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Abstract. In this paper, we study the bifurcation of limit cycles of the periodic annulus
of two classes of cubic isochronous systems. By using complete elliptic integrals of the
first, second kinds and the Chebyshev criterion, we show that the upper bound for the
number of limit cycles which appear from the periodic annuli of the two systems are
at least three under cubic perturbations. Moreover, there exists a perturbation that give
rise to exactly i limit cycles bifurcating from the period annulus for each i = 0, 1, 2, 3.
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1 Introduction

This paper is concerned with the bifurcation of limit cycles of the centers of cubic isochronous
systems, more concretely, differential systems of form

ẋ = −y + Pn(x, y),

ẏ = x + Qn(x, y),
(1.1)

where Pn(x, y) and Qn(x, y) are real polynomials of degree n. In this paper we restrict our-
selves to the case n = 3 and nonlinear isochrones of the above system, that are degrees for
which the centers and the isochrones have been classified (see [3]).

The above problem belongs to the context of the second part of the Hilbert’s 16th Problem.
Until now the problem still remains to be unsolved even though a lot of work to be done
in recent decades. Arnold [1] proposed a weaker version of this problem, the so-called in-
finitesimal Hilbert’s 16th problem, that is to study the number of isolated zeros of the Abelian
integrals.

We consider a polynomial system of the form

ẋ =
Hy(x, y)
R(x, y)

+ ε f (x, y),

ẏ = −Hx(x, y)
R(x, y)

+ εg(x, y),
(1.2)
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where H(x, y) is the first integral of System (1.2) for ε = 0 with integrating factor R(x, y),
f (x, y) and g(x, y) are polynomials of degree n in x, y and ε is a small parameter. The Abelian
integral is defined as

I(h) =
∮

Γh

R(x, y)( f (x, y)dy− g(x, y)dx), (1.3)

where {Γh : h ∈ (a, b)} is the family of ovals contained in the level curves H(x, y) = h for
h ∈ (a, b).

Suppose that System (1.2) for ε = 0 has at least one center surrounded by the compact
connected component of real curve H(x, y) = h. Let d(h, ε) be defined on a section to the flow,
which is parametrized by the Hamiltonian value h, then the Abelian integral I(h) in (1.3) gives
the first order approximation of the displacement function of the perturbed system, that is

d(h, ε) = εM1(h) + ε2M2(h) + O(ε3). (1.4)

Hence, if I(h) = M1(h) is not identically zero, then the number of isolated zeros of M1(h) gives
an upper bound of the number of limit cycles of System (1.2). However if I(h) ≡ 0, then we
need to compute the second order Melnikov function M2(h). We call Mk(h), k = 1, 2, . . . the
Melnikov functions and the first non-vanish Melnikov function is called a generating function.

In the past decades, many scholars studied limit cycles that bifurcate from periodic orbits
of a center for a quadratic system, readers are referred to papers [8, 13, 15, 18, 21]. In the
meanwhile, there are more studies on the bifurcation of limit cycles for other systems, see
recently published papers [12], [20] and references therein. Besides, many researchers study
the number of limit cycles produced from periodic orbits of the unperturbed cubic system.
Dumortier and Li have made a complete investigate for Liénard system of degree 3 in a series
of papers (see [4–7]). Gasull et al. [9] estimated an upper bound for the number of limit cycles
from cubic isochronous System S∗1 (see [3]) under a small polynomial perturbation of degree
n ≥ 9. Wu and Zhao [19] investigated the bifurcation of limit cycles of a cubic isochronous
center under cubic perturbations. In [16], the authors estimate the maxmum number of limit
cycles which is bifurcated from the periodic annulus of cubic isochronous centers, and the
orbits of these centers are formed by conics inside the class of all polynomial systems of
degree n.

In the papers [3], the authors gave the following four classes of cubic systems with homo-
geneous nonlinearities

S∗1 :
ẋ = −y− 3xy2 + x3,

ẏ = x + 3x2y− y3,
(1.5)

S∗2 :
ẋ = −y + x2y,

ẏ = x + xy2.
(1.6)

S∗3 :
ẋ = −y + 3x2y,

ẏ = x− 2x3 + 9xy2,
(1.7)

and

S̄∗3 :
ẋ = −y− 3x2y,

ẏ = x + 2x3 − 9xy2.
(1.8)

The origins of these four systems are all isochronous center. Shao and Wu [17] investigated the
bifurcation of limit cycles from Systems S∗3 and S̄∗3 . In this paper, we mainly intend to study
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the number of limit cycles produced from periodic annulus of cube isochronous Systems S∗1
and S∗2 . It is easy to know that System S∗1 has a first integral

H1(x, y) =
(x2 + y2)2

1 + 4xy
= h, h ∈ (0,+∞) (1.9)

with integrating factor R1(x, y) = − 4(x2+y2)
(1+4xy)2 , and System S∗2 has a first integral

H2(x, y) =
x2 + y2

1− x2 = h, h ∈ (0,+∞) (1.10)

with integrating factor R2(x, y) = − 2
(1−x2)2 .

We consider the following perturbations of Systems S∗1 and S∗2

ẋ = −y− 3xy2 + x3 + ε f (x, y),

ẏ = x + 3x2y− y3 + εg(x, y),
(1.11)

and

ẋ = −y + x2y + ε f (x, y),

ẏ = x + xy2 + εg(x, y),
(1.12)

where f (x, y), g(x, y) are cubic polynomials in x, y and ε is enough small. It follows from (1.3)
that the Abelian integrals of Systems (1.11) and (1.12) are

Im(h) =
∮

Γh

Rm(x, y) f (x, y)dy− Rm(x, y)g(x, y)dx, m = 1, 2, (1.13)

where Γh = {Hm(x, y) = h : h ∈ (0,+∞)}, m = 1, 2 are families of periodic orbits surrounding
the center (0, 0).

The next theorem is the main result of this paper.

Theorem 1.1. For the cubic perturbed Systems (1.11) and (1.12), if each Abelian integral of I1(h) and
I2(h) is not identically zero, then the maximum number of zeros (taking into account of the multiplicity)
of I1(h) and I2(h) in (1.13) are both equal to three on h ∈ (0,+∞). Moreover, for each i = 0, 1, 2, 3,
there exist perturbations such that I1(h) and I2(h) have exactly i zeros.

Since the Abelian integrals I1(h) and I2(h) are not identically zero, and they are the first
order Melnikov functions, we have the following theorem.

Theorem 1.2. The upper bound for the number of limit cycles of Systems (1.11) and (1.12) bifurcating
from the periodic orbits of Systems S∗1 and S∗2 are at least three if each Abelian integrals of I1(h) and
I2(h) in (1.13) is not identically zero. Moreover, for each i = 0, 1, 2, 3, there exists a perturbation such
that there are exactly i limit cycles produced by the periodic annulus of each System S∗1 and S∗2 .

The rest of this paper is organized as follows. In Section 2, we will introduce definition
of Chebyshev system and some properties of complete elliptic integrals of the first and the
second kinds. In Section 3, first, we will transform the Abelian integrals I1(h1) and I2(h2)

in (1.13) into a linear combination of four terms and prove that the four terms form an ex-
tended complete Chebychev system. Then, by using complete elliptic integrals of the first and
the second kinds, the Chebyshev criterion and some purely algebraic computations, we will
complete the proof of Theorem 1.1.
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2 Preliminary results and properties

In order to prove Theorem 1.1, we need some preliminary results on the elliptic integrals of
the first, second kinds K(k), E(k) and extended complete Chebychev system.

Definition 2.1. The complete normal elliptic integrals of the first and the second kinds are
defined as

K(k) =
∫ π

2

0

dθ√
1− k2 sin2 θ

and E(k) =
∫ π

2

0

√
1− k2 sin2 θdθ, (2.1)

respectively, which are analytic functions for k ∈ (−1, 1).

Lemma 2.2. The complete elliptic integrals of the first kind K(k) and the second kind E(k) have the
following properties.

(a) ([2]) The elliptic integrals K(k) and E(k) satisfy the following Picard–Fuchs equations

dK
dk

=
E− (1− k2)K

k(1− k2)
,

dE
dk

=
E− K

k
. (2.2)

(b) ([11]) The power series of the elliptic integrals K(k) and E(k) at k = 0 are

K(k) =
π

2

∞

∑
i=0

(
(2i− 1)!!
(2i)!!

)2

k2i and E(k) = −π

2

∞

∑
i=0

(
(2i− 1)!!
(2i)!!

)2 k2i

2i− 1
, (2.3)

respectively, where k ∈ (−1, 1) and the double factorial of integer n(n ≥ −1) is defined as

n!! =


n(n− 2) · · · 5 · 3 · 1, if n > 0 and n is odd,

n(n− 2) · · · 6 · 4 · 2, if n > 0 and n is even,

1, if n = −1, 0.

(c) ([9]) The asymptotic expansions of K(k) and E(k) near k = 1 are

K(k) = log 4− 1
2

log(1− k2) + O(|(log(1− k2))(1− k2)|),

E(k) = 1 +
1
2

[
log 4− 1

2
log(1− k2)− 1

2

]
(1− k2) + O(|(log(1− k2))(1− k2)2|),

(2.4)

respectively.

Next, we will introduce definition of an extended complete Chebyshev system (ECT-
system) and its properties.

Definition 2.3 ([10]). Let g0(x), g1(x), . . . , gn−1(x) be analytic functions on an open interval L
of R.

(1) (g0(x), g1(x), . . . , gn−1(x)) is called an extend complete Chebyshev system (an ECT-
system) on L if for all k = 1, 2, . . . , n, any nontrivial linear combination

c0g0(x) + c1g1(x) + · · ·+ ck−1gk−1(x)

has at most k− 1 isolated zeros on L counted with multiplicities.
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(2) The continuous Wronskian of (g0(x), g1(x), . . . , gk−1(x)) at x ∈ L is defined as

W[g0, g1, . . . , gk−1](x) = Det(g(i)j (x))0≤i,j≤k−1 =

∣∣∣∣∣∣∣∣∣∣
g0(x) · · · gk−1(x)
g′0(x) · · · g′k−1(x)

...
. . .

...
g(k−1)

0 (x) · · · g(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣∣
.

Lemma 2.4 ([10]). (g0(x), g1(x), . . . , gn−1(x)) is an ECT-system on L if and only if, for each 1 ≤
k ≤ n, k ∈N,

W[g0, g1, . . . , gk−1](x) 6= 0 for all x ∈ L.

Lemma 2.5. If (g0(x), g1(x), . . . , gn−1(x)) is an ECT-system on L, then, for each 1 ≤ k ≤ n, k ∈N,
there exists a linear combination

c0g0(x) + c1g1(x) + · · ·+ ck−1gk−1(x)

with exactly k simple zeros on L (see [14] for instance).

We still need the following lemmas in the process of proving the case S∗1 in Theorem 1.1.
For the completeness and the convenience of reading, in Lemma 2.6 we part use for reference
the proof of Lemma 6 in [9].

Lemma 2.6. Let ϕ(x) be a continuous function and i, j be integers. Then

(1) If i + j is odd, then ∫ 2π

0
ϕ(sin 2θ) cosi θ sinj θdθ = 0.

(2) If i + j = 2N is even, then there exist real constants c0, c1, . . . , cN and c̃0, c̃1, . . . , c̃N such that

∫ 2π

0
ϕ(sin 2θ) cosi θ sinj θdθ =

N

∑
l=0

cl

∫ π

−π
ϕ(cos θ) cosl θdθ

=
N

∑
l=0

c̃l

∫ π

−π
ϕ(sin θ) sinl θdθ.

Proof. (1) Since i + j is odd, let θ = π + α, then

I =
∫ 2π

0
ϕ(sin 2θ) cosi θ sinj θdθ = (−1)i+j

∫ 2π

0
ϕ(sin 2α) cosi α sinj αdα = −I,

it shows that I = 0.
(2) If i + j = 2N is even, let θ = π

4 − α, then

∫ 2π

0
ϕ(sin 2θ) cosi θ sinj θdθ

=
∫ 2π

0
ϕ(cos 2α)

(
1√
2

cos α +
1√
2

sin α

)i( 1√
2

cos α− 1√
2

sin α

)j

dα

=
2N

∑
l=0

c̄l

∫ π

−π
ϕ(cos 2α)(sin α)2N−l cosl αdα
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=
N

∑
l=0

c̄2l

∫ π

−π
ϕ(cos 2α)(sin α)2N−2l(cos α)2ldα

=
N

∑
l=0

c̄2l

∫ π

−π
ϕ(cos 2α)

(
1− cos 2α

2

)N−l(1 + cos 2α

2

)l

dα

=
N

∑
l=0

cl

∫ π

−π
ϕ(cos 2α)(cos 2α)ldα =

N

∑
l=0

cl

∫ π

−π
ϕ(cos θ)(cos θ)ldθ (2α = θ)

=
N

∑
l=0

c̃l

∫ π

−π
ϕ(sin θ)(sin θ)ldθ,

where the value of the constants might not be the same from one expression to the other. The
proof of the lemma is finished.

Lemma 2.7. Define

Φm = Φm(h) =
∫ π

−π
(sin θ)2m

√
h2 sin2 θ + hdθ, m = 0, 1.

Then
Φ0 =

4k
1− k2 E, Φ1 =

4
3k(1− k2)

((k2 − 1)K + (k2 + 1)E),

where k2 = h/(1 + h).

Proof. By Lemma 2.6, we have that

Φ0 =
∫ π

−π

√
h2 sin2 θ + hdθ =

∫ π

−π

√
h2 cos2 θ + hdθ

=
√

h2 + h
∫ π

−π

√
1− h

1 + h
sin2 θdθ

=
k

1− k2

∫ π

−π

√
1− k2 sin2 θdθ =

4k
1− k2 E.

Similarly,

Φ1 =
∫ π

−π
sin2 θ

√
h2 sin2 θ + hdθ =

∫ π

−π
cos2 θ

√
h2 cos2 θ + hdθ

=
k

1− k2

∫ π

−π
(1− sin2 θ)

√
1− k2 sin2 θdθ

=
k

1− k2

( ∫ π

−π

√
1− k2 sin2 θdθ −

∫ π

−π
sin2 θ

√
1− k2 sin2 θdθ

)
.

Denote
V1 =

∫ π

−π
sin2 θ

√
1− k2 sin2 θdθ,

and τ = sin θ, then

V1 = 4
∫ 1

0
τ2

√
1− k2τ2

1− τ2 dτ = 4(F2 − k2F4),

where

F2 =
∫ 1

0

τ2√
(1− τ2)(1− k2τ2)

dτ =
1
k2 (K− E).
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It follows from formula (320.05) of [2] that

F4 =
2(1 + k2)F2 − F0

3k2 , F0 = K.

Therefore, we have that

Φ1 =
k

1− k2 (4E−V1) =
4

3k(1− k2)
((k2 − 1)K + (k2 + 1)E).

This finishes the proof of the lemma.

3 Proof of Theorem 1.1

In this Section, by using lemmas given in Section 2 and computing the maximum number of
zeros of corresponding Abelian integrals I1(h) and I2(h) in (1.13), we will prove Theorem 1.1
for Systems S∗1 and S∗2 separately.

3.1 Proof of the case S∗
1

To simplify calculation and apply Lemma 2.7, we change the first integral H1(x, y) = h, h ∈
(0,+∞) and integrating factor R1(x, y) in (1.9) into

H(x, y) =
1

H1(x, y)
=

1 + 4xy
(x2 + y2)2 =

1
h

, R(x, y) =
4

(x2 + y2)3 , (3.1)

respectively. Moreover, we rewrite Abelian integrals I1(h) in (1.13) as

I1(h) =
∮

Γh

R(x, y) f (x, y)dy− R(x, y)g(x, y)dx. (3.2)

Since the origin is an elementary center, we can see that (x, y) 6= (0, 0) in the first integral
H(x, y) = 1

h , h ∈ (0,+∞) and R1(x, y), which has not effect on the number of zeros of Abelian
integrals I1(h) in (3.2).

We change the Abelian integral I1(h) in (3.2) into a linear combination of four terms, and
have the following proposition.

Proposition 3.1. The generating function I1(h) defined by (3.2) can be expressed as

I1(h)) = k−3(α0 J0(k) + α1 J1(k) + α2 J2(k) + α3 J3(k)), k ∈ (−1, 1), (3.3)

where

J0(k) = k, J1(k) = k3, J2(k) = k2E, J3(k) = (k2 − 1)K + (k2 + 1)E,

h = k2/(1− k2) and α0, α1, α2, α3 are any constants.

Proof. Denote Γh = {H(x, y) = 1/h : h ∈ (0,+∞)} all periodic annuli surrounding the origin
of System S∗1 . In polar coordinates x = r cos θ, y = r sin θ, it follows from (1.10) that the
periodic orbits Γh can be written as

r = r(h, θ) =

√
h sin 2θ +

√
h2 sin2 2θ + h.
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By using (3.2) and Green’s formula, we can rewrite the Abelian integral of System S∗1 as

I1(h) =
∫

Γh

4 f (x, y)
(x2 + y2)3 dy− 4g(x, y)

(x2 + y2)3 dx

=
∫∫

Ωh,σ

[
4( fx(x, y) + gy(x, y))

(x2 + y2)3 − 24(x f (x, y) + yg(x, y))
(x2 + y2)4

]
dxdy−Qσ,

where Ωh, σ = Ωh \ Dσ, Dσ is a disk small enough with (0, 0) as center point and σ as radius,
and Ωh is the simple connected region enclosed by Γh,

Qσ =
∫

r=σ

4 f (x, y)
(x2 + y2)3 dy− 4g(x, y)

(x2 + y2)3 dx,

where r is polar radius and 0 < σ� h. Let

4[(x2 + y2)( fx(x, y) + gy(x, y))− 6(x f (x, y) + yg(x, y))] =
4

∑
i+j=1

di,jxiyj,

then

I1(h) =
4

∑
i+j=1

di,j

∫∫
Ωh,σ

xiyj

(x2 + y2)4 dxdy−Qσ

=
4

∑
i+j=1

di,j

∫ 2π

0

∫ r(h,θ)

σ
ri+j−7 cosi θ sinj θdrdθ −Qσ

=
4

∑
i+j=1

d̄i,j

∫ 2π

0
(r(h, θ))i+j−6 cosi θ sinj θdθ − Cσ

=
4

∑
i+j=1

d̄i,j Ii,j − Cσ,

where d̄i,j =
1

i+j−6 di,j,

Ii,j =
∫ 2π

0
(r(h, θ))i+j−6 cosi θ sinj θdθ, Cσ =

4

∑
i+j=1

(d̄i,jσ
i+j−6

∫ 2π

0
cosi θ sinj θdθ) + Qσ

and Cσ is a constant which does not depend on h.
By Lemma 2.6, we know that Ii,j = 0 if i + j is odd. For 0 < i + j = 2N ≤ 4, we have that

Ii,j =
∫ π

−π

(√
h sin 2θ +

√
h2 sin2 2θ + h

)2N−6

cosi θ sinj θdθ

=
∫ π

−π

(
1√

h2 sin2 2θ + h + h sin 2θ

)3−N

cosi θ sinj θdθ

=
N

∑
l=0

cl

∫ π

−π
sinl θ

(√
h2 sin2 θ + h− h sin θ

h

)3−N

dθ

= hN−3
N

∑
l=0

cl

∫ π

−π
sinl θ

[
3−N

∑
s=0

(h2 sin2 θ + h)
3−N−s

2 Cs
3−N(−h)s sins θ

]
dθ.
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Denote
Ī1 = ∑

i+j=2
ci Ii,j, Ī2 = ∑

i+j=4
c̄i Ii,j,

where ci, c̄i are constants. By direct computation, we obtain that

Ī1 = 2πc0(1 + h−1)− 2c1h−1Φ1,

Ī2 = −c̄1π + c̄0h−1Φ0 + c̄2h−1Φ1.

Hence the Abelian integral I1(h) of System S∗1 can be expressed as

I1(h) = d̄1 Ī1 + d̄2 Ī2 + Cσ

= π(2d̄1c0 − d̄2c̄1 + Cσ) + 2πd̄1c0h−1 + d̄2c̄0h−1Φ0 + (d̄2c̄2 − 2d̄1c0)h−1Φ1,

where d̄i, i = 1, 2 are constants. Substituting Φ0, Φ1 in Lemma 2.7 and h = k2/(1− k2) into
the above formula, we obtain (3.3). Thus, the proof of Proposition 3.1 is finished.

By applying Definition 2.3 and Lemma 2.4, we need to check that (J0, J1, J2, J3) is an ECT-
system for k ∈ (0, 1). So we shall verify that there are no zeros for the Wronskian W[Ji](k)
(i = 0, 1, 2, 3) in the interval (0, 1). By direct calculation, we have the following lemma.

Lemma 3.2. (J0, J1, J2, J3) in (3.3) is an ECT-system for k ∈ (0, 1).

Proof. From Proposition 3.1, it is easy to know that

W[J0](k) = k 6= 0 and W[J0, J1](k) = 2k3 6= 0

for any k ∈ (0, 1). By using (2.2) and taking the derivatives of K(k) and E(k), we have that

d2K
dk2 =

(1− 3k2 + 2k4)K + (3k2 − 1)E
k2(k2 − 1)2 , (3.4)

and
d2E
dk2 =

(k2 − 1)K + E
k2(k2 − 1)

. (3.5)

Substituting (2.2), (3.3) and (3.5) into the Wronskian of (J0, J1, J2), one obtains

W[J0, J1, J2](k) =
2k3

k2 − 1
E(k).

Noticing that 0 < k2 < 1 and E(k) > 0, we have W[J0, J1, J2](k) 6= 0 for all k ∈ (0, 1).
Next, we will compute the four-dimensional Wronskian W[J0, J1, J2, J3](k). First of all, by

taking the derivatives of K
′′
(k) and E

′′
(k), we have

d3K
dk3 =

(2− 6k2 + 10k4 − 6k6)K + (−2 + 5k2 − 11k4)E
k3(−1 + k2)3 , (3.6)

and
d3E
dk3 =

(−2 + 5k2 − 3k4)K + 2(1− 2k2)E
k3(k2 − 1)2 . (3.7)
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Then, applying (2.2), (3.4)–(3.7), we can factorize the Wronskian of (J0, J1, J2, J3) in the follow-
ing form

W[J0, J1, J2, J3](k) = −
6[(k2 − 1)(K(k))2 + (4− 2k2)K(k)E(k)− 3(E(k))2]

(k2 − 1)2

= −6[(k2 − 1)K(k) + ϕ−(k)E(k)][(k2 − 1)K(k) + ϕ+(k)E(k)]
(k2 − 1)3 , (3.8)

where
ϕ±(k) = (2− k2)±

√
1− k2 + k4.

Since K(k) and E(k) are both even functions in k, Hence, by (3.8), we need only to show that
W[J0, J1, J2, J3](k) does not vanish for any k ∈ (0, 1).

Denote
φ±(k) = [(k2 − 1)K(k) + ϕ±(k)E(k)]. (3.9)

Using Lemma 2.2 and by computation, we have that

φ′+(k) = −
µ(k)[

√
1− k2 + k4(K(k)− E(k)) + k2E(k)]

k
√

1− k2 + k4
,

where µ(k) = 1− 2k2 +
√

1− k2 + k4. It is easy to verify that function µ(k) is monotonically
decreasing and µ(k) > 0 for k ∈ (0, 1). It follows from Definition 2.1 that K(k) > E(k) > 0 for
all k ∈ (0, 1), that is φ′+(k) < 0. Moreover limk→1− φ+(k) = 2 limk→1− E(k) > 0, which shows
that φ+(k) 6= 0 for any k ∈ (0, 1).

We next show that φ−(k) 6= 0 for any k ∈ (0, 1). In fact, by Lemma 2.2 (c), it is easy to
know that limk→1− φ−(k) = 0. From Lemma 2.2 (b), we can find that limk→0+ φ−(k) = 0 and

φ−(k) = −
201326592π

2147483648
k4 + o(k4) < 0 for k ≈ 0.

Taking the derivative of φ−(k), we get that

φ′−(k) =
λ(k)[

√
1− k2 + k4(K(k)− E(k))− k2E(k)]

k
√

1− k2 + k4
, (3.10)

where λ(k) = −1 + 2k2 +
√

1− k2 + k4. It is easy to verify that function λ(k) is monotonically
increasing and λ(k) > 0 for all k ∈ (0, 1). Denote

υ(k) =
√

1− k2 + k4(K(k)− E(k))− k2E(k).

By use Lemma 2.2 (b), we have that

υ(k) = −268435456π

1073741824
k2 + o(k2) < 0 for k ≈ 0.

Since v(k) < 0 for k ≈ 0, this implies that φ′−(k) < 0 for k ≈ 0. By contradiction, suppose
that there exists some k0 ∈ (0, 1) such that φ−(k0) = 0. Then, it follows from (3.9) that

K(k0) =

(√
1− k2

0 + k4
0 + k2

0 − 2
)

E(k0)

k2
0 − 1

.
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Substituting K(k0) into v(k), it is easy to get that

v(k0) =

(
1−

√
1− k2

0 + k4
0

)
E(k0)

k2
0 − 1

.

We can see that v(k0) < 0 for k0 ∈ (0, 1). It follows from (3.10) that φ′−(k0) < 0 for k0 ∈ (0, 1),
that is to say that φ−(k) is monotonically decreasing in small neighborhood of k0, which
contradicts the fact that φ−(k) < 0 for any k ∈ (0, k0) and φ−(k0) = 0. Hence, φ−(k) 6= 0 for
any k ∈ (0, 1).

Summarizing above analyses, we know that W[J0, J1, J2, J3](k) is non-zero for all k ∈ (0, 1).
In short, (J0, J1, J2, J3) is an ECT-system on (0, 1) and the proof of Lemma 3.2 is completed.

Proof of the case S∗
1 in Theorem 1.1. It follows from Definition 2.3, Lemmas 2.4 and 3.2 that

the Abelien integral I1(h) of System S∗1 has at most three zeros for any h ∈ (0,+∞). Moreover,
by Lemma 2.5, for each i = 0, 1, 2, 3, there exists a perturbation such that I1(h) has exactly i
zeros.

3.2 Proof of the case S∗
2

Due to the differences between the two first integrals and the two integrating factors, the
complete elliptic integrals do not emerge from the Abelien integral I2(h) in (1.13). Hence the
proof of System S∗2 is easier than that of System S∗1 . But the basic method is similar. We still
need to compute the number of zeros of the Abelien integral I2(h) by using the Chebyshev
criterion.

In order to simplify the expression of the Abelien integral I2(h), we need the following
Lemma (cf. Lemma 4.1 in [10]).

Lemma 3.3. Let Γh be the periodic orbits inside the level curve a(x) + b(x)y2 = h. If there exists a
function G(x) such that G(x)

(a(x))′ is analytic at x = 0, then, for any i ∈N,∫
Γh

G(x)yi−2dx =
∫

Γh

P(x)yidx,

where P(x) = 2
i (

b(x)G(x)
a′(x) )′ − ( b′(x)G(x)

a′(x) ).

Now we rewrite the first integral H2(x, y) of System S∗2 as

H2(x, y) =
x2

1− x2 +
1

1− x2 y2 = a(x) + b(x)y2 = h, h ∈ (0,+∞). (3.11)

It is easy to verify that H(0, 0) = 0. By Lemma 3.2, we will change the Abelian integral I2(h)
in (1.13) to a linear combination of four basic integrals.

Proposition 3.4. The generating function I2(h), defined by (1.13), of S∗2 can be changed to

I2(h) = β0 J̄0(h) + β1 J̄1(h) + β2 J̄2(h) + β3 J̄3(h), (3.12)

where

J̄0(h) =
∫

Γh

y3

(1− x2)2 dx, J̄1(h) =
∫

Γh

y3

(1− x2)3 dx,

J̄2(h) =
∫

Γh

x2y
(1− x2)2 dx, J̄3(h) =

∫
Γh

y
(1− x2)2 dx,

and βi, i = 0, 1, 2, 3 are any real constants.
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Proof. From (1.11), we notice that the level curve H2(x, y) = h is symmetrical with respect to
the x axis and the y axis, that is, H2(x,−y) = H2(−x, y) = H2(x, y). Hence∫

Γh

xiyj

(1− x2)2 dy = 0, if i is even,

∫
Γh

xiyj

(1− x2)2 dx = 0, if j is even.

On the other hand, using integration by parts we can verify that∫
Γh

xy
(1− x2)2 dy =

∫
Γh

(1 + 3x2)y2

2(1− x2)3 dx = 0,∫
Γh

xy
(1− x2)2 dx =

∫
Γh

1
2(x2 − 1)

dy = 0.

By applying Green’s formula and direct computation we obtain that

I2(h) =
∫

Γh

(c0 + c1x2)y + c2y3

(1− x2)2 dx +
∫

Γh

(c3x2 + c4x4)y + c5x2y3

(1− x2)3 dx,

where ci(i = 0, 1, . . . , 5) are any constants. It follows from Lemma 3.2 that∫
Γh

3x2y
(1− x2)3 dx =

∫
Γh

y3

(1− x2)3 dx.

Moreover, it can be verified that
∫

Γh
x4ydx/(1− x2)3 and

∫
Γh

x2y3dx/(1− x2)3 can be expressed

as linear combination of
∫

Γh
y3dx/(1− x2)2,

∫
Γh

y3dx/(1− x2)3 and
∫

Γh
x2ydx/(1− x2)2. These

facts imply that (3.12) hold. The proof of the proposition is complete.

Next, we will prove that ( J̄0, J̄1, J̄2, J̄3) is an ECT-system for h ∈ (0,+∞). There exists an
analytic involution σ(x) = −x such that a(x) = a(σ(x)) for all x ∈ (−1, 1), since System S∗2
is symmetrical with respect to the x-axis and the y-axis. Hence we can apply the following
Lemma (cf. Theorem B in [10]).

Lemma 3.5. Denote
Īi(h) =

∫
Γh

ψi(x)y5dx, i = 0, 1, 2, 3,

where Γh is the set of periodic orbit surrounding the orign inside the level curve {a(x) + b(x)y2 = h}
for each h ∈ (0,+∞). If σ(x) is the involution(σ(x) = −x) and

µi(x) =
(

ψi

a′b
5
2

)
(x)−

(
ψi

a′b
5
2

)
(σ(x)),

then ( Ī0, Ī1, Ī2, Ī3) is an ECT-system on h ∈ (0,+∞) if (µ0, µ1, µ2, µ3) is an ECT-system on x ∈ (0, 1).

To apply Lemma 3.5, we need to transform ( J̄0, J̄1, J̄2, J̄3) in (3.12) into ( Ī0, Ī1, Ī2, Ī3). Firstly,
it follows from (3.11) and Lemma 3.3 that

J̄0(h) =
1
h

∫
Γh

(a(x) + b(x)y2)y3

(1− x2)2 dx =
1
h

∫
Γh

a(x)y3 + b(x)y5

(1− x2)2 dx

=
1
h

Ī0(h) =
1
h

∫
Γh

ψ0(x)y5dx,
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where

ψ0(x) =
2(x2 − 3)
5(x2 − 1)3 . (3.13)

In the same way, we obtain that

J̄i(h) =
1
h

Īi(h) =
1
h

∫
Γh

ψi(x)y5dx, i = 1, 2, 3,

where

ψ1(x) =
6

5(x2 − 1)4 , ψ2(x) = −2(4x4 − 9x2 + 3)
15(x2 − 1)3 , ψ3(x) =

4
15x2(x2 − 1)3 . (3.14)

Thus, we can see that ( J̄0, J̄1, J̄2, J̄3) is an ECT-system on (0,+∞) if and only if ( Ī0, Ī1, Ī2, Ī3)

is an ECT-system on (0,+∞). By Lemma 3.5, we need only to prove that (µ0, µ1, µ2, µ3) is an
ECT-system x ∈ (0, 1). This is done in Lemma 3.6 below.

Lemma 3.6. (µ0, µ1, µ2, µ3) is an ECT-system on (0, 1).

Proof. It follows from Lemma 3.5 that

µi(x) =
(1− x2)4

√
1− x2ψi(x)
x

, i = 0, 1, 2, 3. (3.15)

Substituting (3.13) and (3.14) into (3.15), we can get that

µ0(x) =
2
√

1− x2(x4 − 4x2 + 3)
5x

,

µ1(x) =
6
√

1− x2

5x
,

µ2(x) =
2
√

1− x2(x2 − 1)(4x4 − 9x2 + 3)
15x

,

µ3(x) =
4
√

1− x2(x2 − 1)
15x3 .

Applying Lemma 2.4 again, for any x ∈ (0, 1), it is clear that

W[µ0](x) = µ0(x) 6= 0.

Similarly, by direct computation, we obtain that

W[µ0, µ1](x) =
48(x2 − 1)(x2 − 2)

25x
,

W[µ0, µ1, µ2](x) = −512
125

(x2 − 1)
√

1− x2(3x4 − 12x2 + 10),

and

W[µ0, µ1, µ2, µ3](x) =
65536(x2 − 1)3(3x2 − 5)

625x6 .

It is easy to see that W[µ0, µ1](x), W[µ0, µ1, µ2](x) and W[µ0, µ1, µ2, µ3](x) do not vanish for
any x ∈ (0, 1). Thus, the proof of Lemma 3.6 is finished.

Proof of the case S∗
2 in Theorem 1.1. By using Proposition 3.4, Lemmas 3.5 and 3.6, it is easy

to know that the Abelien integral I2(h) of System S∗2 has at most three zeros. Moreover, by
Lemma 2.5, for each i = 0, 1, 2, 3, there exists a perturbation such that I2(h) has exactly i zeros.



14 Y. Shao, Y. Lai and C. A

Acknowledgements

Acknowledgments are due to the referees for their useful suggestions and valuable comments.
This research is partially supported by NSF of China (Nos. 11571379, 11661017, 71801186) and
NSF of Guangdong Province of China (No. 2017A030310660).

References

[1] V. I. Arnold et al., Some unsolved problems in the theory of differential equations and
mathematical physics, Russian Math. Surveys 44(1989), No. 4, 157–171. https://doi.org/
10.1070/RM1989v044n04ABEH002139; MR1023106; Zbl 0703.35002

[2] P. F. Byid, M. D. Friedman, Handbook of elliptic integrals for engineer and physicists, Springer-
Verlag, Berlin, 1954. https://doi.org/10.1007/978-3-642-52803-3; MR0060642

[3] J. Chavarriga, M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst.
1(1999), No. 1, 1–70. https://doi.org/10.1007/BF02969404; MR1747197

[4] F. Dumortier, C. Li, Perturbations from an elliptic Hamiltonian of degree four: (I) Saddle
loop and two saddle cycle, J. Differential Equations 176(2001), No. 1, 114–157. https://
doi.org/10.1006/jdeq.2000.3977; MR1861185; Zbl 1004.34018

[5] F. Dumortier, C. Li, Perturbations from an elliptic Hamiltonian of degree four: (II)
Cuspidal loop, J. Differential Equations 175(2001), No. 2, 209–243. https://doi.org/10.
1006/jdeq.2000.3978; MR1855970; Zbl 1034.34036

[6] F. Dumortier, C. Li, Perturbations from an elliptic Hamiltonian of degree four: (III)
Global center, J. Differential Equations 188(2003), No. 2, 473–511. https://doi.org/10.
1016/S0022-0396(02)00110-9; MR1954291; Zbl 1056.34044

[7] F. Dumortier, C. Li, Perturbations from an elliptic Hamiltonian of degree four: (IV)
Figure eight-loop, J. Differential Equations 188(2003), No. 2, 512–554. https://doi.org/
10.1016/S0022-0396(02)00110-9; MR1954292; Zbl 1057.34015

[8] S. Gautier, L. Gavrilov, I. D. Iliev, Perturbations of quadratic centers of genus one, Dis-
cret Contin. Dyn. Syst. 25(2009), No. 2, 511–535. https://doi.org/10.3934/dcds.2009.
25.511; MR2525189; Zbl 1178.34037

[9] A. Gasull, W. G. Li, J. Llibre, Z. F. Zhang, Chebyshev property of complete elliptic
integrals and its application to Abelian integrals, Pac. J. Math. 202(2002), No. 2, 341–361.
https://doi.org/10.2140/pjm.2002.202.341; MR1887769; Zbl 1086.34523

[10] M. Grau, F. Mañosas, J. Villadelprat, A Chebyshev criterion for Abelian integrals,
Trans. Amer. Math. Soc. 363(2011), 109–129. https://doi.org/10.1090/S0002-9947-2010-
05007-X; MR2719674; Zbl 1217.34052

[11] M. Grau, J. Villadelprat, Bifurcation of critical periods from Pleshkan’s isochrones,
J. Lond. Math. Soc. 81(2010), No. 1, 142–160. https://doi.org/10.1112/jlms/jdp062;
MR2580458; Zbl 1196.34048

https://doi.org/10.1070/RM1989v044n04ABEH002139
https://doi.org/10.1070/RM1989v044n04ABEH002139
https://www.ams.org/mathscinet-getitem?mr=1023106
https://zbmath.org/?q=an:0703.35002
https://doi.org/10.1007/978-3-642-52803-3
https://www.ams.org/mathscinet-getitem?mr=0060642
https://doi.org/10.1007/BF02969404
https://www.ams.org/mathscinet-getitem?mr=1747197
https://doi.org/10.1006/jdeq.2000.3977
https://doi.org/10.1006/jdeq.2000.3977
https://www.ams.org/mathscinet-getitem?mr=1861185
https://zbmath.org/?q=an:1004.34018
https://doi.org/10.1006/jdeq.2000.3978
https://doi.org/10.1006/jdeq.2000.3978
https://www.ams.org/mathscinet-getitem?mr=1855970
https://zbmath.org/?q=an:1034.34036
https://doi.org/10.1016/S0022-0396(02)00110-9
https://doi.org/10.1016/S0022-0396(02)00110-9
https://www.ams.org/mathscinet-getitem?mr=1954291
https://zbmath.org/?q=an:1056.34044
https://doi.org/10.1016/S0022-0396(02)00110-9
https://doi.org/10.1016/S0022-0396(02)00110-9
https://www.ams.org/mathscinet-getitem?mr=1954292
https://zbmath.org/?q=an:1057.34015
https://doi.org/10.3934/dcds.2009.25.511
https://doi.org/10.3934/dcds.2009.25.511
https://www.ams.org/mathscinet-getitem?mr=2525189
https://zbmath.org/?q=an:1178.34037
https://doi.org/10.2140/pjm.2002.202.341
https://www.ams.org/mathscinet-getitem?mr=1887769
https://zbmath.org/?q=an:1086.34523
https://doi.org/10.1090/S0002-9947-2010-05007-X
https://doi.org/10.1090/S0002-9947-2010-05007-X
https://www.ams.org/mathscinet-getitem?mr=2719674
https://zbmath.org/?q=an:1217.34052
https://doi.org/10.1112/jlms/jdp062
https://www.ams.org/mathscinet-getitem?mr=2580458
https://zbmath.org/?q=an:1196.34048


The bifurcation of limit cycles of two classes of cubic systems 15

[12] M. Han, L. Sheng, X. Zhang, Bifurcation theory for finitely smooth planar autonomous
differential systems, J. Differential Equations 264(2018), No. 5, 3596–3618. https://doi.
org/10.1016/j.jde.2017.11.025; MR3741399; Zbl 0682.4723

[13] I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math. 122(1998), No. 2, 107–161.
https://doi.org/10.1016/S0007-4497(98)80080-8; MR1612784; Zbl 0920.34037

[14] S. Karlin, W. Studden, Tchebycheff systems: with applications in analysis and statistics, Pure
and Applied Mathematics, Vol. XV, Interscience Publishers, New York, 1966. https://
doi.org/10.1137/1009050; MR0204922; Zbl 0153.38902

[15] C. Li, J. Llibre, The cyclicity of period annulus of a quadratic reversible Lotka–Volterra
system, Nonlinearity 22(2009), No. 12, 2971–2979. https://doi.org/10.1088/0951-7715/
22/12/009; MR2557456; Zbl 1193.34062

[16] C. Li, W. Li, J. Llibre, Z. Zhang, Linear estimation of the number of zeros of Abelian
integrals for some cubic isochronous centers, J. Differential Equations 180(2002), No. 2,
307–333. https://doi.org/10.1006/jdeq.2001.4064; MR1894015; Zbl 1010.34026

[17] Y. Shao, K. Wu, The cyclicity of the period annulus of two classes of cubic isochronous
systems, J. Appl. Anal. Comput. 3(2013), No. 3, 279–290. https://doi.org/10.11948/

2013020; MR3109979; Zbl 1305.34051

[18] Y. Shao, Y. Zhao, The cyclicity and period function of a class of quadratic reversible
Lotka–Volterra system of genus one, J. Math. Anal. Appl. 377(2011), No. 2, 817–827. https:
//doi.org/10.1016/j.jmaa.2010.11.048; MR2769177; Zbl 1219.34044

[19] K. Wu, Y. Zhao, The cyclicity of the period annulus of the cubic isochronous center, Ann.
Mat. Pura Appl. 191(2012), No. 3, 459–467. https://doi.org/10.1007/s10231-011-0190-
5; MR2958343; Zbl 1264.34062

[20] J. Yang, P. Yu, M. Han, Limit cycle bifurcations near a double homoclinic loop with a
nilpotent saddle of order m, J. Differential Equations 266(2019), No. 1, 455–492. https:
//doi.org/10.1016/j.jde.2018.07.042; MR3870568; Zbl 1406.34068
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