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We present here the prototype of an interactive environment where one can incrementally
carry out programmer-guided meaning-preserving program transformations in functional lan-
guages. We discuss an alternative approach to the problems of storing and extracting the
syntactic and also the static semantic information in order to be enough to perform the de-
sired transformations. In our approach the program to be redesigned is stored in a relational
database.

Several transformation case studies will help us to demonstrate how this database can be
used to transform programs, check the preconditions and make compensation steps to ensure
correct transformations.

We also show an interactive environment which will help the programmer to choose the
appropriate refactoring step and its parameters. During redesign process the programmer is
faced with one of the selected "views" extracted from the database. Different transformations
can be carried out on different views, depending on which view is preferable for the program-
mer and/or which view is more suitable for the given transformation.
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