
Using Kalman filter algorithm for short-term traffic flow
prediction in a connected vehicle environment

Azadeh Emami1 • Majid Sarvi1 • Saeed Asadi Bagloee1

Received: 21 October 2018 / Revised: 25 June 2019 / Accepted: 28 June 2019 / Published online: 12 July 2019

� The Author(s) 2019

Abstract We develop a Kalman filter for predicting traffic

flow at urban arterials based on data obtained from con-

nected vehicles. The proposed algorithm is computationally

efficient and offers a real-time prediction since it invokes the

connected vehicle data just before the prediction period.

Moreover, it can predict the traffic flow for various pene-

tration rates of connected vehicles (the ratio of the number

of connected vehicles to the total number of vehicles). At

first, the Kalman filter equations are calibrated using data

derived from Vissim traffic simulator for different penetra-

tion rates, different fluctuating arrival rates of vehicles and

various signal settings. Then the filter is evaluated for a

variety of traffic scenarios generated in Vissim simulator.

We evaluate the performance of the algorithm for different

penetration rates under several traffic situations using some

statistical measures. Although many of the previous pre-

diction methods depend highly on data from fixed sensors

(i.e., loop detectors and video cameras), which are associ-

ated with huge installation and maintenance costs, this study

provides a low-cost mean for short-term flow prediction

only based on the connected vehicle data.

Keywords Connected vehicle � Flow prediction � Kalman

filter � Vissim simulator

1 Introduction

Traffic congestion takes a massive toll on cities’ econo-

mies. The congestion cost for Sydney and Melbourne is

around $6.1 billion and $4.6 billion a year, respectively,

and it is projected to increase twofold by 2030 [1]. To

tackle the problem of traffic congestion, intelligent trans-

portation systems (ITSs) are considered as an appropriate

choice to provide a reliable transport network [2]. To this

end, adaptive traffic control is perceived as a useful tool in

the ITS toolbox designed to allocate a fair amount of green

times to vehicles in signalized intersections. The success-

fulness of adaptive traffic control strategies depends highly

on the accuracy of the input data. Hence, it is essential to

enhance the efficiency of traffic prediction algorithms by

providing more exact and real-time data. In addition to

adaptive traffic signals, traffic prediction is also used in the

advanced traveller information system (ATIS), emergency

response system planning, variable message signs (VMSs)

and real-time route guidance to assist drivers to select the

best route among the existing alternatives [3, 4]. The data

from various sources such as fixed sensors or floating

sensors can be used as input for prediction algorithms.

With the emergence of the connected vehicle (CV)

technology, traffic states can be predicted with much higher

accuracy in comparison with point detectors such as loop

detectors and video cameras since point detector sensors

can only provide information about specific spots of a

much larger network. Connected vehicles can transmit their

information such as position, speed and acceleration/de-

celeration to other connected vehicles (V2V) and an

installed infrastructure near the intersections (V2I) on a

real-time basis. Moreover, the data from CVs can also be

used to develop smart and intelligent control schemes for a

network of signalized intersections. Some CV testbeds are
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underway around the world to test various applications of

connected vehicle technology in the real world [5].

‘‘Connected Vehicle’’ is no longer a distant idea or

technology; it is currently becoming a new norm and reality.

Recently, some car manufacturers have started to install an

on-board unit (OBU) in their new products. The OBU is a

small gadget for sending and transmitting signals that can be

easily installed inside vehicles. The cost of OBU is no more

than a few hundred dollars, and it is projected to decrease in

the coming years [6]. The aim is to provide the possibility

for vehicles and infrastructure to cooperate to enhance

safety, mobility and environmental sustainability. However,

there is evidence to support the idea that it takes a long time

for new technology such as OBU to become available in all

new vehicles and even longer for that technology to be in

the majority of vehicles on the road [7]. Therefore, there is a

need to develop traffic signal control strategies based on

data from various penetration rates of connected vehicles,

for which one prerequisite is to create accurate and versatile

traffic prediction methods.

Moreover, traffic state estimation in a dense city with

interlock intersections is a more complicated task com-

pared to freeways and corridors. Nevertheless, a clear

majority of research studies in traffic prediction methods

are dedicated to traffic prediction in isolated freeways and

arterials.

Based on a comprehensive review of the previous

studies, developing short-time prediction methods, which

use the CV data, is still an open research area. Therefore,

this paper presents a Kalman filter strategy to predict traffic

flow on a real-time basis using data from CVs. The pro-

posed method does not depend on the data from fixed

sensors such as loop detectors. Moreover, it can work for

various penetration rates of connected vehicles. The model

is also applied to estimate the traffic flow for urban arterials

where the signalized intersections can considerably affect

the flow of vehicles approaching each intersection.

The paper is organized as follows. The next section is

dedicated to the review of the existing traffic state pre-

diction algorithms. In Sect. 3, the methodology of the flow

prediction algorithm based on Kalman filter method is

explained in detail. Section 4 presents the numerical results

of the Kalman method for different penetration rates of

connected vehicles as well as various traffic conditions.

The conclusion and future research direction are presented

in the last section.

2 Literature review

Regarding various prediction models used in the literature,

the traffic prediction methods can be classified as para-

metric, nonparametric and a combination of both.

Parametric models use the training data to adjust some

finite and fixed set of parameters of the model and then use

the model to estimate the traffic states for a set of different

test data. For instance, a family of time series models [8, 9]

such as linear regression model [10], autoregressive inte-

grated moving average (ARIMA) [11] and Box–Jenkins

time series model [12], Kalman filtering and particle filter

models [13–15] are types of parametric models.

On the other hand, nonparametric models assume that

the distribution of data cannot be easily defined by a set of

fixed and finite parameters in the model. Some nonpara-

metric models include neural networks [16, 17] and non-

parametric regression models [18, 19]. Some prediction

models are developed based on a combination of both

parametric and nonparametric models, such as fuzzy-neural

network [20, 21], neural network and ARIMA model [22],

autoregressive moving average with exogenous input

(ARMAX) [23] and machine learning and neural network

[24].

Although nonparametric methods show better accuracy

in comparison with simple parametric methods such as

time series, they require a high computational effort.

Moreover, their accuracy is highly dependent on the quality

and quantity of the training data [25].

The Kalman filter which uses a state-space model is a

popular tool for short-term traffic prediction thanks to its

multivariate characteristic, in a sense; there exist several

checkpoints to round up noisy data [26]. It can be used in

both stationary and non-stationary traffic conditions (in

other words, stable and highly volatile traffic circulation).

In each step of the prediction, the state variables (which we

aim to predict their quantity in our present work) will

continuously be updated using the new and real-time traffic

condition data collected from different sources [27, 28]. In

this paper, a Kalman filter is developed to predict the traffic

flow of each movement approaching an intersection using

data gathered from connected vehicles in the previous step

of the prediction time.

Prediction data can be obtained from stationary sensors

such as loop detectors, radar and video cameras [3, 29] or

non-stationary sensors such as GPS devices, mobile phones

and probe vehicles [30].

Over the past decade, most research in traffic state

prediction has mostly focused on data gathered from single

point detectors such as inductive loop detectors [31];

however, the prediction of traffic states based on data from

connected vehicles is still a new area of research and needs

to be more investigated. The poor performance of previous

traffic forecasting algorithms based on loop detectors is

mostly due to the lack of widespread deployment of these

sensors in the area of measurement [32]. Moreover, point

detectors can only provide information about specific spots

and therefore are not able to reflect the real situation of the
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traffic in the whole network [33]. These sensors are also

associated with huge installation and maintenance costs

[34]. With the emergence of connected vehicle technology,

it is possible to collect information from connected vehi-

cles in various parts of the network. This precise infor-

mation can be obtained several times in a second. More

accurate data can give rise to better accuracy of the pre-

diction models [35]. One major drawback of this approach

is the imperfect penetration rate of connected vehicles;

recent studies have shown that even if US car manufac-

turers are mandated to install OBU on light vehicles, it

takes approximately 25–30 years to have 95% of vehicles

equipped with communication devices [36]. This implies

the need to develop prediction methods based on a limited

number of connected vehicles [37, 38].

We can summarize the above discussion as follows:

• To optimize the parameters of adaptive traffic signal

controllers, it is of critical importance to predict the

traffic flow for short intervals (i.e., real-time traffic

prediction). Relatively long intervals cannot be used to

accurately adjust the traffic controller parameters in

accordance with the short-term variation of the traffic

condition. However, a vast majority of the literature on

traffic forecasting is dedicated to long-term traffic

prediction. Hence, it is necessary to develop new

algorithms able to accurately predict the traffic state for

a short-time horizon toward the future.

• Over the past decade, most research in traffic forecast-

ing has emphasized the prediction of traffic flow in

freeways and corridors; however, the urban traffic flow

prediction is a more complex problem in the heart of

cities with interlock signalized intersections [32].

• A considerable amount of traffic forecasting literature

has developed their methods based on data gathered

from stationary sensors such as inductive loop detec-

tors. With the emergence of CV technology, it is

possible to have access to more accurate data from

connected vehicles, so there is still an open area for

research in the use of connected vehicle data to predict

traffic states.

• Since it is predicted that reaching a 100% penetration

rate of connected vehicles is not in the scope of near

future, it is of vital importance to develop prediction

methods that can predict the traffic situation based on

data from a limited number of CVs [39].

Based on the aforementioned knowledge gaps, this

paper aims to develop a short-term traffic prediction

algorithm to predict the flow of vehicles in urban networks

based on only data from a limited number of connected

vehicles.

3 Methodology

Consider multi-approach traffic stream flows toward an

intersection as shown in Fig. 1. Traffic flow counted at the

reference line is the result of merging three traffic streams

denoted by F1, F2 and F3. The problem is to predict the

flow at the reference line using two traffic flow data

sources: (1) historical data and (2) a limited number of

connected vehicles both pertaining to traffic streams F1, F2

and F3.

To achieve this, we use a Kalman filter model. In other

words, based on the real-time flow information of

Fig. 1 The layout of the two consecutive intersections
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connected vehicles in each step of the prediction, the flow

in the next time step is predicted. In this section, we first

introduce the basic concepts of the Kalman filter algorithm

followed by a calibration and evaluation process.

3.1 Kalman filter algorithm

The Kalman filter is a state-space model that was first

introduced by Kalman [40]. It can be applied to model

systems with multi-input and multi-output and can be used

for both stationary and non-stationary situations. This

feature of the Kalman filter makes it an appropriate choice

for modeling the traffic states [3]. Kalman filter updates the

prediction of state variables based on the observation in the

previous step. Therefore, it only needs to store the previous

estimate information. The Kalman filter has two distinct

features: (1) It does not require any additional space to

store the entire previously observed data. (2) It is compu-

tationally efficient since it does not need to utilize all the

previous estimated/measured data in each step of the pre-

diction process [41]. In this study, the Kalman filter is used

to predict the flow of vehicles (i.e. state variables) on the

basis of the real-time information received from connected

vehicles (observation) in the last step of the prediction

process. The prediction of the state variable is realized in a

recursive procedure in which observations and previous

states are used to calculate the flow state for the next step

of the prediction process.

Let xk denote the state variables, which are used to show

the flow of vehicles approaching an intersection during the

time step k (see the reference line in Fig. 1). The Kalman

algorithm is used to predict the xk?1, traffic flow for the

next time step. Note that /k represents the state transition

matrix which maps the previous state xk into the next state

xk?1. We consider a noise vector denoted by wk, with a

normal distribution with zero mean and variance Qk. The

state prediction model can then be written as follows:

xkþ1 ¼ /kxk þ wk: ð1Þ

Let zk indicate the observations at time step k, which shows

the flow of connected vehicles approaching the reference

line, H be a matrix denoting the relationship between the

measured variables and state variables, and vk show the

measurement error which is a Gaussian noise with zero

mean and variance Rk. Moreover, wk and vk do not have

any correlation and are statistically independent, that

means for all i and j, we have E wiv
T
j

h i
¼ 0 where E[�]

denotes the expected value. Hence, the flow observation

may be written as

zk ¼ Hxk þ vk; ð2Þ

In each step of the prediction algorithm, detailed below, the

state variables will be updated using a recursive process:

Step I: Initialization:

Set k = 0 and let E x0½ � ¼ x̂0 and E ðx0 � x̂0Þ2
h i

¼ P0,

where x̂k and Pk are the estimates of the state and error

covariance matrix at time k, respectively.

Step II: Extrapolation:

Extrapolation of state x̂�kþ1 ¼ /kx̂k, and extrapolation of

the error covariance P̂�
k ¼ /kPk/

T
k þ Qk; where the

superscript dash stands for prior estimation of the state

or error covariance.

Step III: Calculation of Kalman gain:

Kk ¼ P�
k H

T HP�
k H

T þ Rk

� ��1
:

Step IV: State and error covariance update:

x̂k ¼ x̂�k þ Kk zk �Hx̂�k
� �

;

Pk ¼ I � KkHð ÞP�
k :

Step V: let k = k ? 1 and go back to step II and continue

the process until the end of the present time period.

In the next section, the calibration process using the Vissim

traffic simulator is presented.

3.2 Kalman filter calibration

In order to construct the state space and measurement

equations in (1) and (2), the state transition matrix /k, the

measurement mapping matrix H, the noise matrixes wk and

vk, which are considered to be scalar in this study, are

estimated from ground-truth data.

Note that, xk, the traffic flow approaching an intersection

(crossing the reference line) depends on different external

factors such as the traffic signal control of the upstream

intersections as well as their geometries and layouts.

Therefore, the Kalman filter equations need to exclusively

adjust for each layout. Although real traffic data is

important to evaluate the prediction algorithms, because of

the unavailability of CV data at this stage of the study, we

use the Vissim data as the ground-truth data. However,

since the authors of this article are recently involved in a

connected vehicle testbed project in Melbourne, called

Australian integrated multimodal ecosystem (AIMES)

(https://eng.unimelb.edu.au/industry/aimes), testing the

algorithm with the real data from a CV environment is one

of the plans for this study. To this end, the data obtained

from the Vissim traffic simulator are used as historical data

to derive and calibrate the equations. To achieve this, two

consecutive intersections are simulated in the Vissim traffic

simulator. The flow information of all vehicles including

connected vehicles pertaining to different signal settings

Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle… 225

123J. Mod. Transport. (2019) 27(3):222–232

https://eng.unimelb.edu.au/industry/aimes


and arrival patterns and various penetration rates of con-

nected vehicles for 2 h of the simulation is collected. We

deploy the MATLAB as a COM interface to control the

Vissim simulator. Moreover, the training and test data

used, respectively, for calibration and evaluation of the

Kalman algorithm are collected through MATLAB. We

also realize the Kalman filter algorithm in a MATLAB

m.file. The aim is to predict traffic flow for short time

intervals toward the future to be used later in traffic signal

settings. Here, a time interval of 50 s is considered.

The state transition matrix /k and noise matrix wk are

calculated based on a linear regression model on the state

variable vector xk and previous state vector xk-1. In order

to determine the wk, the variance of the error between the

previous state vector xk-1 and state vector xk need to be

calculated.

In the measurement Eq. (2), the state variable in each

time step is calculated based on the measured variable zk.

In this study, zk indicates the flow of connected vehicles

travelling from three approaches of the preceding inter-

section in each step of the prediction period. H maps the

number of connected vehicles in the traffic flow to the total

flow of vehicles. Note that H is calculated using a linear

regression model based on the total number of vehicles in

the flow as an independent variable. This coefficient is

interpreted as the penetration rate of connected vehicles.

Noise variance vk is calculated based on the variance of the

error between the measured variable zk and state variable

xk. The calibration process is evaluated using three widely

used metrics [42, 43], as discussed in the next section.

To predict the flow at the reference line (Fig. 1), the

merging traffic flows must be recorded in 50-s time inter-

vals. Hence, the number of connected vehicles passing the

reference line every 50-s time interval is recorded and used

as input for the Kalman filter algorithm. At first, the flow is

predicted for different penetration rates of connected

vehicles as well as various traffic signal settings of inter-

section B, which profoundly affect the flow rate of the

reference line. We consider some predetermined and fixed

traffic signal plan for upstream intersection B (Fig. 1).

Each of these signal plans can be implemented to control

intersection B based on its traffic condition. Considering a

variety of traffic conditions by changing the signal plan of

upstream intersection B will result in dissimilar flow pat-

tern approaching intersection A. Therefore, the Kalman

equations can be trained considering variation in the flow

patterns. This can result in better accuracy of the algorithm

to estimate the flow in different traffic situations. To do so,

it is needed to calculate the arrival times of the connected

vehicles. As such, the connected vehicles’ information

such as their positions, speeds, and acceleration/decelera-

tions will be available in different time steps during the

prediction horizon. This information is available in the

basic safety message that will be sent to the roadside unit

devices via dedicated short-range communication (DSRC)

platform ten times per second by vehicles equipped with

on-board unit (OBU) devices. Therefore, we need to collect

three types of data from connected vehicles including

position, speed and acceleration/deceleration to be able to

calculate the arrival time of each connected vehicle to the

reference line. From this information and based on the

following formula, the arrival time of connected vehicles at

the reference line can easily be calculated. Therefore, we

can then count the number of connected vehicles that cross

the reference line in each time step of the prediction based

on their arrival time:

xp ¼
1

2
at2 þ v0t þ x0; ð3Þ

where xp is the position of the reference line, a is the

acceleration/deceleration, v0 is the current speed, x0 is the

current position of the target connected vehicle, and t is the

remaining time for the vehicle reaching to the reference

line. In order to estimate the time of arrival with a better

accuracy, t can be updated in each time that a new infor-

mation is available from connected vehicles. Notice that to

estimate the flow for each different reference line, the

Kalman filter parameters need to be calibrated based on the

flow characteristics and layout of the upstream intersec-

tion. To use the flow prediction results in adaptive traffic

signal controllers, we could use a parallel computation for

all reference lines. The pseudo-algorithm represented in

Fig. 2 describes the process of calibration and evaluation of

the Kalman algorithm. At first, the Vissim simulation is run

for a sufficient number of times to populate the network

(warm-up period); then for each penetration rate of CVs,

the simulation is run for a random pattern of vehicle inputs

and signal plans of the upstream intersection. Then the flow

and CV information are collected via MATLAB. This data

is deployed to calibrate the state and measurement equa-

tions of the Kalman filter. After that, we generate random

traffic situations, run the Vissim for one step and measure

the CV data. In the next step, The CV data is deployed in

the Kalman filter algorithm to predict the flow for the next

time step. The prediction algorithm is run for a sufficient

number of times (a desired value). To be able to evaluate

the performance of the proposed algorithm, we need to

determine the total number of samples that can be used to

validate the Kalman algorithm. This predetermined number

of time-steps in this paper is called the desired value. This

desired value should be sufficiently big to provide an

unbiased evaluation of the performance of the Kalman

algorithm. The estimation results of the algorithm for all

time steps are then compared with the real flow derived

from Vissim simulation.
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The information on the case study layout is summarized

in Table 1. We consider Poisson arrival rates for vehicle

inputs in each approach of the intersection. The rates of

vehicle inputs are randomly changed; however, on average

ten vehicles cross the reference line in each 50-s time

intervals.

4 Numerical results

Here in this section, the performance of the Kalman filter

method is tested for various ranges of CVs. Moreover, the

prediction results are compared for normal traffic condition

as well as for the condition with sudden changes in the flow

pattern. Three performance criteria are used to evaluate the

performance of the proposed Kalman filter method, root-

mean-square error (RMSE), mean absolute error (MAE)

and mean absolute percentage error (MAPE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

fi � f̂i
� �2

;

s
ð4Þ

MAE ¼ 1

n

Xn
i¼1

fi � f̂i
�� ��; ð5Þ

MAPE ¼ 1

n

Xn
i¼1

fi � f̂i
fi

�����

������ 100; ð6Þ

where fi and f̂ measured at each time step of the prediction

are the real and predicted traffic flow, respectively. Note

that i is the index of the time interval and n indicates the

total number of observation and prediction of flow.

In order to illustrate the performance of the proposed

flow prediction method, the method is evaluated under

various penetration rates of connected vehicles and dif-

ferent congestion levels.

Figure 3 indicates the traffic flow prediction for differ-

ent penetration rates of connected vehicles while consid-

ering various traffic signal settings of the intersection B. As

shown in Fig. 3, as the penetration rate increases, the

Kalman filter provides better and accurate prediction

results. The vertical axis represents the total number of

vehicles that cross the reference line during each time step

(say 50 s). The horizontal axis shows the estimation time

steps. Each estimation time step is equal to 50 s.

In this study, we also evaluate the performance of the

proposed Kalman filter technique to track the abrupt

changes in the traffic condition. Here we assume that the

data related to the sudden changes in traffic flow are not

considered in the adjustment of the parameters of Kalman

Start

Run the simulation for some time (warm-up period)

Run for each penetration rate of CVs
Generate random vehicle input
Generate various traffic signal plan

Collect the training data via MATLAB

Calibrate the Kalman equations

Run the simulation with 
random vehicle inputs
various traffic signal plans

to collect the test data

Using Kalman filter for prediction

Does the number of prediction 
steps meet the desired value? 

No

Yes

Compare the results of the Kalman filter 
with the real flow derived from Vissim

Fig. 2 The pseudo-algorithm for traffic flow prediction based on

Kalman filter

Table 1 The summary of the case study information

Parameters Value

Distance of the reference line from the intersection (m) 55

Number of lanes in each link 2

Width of each lane (m) 3.5

Saturation flow rate (veh/h) 3,600

Free flow speed (km/h) 50

Time step duration (s) 50

Warm-up period (s) 200
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Fig. 3 Flow prediction for different penetration rates of connected vehicles
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Fig. 4 Flow prediction for different penetration rates of connected vehicles and abrupt changes in flow pattern
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filter equations. The aim is to evaluate the performance of

the Kalman filter when there is a considerable change in the

flow of vehicles. In order to do so, at first, the Vissim traffic

simulator will be run for an undersaturated traffic condi-

tion. Then two times it was suddenly converted to saturated

traffic condition (the average flow of vehicles in this stage

is two times more than the undersaturated condition) by

changing the number of input vehicles at intersection B in

Fig. 1. Each time after rising the flow, the traffic condition

again turns to the undersaturated traffic condition. There-

fore, we can make a fluctuation in the traffic and evaluate

the ability of the Kalman filter to track the changes. The

connected vehicle data from Vissim is used to predict the

flow of vehicles based on the Kalman filter method. One

may argue for expanding the reach of the proposed algo-

rithm to include autonomous vehicles’ data. To this end, it

is important to note that a driver-less car basically is a car

without a driver and hence is not necessarily a connected

vehicle. An autonomous vehicle can be considered a con-

nected vehicle only if it is equipped with on-board unit

(OBU) and it can communicate with roadside units (RSUs)

and other vehicles. Take for example the famous Google

car which is an ad hoc autonomous vehicle and it is noted

connected to anywhere (Google’s Autonomous Vehicle,

2017). In the situation where autonomous vehicles are

equipped with communication devices, we can easily

consider them as connected vehicles in our methodology.

Results for the measured flow as well as predicted flow

are shown in Fig. 4. Since an increase in the flow of all

vehicles in the network results in a rise in the flow of

connected vehicles, the measurement equation can track

the changes in the flow of vehicles. Even for the situation

that the covariance noise of state and measurement

equations are gathered exclusive of considering the huge

changes in traffic flow, results of the flow prediction

algorithm are still satisfactory. Therefore, the proposed

algorithm has the capability to trace the flow even with the

abrupt changes in the traffic flow pattern.

Table 2 presents a summary of statistical metrics per-

taining to various penetration rates of connected vehicles

for two distinct scenarios: (1) normal traffic condition and

(2) when abrupt changes happen in the traffic flow. As

expected, R-squared is improved as the number of con-

nected vehicles increases. Similarly, there exists a clear

trend of improvement in all error indices as the penetration

rate of connected vehicles rises. In other words, the Kal-

man filter works much better in situations with more con-

nected vehicles. Figure 5 represents the R-squared for

normal traffic condition (undersaturated) and abrupt chan-

ges (saturated). As can be seen, the paces of changes in

both saturated and undersaturated cases are confirmative.

Moreover, the strength and merit of the Kalman filter are

shown when it can effectively detect and handle abrupt

changes because the Kalman filter adaptively predicts the

flow based on the real-time information from the present

traffic situation.

It is important to note that the Kalman filter is a frugal

model, in the sense that, it does not need a high number of

connected vehicles to perform well. As can be seen in

Fig. 5, the penetration rate of at least 20% is a commen-

surate and healthy choice for the Kalman filter. This is a

compelling result that proves the effectiveness of the pro-

posed Kalman model to predict the flow for a low market

penetration rate. For the penetration rate of 60% or more,

there exists only a marginal improvement in the perfor-

mance criteria. Therefore, for the reasonable and accurate

Table 2 Comparison of error indexes for different penetration rates of connected vehicles for normal traffic situation and abrupt changes in flow

Penetration rate (%) R-squared RMSE MAE MAPE

Normal Abrupt change Normal Abrupt change Normal Abrupt change Normal Abrupt change

0* - 0.2508 - 0.8350 4.9633 7.8604 4.2310 5.5667 0.4812 0.5083

10 0.5205 0.3151 8.9841 4.7177 6.2202 3.4360 0.4049 0.4492

20 0.6119 0.6506 6.9565 3.8485 5.1029 2.8743 0.2883 0.3798

30 0.6234 0.6532 4.6346 3.6278 3.5055 2.4680 0.2647 0.3156

40 0.6584 0.6537 3.8721 3.5603 2.7077 2.3279 0.2941 0.2969

50 0.8491 0.7754 3.6984 2.7708 2.5327 1.9656 0.2091 0.2384

60 0.8798 0.8359 2.9354 2.3818 2.0760 1.6189 0.1941 0.1950

70 0.9177 0.8659 2.4256 2.1293 1.8234 1.3945 0.1973 0.1668

80 0.9557 0.9059 1.6978 1.8384 1.2400 1.1960 0.1272 0.1450

90 0.9529 0.9299 1.6723 1.5179 0.9799 0.8924 0.0838 0.0983

100 0.9797 0.9736 0.3313 1.2770 0.0366 0.8714 0.0050 0.0050

*It denotes a boundary condition in which there is actually no connected vehicle. Moreover, to make the algorithm running, we assumed a small

value for the penetration rate, say 1%. The negative R-squared implies that the total number of observations is less than the number of

parameters, which is the case since there exist a few numbers of connected vehicles
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performance of the proposed prediction algorithm, there is

no need to have a near perfect market penetration rate

(around 100%).

5 Conclusion

This paper presents a Kalman filter technique to predict

traffic flows approaching an intersection based on the data

of connected vehicles. At first, parameters of the Kalman

equations are adjusted through the use of Vissim micro-

scopic traffic simulator. Then, we evaluate the performance

of the model for different penetration rates of connected

vehicles under various traffic conditions. The results

obtained from this study show the Kalman filter performs

well when the penetration rate is more than 20%.

We also test the accuracy of the model to track abrupt

changes in the traffic condition and show the effectiveness

of the model based on several error indexes. It is apparent

from the results that the proposed method has an accept-

able accuracy to predict the traffic flow even in the pres-

ence of abrupt changes in traffic condition. Moreover, there

is a positive correlation between the model’s accuracy and

the penetration rates, in the sense that, as the penetration

rate increases, the model predicts traffic flow with more

resolution.

Future work should focus on the improvement of the

algorithm tailored to situations in which the penetration

rate is significantly low. For instance, we could also use the

data from inductive loop detectors and Bluetooth data to

predict the flow with more accuracy under low penetration

rates. Moreover, to predict the flow with higher accuracy,

we can consider the traffic signal states of upstream

intersections as input variables in the state equation of the

Kalman filter. Testing the accuracy of the algorithm against

ground-truth data from the real world connected vehicle

testbed is one of our focuses for future study. Moreover,

the estimation algorithm can also be integrated into an

adaptive traffic signal plan [44] to control the traffic based

on the real situation of the traffic in the network.

Acknowledgements This work has been sponsored by the Australian

Integrated Multimodal EcoSystem (AIMES), https://industry.eng.

unimelb.edu.au/aimes. The authors would like to thank many indus-

try and government partners, in particular, Cisco, CUBIC, Cohda

Wireless, VicRoads, Department of Transport, Traffic Accident

Commissions, and PTV Group. The authors would like to thank Prof

Zhai, the editor in chief and two anonymous reviewers for their

constructive and insightful comments.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Terrill M (2017) Stuck in traffic? Road congestion in Sydney and

Melbourne. Melbourne, Australia

2. Bagloee SA, Tavana M, Asadi M, et al (2016) Autonomous

vehicles: challenges, opportunities, and future implications for

transportation policies. J Mod Transp 24(4):284–303

3. Stathopoulos A, Karlaftis MG (2003) A multivariate state space

approach for urban traffic flow modeling and prediction. Transp

Res C Emerg Technol 11(2):121–135

4. Bagloee SA, Ceder A, Bozic C (2014) Effectiveness of en route

traffic information in developing countries using conventional

discrete choice and neural-network models. J Adv Transp

48(6):486–506

5. Emami A, Sarvi M, Bagloee SA, et al (2018) Connected vehicles:

an overview of the past and present developments and testbeds.

In: Transportation research board 97th annual meeting, Wash-

ington DC, United States, 1–11 Jan 2018

6. Ligo AK, Peha JM, Ferreira P, et al (2018) Throughput and

economics of DSRC-based internet of vehicles. IEEE Access

6:7276–7290

1 10 20 30 40 50 60 70 80 90 100

Penetration rate (%)

-1

-0.5

0

0.5

1

R-
sq

ua
re

d

R-squared comparison for various penetration rates of CVs

Prediction error for normal traffic condition
Prediction error for abrupt change in traffic flow

Fig. 5 RMSE and R-squared comparison for normal traffic condition and abrupt change in flow across various penetration rates of CVs

Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle… 231

123J. Mod. Transport. (2019) 27(3):222–232

https://industry.eng.unimelb.edu.au/aimes
https://industry.eng.unimelb.edu.au/aimes
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


7. Volpe J (2008) Vehicle-infrastructure integration (VII) initiative

benefit-cost analysis Version 2.3, in United States Department of

Transportation. Tech. Rep

8. Karimpour M, Karimpour A, Kompany K, et al (2017) Online

traffic prediction using time series: a case study. In: Integral

methods in science and engineering, vol 2. Birkhäuser, Cham,
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