Effective Implementation of Hyper-Unit Propagation on FPGA and
PC

Gabor Kusper and Krisztian Kusper

SAT solver algorithms are based on unit propagation. Unit propagation is a special case of
hyper-unit propagation. Hyper-unit propagation is the propagation of an assignment. Usually
hyper-unit propagation is implemented as a series of unit propagation by the units of the as-
signment. This means that it is not utilized that the units can be propagated simultaneously.
We report a special literal matrix representation of SAT, which allows us to do hyper-unit prop-
agation at once using only 3 operations per clauses. The 3 operation are 2 binary and operation
and a comparison with zero. These operations are simple and allow us to implement hyper-
unit propagation efficiently on a dedicated hardware using FPGA and on PC using low level
programming languages like assembler. We compare several implementations.

If we use literal matrix representation of SAT we need at least two bits to represent a literal,
because a literal is either positive or negative or the corresponding variable is not present (no
occurrence literal). The basic idea of the special literal matrix is that we use the two bits as
follows. If the first bit is set (1) and the second one is clear (0), it means the literal is positive.
If the second bit is set and the first one is clear, it means the literal is negative. If both two bits
are set or clear, it means the literal is the no occurrence literal. This is the new idea, because
the usual literal matrix representations use only one combination of bits to represent the no
occurrence literal.

We utilize this new idea as follows. First, we have to decide whether a clause becomes true
or not if we assume, i.e., propagate an assignment. If they have a common literal then the
clause becomes true. Second, we have to remove irrelevant literals form clauses that have no
common literal with the assignments. This means we remove the negative of the assignment
from these clauses. Both operations can be done using binary and operation, but in the first
case we have to represent no occurrence literals in the assignment as 00. In the second case we
have to use 11 to represent no occurrence literals in the assignment.

We implemented this technique on FPGA and on PC (32 bit x86-architecture).

79



