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The goal of robust design is to safeguard reliably against worst-case scenarios while seeking
an optimal design. An engineer typically faces the task to develop a product which satisfies
given requirements formulated as design constraints. Output of the engineer’s work should
be an optimal design with respect to a certain design objective. In many cases this is the cost
or the mass of the designed product. An algorithmic method for design optimization func-
tions as decision making support for engineers. The attempt of autonomous design has been
made trying to capture the reasoning of the system experts. For more complex kinds of struc-
tures, e.g., a spacecraft component or a whole spacecraft, the design process addresses several
different engineering fields, so the design optimization becomes multidisciplinary. An interac-
tion between the involved disciplines is necessary. The resulting overall optimization process
is known as multidisciplinary design optimization (MDO). Particularly MDO benefits from
autonomous optimization methods for decision support that bridge the gap between differ-
ent technical backgrounds. The difficulties arising during design optimization can be of most
complex nature: multiobjective, multilevel, mixed integer nonlinear programming (MINLP)
optimization problems with discontinuities or strong nonlinearities are involved. Standard
optimization techniques cannot be used to solve such problems.

In many cases, in particular in early design phases, it is common engineering practice to
handle uncertainties by assigning intervals, or safety margins, to the uncertain variables, usu-
ally combined with an iterative process of refining the intervals while converging to a robust
optimal design. The refinement of the intervals is done by experts who assess whether the
worst-case scenario, that has been determined for the design at the current stage of the itera-
tion process, is too pessimistic or too optimistic. How to assign the intervals and how to choose
the endpoint of the assigned intervals to get the worst-case scenario is usually not computed
but assessed by an expert. The goal of the whole iteration includes both optimization of the
design and safeguarding against uncertainties. The achieved design can thus be qualified as
robust. Apart from interval assignments there are further methods to handle uncertainties in
design processes: e.g., fuzzy clustering, simulation techniques like Monte Carlo.

Real life applications of uncertainty methods disclose various problems. The dimension of
many uncertain real life scenarios is very high which causes severe computational problems,
famous as the curse of dimensionality. Even given the knowledge of the multivariate probabil-
ity distributions the numerical computation of the error probabilities becomes very expensive,
if not impossible. Often standard simulation techniques are used to tackle the dimensional-
ity issue, as the computational effort they require seems to be independent of the dimension.
Advancements have been made based on sensitivity analysis, or on α-level optimization.

Frequently, especially in early design phases, data are scarce, though a large amount of data
would be required to use traditional methods to estimate high dimensional probability distri-
butions. Simulation techniques like Monte Carlo also require a large amount of information to
be reliable, or unjustified assumptions on the uncertainties have to be made. However, mostly
there are only interval bounds on the uncertain variables, sometimes probability distributions
for single variables without correlation information. The lack of information typically causes
standard simulation based methods to underestimate the effects of the uncertain tails of the
probability distribution. Similarly, a reduction of the problem to an interval analysis after as-
signing intervals to the uncertain variables as described before (e.g., 3 σ boxes) entails a loss of
valuable uncertainty information which would actually be available, maybe unformalized, but
is not at all involved in the uncertainty model.

To overcome the problem of high dimensions in real life applications and the problem of in-
complete information wemake use of the concept of potential clouds. Potential clouds combine
ideas from p-boxes, fuzzy sets, interval and optimization methods. The clouds can be weaved
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into an optimization problem formulation as confidence regions constraints. The computa-
tional effort is still tractable in higher dimensions. Remarkably potential clouds even enable
an a posteriori information update for experts, even if an expert is unable to give a formal de-
scription of his knowledge. Unformalized knowledge is available, e.g., if an expert does not
know correlations exactly, but can formulate a statement like ’if variable a has a large value
then variable b cannot have a low value’. Thus he is able to exclude irrelevant scenarios, al-
though he is unable to give a formal description. This can be performed in a graphical user
interface as an interaction between the uncertainty modeling and the optimization phase. The
new information can be processed by means of potential clouds.

The basic concept of our methodology can be summarized in three essential steps within
an iterative framework. First, the expert provides the underlying system model, given as a
black-box model, and all a priori available uncertainty information on the input variables of
the model. Second, the information is processed to generate a potential cloud. Parameterized
by given confidence levels, the clouds provide a nested collection of regions of relevant sce-
narios affecting the worst-case for a given design and thus produce safety constraints for the
optimization. Third, optimization methods minimize a certain objective function (e.g., cost,
mass) subject to the functional constraints which are represented by the system model, and
subject to the safety constraints from the cloud. To this end we have developed heuristic opti-
mization techniques. The results of the optimization are returned to the expert, who is given an
interactive possibility to provide additional uncertainty information a posteriori and to rerun
the procedure, adaptively improving the uncertainty model.

References

[1] D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized Processing of Uncer-
tainty. New York: Plenum Press, 1986.

[2] S. Ferson. Ramas Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. Lewis
Publishers, U.S., 2002.

[3] M. Fuchs and A. Neumaier. Potential based clouds in robust design optimization. Journal
of statistical theory and practice, special issue on imprecision, 2008. accepted, preprint available
on-line at: http://www.martin-fuchs.net/publications.php .

[4] B. Moeller and M. Beer. Fuzzy randomness: uncertainty in civil engineering and computa-
tional mechanics. Springer-Verlag Berlin Heidelberg, 2004.

[5] A. Neumaier. Clouds, fuzzy sets and probability intervals. Reliable Computing 10, pages
249–272, 2004. http://www.mat.univie.ac.at/ neum/ms/cloud.pdf .

24


