
Introducing a Benchmark for Evaluating Reverse Engineering Tools

Lajos Jenő Fülöp, Péter Hegedűs and Rudolf Ferenc

Useful information can be discovered from source code with the examination of software
systems. First step of the examination is to analyze the source code and making an abstract
representation. In the second step different structures and problems can be discovered from
the abstract representation, e.g. design patterns, code duplications and coding rule violations.
These structures and problems are discovered by different kind of reverse engineering tools.

Reverse engineering tools present their results in different formats, which makes them very
difficult to compare. In our previous works [5][6] we presented a tool called DEEBEE(DEsign
pattern Evaluation BEnchmark Environment) which supports the evaluation and comparison
of design pattern miner tools only. We realized that DEEBEE can be extended to support the
evaluation and comparison of every kind of reverse engineering tools as well. In this paper we
introduce a benchmark - called BEFRIEND (BEnchmark For Reverse engInEering tools work-
iNg on source coDe) - with which the outputs of reverse engineering tools can be evaluated
and compared easily and efficiently. The extension of DEEBEE into a general benchmark BE-
FRIEND is motivated by other works which try to evaluate and compare code duplication
finder tools [3][4] and rule violation checker tools[1][7] as well.

BEFRIEND supports different kinds of tool families, programming languages and software
systems, and it enables the users to define their own evaluation criteria. Furthermore, it is a
web-application open to the community and freely available [2]. We hope it will be accepted
and used by the community in the future to evaluate and compare their tools with others.

References

[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou. Evaluating static anal-
ysis defect warnings on production software. In PASTE ’07: Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering, pages 1–
8. ACM, 2007.

[2] DEEBEE and BEFRIENDHomepage.
http://www.inf.u-szeged.hu/designpatterns/ .

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and Evaluation
of Clone Detection Tools. In IEEE Transactions on Software Engineering, volume 33, pages
577–591, 2007.

[4] E. Burd and J. Bailey. Evaluating clone detection tools for use during preventative mainte-
nance. In Proceedings of the 2th International Workshop on Source Code Analysis and Manipula-
tion (SCAM 2002), pages 36–43. IEEE Computer Society, 2002.

[5] L. J. Fülöp, R. Ferenc, and T. Gyimóthy. Towards a Benchmark for Evaluating Design Pat-
tern Miner Tools. In Proceedings of the 12th European Conference on Software Maintenance and
Reengineering (CSMR 2008). IEEE Computer Society, Apr. 2008.

[6] L. J. Fülöp, A. Ilia, A. Z. Végh, P. Hegedűs, and R. Ferenc. Comparing and Evaluating De-
sign Pattern Miner Tools. In ANNALES UNIVERSITATIS SCIENTIARUM DE ROLANDO
EÖTVÖS NOMINATAE Sectio Computatorica. Department of Computer Algebra, Eötvös
Loránd University, 2008.

[7] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb. An evaluation of two
bug pattern tools for java. In Proceedings of the 1st IEEE International Conference on Software
Testing, Verification and Validation (ICST 2008), pages 1–8. ACM, 2008.

25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/232901446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

