All 121 genes have been previ-
ously described in dicot A. thaliana, and monocot cereal crops 
(e.g. rice, maize, and sorghum), indicating that many of the 
flowering genes are conserved across angiosperms including 
dicots and monocots (Blümel et al., 2015). FT genes involved 
in the photoperiod, vernalization, circadian clock, and gibber-
ellin biosynthesis pathways were previously studied in barley 
(Turner et  al., 2005; Wang et  al., 2010; Maurer et  al., 2015; 
Mathew et  al., 2018). Our GSA detected essential genes in-
volved in the key flowering pathways and confirmed that these 
genes were indeed controlling the FT in the barley accessions 
with a broad geographic origin. We note that our SNPs have 
been enriched from putative flowering genes; it is highly likely 
that there are additional genes, and gene interactions between 
flowering genes and other genes that may not directly be in-
volved in flowering, influencing flowering in barley. Further 
research into the genetic mechanism of flowering in barley 
should expand to include genome-wide genetic variants.

Our gene-set association analysis detected key photoperiod 
response genes controlling FT. The photoperiod response 
gene Photoperiod 1 (Ppd-H1), located at chromosome 2H, is 
a pseudoresponse regulator gene. This gene has previously 
been identified as one essential gene for providing adaptation 
to photoperiod in barley by flowering induction under long 
days (Turner et al., 2005). It is known that the Ppd-H1 dom-
inant allele induces early flowering in wild and winter barley 
varieties, while recessive ppd-H1 delays flowering in spring 
barleys (Turner et  al., 2005; Jones et  al., 2008). The second 

Table 2.  Continued

Putative  
gene name

Annotation  
(Hv_IBSC_PGSB_r1_HighConf)

Gene ID  
(Hv_IBSC_PGSB_r1 _HighConf)

Flowering pathway

HvWRKY61 WRKY DNA-binding protein 3 HORVU5Hr1G028340 Grain development
HvZCCTc Zinc finger protein CONSTANS-LIKE 4 HORVU1Hr1G056120 Vernalization
HvZTLa Kelch repeat-containing F-box family protein HORVU7Hr1G099010 Photoperiod and circadian clock
HvZTLb Adagio-like protein 1 HORVU6Hr1G022330 Photoperiod and circadian clock
aHvAG1 MADS-box transcription factor 3 HORVU3Hr1G026650 Meristem response and development
aHvCK2A Protein kinase superfamily protein HORVU0Hr1G030500 Photoperiod and circadian clock
aHvPAP2 Auxin-responsive protein IAA17 HORVU3Hr1G031460 Light perception and signalling
bHvBM7 MADS-box transcription factor 1 HORVU4Hr1G067680 Meristem response and development
bHvCO1 B-Box-type zinc finger transcription factor HORVU7Hr1G043030 Photoperiod and circadian clock
bHvCry1b cryptochrome 1 HORVU2Hr1G079220 Light perception and signalling
bHvEDL2 EID1-like F-box protein 2 HORVU2Hr1G034270 Photoperiod and circadian clock
bHvGA2ox3 gibberellin 2-oxidase HORVU3Hr1G072810 Gibberellin signalling and metabolism

Significance was determined by sequential Bonferroni correction (P<0.05). The detailed list with chromosome position is in table S1 in Hill et al. (2019a). 
Annotation and Gene ID follows Hv_IBSC_PGSB_r1_HighConf.
a Significant only in single SNP GWAS analysis.
b Significant only in epistasis analysis.
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photoperiod gene Ppd-H2, also known as HvFT3 in barley, 
located on chromosome 1H, was shown to regulate FT under 
short days (Börner et al., 2002; Wang et al., 2010). GSA identi-
fied HvCEN as a significant flowering gene, corroborating the 
report from Comadran et al. (2012). TFL1, the homologue of 
HvCEN, is a key regulator of FT by controlling the develop-
ment of the inflorescence meristem in A. thaliana (Hanano and 
Goto, 2011). HvCEN and associated QTLs were also reported 
to be associated with components of grain yield traits in barley 
(Comadran et al., 2012; Pasam and Sharma, 2014; Sharma et al., 
2018). Saade et al. (2016) reported that the HvCEN locus pro-
moted early FT, and resulted in higher grain yield, under salt 
stress conditions.

Among the three light receptor phytochrome genes—
HvPhyA, HvPhyB, and HvPhyC—identified as associated with 
FT in our GSA, HvPhyC has previously been reported as an 
essential component in photoperiodic flowering in barley 
(Faure et  al., 2012; Nishida et  al., 2013; Pankin et  al., 2014; 
Hill et  al., 2019a). As phytochromes are involved in plants’ 
ability to intercept and translate light signals, they play a cru-
cial role in modulating and regulating growth and develop-
ment (Mathews, 2010). The HvPHYC gene was reported to 
interact with several other photoperiod response genes under 
different photoperiods (Pankin et al., 2014). Meanwhile, ex-
isting evidence suggests that variation at the HvPHYC locus 
has no pleiotropic effects on important agronomic traits and 
starch pasting properties (Nishida et  al., 2013; Pankin et  al., 
2014). As such, Ibrahim et al. (2018) suggested that HvPHYC 
can be used effectively in barley breeding programmes to ma-
nipulate FT for yield improvement for varieties in stressful 
growing conditions.

Circadian clock-controlled mechanisms enable plants to 
measure changes of photoperiod as a cue for seasonal changes 
in their environment and therefore control developmental tran-
sitions, such as from vegetative growth to initiating flowering 
(Shim et al., 2017). Previous reports identified HvELF3 as one 
of the key genes affecting the circadian clock (Faure et  al., 
2012; Zakhrabekova et  al., 2012), which was also confirmed 
in this study. The HvELF3 locus regulates flowering under the 
influence of photoperiod (Boden et al., 2014). In A. thaliana, it 
is known that ELF3, LUX, and ELF4 form a protein complex, 
termed the evening complex (EC). This complex represses the 
expression of PRR9 and LUX (two core circadian components 
in A. thaliana) through binding to LUX-binding sites (reviewed 
in Shim et  al., 2017). Huang et  al. (2016) recently reported 
that the PhyB–ELF3 complex forms one of the signalling hubs 
that connects red light signalling with the circadian clock. It 
is not clear whether the circadian clock-controlled mechan-
isms involving ELF3, ELF4, LUX, PRR9, and PhyB operate 
in the same way in barley as in A. thaliana. However, HvELF3, 
HvELF4, HvLUX, HvPRR9, and HvPhyB were all identified as 
significant in controlling FT in our gene-set test.

It is known that the early flowering of some barley genotypes 
is closely linked to gibberellin biosynthesis (Boden et al., 2014). 
We identified 19 genes related to gibberellin biosynthesis [e.g. 
HvGA20ox1 (GA20 oxidase 1)] as significant flowering genes 
in the barley accessions we investigated. Our findings corrob-
orate with the notion that gibberellin is an important signal in 
flower development in barley. In A. thaliana, paclobutrazol—a 
gibberellin biosynthesis inhibitor—significantly reduces the 
long hypocotyl and petiole phenotypes of Arabidopsis elf3 mu-
tants (Filo et al., 2015). As discussed above, ELF3 is a key gene 

Table 3.  SNP–SNP interaction in determining flowering time in barley as revealed by epistasis analysis

Gene_1  FTD Gene_2  FTD Gene interaction FTD 

Gene interactions to promote early flowering
HvCBF8A (CC) 0.64±0.12 HvELF7 (GG) 0.52±0.09 CC–GG 0.48±0.09
HvCO1 (GG) 0.63±0.12 HvELF7 (GG) 0.52±0.09 GG–GG 0.48±0.10
HvCry1b (TT) 0.64±0.12 HvELF7 (GG) 0.52±0.09 TT–GG 0.48±0.09
HvBM7 (CC) 0.64±0.12 HvELF7 (GG) 0.52±0.09 CC–GG 0.48±0.09
HvPhyB (CC) 0.65±0.12 HvELF7 (GG) 0.52±0.09 CC–GG 0.48±0.09
HvFT1 (CC) 0.64±0.13 HvELF7 (GG) 0.52±0.09 CC–GG 0.48±0.09
HvCK2B (GG) 0.64±0.12 HvCO1 (CC) 0.64±0.12 GG–CC 0.55±0.13
HvCO1 (GG) 0.63±0.12 HvZCCTc (CC) 0.60±0.13 GG–CC 0.58±0.11
HvPhyB (GG) 0.60±0.13 HvNHL (GG) 0.61±0.12 GG–GG 0.56±0.08
HvPhyB (GG) 0.60±0.13 HvTOC1 (TT) 0.62±0.13 GG–TT 0.56±0.08
HvPhyA (AA) 0.61±0.13 HvZTLa (GG) 0.64±0.12 AA–GG 0.57±0.13
HvCBF8A (TT) 0.59±0.12 HvEDL2 (TT) 0.64±0.13 TT–TT 0.58±0.10
Gene interactions to delay flowering
HvPhyA (GG) 0.64±0.12 HvZTLb (GG) 0.65±0.13 GG–GG 0.66±0.11
HvPhyB (CC) 0.64±0.12 HvSPL3 (CC) 0.61±0.12 CC–CC 0.69±0.11
HvSLN1 (CC) 0.67±0.12 HvCO8 (TT) 0.70±0.16 CC–TT 0.74±0.14
HvCKX (CC) 0.70±0.15 HvGA2ox3 (AA) 0.69±0.15 CC–AA 0.77±0.15
HvFT2 (GG) 0.70±0.16 HvGA2ox3 (AA) 0.69±0.15 GG–AA 0.77±0.15
HvFT2 (GG) 0.70±0.16 HvCBF6 (TT) 0.69±0.15 GG–TT 0.77±0.15
HvCBF6 (TT) 0.69±0.15 HvCKX (CC) 0.70±0.15 TT–CC 0.77±0.15

Flowering time (days to Z49) was standardized to 0–1 as FTD (see the Materials and methods). Letters in parentheses indicate the genotype of the first 
SNP of the gene. FTD is presented as mean ±SD. Note that the average FTD across all samples was 0.64±0.12
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in a tripartite transcriptional complex, the EC. Filo et al. (2015) 
further suggested that the role of the EC in the regulation of 
gibberellin biosynthesis and flowering in dicots is shared with 
monocots and is a highly conserved mechanism for growth 
control. As such, mechanisms of the circadian clock-controlled 
pathway linking regulation of gibberellin biosynthesis and 
flowering induction, as reported in A.  thaliana, may provide 
a useful template for exploring clock-controlled mechanisms 
in barley.

Fourteen genes that were reportedly involved in the vernal-
ization pathway have been identified in the GSA. The inter-
action of Vrn-H1, Vrn-H2, and Vrn-H3 has been reported as 
an important mechanism controlling flowering in response to 
vernalization in barley (von Zitzewitz et  al., 2005). HvBM5 
(equivalent to HvVrn-H1), a MADS-box transcription factor 
gene, was identified as a significant flowering gene, and was 
also previously reported to promote the transition from the 
vegetative to the reproductive phase (Hemming et al., 2008). 
In the interaction, HvVrn-H1 represses the expression of Vrn-
H2 (a zinc-finger CONSTANS); in turn, that represses Vrn-
H3 in regulating flowering as the response to vernalization 

(Yan et  al., 2003, 2004). Vrn-H3 (equivalent to HvFT1) in 
barley was thought to be a central integrator of different FT 
pathways (Yan et al., 2006). Yan et al. (2006) also reported that 
the Vrn-H3 gene in both barley and wheat is responsible for 
natural allelic variation in vernalization requirement. Five FT 
genes (HvFT1, HvFT2, HvFT4, HvFT5, and HvFTL5) were 
identified as significantly influencing FT in this study. These 
genes were observed to play different roles in their response 
to photoperiod, while HvFT1 has an essential role in the 
transition from the vegetative growth to reproductive stage 
(Alqudah et al., 2014).

We identified 22 genes involving 19 two-way epistatic 
interactions in either promoting early flowering or delaying 
flowering. Epistatic interactions have previously been reported 
in barley. Yan et al. (2004, 2006) have previously reported sig-
nificant two-way epistasis between vernalization genes VRN-
H1 (syn. HvBM5) and VRN-H3 (syn. HvFT1), and between 
Vrn-H1 and Vrn-H2, to play an essential role in FT regula-
tion in barley. Griffiths et al. (2003) postulated that FT genes 
HvGI, Vrn-H2, Vrn-H1, and HvCO1 could be involved in 
two-way epistatic interactions. Cuesta-Marcos et  al. (2010) 
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Fig. 5.  Significant flowering genes and their regulatory connections in barley (Hordeum vulgare L.). Putative gene name and gene IDs were from Ensembl 
Plants Hordeum vulgare Genome assembly 082214v1 that was archived in STRING (Szklarczyk et al., 2017). The interactions, including type and 
effects, were based direct (physical) and indirect (functional) associations from computational prediction and knowledge transfer between organisms, as 
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proposed that Vrn-H1 (HvBM5), Vrn-H2, Vrn-H3 (HvFT1), 
and Vrn4 could interact to determine vernalization sensitivity 
in barley. A  few of the epistatic interactions revealed in this 
study could be linked to previously reported interaction in 
barley or A.  thaliana. For example, the interaction of homo-
zygous HvFT2 and HvGA2ox3 delayed flowering in our 
study, which is consistent with the previous report by Filo 
et al. (2015). Our results also demonstrate the extensive epi-
static interactions controlling the FT between genes involved 
in response to photoperiod, circadian clock pathway genes, re-
sponse to vernalization, and gibberellin biosynthesis (Fig. 5). 
HvELF7, a homologue of the RNA polymerase II-associated 
factor 1 gene, is notable. This gene interacted with six other 
genes involved with photoperiod and vernalization to induce 
flowering up to 10 d earlier. Its effects were consistent across 
our experimental locations and years, implying that its role is 
probably independent of environmental impacts.

HvCO1 is another key gene identified in this study. HvCO1 
and HvCO8 were involved in four epistatic interactions in 
influencing flowering. It is known that CONSTANS (CO) 
plays a crucial role in the photoperiodic regulation of flowering 
in A. thaliana (Kim et al., 2008). At least eight homologues of 
CO-like genes (HvCO1–HvCO8) were identified in barley, 
but their roles in controlling the FT pathway are not clear 
(Griffiths et al., 2003; Cockram et al., 2012). Our findings for 
HvCO1 and other genes involved in photoperiodic regulation 
and vernalization could provide some testing hypothesis of the 
role of CO in the regulation of flowering in barley.

Interestingly, HvCO1 was involved in epistatic interactions 
promoting early flowering, while HvCO8 interacting with 
HvSLN1 delayed flowering in the studied barley accessions, 
implying the possible different roles that different homologues 
of CO-like genes may play in the regulation of FT in barley. 
The broad epistatic interactions in the regulation of FT in 
barley as revealed in our study suggest the presence of other 
functional networks of genes involved in controlling FT. Based 
on the fact that more genes and their interactions were iden-
tified as important in regulating FT in barley, this study added 
more details to the gene regulatory network that Hill and Li 
(2016) proposed. Our results on epistatic interaction and pro-
posed gene regulatory networks could provide further insight 
to refine the current model of the regulatory network con-
trolling flowering in barley and other cereal crops (e.g. Woods 
et  al., 2017), while further studies, such as with knock-out 
accessions, may validate the observed interaction effects and 
regulatory network.

The main environmental factors that influence FT include 
the ambient temperature and day length. In sorghum, tempera-
ture explained 69.4% of the variation in average FT in different 
environments (Li et al., 2018). Similarly, our study found that 
62.9% of the variation in FT of a barley line was due to vari-
ation in average temperature in the growing locations. Gene 
and environment interactions explained 3.85% (P<0.001) of 
variance for FT. This figure, although much less than that by 
the average temperature, was found to be highly significant. FT 
in barley is highly heritable. Broad-sense heritability of FT was 
estimated at 88% in wild barley (Herzig et al., 2018). In maize, 
the genetic architecture of FT is predominantly determined 

by small additive loci with few environmental interactions, and 
FT is also highly heritable (h2 >0.85) (Buckler et  al., 2009). 
Our estimate of heritability from 2758 SNPs was 0.503 if the 
origin of the experimental accessions was included as a fixed 
effect, while it was only 0.395 if the origin was not specified. 
Previously, we reported that peak SNPs at the identified loci 
explained 31–78% of the phenotypic variance for phenology 
in different environments (Hill et al., 2019a).

Both our current and previous estimates of heritability seem 
to be low, which could be explained by four aspects. (i) There 
may be more genes that are essential parts of the network regu-
lating FT in barley yet to be captured in our study. For example, 
Bouché et al. (2016) curated a database containing 306 genes 
that were reported to have functions and interactions within 
the flowering pathways in A. thaliana, while we analysed 174 
putative genes. (ii) Causal SNPs related to FT could be located 
far from the known gene in its regulatory regions; therefore, 
SNP enrichment based on genes could fail to capture the ef-
fect. (iii) The epistatic effect could be more extensive because 
of the existence of a complex regulation network in control-
ling flowering. (iv) Broader sampling to include samples from 
broader genetic background and origin could be required. 
Future research that builds on the insights generated from this 
study, and with the aim of finding the missing heritability and 
the genes that are important in regulating FT in barley, will 
help to decipher the genetic mechanism of flowering regu-
lation, and therefore facilitate barley breeding programmes to 
increase performance and grain yield under optimal cultivation 
conditions as well as under stress.

GWAS has been a powerful tool to connect genomic vari-
ation (SNPs) to complex phenotype, while pinpointing the 
actual genes underlying biology is still not straightforward. Our 
previous research (Hill et al., 2019a) demonstrated that targeted 
enrichment of SNPs from function-related genes combined 
with GWAS could provide great opportunities to associate 
DNA variations with complex phenotypes in plants. In this 
study, we further demonstrated that GSA could provide higher 
power to detect genetic association than the analysis of SNPs 
individually. We suggest that GSA is particularly useful for 
dissecting the genetic determinants of complex traits such as 
FT, as it is likely that many SNPs with small effects contribute 
to these complex traits, while their effects are difficult to detect 
when testing SNPs individually (Holmans, 2010). Our research 
also shows that the incorporation of analysis of gene inter-
action and gene-set GWAS offers great promise in the charac-
terization of the biological pathway of genetic determination 
of complex traits. It should be noted that, despite the power 
to connect sequence diversity to complex traits, GSA has its 
limits. First, GWAS analysis so far revealed that most of the sig-
nificant SNPs fall within the category of non-protein coding, 
and many are a distance away from the known gene (Maurano 
et al., 2012); it is not clear how far the flanking sequencing of 
each gene should be included in the mapping of SNPs to a 
gene set (Fridley and Biernacka, 2011). Further, as with the 
single SNP GWAS analysis, GSA reveals the genetic changes to 
be correlated with a particular phenotype; this does not mean 
that genes identified by the studies control the phenotype, 
which needs to be tested in controlled experiments.
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Supplementary data are available at JXB online.
Fig. S1. Q–Q plots showing the low level of systematic biases 

in genome-wide association study (GWAS) results.
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