Sets of numbers in different number systems and the Chomsky hierarchy

István Katsányi

It is a thoroughly studied subject within the discipline of formal languages and automata theory, that under which conditions will a set of numbers in m-ary notation be regular for a given $m \ge 1$. Cobham has solved the bases of this problem in [1]. His results were extended and generalized by many authors in many ways for example in the papers [2], [3], [4], [5], [6], [7]. Luca and Restivo suggested in their paper ([3]) to study the open problem of the context-free case. In this work, we examine the context-free, the context sensitive and the recursively enumerable classes in addition to the regular languages, hence the examination of the Chomsky-hierarchy in this regard becomes complete.

Let \mathcal{N} denote the set of nonnegative integers, \mathcal{REG} , \mathcal{CF} , \mathcal{CS} , \mathcal{RE} the classes of regular, contextfree, context sensitive and recursively enumerable languages, respectively. For a set $A \subseteq \mathcal{N}$, and for an integer $a \ge 1$ let us denote by $L_a(A)$ the language that represents the set A in the base a number system.

One of the main results of our paper is the next theorem:

	$a=1, b \ge 2$	$a \ge 2, b = 1$	$ \begin{array}{l} a,b\geq 2,\\ \exists n,m\geq 1:\\ a^n=b^m \end{array} .$	$ \begin{array}{c} a,b \geq 2, \\ \not \supseteq n,m \geq 1: \\ a^n = b^m \end{array} $
\mathcal{REG}	\mathcal{REG}	CS	\mathcal{REG}	\mathcal{CS}^*
\mathcal{CF}	\mathcal{REG}	CS	\mathcal{CF}	\mathcal{CS}^*
\mathcal{CS}	\mathcal{RE}^*	CS	CS	CS
\mathcal{RE}	\mathcal{RE}	\mathcal{RE}	\mathcal{RE}	\mathcal{RE}

Theorem 1 The following table is filled in correctly.

Each element of the table determines the Chomsky-class, that for every set $A \subseteq \mathcal{N}$ the language $L_b(A)$ belongs to, provided that a and b have the property written in the heading of the column of the element, and $L_a(A)$ belongs to the class shown in the heading of the row of the element. With the exception of the elements marked with a *, the presented classes are the smallest ones in the Chomsky-hierarchy with this property.

The other main part of this paper is to study, that when do the arithmetical operations alter the Chomsky–class of the sets represented in a number system. First define some operation over sets of numbers:

Definition 1 Let $A, B \subseteq \mathcal{N}$ be two sets of numbers, and let $c \ge 0$ be an integer. Let us define

$$\begin{aligned} A + B &= \{a + b \mid a \in A, b \in B\}, \\ A^B &= \{a^b \mid a \in A, b \in B\}, \\ c + A &= A + c = \{c\} + A, \\ c^A &= \{c\}^A, \end{aligned} \qquad \begin{aligned} A \cdot B &= \{ab \mid a \in A, b \in B\}, \\ c \cdot A &= A \cdot c = \{c\} \cdot A, \\ A^c &= A^{\{c\}}. \end{aligned}$$

Theorem 2 For every base $a \ge 1$, the following table is filled in correctly.

		c + A	$c \cdot A$	A + B	$A \cdot B$	A^B
I	\mathcal{REG}	\mathcal{REG}	\mathcal{REG}	\mathcal{REG}	\mathcal{CS}^*	\mathcal{CS}^*
	\mathcal{CF}	\mathcal{CF}	\mathcal{CF}	\mathcal{CS}^*	\mathcal{CS}^*	\mathcal{CS}^*
	CS	CS	\mathcal{CS}	CS	CS	\mathcal{CS}
	\mathcal{RE}	\mathcal{RE}	\mathcal{RE}	\mathcal{RE}	\mathcal{RE}	\mathcal{RE}

Each element of the table determines the Chomsky–class, that the language $L_a(C)$ belongs to for every $c \ge 0$, $A, B \subseteq \mathcal{N}$, provided that C is the result of the operation written in the heading of the column of the element, and $L_a(A)$ (and $L_a(B)$, if appropriate) belongs to the class shown in the heading of the row of the element. With the exception of the elements marked with a *, the presented classes are the smallest ones in the Chomsky–hierarchy with this property. As a corollary of theorem 2, we get results, which in some sense extend the theorem of Horváth about the ranges of polinomials published in [8]:

Theorem 3 Let $a \ge 1$ be the base of our number system, $A_0, A_1 \subseteq \mathcal{N}$ be finite sets, $X \subseteq \mathcal{N}$ be a set for which $L_a(X) \in \mathcal{F}$, where \mathcal{F} is one of the classes $\mathcal{RE}, \mathcal{CS}, \mathcal{CF}, \mathcal{REG}$. Then $L_a(A_1 \cdot X + A_0) \in \mathcal{F}$.

Theorem 4 Let $a \ge 1$ be the base of our number system, $A_0, A_1, \ldots, A_n \subseteq \mathcal{N}$ be finite sets, $X \subseteq \mathcal{N}$ be a set for which $L_a(X) \in \mathcal{F}$, where \mathcal{F} is one of the classes $\mathcal{RE}, \mathcal{CS}$. Then $L_a(A_nX^n + \cdots + A_1 \cdot X + A_0) \in \mathcal{F}$.

Acknowledgement

The author wishes to thank László Hunyadvári for his useful suggestions.

References

- [1] Alan Cobham. On the base-dependance of sets of numbers recognizable by finite automata. *Mathematical Systems Theory*, 3(2):186–192, 1969.
- [2] Karel Culik II and Arto Salomaa. Ambiguity and decision problems concerning number systems. *Information and Control*, 56(3):139–153, 1983.
- [3] Aldo de Luca and Antonio Restivo. Star-free sets of integers. *Theoretical Computer Science*, 43(2-3):265–275, 1986.
- [4] Juha Honkala. Bases and ambiguity of number systems. *Theoretical Computer Science*, 31(1-2):61–71, May 1984.
- [5] Juha Honkala. A decision method for the recognizability of sets defined by number systems. *RAIRO Inform. Théor. Appl.*, 20(4):395–403, 1986.
- [6] Juha Honkala. A decision method for the unambiguity of sets defined by number systems. *The Journal of Universal Computer Science*, 1(9):648–653, September 1995.
- [7] Christian Michaux and Roger Villemaire. Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of Cobham's and Semenov's theorems. Annals of Pure and Applied Logic, 77(3):251–277, 19 February 1996.
- [8] Horváth Sándor. Ranges of polinomials are non-context-free in any number system. To appear in: Pure Mathematics and Applications.