Call Graph and Data Flow Analysis of a Dynamic Functional
Language'

Tamds Nagy, Zoltan Horvath, Laszl6 Lovei, Melinda Téth and Aniké Nagyné Vig

Refactoring is about improving the design of existing program code: making changes to the
source code which preserves the meaning of the program in order to improve non-functional
characteristics of the code like readability or maintainability.

In refactoring, the highest amount of work is usually the precondition checking, which
makes sure that the refactoring does not change the behaviour of the system. Compared to
precondition checking an uncomplicated transformation is almost straightforward. To check
whether the preconditions are met, the type system of the language can provide very useful
information. Our primary research areas are those functional languages which do not have
a static type system. Our aim is to find static analysis techniques which can provide enough
information to check whether preconditions are met. Two examples of such techniques are call
graph and data flow analysis.

Call graph analysis aims to give the exact function dependency relations in a given amount
of code. This means that the wider the scope of the analysis the more accurate the result will
be, but the smaller scope’s call graph can never be invalidated by the new data, just new edges
can appear.

Data flow graph on the other hand aims to give back the flow of data through the functions
[6]. In other words it shows how parameters, global variables are used, passed around the
system.

In Erlang to have an accurate call graph data flow analysis has to be done as well. This is
the result of the highly dynamic nature of the language, and because the way functions are
treated. For example it is possible to call functions from data we receive from different parts of
the system using the erlang:apply built-in function. The source code of such data does not
clearly show that it will be used in a function call. In fact in different parts of the system it can
be used for a different purpose. This is because functions are identified by atoms . Atoms can
be created dynamically, for example with the erlang:list_to_atom function.

There are a subset of function calls which do not need data flow analysis. These are the static
function calls. Where every element of the function call are known at compile time.

The dynamic calls — where the called function is not known at compile time — can be further
categorized based on how much information is present at compile time. Naturally the less
information given the harder the analysis is. There are some edge cases where the analysis
is impossible. In these cases the analysis’ aim is to limit the possible functions which the call
could refer to.

The static analysis aims to create the function call graph of the static calls. This analysis is
straightforward if we use the results of the semantical analysis which is incorporated in our
refactoring system [3].

Collecting the function calls, then sorting based on which function they are in and which
function they call, is essentially the work that has to be done to create the call graph for the
static calls.

While building the static call graph is a relatively lightweight job, the dynamic call graph
building takes significantly more time and resources. Of course the dynamic analysis possibly
adds more data to the graph resulting in a more accurate call graph.

The analysis method is based on the Observer design pattern; which means we have entities
(variables, atom, tuples etc.) that are loosely connected to each other. During the analysis new
connections and entities are created as well. Connection represents the dependency between
certain entities.

!Supported by ELTE IKKK, Ericsson Hungary

42



When an entity finds out more information about itself (for example a variable about its
possible values) it sends this information to the other entities which are connected to it. Because
connections can be created to an entity after its analysis is completed, the entity is not deleted
after its analysis is finished.

Entities are modeled with Erlang processes, and data propagation with message sending.
This approach creates the opportunity of parallel computation, because there is no strong
order to how the entities should be processed. There is one further advantage which is re-
computation after changes happen. If there are changes in the underlying code, the graph can
be adjusted by creating and deleting entities and edges. In other words there is no need to
recompute the whole graph.

To start the analysis we need initial entities which will be further analysed, these are the dy-
namic calls unknown values. For example the values of the erlang:apply/3 function’s pa-
rameters. Further analysis is done by investigating entity types and surroundings. This could
result in new edges and new entities which need to be further analysed. When the value of
the initial entities is found out with the analysis it is made available through the call_graph
applications interface in the same way as the static call graph data.

In general the result of the call graph and data flow can be widely used by the precondition
checks of the different refactorings [1, 2, 4, 3, 5].

By creating a different interface to retrieve the existing data of the static analysis, the data
collection part for automatic detection of refactoring opportunities can be easier. Of course
this interface will be used to retrieve the dynamic function call data as well. By providing a
common interface for the two different data we further ease data collection complexity.

References

[1] C# Refactory homepage. http://www.xtreme-simplicity.net/
[2] Eclipse Project homepage. http://www.eclipse.org/

[3] Erlang Official homepage. http://erlang.org/

[4] H. Li, S. Thompson, and C. Reinke. The Haskell Refactorer, HaRe, and its APIL. Electronic
Notes in Theoretical Computer Science, 141(4):29-34, 2005.

[5] R. Szab6-Nacsa, P. Dividnszky, and Z. Horvéth. Prototype environment for refactoring
Clean programs. In The Fourth Conference of PhD Students in Computer Science (CSCS
2004), Vol. of extended abstracts, page 113, Szeged, Hungary, July 2004. (full paper:
http://aszt.inf.elte.hu/fun_ver/ ,10 pages).

[6] G. Naumovich. Using the observer design pattern for implementation of data flow analy-
ses. SIGSOFT Softw. Eng. Notes, 28(1):61-68, 2003.

43



