
Model transformations on the Preprocessor Metamodel
- Graph Transformation approach

László Vidács

There is an important trend in software engineering that focuses on development methods
where models are used besides concentrating on source code only. In previous work we de-
signed a metamodel for C/C++ preprocessing (Columbus Schema for C/C++ Preprocessing
[1]). The metamodel describes the source code from the preprocessor‘s point of view and en-
ables the studying the preprocessor constructs in detail.

Refactoring techniques are considered as promising means for software development. There
exists extensive literature on refactoring object-oriented programs. Refactoring on C++ code is
supported by a variety of tools. Preprocessor means obstacle for these tools. Since preprocess-
ing loses information about macros and different configurations, it is not enough to work on
the preprocessed code. Tool developers face the problem of having two different languages:
C/C++ and the preprocessor language. There are several research papers about solving this
problem, but the aim of these contributions is to implement only the C/C++ refactorings. A
recent work of Garrido [2] combines directive usages into the C language. The contribution
contains several preprocessor related refactorings, which are not related to the C language itself
but to the preprocessing directives. Refactorings made on directives may be not so complicated
as language dependent refactorings combined with directives. But they may have important
role in refactoring real C/C++ programs. However, refactorings are usually considered from
the implementation point of view only, not from a conceptual view.

A conceptual view on preprocessor refactorings on the basis of metamodels and graph trans-
formations allows to express the properties of refactorings more precise. A conceptual view
also opens the possibility for viewing refactorings on the semantical level. In this contribution
we provide transformations on preprocessor constructs (like adding a new macro parameter)
as graph transformations. We use a single pushout approach providing the left-hand side and
right-hand side of the transformation. The transformed graph is a directed, labelled and at-
tributed graph. It is a program graph according to the UML class diagram of the metamodel.
To be more general we extend the usual notation with the concept of multi-nodes. It is common
to use NACs (Negative Application Condition) to prevent application of a graph transforma-
tion rule, but we chose to use OCL expressions instead, because in program transformation
context the application conditions are as complex as the structural changes in the graph. OCL
is appropriate not only to formalize conditions but to check them in a program graph.

To validate this approach we choose the USE system instead of existing graph transforma-
tion engines. USE can handle UML metamodels and models, this concept fits to our existing
program representation. The graph transformation rule is given as a USE description and con-
verted into basic operations on the model instance. The USE system evaluates OCL expressions
to check the application conditions and performs the operations. The time consuming part of
a transformation is to find the appropriate place in the graph where it is applicable. In case of
refactoring the user has to determine the place of the transformation, in our implementation
the place is a parameter of the transformation rule.

Our approach uses the result of graph transformation theory in software (re)engineering.
Transformations on preprocessor constructs are not well studied yet. In this paper they are
formalized using a higher level representation which also enables condition checking. The
metamodel-model approach of the USE system provides a flexible framework to manipulate
graphs and to visually check the transformation rules. Besides model to model transformations
the reverse engineering tools of the Columbus system give the possibility of source code to
source code level transformations.

102



References

[1] L. Vidács, Á. Beszédes, and F. Rudolf. Columbus Schema for C/C++ Preprocessing, CSMR,
IEEE Computer Society, Tampere, Finland

[2] A. Garrido. Program Refactoring in the Presence of Preprocessor Directives Ph.D. thesis,
UIUC 2005

103


