
Prototype Environment for Refactoring Clean Programs

Rozália Szabó-Nacsa, Péter Diviánszky and Zoltán Horváth

We present here the prototype of an interactive environment where one can incrementally
carry out programmer-guided meaning-preserving program transformations in functional lan-
guages. We discuss an alternative approach to the problems of storing and extracting the
syntactic and also the static semantic information in order to be enough to perform the de-
sired transformations. In our approach the program to be redesigned is stored in a relational
database.

Several transformation case studies will help us to demonstrate how this database can be
used to transform programs, check the preconditions and make compensation steps to ensure
correct transformations.

We also show an interactive environment which will help the programmer to choose the
appropriate refactoring step and its parameters. During redesign process the programmer is
faced with one of the selected "views" extracted from the database. Different transformations
can be carried out on different views, depending on which view is preferable for the program-
mer and/or which view is more suitable for the given transformation.

References

[1] Li, H., Reinke, C., Thompson, S.: Tool Support for Refactoring Functional Programs,
Haskell Workshop: Proceedings of the ACM SIGPLAN workshop on Haskell, Uppsala,
Sweden, Pages: 27-38, 2003.

[2] Fóthi, Á., Horváth, Z., Nyéky-Gaizler, J.: A Relational Model of Transformation in Pro-
gramming, Proceedings of the 3rd International Conference on Applied Informatics, Eger-
Noszvaj, Hungary, Aug. 26-28, 1997. 335-349.

[3] Plasmeijer, R., Eekelen, M.: Concurren Clean Language Report, Technical Report CSI-
R9816, Computing Science Institute, University of Nijmegen, 1998.

[4] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code, Addison-Wesley, 1999.

[5] Martin Fowler’s refactoring site, www.refactoring.com

[6] de Mol, M., van Eekelen, m., Plasmeijer, R.: SPARKLE: A Functional Theorem Prover, In-
ternational Workshop on the Implementation of Functional Languages, IFL 2001, Selected
Papers, Springer-Verlag, LNCS 2312, pages 55-71.

[7] Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects - a case
study 6th International Conference on Applied Informatics, Eger, Hungary January 27-31,
2004.

113


