Reducing the complexity and controlling the network size of
LS-SVM solutions, by solving an overdetermined set of equations

J6zsef Valyon

Introduction: In case of noisy learning data, the traditional NN —due to it’s construction — of-
ten leads to poor generalization and “over-fitting”. The SVM [1],[2] (Support Vector Machine)
method, introduced by Vapnik, was designed to overcome these problems. The LS-SVM (Least
Squares SVM) [3],[4] provides us with the similar advantages, but in this case training means
solving a set of linear equations instead of a long and computationally hard quadratic pro-
gramming problem involved by the standard SVM. This LS method effectively reduces the
algorithmic complexity, but for really large problems, comprising a very large number of train-
ing samples, even this least-squares solution can become highly memory and time consuming.
The least—squares version incorporates all input vectors in the network to produce the result,
while the traditional SVM selects, marks some vectors (called support vectors) as ones that are
important in the regression. This behavior can also be reached with LS-SVM by applying a
pruning method [4], but in order to achieve it, the entire large problem must be solved at least
once. This paper describes a new formulation of the L5-SVM, which provides us with control
over the size and structure of the network, and at the same time reduces the complexity —time
and memory requirements— of the required calculations. The LS-SVM method is capable of
solving both classification and regression problems. Our sample problem concerns regression
(LS-SVR), therefore we discuss this in the sequel. With minor changes the given algorithm can
also be applied to classification.

The LS-SVR method [3],[4]: A training data set {x;,d;}Y, is obtained, where x; € R rep-
resents a p-dimensional input vector and d; € R is the scalar target output. Our goal is to
approximate an y = f(x) function, which represents the dependence of the output d from the
input x. Let’s define the form of this function as formulated below:
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The ¢y (x) basis function is assumed to be 1, therefore w, represents the bias b. The solution
concludes in a constrained optimization, which leads to the following overall solution:
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Q;; = K(x;,x;) (C is a chosen constant, K (x;,x;) is a kernel function) and the estimation is:
y =0, K (x,%;) +b.

The reduced method: If the training set comprises N samples, then our original linear equa-
tion set consists of (N + 1) equations, (N + 1) unknowns and (N + 1)? coefficients. By selecting
some (e.g. M, M < N) vectors to be “support vectors”, the number of variables are reduced, re-
sulting in more equations than unknowns. Our problem becomes overdetermined, which can
be solved as a linear least—squares problem, consisting only (M + 1)? coefficients. Every variable
stands for a neuron —representing it’s weight—and each of the M selected training vectors will
become a center of a kernel function. Therefore the selected inputs must be chosen accordingly
(e.g. equally distanced, less noisy etc.). The above described method solves a much smaller
problem, but still takes all known samples into consideration! The result for a simple noisy
sinc(z) regression is plotted on figure 1, where (+) —s are the noisy training samples (every
second one —circled— is selected into set M), (.) represents the result of the reduced LS-SVM
method and (o) stands for the result of the normal solution. It can be seen, that the above de-
scribed method —when the training set is large enough-leads to almost the same results based
on a much smaller equation set, as the original solution. The resulting network is smaller,
whilst the algorithmic complexity is reduced.
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Figure 1: A sinc(z) regression based on the described method (M = N/2).
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