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1 ABSTRACT
2

3 Aeolian sedimentation and dune development have not been reported from coral atolls at 

4 equatorial latitudes. This study presents high-frequency measurements of incident and near 

5 surface wind flow and aeolian sand transport on a lagoon sand cay (Maaodegalaa) in the 

6 Maldives. Sonic anemometers and Wenglor™ particle counters were operated at 1 Hz for 8 

7 days during the Iruvai monsoon in February 2018. Sand traps were deployed to estimate sand 

8 flux and island topography and vegetation cover were surveyed using UAV (un-manned aerial 

9 vehicle) photogrammetry and a laser level (in 2017 and 2018). Flow over beach scarps is 

10 modelled using computational fluid dynamics.

11

12 Maaodegalaa sand cay reaches just 0.9m above the highest spring high tides. Nebkha, 

13 between 0.10 and 0.40 m high, are widespread and are associated with Scaevola taccada 

14 and Cyperus conglomeratus. Between 2017 and 2018 the eastern section of the sand cay 

15 accreted 0.3 m following Cyperus colonisation. Reptation and aeolian ripple development 

16 occurred during fieldwork when near-surface flows exceeded 6 ms-1. Saltation occurred at 

17 higher wind speeds (8 ms-1). The highest rates of sand transport occurred during north-east 

18 incident winds of 12 ms-1 (at 6 m), that were probably generated by surface-based density 

19 currents under cumulonimbus clouds. Spatially, higher rates of sand transport were recorded 

20 downwind of a beach scarp, probably forced by flow acceleration. We propose a conceptual 

21 model of lagoon island formation, with both over-wash and aeolian sedimentation contributing 

22 to island accretion. A period of aeolian sedimentation may be critical to the emergence of sand 

23 cays.
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1 Highlights

2 • This is the first high-frequency measurement and analysis of incident and near-surface 

3 wind flow over a lagoon sand cay in the Maldives and the first to document aeolian 

4 sand transport on an equatorial atoll. 

5 • Dune development as the result of aeolian sand transport increased island elevation 

6 over a 12 month period.

7 • Aeolian sedimentation occurs during episodes of high onshore wind speed related to 

8 surface-based density currents under cumulonimbus clouds.

9 • Aeolian sedimentation is enhanced by flow acceleration over beach-scarps cut at 

10 spring high tides.
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1 1.0 INTRODUCTION

2

3 The Maldives is host to approximately 1200 islands located on reef platform surfaces, of which 

4 200 are inhabited (Kench, 2011). The islands are found in two distinct depositional contexts: 

5 on the peripheral reef rim of atolls, where the largest islands are situated, and on atoll lagoon 

6 reef platforms. All islands are composed of carbonate sand and gravel derived from the 

7 surrounding reef. They are typically small in aerial extent and have a mean elevation of less 

8 than 1 m above sea-level. Studies of the formation of reef islands in the Maldives have 

9 primarily focussed on lagoon islands and have shown the islands are mid-Holocene in age, 

10 having accreted vertically as the reef platform grew (Kench et al., 2005; Perry et al., 2012). 

11 The formation of the larger vegetated islands occurred during the latter stages of Holocene 

12 sea-level rise and its subsequent fall to present level (Kench et al. 2005; East et al. 2018). 

13 However, the processes that lead to the emergence of lagoon sand cays above the limit of 

14 tides, and the formation of stable islands, both in the Maldives and atolls elsewhere, have not 

15 been resolved. 

16

17 The precondition for island formation, the accumulation of sand as a subtidal sand cay, results 

18 from wave processes that transport sediment across the reef flat to a nodal depocentre 

19 (Gourlay, 1988; Mandlier and Kench, 2012). Swash processes subsequently control the 

20 vertical limit of island building in many reef locations worldwide (e.g. McKoy et al. 2010). In 

21 the Maldives, sediment transport fluxes are modulated by seasonal energy gradients, with 

22 rapid morphological adjustments occurring in response to monsoonal reversals in wind and 

23 wave patterns (Kench and Brander, 2006). At the event scale, extreme waves also impact the 

24 islands. For example, the 2004 Sumatran tsunami promoted minor island erosion, but also 

25 transferred sediments from beaches to island surfaces. This overwash was able to vertically 

26 build the margins of reef islands by up to 0.3 m (Kench et al., 2006).

27
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1 The potential for aeolian processes to contribute to island formation in the Maldives has not 

2 been recognised or assessed. In general, the role of aeolian processes and their potential 

3 contribution to island formation in the humid tropics has been underestimated (Hesp, 2008). 

4 At lower latitudes, in the southern Indian Ocean, aeolian sedimentation has been shown to 

5 contribute to coral island topography, including the Glorioso Islands (Bayne et al. 1970); 

6 Tromelin Island (Marriner et al. 2010); the Chagos Group (especially Diego Garcia; Stoddart 

7 & Taylor, 1971); and the Cocos (Keeling) Islands (Woodroffe & McLean,1994). A variety of 

8 dune forms are reported, including transgressive and sheets, parabolic forms and nebkha. 

9 Nebkha are low dunes, convex in profile, formed around vegetation (Pye & Tsoar, 1990). 

10 Larger, transgressive dunes reach 11 m in elevation on South Island in the Cocos (Keeling) 

11 Islands (Woodroffe, 2008).  Parabolic dunes and blowouts are also found in the western Indian 

12 Ocean mid-latitude (10o to 25o S) and these are closely aligned with the Southeast Trade 

13 winds that persist throughout the year (Schotte and McCreary, 2001). On Tromelin Island wind 

14 speeds exceeding 8 m s1 are contained in a narrow directional window between 100o and 140o 

15 (Marriner et al. 2010). In contrast, the equatorial region of the Indian Ocean, including the 

16 Maldives, is an area of relatively low mean wind stress and aeolian sedimentation has not 

17 been reported. Indeed, several conditions combine to lower expectations of aeolian activity 

18 including the equatorial climate (high humidity, high rainfall, low reported wind speeds); low 

19 topography and narrow beach width; and dense vegetation cover on many established islands. 

20

21 This study arose from the observation of aeolian ripples, shadow dunes and nebkha on 

22 Maaodegalaa sand cay by the authors during fieldwork in February 2017.  Considering most 

23 lagoon sand cays are little more than 1 m above the reach of spring tides, any dune 

24 development may significantly contribute to island relief. Remarkably, the key process 

25 mechanisms that build islands above sea-level, including the development of a stable cay 

26 surface, which can then be colonised by plants, remain to be investigated. Sand cays and 

27 islands occur in a range of forms in the atoll lagoons of the Maldives, from submerged sand 

28 cays, to recently emerged cays colonised by early successional vegetation, to stable and 
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1 forested islands. The current paper reports the first measurements of aeolian sedimentation 

2 in the Maldives on a low-lying sand cay (Maaodegalaa) in Huvadhoo Atoll.  We aim to (i) 

3 measure incident and near-surface wind flow and associated aeolian sand transport over a 

4 recently emerged sand cay; (ii) examine spatial variations in patterns of sedimentation, 

5 particularly processes of flow acceleration and sediment transport over beach scarps; and (iii) 

6 consider the implications of aeolian sedimentation for island formation.   

7

8 2.0 REGIONAL SETTING

9

10 The Maldives comprises a double chain of atolls which extends almost 900 km, from 6o  57’ N 

11 latitude, to just south of the equator (0o  34’ S latitude). Huvadhoo atoll, just north of the 

12 equator, is the largest atoll in the Maldives (Figure 1), with an area of 3,279 km2 and maximum 

13 dimensions of 80 km (north-south) and 60 km (west-east). The rim of the atoll is defined by 

14 reef platforms and islands, broken by multiple deep channels. The atoll lagoon, which attains 

15 water depths of 80 m, contains (i) patch reefs and (locally) ‘faros’ (donut-shaped reefs with a 

16 central depression); (ii) patch reefs with ephemeral sand deposits covered at spring high tide; 

17 (iii) sand cays on reef platforms that rise above the reach of spring high tides, and which have 

18 an early successional vegetation cover (locally ‘finolhu’); and (iv) forested islands. The lagoon 

19 contains 71 patch reefs and 25 faros.  A further 39 islands are long established, as indicated 

20 by a tall forest cover. Sand cays occur on 30 of the lagoon platforms – of which 27 appear to 

21 be overwashed by waves at high tide (as suggested by the absence of vegetation and wrack 

22 in aerial photographs and satellite images) and three are emergent and vegetated. The 

23 vegetation type on these sand cays is early successional – primarily the shrub Scaevola 

24 taccada and the sedge Cyperus conglomeratus. Maaodegalaa Island is an example of the 

25 emergent sand cay type. Comparisons of recent satellite imagery indicates the position and 

26 plan form of submerged and vegetated sand cays is highly dynamic. Maaodegalaa, for 

27 example, has only occupied its current position for 8 years (since 2011) and was unvegetated 

28 in 2006 (see Supplementary Material).
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1

2

3

4 Figure 1: The study site is a coral sand cay in the southern section of the lagoon of 

5 Huvadhoo Atoll in the southern Maldives. Long-term climate data reported is from 

6 Kaadedhdhoo Airport and tidal predictions are from Kolamaafushi Island. The satellite image 

7 is courtesy Google Earth (19th February 2014).

8

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413



8

1 All lagoon sand cay and island forms in Huvadhoo Atoll are composed of sand-size carbonate 

2 sediments, primarily fine to medium coral sand (Liang et al., 2016). Sand cays are perched on 

3 the near-level reef platform surface, which allows islands to shift position on the platform in 

4 response to variations in swell and local waves (Aslam & Kench, 2017). The fully vegetated 

5 islands have a forest cover of plantation (Cocos nucifera) and/or native tree species (e.g. 

6 Pisonia grandis, Calophyllum inophyllum), and are relatively stable in position on the platform. 

7

8 The wave and wind regime of the Maldives is dominated by the Indian Monsoon Reversal 

9 (Figure 2A). Tropical cyclones are rare and mainly affect the northern atolls. Only five cyclones 

10 have occurred between 0o and 5o N latitude, at 73o E longitude, since 1945 

11 (http://www.nhc.noaa.gov/data). Strong seasonal wind patterns are associated with the east-

12 northeast (Iruvai) monsoon (December to March, 045o - 090o), and the southwest (Hulhangu) 

13 monsoon (April - November, 225 - 315o). Mean wind speeds at Kaadedhdhoo Airport on the 

14 western rim of Huvadhoo Atoll (at 9am) are 3.08 m s1 during Hulhangu and 2.45 m s1 during 

15 Iruvai (Figure 2b). Data on the maximum near-ground wind speeds in Huvadhoo Atoll is poor, 

16 but indicates that there is little difference between average monthly and average maximum 

17 monthly (9 am) wind speeds. Average maximum monthly (9 am) wind speeds are just 2 m s1 

18 higher during the Hulhangu. Precipitation increases from north to south as the influence of the 

19 monsoon decreases (Storz and Gischler, 2011). Average annual precipitation for Huvadhoo 

20 is 2,651 mm, with the lowest rainfall (50 - 100 mm / month) occurring in the Iruvai months of 

21 February and April and with rainfall of between 150 and 250 mm during the rest of the year 

22 (Gan data, 2000-2018, Maldives Meteorological Service).

23

24 Waves in the lagoons of the Maldives atolls are both locally generated, fetch-limited waves, 

25 and distance-source swell that propagate into the lagoon through channels between the rim 

26 islands. On a seasonal basis, swell propagates from the southeast from December to 

27 February (Hulhangu) and is characterised by significant wave height and period of 
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1 approximately 1.2 m and 8.5 s, respectively. During April – November (Iruvai) swell 

2 propagates from the south and is characterised by longer wave period (10.5 s) and a

3  

4

5

6 Figure 2: (A) Wind rose and (B) mean monthly wind speed and maximum monthly wind 

7 speed at Kaadhedhdoo Airport (Maldives Meteorological Service, 9 am data, 10 m mast, 

8 1991 – 2008).

9
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1 significant wave height above 1.5 m, peaking at 1.95 m in July (Kench et al. 2006). 

2 Maaodegalaa is situated close to a gap in the rim of Huvadhoo Atoll, and is likely affected by 

3 the prevailing southerly swell, but is relatively sheltered from short period waves within the 

4 lagoon by the rim islands to the west. Conversely, Maaodegalaa is relatively exposed to 

5 lagoon waves from the northeast.

6

7 Surface waves result in occasional island inundation. Long period swell events, driven by 

8 high latitude storms, resulted in rim island inundation in the southern Maldives in 1987 and 

9 2007 (Harangozo, 1992). Wadley et al. (2017) examined two significant flood events that 

10 resulted in island inundation in the Maldives (10th –13th April 1987 and 15th – 17th May 2007). 

11 They concluded that coastal flooding in the Maldives is most likely to occur during long-

12 period (up to 20 s) energetic waves generated in the Southern Ocean combined with spring 

13 tides. A swell event affected the southern atolls of the Maldives on the 20th and 21st April 

14 2018, when an intense low-pressure system lay 1000 km to the southeast of the Maldives 

15 (Maldives Meteorological Service Advisory issued 26th April 2018). Finally, the Indian Ocean 

16 2004 tsunami inundated the eastern margins of rim and lagoon islands in South 

17 Maalhosmadulu Atoll, depositing sand sheets on island surfaces to a maximum depth of 0.3 

18 m (Kench et al. 2007). Tides in the study area are semi-diurnal with a spring tide range of 

19 1.2 m. There is little to no potential for pressure-forced storm surge, since sea-surface 

20 atmospheric pressure only varies 2-3 hPa around the mean pressure (1010 hPa) 

21 (Kaadedhdhoo Airport hourly data, 2012 – 2016, Maldives Meteorological Service).

22

23 3.0 MATERIALS AND METHODS

24

25 The current study reports observations and measurements of aeolian sedimentation on 

26 Maaodegalaa sand cay, Huvadhoo Atoll, over an 8-day period in February 2018 during the 

27 northeast monsoon and island accretion and dune development over a 12 month period 
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1 (January 2017 – February 2018). The lagoon islands of the Maldives are comprised of 

2 biogenic materials (Liang et al. 2016) but there was no existing information on the textural 

3 characteristics of Maaodegalaa. Surface sediment samples (0 – 0.05 m) were collected by 

4 hand around the island from the beach toe (n = 18), mid-tide level (n = 18), and across the 

5 supra-tidal island (n =58). Samples were washed, split and analysed, using a Beckman 

6 Coulter LP13320 Laser Particle Analyser. 

7

8 Sea-level was recorded continuously during fieldwork using a single RBR Duet pressure 

9 transducer approximately 80 m northeast of Maaodegalaa sand cay on the reef platform. 

10 Local, fetch-limited waves, formed within the lagoon, were not directly measured, but short-

11 period (2 - 5 s) breaking waves, primarily from the north, did not exceed 0.3 m at high tide. 

12 Island morphology was surveyed in February 2017 and February 2018, using a Sprinter auto 

13 level, unlike marked transects (A – C, Figure 3), with all points (and the RBR data) reduced to 

14 a common vertical datum (WGS84 EII) established using a Trimble RTK-GPS. Three-

15 dimensional island morphology, and an orthomosaic of the island surface, were derived from 

16 UAV (Phantom-3 Advanced) imagery using Drone-deploy™ flight control and PIX4D™ post-

17 processing software. Ground control points were not used to georeference the orthomosaic - 

18 the internal GPS of the UAV was used for positional accuracy. The relative accuracy of the 

19 derived elevations, + / - 10 cm, was estimated by comparing the contours derived from the 

20 UAV photogrammetry with profile elevations. 

21

22

23 Observations of incident and near-bed wind flow and associated sedimentation were made 

24 between the 27thJanuary and the 4th February 2018 at two sites on the sand cay (Figure 3 & 

25 Figure 4). Incident wind was measured above the cay on a 5.5 m mast. Wind speed and 

26 direction were recorded (at 1Hz) using Gill Windsonic-2D sonic anemometers and Campbell 

27 CR1000 data-loggers. Velocity profiles derived during the first four days of fieldwork (when 

28 the mast supported anemometers at 0.05, 0.50 and 5.53 m) indicate the highest anemometer 
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1 was located above the boundary layer. Sediment transport as saltation was recorded using 

2 Wenglor™ laser particle counters with the laser set at 0.01 m above the bed, anticipating 

3 particle transport rates well below 700 Hz (Bauer et al. 2018). Total near-bed sand flux was 

4 determined by deploying a network of swinging sand traps (described in Hilton et al. 2017) 

5 positioned 1 cm above the bed.

6

7

8

9

10

11

12 Figure 3:  Location of surveyed transect lines (A-C) on Maaodegalaa sand cay, anemometer 

13 mast (5.53 m), benchmarks, and the sites instrumented during the two wind events reported. 

14 The extent of the two main plant species, Scaevola taccada and Cyperus conglomeratus 

15 (vigorous and moribund); and the back-beach scarp cut by spring high tides (following spring 

16 high tides on the 31st January 2018) are mapped. The inset wind rose (0900 hrs 

17 observations, 1991 – 2008 at Kaadedhdhoo Airport) indicates the north coast of the sand 

18 cay is relatively exposed to wind and local wind waves during the Iruvai Monsoon.
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1

2

3 Figure 4: UAV aerial oblique view of Maaodegalaa Island (looking to the west) showing 

4 instrumented areas during Event 1 (site 1, 28th January 2018) and Event 2 (site 2, 1st February 

5 2018); and the location of the anemometer mast (adjacent to the sun umbrella) for the period 

6 27th January to 3rd February 2018.

7

8

9 Site 1, at the eastern end of the island is an unvegetated sand terrace with a gently-sloping 

10 convex profile, c. 0.50 m above spring high tide and 0.20 m above the surveyed limit of wave 

11 swash at spring high tide (Figure 4). The area was cleared of wrack and raked smooth on the 

12 27th January after instruments were installed. The unvegetated fetch to the northwest of the 

13 instrument array was 60 m. A community of Cyperus, a 0.3 – 0.4 m high plant with a tussock 

14 growth form, was located 30 - 40 m to the west of the mast. Instruments and sand traps were 

15 arranged in lines at 90 o (043o relative to true north) to the forecast wind direction during the 

16 first few days of the deployment (Figure 5). 

17
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1

2

3 Figure 5:  Site 1 instrument layout during Event 1 (from 1800 hours, 28th January 2018). The 
4 Wenglor particle counters were oriented at 288o prior to the event, 033o from normal to the 
5 average incident wind for the event (321o). The wind rose indicates wind speed and direction 
6 at A1 (5.53 m). The values in the sand trap symbol indicate the weight (g) of sand trapped in 
7 the period 1500 hours on the 28th January to 0900 hours on the 29th January. 

8

9

10 Figure 6:  Site 2 instrument layout during Event 2 (1300 hours, 1st February 2018). The wind 
11 rose represents incident wind speed and direction at A1 (5.53 m). The values in the sand 
12 trap symbol indicate the weight (g) of sand trapped in the period 1300-1320 hours.
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1 Site 2 was at the north-western end of the island on a flat terrace bounded by back-beach 

2 scarps to the southwest and north (Figures 4 and 6). This scarp was observed on arrival on 

3 the island on the 27th January, but it was refreshed during spring high tides that reached their 

4 maximum elevation on the 1st February 2018. The instruments and sand traps at site 1, with 

5 the exception of the mast and anemometer A1 (5.53 m), were shifted to site 2 on the 1st 

6 February. A Wenglor (B2) and anemometer (B1) were located 9 m from the edge of the scarp 

7 along the northern side of the island. Fortuitously the incident wind direction on the afternoon 

8 of the 1st February crossed the scarp at an angle of 023o and close to normal (95o) to the long-

9 axis orientation of Wenglor B2. The remaining instruments were installed in the lee of a line of 

10 Scaevola and were relatively sheltered from onshore winds during a second wind event.

11

12 During fieldwork we hypothesized that back-beach scarps (Figure 7) were accelerating wind 

13 flow and enhancing sedimentation. We noted the presence of a strip of rippled fine sand 

14 adjacent to and downwind of the beach scarp along the north coast of the sand cay, which we 

15 reasoned was a depositional surface; but not an overwash surface, since it was free of wrack. 

16 Two-dimensional Computational Fluid Dynamic (CFD) simulations of wind flow were 

17 subsequently undertaken over the scarped (Profile B, Figure 3) and un-scarped (Profile C) 

18 transects across the island to examine the influence of the beach scarps on near-bed flow 

19 acceleration. We employed SIMPLE discretisaton scheme and the solver ANSYS Fluent™. A 

20 mesh density study was undertaken with a final mesh of approximately 500,000 cells. The 

21 smallest cell employed, closest to the ground, was 0.02 m. The two-equation Renormalisation 

22 Group (RNG) k-ɛ Reynold Averaged Navier-Stokes (RANS) turbulence model was used. The 

23 domain was 100 m long by 45 m high with a top symmetry boundary condition and pressure 

24 outlet. The 8 m s1 incident wind profile was developed in a separate simulation over sea of 

25 roughness height value of 0.0125 (Perianez, 2004). The bottom surface was the island 

26 covered in sand with sea either side. The profile transect was taken at low tide, from the 

27 Sprinter survey data, and had a sand roughness height value of 0.05 m (Wakes et al. 2010).

28
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1

2

3

4 Figure 7: Spring high tides during the period of fieldwork eroded the base of a pre-existing 

5 beach scarp (mapped in Figure 3). This photograph shows the presence of ripples and 

6 shadow dune features along the edge of the terrace behind the scarp. The photograph (on 

7 Profile B) was taken on the 28th January 2018. The highest spring tide on the 1st February 

8 overtopped the scarp.

9

10 4.0 RESULTS

11

12 4.1 Sediments

13

14 The island is composed of fine to medium, moderately-well sorted, reef carbonates. Surface 

15 samples from the reef platform, obtained approximately 5 m from the toe of the beach, are 

16 relatively coarse and less well sorted (mean grain size = 0.42 +/- 0.65 phi units), compared 

17 with the intertidal beach at mean tide level (0.96 +/- 0.57 phi) and the supratidal island surface 

18 (1.34 +/-0.51 phi).  Visual inspection of the sediments indicated they were composed of almost 

19 entirely of coral species, with Halimeda sp. and Foraminifera sp. detritus comprising a small 

20 proportion of intertidal and beach toe samples. Most of the grains were semi-spherical, but 

21 angular. Whole clasts of Helimedia were found in samples from the beach toe but were not 
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1 found in supratidal samples. Estimates of bulk density for samples taken above spring high 

2 tide average 1.60 g cm3, which is 60 percent of the density of quartz (2.65 g cm3).

3

4 4.2 Sand cay topography and aeolian features

5

6 The highest point on Maaodegalaa sand cay is approximately 0.9 m above spring high tide 

7 and 0.7 m above the limit of wave swash at spring high tide on the 1 February 2018 (Figure 

8 8). The spring high tides from the 31st January to the 2nd February were the highest tides 

9 experienced during 2018 (Kolamaafushi tide tables, 65km north of Maaodegalaa, Figure 1), 

10 and only 0.01 m below the highest astronomical spring high tides. The highest parts of the 

11 island are vegetated (Figure 8), with communities dominated by Scaevola or Cyperus, except 

12 for a low (unvegetated) ridge (0.30 m high) to the east of the Cyperus community. A central 

13 ridge, oriented north-west to southeast, and parallel to the long axis of the island, is associated 

14 with Scaevola (Profile A, Figure 9). A second line of Scaevola, comprising lower and probably 

15 younger plants (<1 m), associated with nebkha, runs parallel to the central ridge along the 

16 south coast of the island. 

17

18 Nebkha occur in two forms: (i) small discrete nebkha formed with individual specimens of C. 

19 conglomeratus; and much larger nebkha formed around Scaevola along the southern 

20 shoreline (Figure 9). The former occur on surfaces recently colonised by Cyperus and form 

21 small isolated pedestals of sand trapped within the tussock growth form of this species. 

22 Individual nebkha are small, barely 0.40 m wide, and less than 0.40 m high (Figure 9A). But 

23 they are widespread across the eastern half of the sand cay and south of the main areas of 

24 Scaevola (Figure 8).  These dunes, aeolian ripples and shadow dunes, were observed during 

25 our first visit to Maaodegalaa in January 2017 (Figure 10). The morphology and orientation of 

26 the larger nebkha – the long axis is oriented southwest to northeast - suggests sediment 

27 transport and dune formation occurred during southwest winds.

28
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1  

2

3

4

5 Figure 8:  (A) The topography of Maaodegalaa derived from UAV photogrammetry (30th 

6 January 2018) relative to spring high tide; and (B) an interpretation of aeolian features. 

7 Nebkha along the southern margins of the island are associated with Scaevola. Smaller 

8 nebkha, associated with Cyperus, extend to the east of the island core vegetation and (to a 

9 lesser extend) occur with Scaevola along the south coastline. Aeolian ripples were observed 

10 on all unvegetated surfaces, particularly the western, eastern and northern unvegetated 

11 surfaces.  

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121



20

1

2

3

4

5

6 Figure 9:  Profiles A-C surveyed across Maaodegalaa in January 2017 and February 2018 

7 (Profile A only) (located in Figure 3). Areas of high topography are associated with small 

8 nebkha (X, see Figure 10B) and larger nebkha formed in association with Scaevola taccada 

9 (Z, see Figure 10C). Between January 2017 and February 2018 the eastern terrace of the 

10 island, formerly unvegetated, accreted in association with a new community of Cyperus 

11 conglomeratus (Y). 
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1

2

3

4

5

6 Figure 10:  Aeolian features on Maaodegalaa sand cay in February 2017: (A) aeolian ripples 

7 and shadow dunes formed in the lee of wrack (flow right to left, north to south); (B) minor 

8 nebkha (height < 30 cm) associated with Cyperus conglomeratus; and (C) larger nebkha 

9 (height < 50 cm) associated with Scaevola taccada (near the western end of the island).
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1 Two areas, to the west and east of the core of the sand cay, accreted between fieldwork in 

2 January 2017 and February 2018 (Figure 9). Cyperus conglomeratus established in both of 

3 these areas in late 2016 and were present as seedlings in January 2017, which had matured 

4 by February 2018 (Figure 11). We surmise that aeolian sedimentation contributed to this 

5 accretion since there was no evidence of fresh wrack within the Cyperus community in 

6 February 2018, which would indicate overwash. The “high” ridge evident in Figure 8, which 

7 lies at an oblique angle to the northeast shoreline, 0.20 – 0.30 m high, is the only elevated 

8 surface not associated with vegetation.  

9

10 The current form and location of Maaodegalaa on the reef platform established between 

11 February 2011 and March 2013 (see supplementary data). Maaodegalaa has been relatively 

12 stable in both form and position on the reef platform since 2013, although the supratidal area 

13 of the island has reduced since 2016. Prior to 2013, between the first available satellite image 

14 (2006) and 2014, the island experienced major changes in location, form and vegetation cover. 

15 The centre of the sand cay in 2010 was located over 50 m to the north of the current midpoint, 

16 although there is some overlap between the footprints of the cay in 2010 and 2018. 

17 Consequently, elements of the topography of the current cay are likely to be inherited from 

18 periods when the island had a different plan form and exposure to waves and incident winds. 

19 The potential for aeolian sedimentation and dune development must have also changed as 

20 the dry sand fetch (relative to the current vegetated island core) has changed. In 2006 the 

21 sand cay was unvegetated. This fetch extended further to the north in 2010 and to the west in 

22 2016. The cay in February 2018 was narrower and more elongated, compared to its form in 

23 2014. The vegetated core of the cay has been stable only since 2014 (or since the cay was 

24 recolonised by vegetation after the cay migrated south between 2011 and 2013). The 

25 unvegetated ridge referred to above is an anomaly - all other elevated areas comprise nebkha 

26 formed in association with vegetation. It may be a relict feature inherited from an earlier island 

27 configuration and vegetation cover. Finally, we assume, but have not verified, that the 

28 vegetated core of the island accreted by a combination of aeolian and overwash deposition.
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1

2

3 Figure 11: UAV images of Maaodegalaa in January 2017 (courtesy Eddy Beetham) and 

4 March 2018. Areas of accretion on the eastern terrace and the western margins of 

5 Maaodegalaa are associated with Cyperus conglomeratus and the formation of Cyperus 

6 nebkha over a 13 month period (January 2017 – February 2018). 
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1 Wrack is scattered across the eastern half of the island (Figure 10A), at elevations up to 0.5 

2 m above spring high tide and 0.3 m above the observed limit of swash. This material comprises 

3 plastics, fishing and household items, as well as seeds (with coconut husks conspicuous) and 

4 other natural organic debris. Wrack is not present across the western half of the island, 

5 including the area of larger nebkha along the south coast of the island (Figure 10 and Figure 

6 11d). The low terrace east of Profile B must be subject to occasional inundation, given the 

7 presence of relatively fresh wrack. This wrack introduces a significant roughness element to 

8 the surface resulting in shadow dune development. It also contains the seed of early 

9 successional marine-dispersed plants (such as Cyperus conglomeratus), which suggests 

10 sand cay accretion results from a combination of wave overwash, plant colonisation, aeolian 

11 sedimentation and dune develop.

12

13 4.3 Incident and near-surface wind flow

14

15 The mean incident wind speed at A1 (5.53 m) during the 8-day instrument deployment was 

16 4.55 m s1. The highest speed recorded was 12.84 m s1; however, wind speed generally ranged 

17 between 1 – 7 m s1 and it was only momentarily calm on the 31st January. Wind direction was 

18 generally from the northwest to the northeast (Figure 12), consistent with the Iruvai monsoon, 

19 apart from a period of low-speed southwest wind (31st January). Two periods of high wind 

20 speed were recorded - hereafter ‘Event 1’ and ‘Event 2’. Each lasted about 60 minutes – Event 

21 1 commenced around 2000 hrs on the 28th January and Event 2 around 1300 hrs on the 1st 

22 January 2018 (Figure 12a-c). Abrupt increases in wind speed occurred during each event, 

23 accompanied by changes in incident wind direction. During the first event wind speed at A1 

24 increased by approximately 7 m s1 to 12.84 m s1, with a direction at the time of the peak wind 

25 of approximately 340° and then shifting to northerly (020°) later in the event, a shift in wind 

26 direction of approximately 40o (Figure 13). During Event 2, the wind speed at A1 increased by 

27 approximately 8 m s1 to 11.45 m s1, from a bearing of 020o with a net change in wind direction 

28 during the event of 75o (Figure 14). 
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1

2

3

4

5 Figure 12: Maaodegalaa (A) wind speed; (B) relative wind direction; and (C) wind direction 

6 (true north); and (d) wind rose, for the period 27th January to the 3rd February 2018 (at 5.53 

7 m (A1) on the mast). 

8

9

10 The equatorial and isolated location of Maaodegalaa sand cay means that most weather 

11 systems or terrain-generated phenomena are unlikely candidates for generating these wind 

12 events, leaving moist convective activity as a potential cause. Satellite imagery and satellite-

13 derived rainfall products (e.g., NOAA CPC Morphing Technique - CMORPH data, not shown 

14 here) identified convective activity and rainfall near Maaodegalaa during both events. 

15 Specifically, for Event 1 there were isolated storms in the area and rainfall detected two hours 

16 before and a few hundred kilometres to the north of Maaodegalaa. For Event 2 the satellite 
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1 images show a large convective complex approaching Maaodegalaa from the northeast, and 

2 we photographed large and classic cumulonimbus clouds close to the island at the time of the 

3 event. 

4

5

6 Figure 13: (A) Wind speed; (B) wind direction (adjusted); (C) wind direction (relative to true 

7 north) at 5.53 m (A1, mast) and at 0.05 m (B1, base of mast) during wind Event 1 (28th 

8 January 2018).
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1

2

3 Figure 14: (A) Wind speed; (B) wind direction (adjusted); (C) wind direction (true north) at 

4 5.53 m (A1, mast) and at 0.05 m at the western end of the island (B1) during Event 2 (1st 

5 February 2018).

6

7

8 Precipitating convective clouds produce surface-based density currents (or ‘cold pools’) 

9 associated with the evaporation of rainfall and are prominent features of thunderstorm 

10 environments (e.g., Houze 2004, and the references therein); can typically have wind 

11 strengths of 10 m s1; and can travel for significant distances if unimpeded by topography - 
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1 especially when generated by mesoscale convective systems. It is likely that cold pools are 

2 responsible for the wind shifts measured during Events 1 and 2. First, the strength and 

3 duration of the wind perturbations are consistent with other studies of tropical cold pools (e.g., 

4 Feng et al. 2015). Second, the direction of the wind shift is consistent with propagating cold 

5 pools originating from the locations of the satellite-observed rainfall relative to Maaodegalaa. 

6 Third, (low quality) temperature measurements (Campbell CR1000 dataloggers used during 

7 fieldwork) identify distinct reductions in temperature of 3o C at the time of the wind shift (not 

8 shown). Finally, following the passage of the strongest part of each shift there is a notable 

9 reduction in wind variability (gustiness), signifying a change in air mass, which is consistent 

10 with the stabilisation of the boundary layer following the passage of a cold pool. However, 

11 without additional high-quality measurements (temperature, pressure, and relative humidity) it 

12 is impossible to determine unambiguously whether these features resulted from thunderstorm-

13 generated cold pools.

14

15

16 4.4 Aeolian sand transport during Events 1 & 2

17

18 Saltation was observed in each of the experimental areas during the two periods of high wind 

19 speed described above. During Event 1 the incident wind crossed a dry unvegetated sand 

20 surface with a fetch length of 50 m (Figure 5). The fetch decreased to 20 m as the shore-

21 parallel incident winds shifted towards the north and became less oblique onshore. Wind 

22 speed exceeded 12 m s1 at A1 (5.53 m) and 6 m s1 at ground level (B4, 0.05 m) during the 

23 event. Wind direction shifted from 290o at the commencement of the event to 340o. Saltation 

24 was poorly developed and the Wenglor particle counters recorded low counts (< 8 counts s 1). 

25 Wenglor A2, located closer to the north coast of the island (Figure 5), recorded somewhat 

26 higher counts (Figure 15). Sand transport occurred primarily as reptation during this event, 

27 since ripples (length = 0.12 m, amplitude = 0.03 m) and shadow dunes formed around our 

28 equipment overnight. Saltation did occur, however, as recorded by the Wenglors and small 
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1 quantities of sand was trapped in the swinging traps (0.10 - 0.73 g, Figure 5). These traps 

2 were set 0.01 m above the bed, so the derived flux for the duration of the event (if we assume 

3 sand transport only occurred during Event 1) ranged between 65.75 – 479.95 g / hour / m2.

4

5

6 Figure 15: Wenglor particle counts at sites (A) A1 / A2 and (B) B1 / B2; (C) wind speed (A1, 

7 5.53 m and B4, 0.05 m); and (D) wind direction (A1) during Event 1 (28th January 2018).

8

9 Higher levels of saltation were recorded by the Wenglor particle counters during the second 

10 wind event (0 -160 counts s1) (Figure 16). Maximum incident wind speeds (measured at 5.53 
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1 m (A1) on the mast) were lower during Event 2 (11.6 m s1 compared with 12.8 m s1 for Event 

2 1), however, near bed (0.05 m) wind speeds recorded during this event were higher (8 m s1 

3 compared with 7 m s1 for Event 1). The line of Scaevola shrubs bordering Site 2 sheltered the 

4 more inland instruments during this event (Figure 6). Wenglor B1, situated in the lee of 

5 Scaevola shrubs, recorded virtually no sedimentation. Significant quantities of sand (3.48 – 

6 32.87 g) collected in the three exposed sand traps, west of the line of Scaevola shrubs, during 

7 the 20 minute deployment. In contrast, traps in the lee of Scaevola collected virtually no sand 

8 (Figure 6). The average sand flux downwind of the beach scarp was 35,848.13 g / hour / m2, 

9 but only 295.86 g / hour / m2 in the lee of the Scaevola (between 1300 and 1320 hours and 

10 assuming a constant rate of sedimentation). These are significant flux rates given the 

11 environmental setting, and they demonstrate the potential for winds crossing the sand cay to 

12 transport sand onshore.

13

14 4.5 Flow structure over the beach scarp

15

16 The two wind events described were distinctive periods of speed-up during an 8-day period of 

17 low to moderate speed incident winds. We hypothesize that the differences in the rates of 

18 sedimentation measured during the two events are related to the upwind topography – 

19 specifically flow acceleration over the beach scarp along much of the north coast of 

20 Maaodegalaa (Figure 3). This scarp was present throughout the 8-day deployment but was 

21 actively scarped during spring high tides from the 31st January to the 2nd February 2018. Wind 

22 velocity contours, derived from the CFD analysis, for the first 10 m above the island, are shown 

23 in Figure 17. Accelerated flow over the scarp is characterised by a low velocity zone at the toe 

24 of the scarp and high velocity zone after the scarp. The model suggests that this high speed 

25

26
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1

2

3 Figure 16: Wenglor particle counts at sites (A)  A1 / A2 and (B) B1 / B2; (C) wind speed (A1, 

4 5.53 m and B1-B4, 0.05 m); and (D) wind direction (A1, B1, B2, B4) during Event 2 (1254 - 

5 1332 hours,1st February 2018).

6

7 region extends in the direction of flow and moves away from the island surface, in a jet-like 

8 structure (as reported by Piscioneri et al. 20190. These structures are seen over larger dunes 
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1 (Hesp et al. 2009; Hesp and Smyth 2016) and although the vertical scale here is much smaller 

2 the effects are amplified by the abrupt changes in slope at the toe and top of the scarp. 

3

4

5

6 Figure 17: Wind velocity contours for two-dimensional computational fluid dynamics (CFD) 

7 simulations across (A) Profile B (scarped) at low tide; and (B) Profile C (un-scarped) at low 

8 tide. The simulations show flow acceleration over and downwind of the scarped profile at low 

9 tide with an incident wind velocity of 8 m s1.

10

11

12 Derived wind velocity profiles at 1 m from the scarp edge indicate there is a considerable 

13 difference between scarped and un-scarped morphologies (Figure18). The influence of the 

14 accelerating flow landward of the scarp and the low velocity zone beneath this flow are evident.
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1

2

3 Figure 18: Wind velocity profiles from CFD simulations taken at (A) 1 m and (B) 10 m 

4 landward of the scarped and un-scarped beach profiles for an incident wind of 8 m s1 

5 crossing the beach at low tide. 

6

7

8 The wind velocity for the scarped profile only approaches that of the un-scarped wind velocity 

9 profile at elevations above 5 m (Figure 18a). At 10 m landward of the scarp, the wind velocity 
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1 for the scarped profile reduces to that of the un-scarped profile (Figure 18b). For profile C (un-

2 scarped) the gentle slope of the island means there is only a small increase in wind velocity 

3 across the beach, but no speed-up jet over the surface, with a consistent wind velocity profile 

4 at 1 m and 10 m, until the flow crosses the south coast (Figure 18b).

5

6 5.0 DISCUSSION

7

8 The current paper presents the first high-frequency observations of wind flow and aeolian 

9 sedimentation in the Maldives during the Iruvai Monsoon. In general, these winds did not 

10 generate near-bed flows of sufficient speed to transport sand. However, the experimental 

11 period was punctuated by two high wind speed events that generated near-bed speeds in 

12 excess of the sediment threshold and we measured saltation and observed the formation of 

13 aeolian ripples and shadow dune forms. We hypothesize sand transport by wind was higher 

14 during Event 2 because of flow acceleration over adjacent ephemeral beach scarps. CFD 

15 analysis supports this interpretation by indicating significant acceleration over the surveyed 

16 scarp. Such scarps are a common feature of beaches (Sherman & Nordstrom, 1985) and 

17 widely reported in atoll settings (e.g. Rankey, 2011). On Maaodegalaa, they appear to form or 

18 be refreshed on the windward side of the island at spring high tide. Scarp formation, therefore, 

19 is almost certainly seasonal, with scarps forming on the southern and western margins of the 

20 island during the Hulhangu and on the northern side during the Iruvai. Scarping may allow 

21 sediment to be eroded and transported towards the core of the island during either monsoon, 

22 even when incident winds are below 8m s1 at the bed. In this way there is a fortuitous 

23 coincidence of onshore incident wind, local wave development and scarp formation during 

24 spring high tides during each of the monsoons. It follows that there must be significant periods 

25 when these conditions are not met, and aeolian sedimentation as saltation does not occur.

26

27 Surface-based density currents under cumulonimbus clouds probably generated the near-

28 surface flows that initiated the measured aeolian sedimentation during the two events 
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1 described. This phenomenon has not previously been associated with aeolian sand transport 

2 in an atoll environment, but is well documented in continental settings (e.g. Wilson et al. 1984). 

3 The record of high-frequency wind flow data is brief (only 8 days), and further work is required 

4 to determine the magnitude-frequency characteristics of these flows. It may be that the 

5 frequency of cumulonimbus cloud formation is more important than seasonal shifts in wind 

6 direction and speed associated with the Iruvai and Hulhangu, given ambient wind speeds 

7 during both monsoons may be below the critical sand transport threshold. In this regard 

8 statistical representations of the annual wind regime, as a wind rose, for example (Figure 2), 

9 for example, may misrepresent the relative importance of the Hulhangu and Iruvai monsoons 

10 if cumulonimbus cloud formation is critical to aeolian sedimentation. Further observations are 

11 necessary to explore the frequency of surface-based density currents and a weather station 

12 was installed on Maaodegalaa sand cay in February 2019 to examine this process. 

13

14 The occurrence of aeolian sedimentation on Maaodegalaa sand cay raises the question of the 

15 role this process plays in the formation of islands. Established and densely vegetated islands 

16 in Huvadhoo Lagoon may well have formed during a period of sea-level fall during the late-

17 Holocene, as described by East et al. (2018); but this process does not account for the recent 

18 development of Maaodegalaa and similar emergent cays in Huvadhoo Atoll. The location of a 

19 sand cay on a lagoon platform can be explained by wave transformations and sediment 

20 transport as described by Gourlay (1988), and Mandlier and Kench (2012). The dynamic 

21 nature of sand cays (Flood and Heatwole, 1986) can, likewise, be explained in terms of 

22 variations in the wave climate. But how do sand cays emerge under contemporary sea-state 

23 conditions? The presence of wrack on Maaodegalaa indicates that wave overwash has 

24 contributed sediment (as well as wrack) to the supratidal island, as documented in recent 

25 times following periods of exceptional swell in the Indian Ocean and during tsunami (Kench et 

26 al. 2006). 

27
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1 Dune formation in association with pioneer plant species provides a mechanism for islands to 

2 accrete to an elevation above the usual level of wave swash. We collected 11 plant species 

3 during fieldwork and all are early successional species that are marine dispersed (described 

4 in Sujanapal & Sankaran, 2016). We observed small nebkha developed around individual 

5 plants of Cyperus conglomeratus and larger nebkha formed with Scaevola taccada. Cyperus 

6 may be particularly important in explaining patterns of aeolian sedimentation and accretion. It 

7 has a tussock-like (or ‘bunch-grass’) growth form and occurs on Maaodegalaa as scattered 

8 plants (see Figure 3). In this respect, it is not unlike pioneer dune species such as Ammophila 

9 arenaria, except it does not spread by subsurface rhizomes or stolons. Nor does it have the 

10 capacity to produce vertical rhizomes and grow vertically as sand accumulates. However, it 

11 does appear to encourage sand deposition because of its community structure.  Individuals of 

12 the species tend to be widely scattered, so that sand may be blown into this community, where 

13 it settles as sub-canopy wind speeds decline. We measured accretion of 0.3 m over 13 months 

14 within the Cyperus community that developed between fieldwork in January 2017 and 

15 February 2018 – which is a significant contribution to the topography of the sand cay. 

16 However, this process may be time-limited, since aeolian sedimentation and accretion is likely 

17 to decline as Cyperus increases in density or following the establishment of Scaevola within 

18 the Cyperus community. We measured low wind speeds in the lee of Scaevola during Event 

19 2 on Maaodegalaa, which suggests any period of general aeolian accretion in conjunction with 

20 Cyperus might be short lived. 

21

22 We propose a conceptual model of lagoon island formation, with both overwash and aeolian 

23 sedimentation contributing to island accretion. Island emergence depends on the favourable 

24 coincidence of tidal and wind conditions and the presence of viable plant seed and favourable 

25 germination conditions (e.g. rainfall and soil moisture). The initial condition is a sand cay 

26 formed as wave processes transport sediment to a nodal depocentre on the reef surface 

27 (Figure 19a). Sand cays near to Maaodegalaa in this condition are over-washed at spring high 

28 tide, but at certain times of the year they may emerge for periods during a sequence of 
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1 successively lower spring high tides. During this period, if growth conditions are favourable, 

2 stranded seeds may germinate and grow on the exposed substrate. Seedlings or maturing 

3 plants may then intercept sand blown across the newly exposed sand cay surface (Figure 

4 19b). Sand may also be trapped around and in the lee of wrack, providing an additional depth 

5 of sand for root development. This process may continue so long as spring high tides in the 

6 rising phase of the annual tidal cycle do not inundate the island (and wave overwash events 

7 do not occur). We examined the tidal records for Gan for 2015 and 2016, located 105 km to 

8 the south of Maaodegalaa. The difference in elevation between the highest and lowest spring 

9 high tides during 2015 was 0.35 m. The maximum elevation of the highest spring tide was 

10 2.42 m on the 27th October 2015. Subsequent spring tides did not reach this level during all of 

11 2016, when the maximum spring high tide reached 2.32 m. Sand cay accretion may then 

12 continue as a result of aeolian activity and the deposition of sediment resulting from wave 

13 over-wash (Figure 19c). 

14

15 Aeolian activity is enhanced, we hypothesize, by flow acceleration over beach scarps eroded 

16 during spring high tides. The highest high tides may inundate the lower island surfaces, and 

17 the sand cay will remain vulnerable to tsunami (as occurred in 2004; Kench et al. 2006), 

18 however, at this stage the sand cay has accreted above the reach of swash and plant 

19 colonisation and growth can continue. There is a useful coincidence of beach scarping and 

20 incident wave direction during the seasonal monsoons, such that there is no true windward or 

21 leeward side to a sand cay on an annual basis. Sand can be transported toward the core of 

22 the sand cay during either monsoon. At this stage, the development of a stable island form is 

23 not inevitable. Seasonal variations in wave characteristics might result in the total erosion of 

24 the island and the re-establishment of a subtidal sand cay elsewhere on the reef platform. The 

25 current sand cay of Maaodegalaa developed from a cay which was situated to the northwest 

26 of its current location. Sand cays such as Maaodegalaa may transition through multiple forms 

27 and locations before they develop into more stable island forms. 

28
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1 The emergence of a sand cay above the limit of tides and their colonisation by pioneer plant 

2 species is commonly described as a sequence of events (e.g. Hopley & Heatwole, 2011), 

3

4

5 Figure 19:  Conceptual model of sand cay emergence and accretion. The sand cay forms on 

6 the reef platform and is over-washed by waves at the highest spring high tides (A). Subsequent 

7 (lower) spring tides strand wrack and seed on the cay, and expose the cay surface (B). Seeds 

8 germinate, reptation and saltation builds nebkha, and shadow dunes form around wrack and 

9 plants. The cay accretes above the level of the highest spring tides aided, in part, by flow 

10 acceleration over seasonal high-tide beach scarps (C). Occasional over-wash during periods 

11 of high wave activity / tsunami (labelled) contribute to island accretion. Aeolian sedimentation 

12 and accretion becomes localised as shrub cover increases.
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1

2

3 where a barren sand surface is colonised by pioneer plant species. The above model 

4 envisages island emergence by aeolian sedimentation and plant colonisation are coincident – 

5 the initial supratidal bed provides a surface for marine-dispersed seeds to germinate, and the 

6 roughness created by subsequent plant growth provides for sand accumulation and nebkha 

7 development. Significantly, this new model of contemporary island development is 

8 independent of sea-level over short (decadal) time scales, which is known to be rising in the 

9 Maldives at a rate of 0.8 – 1.6 mm y1 (Church et al. 2004; Woodworth, 2005). 

10

11 6.0 CONCLUSIONS

12

13 Aeolian sand transport of fine to medium, well-sorted, coral sands was recorded on 

14 Maaodegalaa sand cay during two wind events. This is the first high-frequency measurement 

15 of this process in the Maldives and in an equatorial lagoon island setting. It is likely this process 

16 occurs frequently and in a range of geomorphic settings in Huvadhoo Atoll and in other atolls, 

17 including low sand terraces on established islands. Reptation and aeolian ripple development 

18 probably occurs frequently when near-surface flows exceed 6 m s1. Saltation occurs at higher 

19 wind speeds, but probably in very specific geomorphic circumstances. We recorded much 

20 higher rates of sand transport as saltation downwind of a beach scarp due to flow acceleration. 

21 Incident winds associated with the Iruvai monsoon may not be able to initiate sand transport, 

22 but we recorded near-surface winds in excess of 8 m s1, probably generated by surface-based 

23 density currents under cumulonimbus clouds. 

24

25 The rates of sand transport measured are not high, but are significant in the context of a low-

26 lying coral sand cay with a maximum elevation 0.9 m above the level of the highest spring 

27 high tides and 0.6 m above the limit of wave swash. Island accretion by aeolian sedimentation 

28 and dune development may account for a significant component of the island topography, 
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1 however, wave-forced over-wash and sand deposition must also contribute. Indeed, such 

2 events may be critical to island development since they deliver the seeds of terrestrial plant 

3 species to an elevation above the usual reach of tides. Subsequent plant colonisation and 

4 growth is critical to nebkha development. 

5

6 Our results provide the first observations of aeolian processes facilitating island accretion 

7 beyond the limits of wave run-up and overwash. Such a mechanism, combined with 

8 colonisation by vegetation, may be critical in the transformation of cays from dynamic 

9 ephemeral features on reef surfaces to more stable and fully vegetated islands. Of note, the 

10 Maaodegalaa case study demonstrates that small islands may form under contemporary 

11 conditions of rising sea-level. Is there a phase of aeolian activity in the development of all 

12 lagoon islands? This should be possible to confirm, if such activity is associated with the 

13 formation of a distinct aeolian facies, by sampling the stratigraphy of well-established islands. 

14

15  
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