View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Szeged

Building the Instances of
Columbus Schema for C/C++ Preprocessing

Laszl6 Vidacs

Preprocessor directives are widely used in C/C++ programs and have various purposes.
Virtually there is no real C program without file inclusion, macro expansion and conditional
compilation. The preprocessor has proven useful to programmers for over two decades, but
it has also a number of drawbacks. The fundamental problem about preprocessing from a
program comprehension point of view is that the compiler gets the preprocessed code and not
the original source code that the programmer writes. In many cases the two codes are quite
different (according to a case study of UNIX software packages, 8.4% of the source code of
the programs consist of preprocessor directives). Program code with lots of directives often
causes difficulties in program understanding. To aid program comprehension we designed a
C/C++ preprocessor schema which describes the usage of preprocessor directives in the source
code. We also implemented a preprocessor which is able to generate schema instances from
the source code. Using a schema instance the connection between the original source and the
compiled source can be understood in concrete cases (for instance a macro expansion can be
followed step-by-step from the macro call to the #def ine directive which defines it).

Conditional compilation allows the programmer to create several configurations in one
source. Depending on the environment of the compilation the compiler gets different code,
but always only one configuration (for example different code pieces belong to different op-
erating systems). According to the conditional compilation we defined two kinds of schema
instances: dynamic instances that describe directives inside one configuration, and static in-
stances which are configuration-independent. Building dynamic instances is straightforward
because the work of the preprocessor is followed accurately. However, a static instance shows
relations also between configurations and can be built in various ways. Here the natural build-
ing strategy is the pessimistic approach (every possible relation is shown between directives),
which can be much improved by dropping some unnecessary relations. Determining weather
two directives belong to the same configuration is an important improvement to the building
method of static instances. In our preprocessor, besides the pessimistic method, we experienced
with more powerful building strategies as well.

125


https://core.ac.uk/display/232901355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

