
Debug Slicing of Logic Programs

László Harmath, Gyöngyi Szilágyi and Tibor Gyimóthy

Slicing methods are widely used for the debugging, testing and maintance of imperative pro-
grams. Intuitively, a slice should contain all those parts of a program that may affect the variables
in a set % at a program point �. Slicing algorithms can be classified according to whether they only
use statically available information (static slicing), or compute those statements which influence the
value of a variable occurrence for a specific program input (dynamic slice). Dynamic slicing methods
are more appropriate for debugging than static ones as during debugging we generally investigate the
program behaviour under a specific test case. The main advantage of using a dynamic slice during
debugging is that many statements can be ignored in the process of bug localization.

Different dynamic slicing methods have been introduced for debugging imperative programs [3].
Most of these methods are based on a dependence graph which contains the explicit control depen-
dences and data dependences of the program. In [1, 2] a slicing method was introduced for logic
programs, and this method being used to improve the efficiency of the Shapiro’s algorithmic debug-
ging algorithm. The slice presented in [1] contains those parts of a program that actually have an
influence on the value of an argument of a predicate. This type of slice (called data flow slice) is safe
if the structure of the proof tree for a goal is not changed.

However, during debugging we also need to identify those predicates that actually did not affect
an argument in a predicate but could have affected it had they been evaluated differently. We can
say that these predicates are in the Potentially Dependent Predicate Set. We note that the different
evaluation of the predicates in this set could change the structure of the success branch of the proof
tree.

In this paper we introduce a new type of slicing called Debug slicing for Prolog programs without
side effects. A Debug slice of an Augmented Proof Tree includes all those predicates that may
affect the value of an argument in any success branch’s predicate. So this slice is very suitable for
debugging. The Debug slice is the set of predicates which contains the predicates of the success
branches of the SLD-tree, the Potentially Dependent Predicates and their data dependences.

This slicing method has been integrated into an interactive algorithmic debugging tool to reduce
the number of questions to the user during a debugging session [2]. The size of the debug slice is
larger than the size of the data flow slice, however data flow slice is not safe for debugging. On the
other hand the Debug slice contains all parts of the program that may be responsible for the incorrect
behaviour at a selected argument position.

References

[1] T. Gyimóthy and J. Paakki: Static Slicing of Logic Programs.In Proceedings of Second Inter-
national Workshop on Automated and Algorithmic Debugging (AADEBUG’95), pages 85-105,
Saint Malo, France, May 1995.

[2] G. Kókai, L. Harmath, T. Gyimóthy: Algorithmic Debugging and Testing of Prolog Programs.
In Proceedings of the 14th International Conference on Logic Programming (ICLP’97). Eighth
Workshop on Logic Programming Environments, pages 14-21, Leuven Belgium, July 1997.

[3] F. Tip: A survey of Program Slicing Techniques. Journal of Programming Languages, Vol.3.,
No.3, pages 121-189, September, 1995.

44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/232901132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

