
Programming Language Elements for Correctness Proofs

Gergely Dévai

The study of formal methods to reason about program properties is getting a more and more
important research area, as a considerable part of a software product’s lifecycle is testing and
bugfixing. The theoretical basis — such as formal programming models and reasoning rules
[1, 2, 3, 5, 6, 7] — has been developed so far, but these are rarely used in industry [10]. The main
reason for this fact is that formally proving a program property usually takes much more time
than writing the program itself.

The goal of this research is to use programming language elements to make the construction
of these proofs easier. The basic idea is to develop a new programming language where the
source code contains the formal specification and the correctness proof of the implementation.
The proofs are built up using stepwise refinement [4, 8, 9], as this technique provides correctness by
construction [12], and also helps the programmers to make the right decisions during software
development. The compiler of the language has to check the soundness of the proof steps and
to generate the program code in a target language using the information of the proof.

Similarly to programs, proofs also contain schematic fragments. These can be managed
efficiently using "proof templates" that have the same role in proof construction as procedures
have in traditional program development. This leads to a special kind of generative programming
[13]: by the instantiation of the templates a proof is constructed (and checked) in compile time
and from the proof a target language program is generated which automatically fulfils all the
requirements stated in the specification.

In this paper we show how language elements can be used to make specification statements
easy to understand and to write, we introduce the basic refinement rules of the model and
show how templates can be used to construct the proof. The algorithms used by the compiler
to check the soundness of the proof and to generate the target language program are discussed
too.

References

[1] C.A.R. Hoare. An axiomatic basis for computer programming, Commun. ACM, 12, 10, 1969,
0001-0782, 576–580, http://doi.acm.org/10.1145/363235.363259 , ACM Press,
New York, NY, USA.

[2] E.W. Dijkstra. A Discipline of Programming, Prentice-Hall, 1976, DIJ e 76:1 1.Ex,

[3] F. Kröger. Temporal Logic of Programs, Springer, 1987, Berlin, Heidelberg.

[4] J.M. Morris. A theoretical basis for stepwise refinement and the pro-
gramming calculus, Sci. Comput. Program., 9, 3, 1987, 0167-6423, 287–306,
http://dx.doi.org/10.1016/0167-6423(87)90011-6 , Elsevier North-Holland,
Inc., Amsterdam, The Netherlands.

[5] K.M. Chandy and J. Misra. Parallel Program Design, A Foundation, Addison-Wesley, 1988.

[6] Z. Horváth. Párhuzamos programok relációs programozási modellje, ELTE, TTK, Infor-
matika Doktori Iskola, 1996.

[7] Z. Horváth, T. Kozsik, and M. Tejfel. Proving Invariants of Functional Programs, Proceedings
of the Eighth Symposium on Programming Languages and Software Tools, 115-127, 2003.

[8] C. Morgan. Programming from specifications, Second, Prentice Hall International (UK) Ltd.,
1994.

40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/232901383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


[9] J.-R. Abrial. The B-book: assigning programs to meanings, Cambridge University Press, New
York, NY, USA, 1996, 0-521-49619-5.

[10] J.P. Bowen and M.G. Hinchey. Ten commandments revisited: a ten-year perspective on
the industrial application of formal methods, FMICS ’05: Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, 2005, 1-59593-148-1, 8–16, lLisbon,
Portugal, http://doi.acm.org/10.1145/1081180.1081183, ACM Press, New York, NY, USA.

[11] D. Pavlovic and D. Smith. Software development by refinement, In UNU/IIST 10th An-
niversary Colloqium, Formal Methods at the Crossroads: From Panaea to Foundational Sup-
port. Springer-Verlag, 2003., 2003,
citeseer.ist.psu.edu/pavlovic03software.html .

[12] J. McDonald and J. Anton. SPECWARE - Producing Software Correct by Construction,
Kestrel Institute Technical Report, KES.U.01.3., March 2001., 2001.

[13] M. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and Applica-
tions, Addison-Wesley, CZA k 00:1 1.Ex, 2000.

41


